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Abstract

   This document describes the set of transport services required by
   low-latency, real-time applications.  These services are derived from
   the needs of the applications, rather than from the current
   capabilities of the transport layer.  An example API, based on the
   Berkeley Sockets API, is also provided, alongside examples of how the
   target applications would use the API to access the transport
   services described.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on May 4, 2017.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
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   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   The goal of the TAPS working group is to break down the existing
   transport layer into a set of transport services, decoupling these
   from the transport protocols that provide them.  As a result, the
   standardisation of transport services becomes feasible and important.
   The first phase of this process has been to inspect the existing
   transport protocols, and determine the services they provide.  The
   next phase, enabled both by the use of transport services and their
   separation from transport protocols, is to define novel transport
   services based on the needs of applications.  In essence, these
   services are derived from applications by thinking about what the
   transport layer would provide to applications if the constraints of
   the existing transport protocols were not in place.

   This document considers the transport services required by low-
   latency applications.  This is an important class of applications,
   not only because it represents a significant portion of Internet
   traffic, but because it is arguably poorly served by the existing
   transport layer: the available transport protocols bundle services
   together in such a way that no one protocol provides all the services
   required.
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   After detailing the transport services required by these
   applications, a sample API that provides these services is outlined.
   This API is then used to demonstrate how applications might make use
   of the transport services described.

   This document does not consider how the transport services described
   map to the transport protocols that might provide them.

2.  Low-Latency Transport Services

   The decoupling of transport services from transport protocols allows
   for the development of novel transport services, based on the needs
   of applications.  This section describes the transport services
   required by low-latency applications.

   Timing
         Timing is the most essential characteristic of the data
         generated by low-latency applications.  Data has a lifetime
         associated with it: a deadline, relative to the time the data
         was produced, by which it must be delivered.  Once this
         lifetime has been exceeded, the data is no longer useful to the
         receiving application.  Data lifetimes depend on the latency
         bounds of the application.  Interactive applications, such as
         telephony, video conferencing, or telepresence, require a low
         end-to-end latency, ranging from tens to a few hundred
         milliseconds.  Non-interactive applications can accomodate
         higher latency, with bounds in the order of seconds.

         There are a number of factors used in predicting if data will
         arrive within its lifetime: the time between being sent by the
         application and being sent on the wire, the one-way network
         delay, and the length of time the data will be buffered at the
         receiver before being used (the play-out delay).  Multimedia
         applications, which comprise a significant portion of the
         target application area, have a play-out buffer to reduce the
         impact of jitter.  Estimates for both RTT and play-out delay
         must be available to the sender.

   Partial Reliability
         The combination of a lossy, best-effort network (e.g., IP)
         layer and support for timing and lifetimes results in the need
         for a partially reliable service.  Given the limitations of
         forward error correct techniques, there is some probability
         that packet loss can only be recovered from by retransmitting
         the lost packet.  This introduces potentially unbounded delay,
         given that retransmissions themselves may be lost.  Therefore,
         timing and fully reliable transport services cannot be provided
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         together -- the reliable delivery of data cannot be guaranteed
         within a given lifetime.

         This implies a partial reliability service, where data is
         delivered reliably only while it is likely to be useful to the
         receiving application.  Once a message has exceeded its
         lifetime, attempts to transmit it will be abandoned.

   Dependencies
         Partial reliability means that not all data that is sent will
         be received successfully.  This means that a dependency
         management transport service is required.  Data must not be
         sent if it relies upon earlier data that has not been
         successfully delivered.

   Messaging
         Given that not all data will arrive successfully, it is
         important to maximise the utility of the data that does arrive.
         Application-level framing [CCR20] allows the application to
         package data into units that are useful (assuming delivery of
         their dependencies) to the receiver.  The combination of a
         messaging service (to maintain application data unit
         boundaries) and a dependency services provides greater utility
         to applications than a stream-oriented service on lossy
         networks.  To minimise latency, messages are delivered to the
         application in the order they arrive.  Reordering messages into
         transmission order introduces latency when applied across a
         lossy IP network; messages may be buffered waiting for earlier
         messages to be retransmitted.  Application-layer protocols,
         such as RTP, introduce sequencing, allowing applications to
         reorder messages if required.  Introducing order at this layer
         makes the resultant latency explicit to the application.

   Multistreaming
         Messaging enables a multistreaming service.  Many applications
         are comprised of multiple streams, each with their own
         characteristics with regards to the other services listed.  For
         example, a typical multimedia application has at least two
         flows for audio and video, each with different properties
         (e.g., loss tolerance, message sizes).  A multistreaming
         service allows these streams to be configured separately.

   Multipath
         Multiple paths often exist between hosts; a multipath service
         is required to allow applications to benefit from this.  This
         is an extension of the multistreaming service: different
         streams should be mapped to the most suitable path, given the
         configuration of the stream, and the network conditions of the
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         path.  Messaging is required to make optimal use of multiple
         paths with different loss and delay characteristics.

   Congestion Control
         Congestion control is an essential service.  A given algorithm
         is not suitable for all traffic types, and so one is not
         prescribed.  The service should require the use of a suitable
         congestion control algorithm, and enforce this using a circuit
         breaker.

   Connections (optional)
         Maintaining per-connection metadata at the endpoints is helpful
         for the implementation of many congestion control algorithms.
         Further, connection setup and teardown messages can also
         benefit in-network services, including NAT traversal and
         firewall pinhole management.  As a result, it is often
         desirable to have support for a connection-oriented service.

   This set of transport services demonstrates the need for a top-down
   approach.  Timing is a crucial characteristic of low-latency
   applications, from which the other services follow.

3.  Abstract API

   This section describes an abstract API that supports the transport
   services described in Section 2.  This allows the usage of these
   services to be demonstrated in Section 4.

   It should be noted that the main contribution of this document is the
   set of transport services specified in Section 2.  An abstract API is
   described here to illustrate how these services might be provided,
   based on Berkeley Sockets for familiarity.  Other APIs, not
   constrained by the limitations of Berkeley Sockets, would be more
   appropriate.

3.1.  Socket Setup & Teardown

   Hosts setup and tear-down sockets using the socket() and close()
   functions, as in the standard Berkeley sockets API.

   The function signatures are:

         int socket(int address_family,
                    int socket_type);

         int close(int sd);
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   socket() returns a socket descriptor (sd) on success, while close()
   returns 0 on success, and -1 on failure.

3.2.  Socket Options

   Socket options can be set and read using the setsockopt() and
   getsockopt() functions respectively.  This mirrors the standard
   Berkeley sockets API.

   The function signatures are:

         int getsockopt(int sd,
                        int level,
                        int option,
                        void *value,
                        socklen_t *len);

         int setsockopt(int sd,
                        int level,
                        int option,
                        const void *value,
                        socklen_t len);

   Both return 0 on success, and -1 on failure.

3.3.  Connection Handling

   The connection primitives are the same as those of TCP sockets.
   Servers bind() to a particular address and port, then listen() for
   and accept() incoming connections.  Clients connect() to a server.

   The function signatures are:

         int bind(int sd,
                  struct sockaddr *addr,
                  socklen_t addrlen);

         int listen(int sd);

         int accept(int sd,
                    struct sockaddr *addr,
                    socklen_t *addrlen);

         int connect(int sd,
                     const struct sockaddr *addr,
                     socklen_t addrlen);

   All return 0 on success, and -1 on failure.



McQuistin, et al.          Expires May 4, 2017                  [Page 6]



Internet-Draft       Low Latency Transport Services         October 2016

3.4.  Timing

   Once a connection has been establised, the receiver then indicates
   its media play-out delay, in milliseconds, via the set_po_delay()
   function.  This specifies how long the application will buffer data
   for before it is rendered to the user.  The play-out delay is fed
   back to the sender, for use in estimating message liveness.

   The function signature is:

         int set_po_delay(int delay);

   The function returns 0 on success, and -1 on failure.

3.5.  Messaging

   Message-oriented data transmission is exposed by the send_message()
   and recv_message() functions.  These expose a partially reliable
   message delivery service to the application, framing data such that
   either the complete message is delivered, or lost in its entirety.

   The function signatures are:

         int send_message(int sd,
                          const void *buf,
                          size_t len,
                          uint16_t *seq_num,
                          int lifetime,
                          uint16_t depends_on,
                          uint8_t substream);

         int recv_message(int sd,
                          void *buf,
                          size_t len,
                          uint16_t *seq_num,
                          uint8_t *substream);

   send_message() returns the number of bytes sent and the sequence
   number of the message, while recv_message returns the sub-stream
   identifier and length of the message, along with the received message
   data.

   It is instructive to compare the partially reliable send and receive
   functions to their Berkeley sockets API counterparts.  The
   send_message() call takes three additional parameters, providing
   support for the transport services described in Section 2:
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   o  Lifetime: combined with an estimate of the round-trip time, the
      time that the message has spent in the sending buffer, and the
      play-out delay, to estimate message liveness

   o  Dependency message sequence number: used to determine if this
      message depends on another that was not sent successfully

   o  Sub-stream identifier: to provide the multistreaming service

   send_message() returns the sequence number of the sent message,
   allowing it to be used as the dependency of future messages.  The
   sequence number will increase by 1 for each message sent (and wrap
   around within the 16-bit field). recv_message() returns the sequence
   number of the received message, allowing the application to identify
   gaps in the sequence space (indicating reordering or loss).

   [Discussion question: would it be useful for recv_message() to expose
   the message arrival time?]

3.6.  Utilities

   Two utility functions are needed to support the other services.  To
   allow applications to size messages to increase their utility,
   get_pmtu() provides the path MTU. get_rtt_est() provides an estimate
   of the round-trip time, to enable applications to calculate an
   appropriate play-out delay value.

   The function signatures are:

         int get_pmtu(int sd);

         int get_rtt_est(int sd);

   get_pmtu() returns the path MTU in bytes.  get_rtt_est() returns the
   current round-trip time estimate in milliseconds.

   Endpoints need to send data regularly to obtain an accurate RTT
   estimate.  Where an endpoint would not otherwise transmit data, the
   messages sent by set_po_delay() will allow an RTT estimate to be
   calculated.

3.7.  Design Assumptions

   The API specified here makes a number of assumptions about how the
   services described in Section 2 should be provided.  For example, the
   way in which sequence numbers are implemented limits messages to
   expressing their dependence on messages that have been sent
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   previously.  A different API may be implement a different set of
   constraints on the dependency management service.

   [Discussion questions: does this mean that the services aren't
   properly defined?  How much flexibility should be given when
   designing an API?]

4.  Example Usage

   In this section, examples of how applications might use the API
   described in Section 3 are given.  This is important, not only for
   demonstrating the usability of the API, but for validating the
   selection of transport services described.

4.1.  HTTP/1.1

   tbd

   [Not typically described as "low latency", but is used by many
   applications that would benefit from lower latency.  Mapping to a
   message-oriented transport service is not obvious.]

4.2.  HTTP/2

   tbd

   [Mapping to message-oriented transport is a lot more obvious.]

4.3.  Real-Time Multimedia

   Real-time multimedia applications typically make use of RTP [RFC3550]
   as their application-layer protocol.  This adds a header to each
   message, with timing and sequencing metadata.  RTP is compatible with
   the partially reliable, unordered message delivery model described,
   making its mapping to the API straightforward.

   Sender:

   o  The sender opens a socket(), and bind()s to a particular address
      and port.  It then listen()s for and accept()s incoming
      connections.

   o  Messages are sent using send_message().  The application specifies
      the lifetime of the message; this is the maximum delay each
      message can tolerate.  For example, a VOIP application would set
      this to 150ms.  The sequence number of message this message
      depends on is set, and the sub-stream specified. get_pmtu() can be
      used to help determine the message sizes.

https://datatracker.ietf.org/doc/html/rfc3550
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   o  At the end of the connection, the sender close()s the socket.

   Receiver:

   o  The receiver opens a socket(), and connect()s to a server.

   o  Once the connection has been established, the receiver sets its
      play-out delay, in milliseconds, using set_po_delay().  The
      utility function get_rtt_est() can be used in calculating this
      value.  The play-out delay can be changed over time.

   o  Messages are received using recv_message().  The application
      receives the sequence number and sub-stream identifier alongside
      the message data.

   o  At the end of the connection, the receiver close()s the socket.

5.  IANA Considerations

   This memo includes no request to IANA.

6.  Security Considerations

   The transport services described do not themselves introduce any
   security considerations beyond those of TCP or UDP.  No additional
   metadata needs to be exposed on the wire to provide the transport
   services described.  The transport services result in a partially
   reliable, message-oriented delivery model.  As a result, Datagram TLS
   [RFC6347] is required for security and encryption.

   [Discussion question: should DTLS/security be listed as an essential
   service?]

   There are a number of options for deploying the transport services
   described in this document.  They could be deployed within a new
   protocol, but this will likely limit deployability.  Alternatively,
   for greater deployability, existing protocols could be modified.
   Partially Reliable SCTP [RFC3758] and WebRTC's data channels
   [I-D.ietf-rtcweb-data-channel] provide a similar set of services over
   SCTP.  For maximum deployability, the services should be provided
   over TCP.  Modifying TCP's in-order byte stream abstraction to
   provide an out-of-order message-oriented delivery model is
   challenging.  The designs of TCP Hollywood [IFIP2016], Minion
   [I-D.iyengar-minion-protocol], and QUIC
   [I-D.hamilton-quic-transport-protocol] show ways of addressing these
   challenges.

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc3758
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