wWorkgroup: Network Working Group
Internet-Draft:
draft-mcquistin-quic-augmented-diagrams-00
Published: 24 April 2020

Intended Status: Experimental

Expires: 26 October 2020

Authors: S. McQuistin V. Band
University of Glasgow University of Glasgow
D. Jacob C. S. Perkins

University of Glasgow University of Glasgow
Describing QUIC's Protocol Data Units with Augmented Packet Header
Diagrams

Abstract

This document describes the core transport protocol data units used

in the QUIC protocol using a machine-readable augmented packet
header diagram format. It is intended as an example of the packet
header diagram language, and not as a contribution to the
development of the QUIC protocol.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of siXx

months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."
This Internet-Draft will expire on 26 October 2020.
Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Header and Packet Protection

3. Variable Length Integer Encoding
4. Stateless Reset

5. Version Negotiation Packet

6. Long Header Packets

6.1. Initial Packet

6.2 ORTT Packet
6.3 Handshake Packet
6.4. Retry Packet

7 Short Header Packets

8 Frames and Frame Formats
8.1 PADDING frame
8.2 PING frame
8.3 ACK frame
8.4 RESET_STREAM frame
8.5 STOP_SENDING frame
8.6 CRYPTO frame
8.7 NEW_TOKEN frame
8.8 STREAM frame

8.9. MAX_DATA frame

8.10. MAX_STREAM_DATA frame

8.11. MAX_STREAMS frame

8.12. DATA_BLOCKED frame

8.13. STREAM DATA BLOCKED frame
8.14. STREAMS BLOCKED frame
8.15. NEW_CONNECTION ID frame
8.16. RETIRE_CONNECTION_ID frame
8.17. PATH_CHALLENGE frame

8.18. PATH RESPONSE frame

8.19. CONNECTION CLOSE frame
8.20. HANDSHAKE DONE frame

9. Informative References

Appendix A.

Source code repository

Authors'

Addresses

Introduction

The augmented packet header diagram format [AUGMENTED-DIAGRAMS]
enables documents to specify the syntax of protocol data units in a
way that enables support for automated parser generation, while

maintaining human readability.

To demonstrate how this approach can be applied, and the value that
this document describes QUIC [QUIC-TRANSPORT] using
the augment packet header diagram format.

it can provide,

This document is not an exhaustive description of the QUIC protocol.
It contains only those elements necessary to demonstrate the
augmented packet header diagram format, and should be read as an

example of the use of that format.

This document describes the QUIC protocol. The QUIC protocol uses
Stateless Reset Packets,

Version Negotiation Packets.

Header and Packet Protection

A Protected Packet is either a Protected Long Header Packet or a

Protected Short Header Packet.

The apply_protection function is defined as:

Protected Packets, Retry Packets, and

func apply_protection(to: Unprotected Packet)
-> Protected Packet:
apply packet protection to payload
apply header protection to first_byte and packet_number
construct appropriate Protected Packet based on first_byte
return Protected Packet

An Unprotected Packet is serialised to a Protected Packet using the
apply_protection function.

The remove_protection function is defined as:

func remove_protection(from: Protected Packet)
-> Unprotected Packet:
remove header protection from protected_packet
remove packet protection from protected_packet
construct appropriate packet type
return Unprotected Packet

An Unprotected Packet is parsed from a Protected Packet using the
remove_protection function.

An Unprotected Packet is either a Long Header Packet or a Short
Header Packet.

3. Variable Length Integer Encoding
A Variable Length Integer Encoding is formatted as follows:

0 1 2 3
012345678901234567890123456789601
+-t-F-F-+-F-F-F-+-F-F-F-F-F-F-+-F-F-F-F+-F-F-F-+-F-F-F-F-F-F+-+-+-+

|Len|
+ot-t-t-F+-+-+-+-+
| Value
+-+-F-+-+-F-F-+-+-F-F-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F-+-+-F-F+-+-+-+

where:

Len: 2 bits. The base 2 logarithm of the integer encoding length in
bytes.

Value: ((2”Len)*8)-2 bits. The integer value encoded in network
byte order.

4., Stateless Reset

A Stateless Reset Packet is formatted as follows:

0
0]
+

+

0 1 2 3
012345678901 234567890123456789¢01
B e o T ST S S S i s S S S

[0]1] Unpredictable Bits
B s e R S b b s T R S Sy S S S S S Sy S S

|
+
|
Stateless Reset Token +
|
+
|
+

B b ek ot T I e S S S b h
where:

Header Form (HF): 1 bit; HF == 0. The most significant bit (0x80)
of byte 0 (the first byte) is set to 0 for stateless reset
packets.

Fixed Bit (FB): 1 bit; FB == 1. The next bit (0x40) of byte 0 is
set to 1. Packets containing a zero value for this bit are not

valid packets in this version and MUST be discarded.

Unpredictable Bits (UB): UB.Size > 38. The remainder of the first
byte and an arbitrary number of bytes following it that are set
to unpredictable values.

Stateless Reset Token: 128 bits. The last 16 bytes of the datagram
contain a Stateless Reset Token.

Version Negotiation Packet
A Version is formatted as follows:

1 2 3
1234567890123 4567890123456789601
B R ST s st el ST S S s st aT S SPUE SpUp S Sy Sy

Version identifier |
Lk e T e S ke e S T T e e R kTt T T T P S P TR S e ik sk
where:

Version identifier (ID): 32 bits. 32-bit version identifier.

A Version Negotiation Packet is formatted as follows:

0 1 2 3
0123456789061 234567890612345678901
tot-t-t-t-t-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-Ft-F-F-F-F-F-F+-+-+-+
[1] Unused |

B T b b e T T S s b TR TP Sy Sy Sy S S S
| Version
tot-t-t-t-t-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-+-+-+
| DCID Len |

B T b b e e T o e S at t s oIS S S Sy S S
| Destination Connection ID
tot-t-t-t-t-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-+-+-+-+
| SCID Len |
ottt -ttt -ttt -F-F-+-+-+
| Source Connection ID
tot-t-t-t-t-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-t-F-F-F-F-F-+-+-+-+
| [Supported Versions]
+ot-t-t-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+

where:

Header Form (HF): 1 bit; HF == 1. The most significant bit (0x80)
of byte © (the first byte) is set to 1 for version negotiation
packets.

Unused (T): 6 bits. The value in the Unused field is selected
randomly by the server. Clients MUST ignore the value of this
field. Servers SHOULD set the most significant bit of this field
(0x40) to 1 so that Version Negotiation packets appear to have
the Fixed Bit field.

Version: 1 Version; Version.ID == 0. The Version field of a Version
Negotiation packet MUST be set to Ox0000000.

DCID Len (DLen): 1 byte. This field is as previously define.
However, as future versions of QUIC may support Connection IDs
larger than the version 1 limit, Version Negotiation packets
could carry Connection IDs that are longer than 20 bytes.

Destination Connection ID: DLen bytes. The Destination Connection
ID field is between 0 and 278-1 bytes in length.

SCID Len (SLen): 1 byte. This field is as previously define.
However, as future versions of QUIC may support Connection IDs

larger than the version 1 limit, Version Negotiation packets
could carry Connection IDs that are longer than 20 bytes.

Source Connection ID: SLen bytes. The Source Connection ID field is

between 0 and 2/A8-1 bytes in length.

Supported Versions: [Version]. The remainder of the Version
Negotiation packet is a list of 32-bit versions which the server
supports.

Long Header Packets
A Long Header is formatted as follows:

0 1 2 3
012345678901 23456789012345678901
+ot-t-F-t-t-t-+-+
[1[1] T | R | P |
B b n e T e e e T S h tk s s o T S S S S S S S S
| Version
tot-t-t-t-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-+-+-+-+
| DCID Len |
B s e R S b b s T R S Sy S S S S S Sy S S
| Destination Connection ID (DCID)
tot-t-t-t-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-+-+-+-+
| SCID Len |
B i e S e e S e S S E EE E E
| Source Connection ID (SCID)
+-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-Ft-F-F-F-F-F-F-F-F+-+-+-+

where:

Header Form (HF): 1 bit; HF == 1. The most significant bit (0x80)
of byte © (the first byte) is set to 1 for long headers.

Fixed Bit (FB): 1 bit; FB == 1. The next bit (0x40) of byte 0 is
set to 1. Packets containing a zero value for this bit are not
valid packets in this version and MUST be discarded.

Long Packet Type (T): 2 bits. The next two bits (those with a mask
of 0x30) of byte @ contain a packet type.

Reserved Bits (R): 2 bits. Two bits (those with a mask of 0x0c) of
byte 0 are reserved across multiple packet types. These bits are
protected using header protection.

Packet Number Length (P): 2 bits. In packet types which contain a

Packet Number field, the least significant two bits (those with a

mask of 0x03) of byte @ contain the length of the packet number,

encoded as an unsigned, two-bit integer that is one less than the
length of the packet number field in bytes.

Version: 1 Version. This field indicates which version of QUIC is
in use and determines how the rest of the protocol fields are
interpreted.

DCID Len (DLen): 1 byte; DLen <= 20. This field contains the
length, in bytes, of the Destination Connection ID field that
follows it. This length is encoded as an 8-bit unsigned integer.
In QUIC version 1, this value MUST NOT exceed 20. Endpoints that
receive a version 1 long header with a value larger than 20 MUST
drop the packet. Servers SHOULD be able to read longer connection
IDs from other QUIC versions in order to properly form a version
negotiation packet.

Destination Connection ID (DCID): DLen bytes. The Destination
Connection ID field is between 0 and 20 bytes in length.

SCID Len (SLen): 1 byte; SLen <= 20. This field contains the
length, in bytes, of the Source Connection ID field that follows
it. This length is encoded as an 8-bit unsigned integer. In QUIC
version 1, this value MUST NOT exceed 20 bytes. Endpoints that
receive a version 1 long header with a value larger than 20 MUST
drop the packet. Servers SHOULD be able to read longer connection
IDs from other QUIC versions in order to properly form a version
negotiation packet.

Source Connection ID (SCID): SLen bytes. The Source Connection ID
field is between 0 and 20 bytes in length.

A Long Header Packet is one of: an Initial Packet, a ORTT Packet, a
Handshake Packet, or a Retry Packet.

A Protected Long Header is formatted as follows:

0 1 2 3
012345678901 234567890123456789¢01
B e S
[1]1] T | PBits |
B s e R S b b s T R S Sy S S S S S Sy S S
| Version
tot-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-F+-+-+-+
| DCID Len |
B i e S e e S e S S E EE E E
| Destination Connection ID
+-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-Ft-F-F-F-F-F-F-F-F+-+-+-+
| SCID Len |
B e o T S e kst abhs o S S Sy S S
| Source Connection ID
tot-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-t-F-t-F-F-F-F-F-F+-+-+-+

where:

Header Form (HF): 1 bit; HF == 1. The most significant bit (0x80)
of byte 0 (the first byte) is set to 1 for long headers.

Fixed Bit (FB): 1 bit; FB == 1. The next bit (0x40) of byte 0 is
set to 1. Packets containing a zero value for this bit are not
valid packets in this version and MUST be discarded.

Long Packet Type (T): 2 bits. The next two bits (those with a mask
of O0x30) of byte @ contain a packet type.

Protected Bits (PBits): 4 bits. 4 bits protected using header
protection.

Version: 1 Version. This field indicates which version of QUIC is
in use and determines how the rest of the protocol fields are
interpreted.

DCID Len (DLen): 1 byte; DLen <= 20. This field contains the
length, in bytes, of the Destination Connection ID field that
follows it. This length is encoded as an 8-bit unsigned integer.
In QUIC version 1, this value MUST NOT exceed 20. Endpoints that
receive a version 1 long header with a value larger than 20 MUST
drop the packet. Servers SHOULD be able to read longer connection
IDs from other QUIC versions in order to properly form a version
negotiation packet.

Destination Connection ID: DLen bytes. The Destination Connection
ID field is between © and 20 bytes in length.

SCID Len (SLen): 1 byte; SLen <= 20. This field contains the
length, in bytes, of the Source Connection ID field that follows
it. This length is encoded as an 8-bit unsigned integer. In QUIC

version 1, this value MUST NOT exceed 20 bytes. Endpoints that
receive a version 1 long header with a value larger than 20 MUST
drop the packet. Servers SHOULD be able to read longer connection
IDs from other QUIC versions in order to properly form a version
negotiation packet.

Source Connection ID: SLen bytes. The Source Connection ID field is

between 0 and 20 bytes in length.

A Protected Long Header Packet is one of: a Protected Initial

Packet, a Protected ORTT Packet, or a Protected Handshake Packet.

6.1. Initial Packet
An Initial Packet is formatted as follows:

0] 1 2 3
01234567890123456789012345678901
s ST S S S e T S e R S T STSE SN S S S
|

Long Header

B s e R S b b s T R S Sy S S S S S Sy S S
| Token Length
tot-t-t-t-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-+-+-+-+
| Token

B i e S e e S e S S E EE E E
| Length
+-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-Ft-F-F-F-F-F-F-F-F+-+-+-+
| Packet Number

B e o T S e kst abhs o S S Sy S S
| Payload
tot-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-t-F-t-F-F-F-F-F-F+-+-+-+

where:

Long Header (LH): 1 Long Header; LH.T ==
An Initial packet uses
long headers with a type value of 0x0. On receipt, the value of
LH.DCID is stored as Initial DCID.

Token Length (TL): 1 Variable Length Integer Encoding. A variable-
length integer specifying the length of the Token field, in
bytes.

Token: TL.Value bytes; present only when TL.Value > 0. The value of
the token that was previously provided in a Retry packet or
NEW_TOKEN frame.

Length: 1 Variable Length Integer Encoding. The length of the
remainder of the packet (that is, the Packet Number and Payload
fields) in bytes, encoded as a variable-length integer.

Packet Number: LH.P+1 bytes. The packet number field.
Payload: [Frame]. The payload field, comprised of multiple frames.
A Protected Initial packet is formatted as follows:

0] 1 2 3
012345678901 23456789012345678901
e T S o T e e A Sr Sp S
|

Long Header

tot-t-t-t-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-+-+-+-+
| Token Length

B s e R S b b s T R S Sy S S S S S Sy S S
| Token
+-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-Ft-F-F-F-F-F-F-F-F+-+-+-+
| Length

B i e S e e S e S S E EE E E
| Protected Packet Number
tot-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-t-F-t-F-F-F-F-F-F+-+-+-+

| Protected Payload
B e o T S e kst abhs o S S Sy S S

where:

Long Header (LH): 1 Long Header; LH.T == 0. An Initial packet uses
long headers with a type value of 0x0.

Token Length (TL): 1 Variable Length Integer Encoding. A variable-
length integer specifying the length of the Token field, in
bytes.

Token: TL.Value bytes; present only when TL.Value > 0.
The value of

the token that was previously provided in a Retry packet or
NEW_TOKEN frame.

Length: 1 Variable Length Integer Encoding. The length of the
remainder of the packet (that is, the Packet Number and Payload
fields) in bytes, encoded as a variable-length integer.

Protected Packet Number: LH.P+1 bytes. The packet number field,
with header protection.

Protected Payload: (Length.vValue-(LH.P+1)) bytes. The protected
payload field.

6.2. ORTT Packet
A ORTT Packet is formatted as follows:

(¢} 1 2 3
012345678901 23456789012345678901
e ST S e T S ST S Sy S et ol S U i S et 3
|

Long Header

t-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| Length

Bk T e e e e ah ah ks et ks T T e e e S
| Packet Number
+-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-Ft-F-F-F-F-F-F-F-+-+-+-+
| Payload

B s e R S b b s T R S Sy S S S S S Sy S S

where:

Long Header (LH): 1 Long Header; LH.T == 1. A O-RTT packet uses
long headers with a type value of 0x1.

Length: 1 Variable Length Integer Encoding. The length of the
remainder of the packet (that is, the Packet Number and Payload
fields) in bytes, encoded as a variable-length integer.

Packet Number: LH.P+1 bytes. The packet number field.

Payload: [Frame]. The payload field, comprised of multiple frames.

A Protected ORTT Packet is formatted as follows:

0] 1 2 3
012345678901 23456789012345678901
T e T S o T S Sy S S S A Sor S S
|

Long Header

B S T s e e S e S Rty st R SPUP Up SpU Sy i
| Length
tot-t-F-t-t-t-t-F-t-t-t-t-F-t-F-t-t-F-t-F-F-F-F-t-F-F-F-F-F-F+-+-+
| Protected Packet Number

B e ST S e T s ST SR S S S e E Lk b ot ok
| Protected Payload
tot-t-F-t-t-t-t-F-t-t-t-t-F-t-F-t-t-F-t-F-F-F-F-t-F-F-F-F-F-F+-+-+

where:

Long Header (LH): 1 Long Header; LH.T == 1. A O-RTT packet uses
long headers with a type value of 0Ox1.

Length: 1 Variable Length Integer Encoding. The length of the

remainder of the packet (that is, the Packet Number and Payload

fields) in bytes, encoded as a variable-length integer.

Protected Packet Number: LH.P+1 bytes. The packet number field,
with header protection.

Protected Payload: (Length.Value-(LH.P+1)) bytes. The protected
payload field.

6.3. Handshake Packet
A Handshake Packet is formatted as follows:

(¢} 1 2 3
012345678901 23456789012345678901
s ST S e S e o S e ST S S e SPEE S S
|

Long Header

B e o T S e kst abhs o S S Sy S S
| Length
tot-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-t-F-t-F-F-F-F-F-F+-+-+-+
| Packet Number
+-t-t-F-F-F-F-t-t-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| Payload
tot-t-t-F-F-t-t-t-t-t-t-F-t-F-F-F-F-F-F-t-t-F-t-F-F-F-F-F-F+-+-+-+

where:

Long Header (LH): 1 Long Header; LH.T ==

A Handshake packet uses long headers with a type value of 0x2.

Length: 1 Variable Length Integer Encoding. The length of the
remainder of the packet (that is, the Packet Number and Payload
fields) in bytes, encoded as a variable-length integer.

Packet Number: LH.P+1 bytes. The packet number field.
Payload: [Frame]. The payload field, comprised of multiple frames.
A Protected Handshake packet is formatted as follows:

0] 1 2 3
01234567890123456789012345678901
s T S ST S T e S RS
|

Long Header

tot-t-F-t-t-t-t-F-t-t-t-t-F-t-F-t-t-F-t-F-F-F-F-t-F-F-F-F-t-F+-+-+
| Length

B e Sk at s sl T SR S Sy S S S Rt S s S ok e
| Protected Packet Number
tot-t-F-t-t-t-t-F-t-t-t-t-F-t-F-t-t-F-t-F-F-F-F-t-F-F-F-F-F-F+-+-+
| Protected Payload

B e Sk at s sl T SR S Sy S S S Rt S s S ok e

where:

Long Header (LH): 1 Long Header; LH.T == 2. A Handshake packet uses
long headers with a type value of 0x2.

Length: 1 Variable Length Integer Encoding. The length of the
remainder of the packet (that is, the Packet Number and Payload
fields) in bytes, encoded as a variable-length integer.

Protected Packet Number: LH.P+1 bytes. The packet number field,
with header protection.

Protected Payload: (Length.vValue-(LH.P+1)) bytes. The protected
payload field.

6.4. Retry Packet

A Retry Packet is formatted as follows:

0 1 2 3
012345678901 234567890123456789¢01
+ot-t-t-F-t-t-F-t-F-F-F-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+
|

: Long Header
ot -t-t-F-t-t-F-t-F-F-F-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+

| Retry Token
tot-t-F-t-t-t-t-F-t-t-t-t-F-t-F-t-t-F-t-F-F-F-F-t-F-F-F-F-F-F+-+-+

I I
+ +
I I
+ Retry Integrity Tag +
I I
+ +
I I
tot-t-t-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+

where:

Long Header (LH): 1 Long Header; LH.T == 3. A Retry packet uses

long headers with a type value of 0x3.

Retry Token. An opaque token that the server can use to validate
the client's address.

Retry Integrity Tag: 128 bits. Retry Integrity Tag field.
Short Header Packets
A Short Header Packet is formatted as follows:

(C] 1 2 3
012345678901 23456789012345678901
+ot-t-F-t-t-+-+-+
lo[1]S| R K| P |
Rk R e R R el e e S e S R R ek e e T e e e R it
| Destination Connection ID
+-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| Packet Number
Rk R e R R Rk et S S e R e R R ks e L TR P S i e e
I
: Payload

B T e b T S e e st o S TP S S S Sy S S
where:

Header Form (HF): 1 bit; HF == 0. The most significant bit (0x80)
of byte 0 (the first byte) is set to 0 for short headers.

Fixed Bit (FB): 1 bit; FB ==
The next bit (0x40) of byte 0 is
set to 1. Packets containing a zero value for this bit are not
valid packets in this version and MUST be discarded.

Spin Bit (S): 1 bit. The third most significant bit (0x20) of byte
0 is the latency spin bit.

Reserved Bits (R): 2 bits. The next two bits (those with a mask of
0x18) of byte 0 are reserved. These bits are protected using
header protection. The value included prior to protection MUST be
set to 0.

Key Phase (K): 1 bit. The next bit (0x04) of byte 0 indicates the
key phase, which allows a recipient of a packet to identify the
packet protection keys that are used to protect the packet. This
bit is protected using header protection.

Packet Number Length (P): 2 bits. In packet types which contain a
Packet Number field, the least significant two bits (those with a
mask of Ox03) of byte @ contain the length of the packet number,
encoded as an unsigned, two-bit integer that is one less than the
length of the packet number field in bytes. These bits are
protected using header protection.

Destination Connection ID: 20 bytes. The Destination Connection ID
is a connection ID that is chosen by the intended recipient of
the packet.

Packet Number: P+1 bytes. The packet number field is 1 to 4 bytes
long. The packet number has confidentiality protection separate
from packet protection. The length of the packet number field is
encoded in Packet Number Length field.

Payload: [Frame]. The payload field, comprised of multiple frames.

A Protected Short Header Packet is formatted as follows:

0 1 2 3
012345678901 234567890123456789¢01
B e S
[@]1]|S| ProcRKP |
B s e R S b b s T R S Sy S S S S S Sy S S
| Destination Connection ID
tot-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-F+-+-+-+
| Protected Packet Number
B i e S e e S e S S E EE E E
I
: Protected Payload

B e o T S e kst abhs o S S Sy S S
where:

Header Form (HF): 1 bit; HF == 0. The most significant bit (0x80)
of byte © (the first byte) is set to 0 for short headers.

Fixed Bit (FB): 1 bit; FB == 1. The next bit (0x40) of byte 0 is
set to 1. Packets containing a zero value for this bit are not
valid packets in this version and MUST be discarded.

Spin Bit (S): 1 bit. The third most significant bit (0x20) of byte
0 is the latency spin bit.

Protected Bits (ProcRKP): 5 bits. Five header protected bits.

Destination Connection ID: 20 bytes. The Destination Connection ID
is a connection ID that is chosen by the intended recipient of
the packet.

Packet Number. The packet number field is 1 to 4 bytes long. The
packet number has confidentiality protection separate from packet
protection. The length of the packet number field is encoded in
Packet Number Length field.

Protected Payload: [Frame]. Packets with a short header always
include a 1-RTT protected payload.

Frames and Frame Formats

A Frame is one of: a PADDING frame, a PING frame, an ACK frame, a
RESET_STREAM frame, a STOP_SENDING frame, a CRYPTO frame, a
NEW_TOKEN frame, a STREAM frame, a MAX_DATA frame, a MAX_STREAM_DATA
frame, a MAX_STREAMS frame, a DATA_BLOCKED frame, a
STREAM_DATA_BLOCKED frame, a STREAMS_BLOCKED frame, a
NEW_CONNECTION_ID frame, a PATH_CHALLENGE frame, a PATH_RESPONSE
frame, a CONNECTION_CLOSE frame, or a HANDSHAKE_DONE frame.

8.1. PADDING frame

A PADDING Frame is formatted as follows:

0] 1 2 3
01234567890123456789012345678901
e R L T T St gy

| 0 |

s ST S S S s o S s s S S S T 3

where:

Frame Type (FT): 1 Variable Length Integer Encoding; FT.Value ==
Frame type, set to ©0 for PADDING frames.

8.2. PING frame

A PING Frame is formatted as follows:

(¢} 1 2 3
012345678901 23456789012345678901
e ST S e T S ST S Sy S et ol S U i S et 3

| 1 |

s T S ST S T e S RS

where:

Frame Type (FT): 1 Variable Length Integer Encoding; FT.Value == 1.
Frame type, set to 1 for PING frames.

8.3. ACK frame

An ACK Range is formatted as follows:

0 1 2 3

01234567890123456789012345678901
B s S e e S T e e o S Sy Sy S S S S S S
| Gap -
+-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-Ft-F-F-F-F-F-F-F-F+-+-+-+
| ACK Packet Range .
B i e S e e S e S S E EE E E

where:

Gap: 1 Variable Length Integer Encoding. A variable-length integer

indicating the number of contiguous unacknowledged packets

preceding the packet number one lower than the smallest in the
preceding ACK Range.

ACK Packet Range: 1 Variable Length Integer Encoding. A variable-
length integer indicating the number of contiguous acknowledged

packets preceding the largest packet number, as determined by the

preceding Gap.
An ECN Count is formatted as follows:

(C] 1 2 3
012345678901 23456789012345678901
+-t-t-F-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+-+

| ECTO Count
Rk R e R R el e e S e S R R ek e e T e e e R it
| ECT1 Count
+-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| ECNCE Count
Rk R e R R Rk et S S e R e R R ks e L TR P S i e e

where:

ECTO Count: 1 Variable Length Integer Encoding. A variable-length
integer representing the total number of packets received with
the ECT(0) codepoint in the packet number space of the ACK frame.

ECT1 Count: 1 Variable Length Integer Encoding. A variable-length
integer representing the total number of packets received with
the ECT(1) codepoint in the packet number space of the ACK frame.

ECNCE Count: 1 Variable Length Integer Encoding. A variable-length
integer representing the total number of packets received with

the CE codepoint in the packet number space of the ACK frame.

An ACK Frame is formatted as follows:

0 1 2 3
012345678901 234567890123456789¢01
tot-t-t-t-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-+-+-+-+

| Frame Type |

B s e R S b b s T R S Sy S S S S S Sy S S
| Largest Acknowledged
tot-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-F+-+-+-+
| ACK Delay

B i e S e e S e S S E EE E E
| ACK Range Count
+-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-Ft-F-F-F-F-F-F-F-F+-+-+-+
| First ACK Range

B e o T S e kst abhs o S S Sy S S
| [0Other ACK Ranges]
tot-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-t-F-t-F-F-F-F-F-F+-+-+-+
| ECN Counts
tot-t-t-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+

where:

Frame Type (FT): 1 Variable Length Integer Encoding; (FT.Value == 3)
|| (FT.Value == 4).
Frame type, set to 3 or 4 for ACK frames.

Largest Acknowledged: 1 Variable Length Integer Encoding. A
variable-length integer representing the largest packet number
the peer is acknowledging; this is usually the largest packet
number that the peer has received prior to generating the ACK
frame. Unlike the packet number in the QUIC long or short header,
the value in an ACK frame is not truncated.

ACK Delay: 1 Variable Length Integer Encoding. A variable-length
integer representing the time delta in microseconds between when
this ACK was sent and when the largest acknowledged packet, as
indicated in the Largest Acknowledged field, was received by this
peer.

ACK Range Count: 1 Variable Length Integer Encoding. A variable-
length integer specifying the number of Gap and ACK Range fields
in the frame.

First ACK Range: 1 ACK Range. The First ACK Range is encoded as an
ACK Range starting from the Largest Acknowledged.

Other ACK Ranges: [ACK Range]. Contains additional ranges of
packets which are alternately not acknowledged and acknowledged.

ECN Counts: 1 ECN Count; present only when FT.Value == 3. The three
ECN Counts.

8.4. RESET_STREAM frame

8.

A RESET_STREAM Frame is formatted as follows:

0 1 2 3
012345678901234567890123456789601
tot-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-t-F-t-F-F-F-F-F-F+-+-+-+

I 4 I
+ot-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| Stream ID
tot-t-t-F-F-t-t-t-t-t-t-F-t-F-F-F-F-F-F-t-t-F-t-F-F-F-F-F-F+-+-+-+
| Application Error Code
+-t-t-F-F-F-F-t-t-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| Final Size
tot-t-t-F-t-tototot-t-t-t-t-t-FoFoFoFotot-t-t-t-t-F-F-F-F-F-F+-+-+

where:

Frame Type (FT): 1 Variable Length Integer Encoding; FT.Value == 4,
Frame type, set to 4 for RESET_STREAM frames.

Stream ID: 1 Variable Length Integer Encoding. A variable-length
integer encoding of the Stream ID of the stream being terminated.

Application Error Code: 1 Variable Length Integer Encoding. A
variable-length integer containing the application protocol error
code which indicates why the stream is being closed.

Final Size: 1 Variable Length Integer Encoding. A variable-length
integer indicating the final size of the stream by the
RESET_STREAM sender, in unit of bytes.

5. STOP_SENDING frame
A STOP_SENDING Frame is formatted as follows:

0 1 2 3
012345678901 23456789012345678901
+-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-Ft-F-F-F-F-F-F-F-+-+-+-+

I 5 I

B s e R S b b s T R S Sy S S S S S Sy S S
| Stream ID
tot-t-t-t-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-+-+-+-+
| Application Error Code

s ST S e S e o S e ST S S e SPEE S S

where:

Frame Type (FT): 1 Variable Length Integer Encoding; FT.Value ==
Frame type, set to 5 for STOP_SENDING frames.

8

Stream ID: 1 Variable Length Integer Encoding.
A variable-length
integer carrying the Stream ID of the stream being ignored.

Application Error Code: 1 Variable Length Integer Encoding. A
variable-length integer containing the application-specified
reason the sender is ignoring the stream.

.6. CRYPTO frame

A CRYPTO Frame is formatted as follows:

0] 1 2 3
01234567890123456789012345678901
s T S ST S T e S RS

6 |

dodototodtototodotototot oottt ottt oottt ottt oottt ottt

Offset

s ST S S S e T S e R S T STSE SN S S S

Length

T e T S o T S Sy S S S A Sor S S

Crypto Data

T e T S o T S Sy S S S A Sor S S

8.

7.

where:

Frame Type (FT): 1 Variable Length Integer Encoding; FT.Value ==
Frame type, set to 6 for CRYPTO frames.

offset: 1 Variable Length Integer Encoding. A variable-length
integer specifying the byte offset in the stream for the data in
this CRYPTO frame.

Length: 1 Variable Length Integer Encoding. A variable-length
integer specifying the length of the Crypto Data field in this
CRYPTO frame.

Crypto Data: Length.Value bytes. The cryptographic message data.

NEW_TOKEN frame

A NEW_TOKEN Frame is formatted as follows:

(C] 1 2 3
012345678901 234567890123456789¢01
B e Sk at s sl T SR S Sy S S S Rt S s S ok e

I 7 I
tot-t-F-t-t-t-t-F-t-t-t-t-F-t-F-t-t-F-t-F-F-F-F-t-F-F-F-F-F-F+-+-+
| Token Length

B S T s e e S e S Rty st R SPUP Up SpU Sy i
I

Token
+-t-t-t-F-t-F-+-+-+
where:

Frame Type (FT): 1 Variable Length Integer Encoding; FT.Value ==
Frame type, set to 7 for NEW_TOKEN frames.

Token Length (TL): 1 Variable Length Integer Encoding. A variable-
length integer specifying the length of the token in bytes.

Token: TL.vValue bytes. An opaque blob that the client may use with
a future Initial packet.

8.8. STREAM frame
A STREAM Frame is formatted as follows:

0 1 2 3
012345678901 23456789012345678901
+-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-Ft-F-F-F-F-F-F-F-+-+-+-+

I 1 |[O|L[F]

B s e R S b b s T R S Sy S S S S S Sy S S
| Stream ID
tot-t-t-t-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-+-+-+-+
| Offset

B s S e e S T e e o S Sy Sy S S S S S S
| Length
+-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-Ft-F-F-F-F-F-F-F-F+-+-+-+
I

Stream Data
B B B B Dy B D T SN SN Y SN DY SN SFOY BN SO ST SN DY SN ST DN NN S BN P S
where:

Unused: 5 bits; Unused == 1. Five high-order bits in frame type
field; set to 1 for STREAM frames.

OFF bit (0): 1 bit. Set to indicate that there is an Offset field
present.

LEN bit (L): 1 bit.
Set to indicate that there is a Length field
present.

FIN bit (F): 1 bit. Set only on frames that contain the final size
of the stream.

Stream ID: 1 Variable Length Integer Encoding. A variable-length
integer indicating the stream ID of the stream.

offset: 1 Variable Length Integer Encoding; present only when 0 ==
1.
A variable-length integer specifying the byte offset in the
stream for the data in this STREAM frame.

Length: 1 Variable Length Integer Encoding; present only when L ==
1.
A variable-length integer specifying the length of the Stream
Data field in this STREAM frame. This field is present when the
LEN bit is set to 1. When the LEN bit is set to 0, the Stream
Data field consumes all the remaining bytes in the packet.

Stream Data: Length.Value bytes. The bytes from the designated
stream to be delivered.

8.9. MAX_DATA frame
A MAX_DATA Frame 1is formatted as follows:

0 1 2 3
01234567890123456789012345678901
B i e S e e S e S S E EE E E

I 16 I
tot-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-t-F-t-F-F-F-F-F-F+-+-+-+
| Maximum Data

B e o T S e kst abhs o S S Sy S S

where:

Frame Type (FT): 1 Variable Length Integer Encoding; FT.Value == 16.
Frame type, set to 16 for MAX_DATA frames.

Maximum Data: 1 Variable Length Integer Encoding. A variable-length
integer indicating the maximum amount of data that can be sent on
the entire connection, in units of bytes.

8.10. MAX_STREAM_DATA frame

A MAX_STREAM_DATA Frame is formatted as follows:

0 1 2 3
012345678901 234567890123456789¢01
tot-t-t-t-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-+-+-+-+

I 17 I

B s e R S b b s T R S Sy S S S S S Sy S S
| Stream ID
tot-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-F+-+-+-+
| Maximum Stream Data

B i e S e e S e S S E EE E E

where:

Frame Type (FT): 1 Variable Length Integer Encoding; FT.Value ==
Frame type, set to 17 for MAX_STREAM_DATA frames.

Stream ID: 1 Variable Length Integer Encoding. The stream ID of
stream that is affected encoded as a variable-length integer.

Maximum Stream Data: 1 Variable Length Integer Encoding. A
variable-length integer indicating the maximum amount of data
that can be sent on the identified stream, in units of bytes.

8.11. MAX_STREAMS frame

8.

A MAX_STREAMS Frame is formatted as follows:

0 1 2 3
©01234567890123456789012345678901
B e ek ik S S e S Rk e e e S e e e R R ik ik sk S S e

I FT I

B kTR T R e R e (T R S R S e ek e (R S S SR S e e e (R SR e S S e
| Maximum Streams

-+ttt -ttt -ttt -ttt -ttt -t -+-F+-+-+

where:

Frame Type (FT): 1 Variable Length Integer Encoding; (FT.Value ==

18) || (FT.value == 19).
Frame type, set to 18 or 19 for MAX_STREAMS frames.

17.

the

Maximum Streams: 1 Variable Length Integer Encoding. A count of the
cumulative number of streams of the corresponding type that can

be opened over the lifetime of the connection.

12. DATA_BLOCKED frame

A DATA_BLOCKED Frame is formatted as follows:

0 1 2 3
012345678901 23456789012345678901
+ot-t-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-t-Ft-F-F-F-F-F-F-F-F-F+-+-+-+

I 20 I

e e e e S S b b s T SR SR Sy S S S SR S S S
| Data Limit
+ot-t-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-t-F-F-F-F-F-F-F-F-F+-+-+-+

where:

Frame Type (FT): 1 Variable Length Integer Encoding; FT.Value == 20.
Frame type, set to 20 for DATA_BLOCKED frames.

Data Limit: 1 Variable Length Integer Encoding. A variable-length
integer indicating the connection-level limit at which blocking
occurred.

8.13. STREAM_DATA_BLOCKED frame
A STREAM_DATA_BLOCKED Frame is formatted as follows:

(0] 1 2 3
0123456789061 234567890612345678901
Dk o T R e R it ek e AT T S S P R e e S P R R e e kst IR P e

I 21 I
+-t-F-F-t-t-t-t-t-F+-+-+-+
| Stream ID

Rk o T R e R R Rl i e S e e T R S e R et bt (T L S P e
| Stream Data Limit
+ot-t-F-F-t-t-t-t-F+-+-+-+

where:

Frame Type (FT): 1 Variable Length Integer Encoding; FT.Value == 21.
Frame type, set to 21 for STREAM_DATA_BLOCKED frames.

Stream ID: 1 Variable Length Integer Encoding. A variable-length
integer indicating the stream which is flow control blocked.

Maximum Stream Data: 1 Variable Length Integer Encoding. A
variable-length integer indicating the offset of the stream at
which the blocking occurred.

8.14. STREAMS_BLOCKED frame

A STREAMS_BLOCKED Frame is formatted as follows:

0 1 2 3
012345678901 234567890123456789¢01
tot-t-t-t-t-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-+-+-+-+

I FT I

B s e R S b b s T R S Sy S S S S S Sy S S
| Stream Limit
tot-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-F-F-F-F-F-F-F-F-F+-+-+-+

where:

Frame Type (FT): 1 Variable Length Integer Encoding; (FT.Value ==
22) || (FT.value == 23).
Frame type, set to 22 or 23 for STREAMS_BLOCKED frames.

Stream Limit: 1 Variable Length Integer Encoding. A variable-length
integer indicating the stream limit at the time the frame was
sent.

8.15. NEW_CONNECTION_ID frame
A NEW_CONNECTION_ID Frame is formatted as follows:

(0] 1 2 3
012345678901 23456789012345678901
+-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-t-Ft-F-F-F-F-F-F-F-F+-+-+-+

I 24 I

B e o T S e kst abhs o S S Sy S S
| Sequence Number
tot-t-F-F-F-t-t-t-t-t-t-F-F-F-F-F-F-F-F-t-t-F-t-F-F-F-F-F-F+-+-+-+
| Retire Prior To
+ot-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| Length |

Fotododtod oottt Connection ID +

+-t-t-F-F-F-F-t-t-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
I I
+ +
I I
+ Stateless Reset Token +
I I
+ +
I I
+- +

e e s s T S A S S et s e S

where:

Frame Type (FT): 1 Variable Length Integer Encoding; FT.Value == 24.
Frame type, set to 24 for NEW_CONNECTION_ID frames.

Sequence Number: 1 Variable Length Integer Encoding. The sequence
number assigned to the connection ID by the sender.

Retire Prior To: 1 Variable Length Integer Encoding. A variable-
length integer indicating which connection IDs should be retired.

Length: 1 byte. An 8-bit unsigned integer containing the length of
the connection ID. Values less than 1 and greater than 20 are
invalid and MUST be treated as a connection error of type
FRAME_ENCODING_ERROR.

Connection ID: Length bytes. A connection ID of the specified
length.

Stateless Reset Token: 128 bits. A 128-bit value that will be used
for a stateless reset when the associated connection ID is used.

.16. RETIRE_CONNECTION_ID frame

A RETIRE_CONNECTION_ID Frame is formatted as follows:

(0] 1 2 3
01234567890123456789012345678901

e s ST P S S e T S e T S S s e S S

25 |

T Ay Ty

Sequence Number

e ST S e S s T S s st SPS S S S i T 3

8.

where:

Frame Type (FT): 1 Variable Length Integer Encoding; FT.Value == 25.
Frame type, set to 25 for RETIRE_CONNECTION_ID frames.

Sequence Number: 1 Variable Length Integer Encoding. The sequence
number of the connection ID being retired.

17. PATH_CHALLENGE frame

A PATH_CHALLENGE Frame is formatted as follows:

0 1 2 3
012345678901 234567890612345678901
e T P T s ol ST e s ST S SUp U S

I 26 I

s el S e e ST S s ST S S
I I
+ Data +
I I

s ST S e S e o S e ST S S e SPEE S S

where:

Frame Type (FT): 1 Variable Length Integer Encoding; FT.Value == 26.
Frame type, set to 26 for PATH_CHALLENGE frames.

Data: 64 bits. This 8-byte field contains arbitrary data.

8.18. PATH_RESPONSE frame
A PATH_RESPONSE Frame is formatted as follows:

0] 1 2 3
01234567890123456789012345678901
T T Y St LT LT aF e S e T T TS SPUPLSpUp Ut S

I 27 I

s T St T T T S e e S St s b Syt Sy S
I I
+ Data +

e e S e e s S S S S STt SPE S S S S S

where:

Frame Type (FT): 1 Variable Length Integer Encoding; FT.Value == 27.
Frame type, set to 27 for PATH_RESPONSE frames.

Data: 64 bits. This 8-byte field contains arbitrary data.

8.19. CONNECTION_CLOSE frame

A CONNECTION_CLOSE Frame is formatted as follows:

0 1 2 3
012345678901 234567890123456789¢01
B e Sk at s sl T SR S Sy S S S Rt S s S ok e

I FT I
tot-t-F-t-t-t-t-F-t-t-t-t-F-t-F-t-t-F-t-F-F-F-F-t-F-F-F-F-F-F+-+-+
| Error Code

B S T s e e S e S Rty st R SPUP Up SpU Sy i
| Frame Type
tot-t-F-t-t-t-t-F-t-t-t-t-F-t-F-t-t-F-t-F-F-F-F-t-F-F-F-F-F-F+-+-+
| Phrase Length

B e ST S e T s ST SR S S S e E Lk b ot ok
I

Reason Phrase
+ot-t-t-F-t-t-F-F-F-F-t-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+
where:

Frame Type (FT): 1 Variable Length Integer Encoding; FT.Value == 28
|| FT.vValue == 29.
Frame type, set to 28 or 29 for CONNECTION_CLOSE frames.

Error Code: 1 Variable Length Integer Encoding. A variable length
integer error code which indicates the reason for closing this
connection.

Frame Type: 1 Variable Length Integer Encoding; present only when
FT.Value == 28.
A variable-length integer encoding the type of frame that
triggered the error.

Phrase Length (Length): 1 Variable Length Integer Encoding. A
variable-length integer specifying the length of the reason
phrase in bytes.

Reason Phrase: Length.Value bytes. A human-readable explanation for
why the connection was closed.

8.20. HANDSHAKE_DONE frame
A HANDSHAKE_DONE Frame is formatted as follows:

0] 1 2 3
01234567890123456789012345678901
B s e R S b b s T R S Sy S S S S S Sy S S

I 30 I

T e T L o T Sy e S S S g

where:

Frame Type (FT): 1 Variable Length Integer Encoding; FT.Value == 30.
Frame type, set to 30 for HANDSHAKE_DONE frames.

9. Informative References

[QUIC-TRANSPORT] Iyengar, J. and M. Thomson, "QUIC: A UDP-Based
Multiplexed and Secure Transport", Work in Progress,
Internet-Draft, draft-ietf-quic-transport-27, 21 February
2020, <http://www.ietf.org/internet-drafts/draft-ietf-
guic-transport-27.txt>.

[AUGMENTED-DIAGRAMS]
McQuistin, S., Band, V., Jacob, D., and C. S. Perkins,
"Describing Protocol Data Units with Augmented Packet
Header Diagrams", Work in Progress, Internet-Draft,
draft-mcquistin-augmented-ascii-diagrams-04, 24 April
2020, <http://www.ietf.org/internet-drafts/draft-
mcquistin-augmented-ascii-diagrams-04.txt>.

Appendix A. Source code repository

The source for this draft is available from https://github.com/
glasgow-ipl/draft-mcquistin-quic-augmented-diagrams.

The source code for tooling that can be used to parse this document
is available from https://github.com/glasgow-ipl/ips-protodesc-code.

Authors' Addresses

Stephen McQuistin
University of Glasgow
School of Computing Science
Glasgow

G12 8QQ

United Kingdom

Email: sm@smcquistin.uk

Vivian Band

University of Glasgow
School of Computing Science
Glasgow

G12 8QQ

United Kingdom

Email: vivianband®@gmail.com

Dejice Jacob
University of Glasgow
School of Computing Science

http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-27.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-27.txt
http://www.ietf.org/internet-drafts/draft-mcquistin-augmented-ascii-diagrams-04.txt
http://www.ietf.org/internet-drafts/draft-mcquistin-augmented-ascii-diagrams-04.txt
https://github.com/glasgow-ipl/draft-mcquistin-quic-augmented-diagrams
https://github.com/glasgow-ipl/draft-mcquistin-quic-augmented-diagrams
https://github.com/glasgow-ipl/ips-protodesc-code
mailto:sm@smcquistin.uk
mailto:vivianband0@gmail.com

Glasgow
G12 8QQ
United Kingdom

Email: d.jacob.l@research.gla.ac.uk

Colin Perkins

University of Glasgow
School of Computing Science
Glasgow

G12 8QQ

United Kingdom

Email: csp@csperkins.org

mailto:d.jacob.1@research.gla.ac.uk
mailto:csp@csperkins.org

	Describing QUIC's Protocol Data Units with Augmented Packet Header Diagrams
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Header and Packet Protection
	3. Variable Length Integer Encoding
	4. Stateless Reset
	5. Version Negotiation Packet
	6. Long Header Packets
	6.1. Initial Packet
	6.2. 0RTT Packet
	6.3. Handshake Packet
	6.4. Retry Packet

	7. Short Header Packets
	8. Frames and Frame Formats
	8.1. PADDING frame
	8.2. PING frame
	8.3. ACK frame
	8.4. RESET_STREAM frame
	8.5. STOP_SENDING frame
	8.6. CRYPTO frame
	8.7. NEW_TOKEN frame
	8.8. STREAM frame
	8.9. MAX_DATA frame
	8.10. MAX_STREAM_DATA frame
	8.11. MAX_STREAMS frame
	8.12. DATA_BLOCKED frame
	8.13. STREAM_DATA_BLOCKED frame
	8.14. STREAMS_BLOCKED frame
	8.15. NEW_CONNECTION_ID frame
	8.16. RETIRE_CONNECTION_ID frame
	8.17. PATH_CHALLENGE frame
	8.18. PATH_RESPONSE frame
	8.19. CONNECTION_CLOSE frame
	8.20. HANDSHAKE_DONE frame

	9. Informative References
	Appendix A. Source code repository
	Authors' Addresses

