
TAPS Working Group S. McQuistin
Internet-Draft C. Perkins
Intended status: Informational University of Glasgow
Expires: May 4, 2017 M. Fayed
 University of Stirling
 October 31, 2016

Transport Services for Low-Latency Real-Time Applications
draft-mcquistin-taps-low-latency-services-00

Abstract

 This document describes the set of transport services required by
 low-latency, real-time applications. These services are derived from
 the needs of the applications, rather than from the current
 capabilities of the transport layer. An example API, based on the
 Berkeley Sockets API, is also provided, alongside examples of how the
 target applications would use the API to access the transport
 services described.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 4, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

McQuistin, et al. Expires May 4, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Low Latency Transport Services October 2016

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Low-Latency Transport Services 3
3. Abstract API . 5
3.1. Socket Setup & Teardown 5
3.2. Socket Options . 6
3.3. Connection Handling 6
3.4. Timing . 7
3.5. Messaging . 7
3.6. Utilities . 8
3.7. Design Assumptions 8

4. Example Usage . 9
4.1. HTTP/1.1 . 9
4.2. HTTP/2 . 9
4.3. Real-Time Multimedia 9

5. IANA Considerations . 10
6. Security Considerations 10
7. Informative References 11

 Authors' Addresses . 12

1. Introduction

 The goal of the TAPS working group is to break down the existing
 transport layer into a set of transport services, decoupling these
 from the transport protocols that provide them. As a result, the
 standardisation of transport services becomes feasible and important.
 The first phase of this process has been to inspect the existing
 transport protocols, and determine the services they provide. The
 next phase, enabled both by the use of transport services and their
 separation from transport protocols, is to define novel transport
 services based on the needs of applications. In essence, these
 services are derived from applications by thinking about what the
 transport layer would provide to applications if the constraints of
 the existing transport protocols were not in place.

 This document considers the transport services required by low-
 latency applications. This is an important class of applications,
 not only because it represents a significant portion of Internet
 traffic, but because it is arguably poorly served by the existing
 transport layer: the available transport protocols bundle services
 together in such a way that no one protocol provides all the services
 required.

McQuistin, et al. Expires May 4, 2017 [Page 2]

Internet-Draft Low Latency Transport Services October 2016

 After detailing the transport services required by these
 applications, a sample API that provides these services is outlined.
 This API is then used to demonstrate how applications might make use
 of the transport services described.

 This document does not consider how the transport services described
 map to the transport protocols that might provide them.

2. Low-Latency Transport Services

 The decoupling of transport services from transport protocols allows
 for the development of novel transport services, based on the needs
 of applications. This section describes the transport services
 required by low-latency applications.

 Timing
 Timing is the most essential characteristic of the data
 generated by low-latency applications. Data has a lifetime
 associated with it: a deadline, relative to the time the data
 was produced, by which it must be delivered. Once this
 lifetime has been exceeded, the data is no longer useful to the
 receiving application. Data lifetimes depend on the latency
 bounds of the application. Interactive applications, such as
 telephony, video conferencing, or telepresence, require a low
 end-to-end latency, ranging from tens to a few hundred
 milliseconds. Non-interactive applications can accomodate
 higher latency, with bounds in the order of seconds.

 There are a number of factors used in predicting if data will
 arrive within its lifetime: the time between being sent by the
 application and being sent on the wire, the one-way network
 delay, and the length of time the data will be buffered at the
 receiver before being used (the play-out delay). Multimedia
 applications, which comprise a significant portion of the
 target application area, have a play-out buffer to reduce the
 impact of jitter. Estimates for both RTT and play-out delay
 must be available to the sender.

 Partial Reliability
 The combination of a lossy, best-effort network (e.g., IP)
 layer and support for timing and lifetimes results in the need
 for a partially reliable service. Given the limitations of
 forward error correct techniques, there is some probability
 that packet loss can only be recovered from by retransmitting
 the lost packet. This introduces potentially unbounded delay,
 given that retransmissions themselves may be lost. Therefore,
 timing and fully reliable transport services cannot be provided

McQuistin, et al. Expires May 4, 2017 [Page 3]

Internet-Draft Low Latency Transport Services October 2016

 together -- the reliable delivery of data cannot be guaranteed
 within a given lifetime.

 This implies a partial reliability service, where data is
 delivered reliably only while it is likely to be useful to the
 receiving application. Once a message has exceeded its
 lifetime, attempts to transmit it will be abandoned.

 Dependencies
 Partial reliability means that not all data that is sent will
 be received successfully. This means that a dependency
 management transport service is required. Data must not be
 sent if it relies upon earlier data that has not been
 successfully delivered.

 Messaging
 Given that not all data will arrive successfully, it is
 important to maximise the utility of the data that does arrive.
 Application-level framing [CCR20] allows the application to
 package data into units that are useful (assuming delivery of
 their dependencies) to the receiver. The combination of a
 messaging service (to maintain application data unit
 boundaries) and a dependency services provides greater utility
 to applications than a stream-oriented service on lossy
 networks. To minimise latency, messages are delivered to the
 application in the order they arrive. Reordering messages into
 transmission order introduces latency when applied across a
 lossy IP network; messages may be buffered waiting for earlier
 messages to be retransmitted. Application-layer protocols,
 such as RTP, introduce sequencing, allowing applications to
 reorder messages if required. Introducing order at this layer
 makes the resultant latency explicit to the application.

 Multistreaming
 Messaging enables a multistreaming service. Many applications
 are comprised of multiple streams, each with their own
 characteristics with regards to the other services listed. For
 example, a typical multimedia application has at least two
 flows for audio and video, each with different properties
 (e.g., loss tolerance, message sizes). A multistreaming
 service allows these streams to be configured separately.

 Multipath
 Multiple paths often exist between hosts; a multipath service
 is required to allow applications to benefit from this. This
 is an extension of the multistreaming service: different
 streams should be mapped to the most suitable path, given the
 configuration of the stream, and the network conditions of the

McQuistin, et al. Expires May 4, 2017 [Page 4]

Internet-Draft Low Latency Transport Services October 2016

 path. Messaging is required to make optimal use of multiple
 paths with different loss and delay characteristics.

 Congestion Control
 Congestion control is an essential service. A given algorithm
 is not suitable for all traffic types, and so one is not
 prescribed. The service should require the use of a suitable
 congestion control algorithm, and enforce this using a circuit
 breaker.

 Connections (optional)
 Maintaining per-connection metadata at the endpoints is helpful
 for the implementation of many congestion control algorithms.
 Further, connection setup and teardown messages can also
 benefit in-network services, including NAT traversal and
 firewall pinhole management. As a result, it is often
 desirable to have support for a connection-oriented service.

 This set of transport services demonstrates the need for a top-down
 approach. Timing is a crucial characteristic of low-latency
 applications, from which the other services follow.

3. Abstract API

 This section describes an abstract API that supports the transport
 services described in Section 2. This allows the usage of these
 services to be demonstrated in Section 4.

 It should be noted that the main contribution of this document is the
 set of transport services specified in Section 2. An abstract API is
 described here to illustrate how these services might be provided,
 based on Berkeley Sockets for familiarity. Other APIs, not
 constrained by the limitations of Berkeley Sockets, would be more
 appropriate.

3.1. Socket Setup & Teardown

 Hosts setup and tear-down sockets using the socket() and close()
 functions, as in the standard Berkeley sockets API.

 The function signatures are:

 int socket(int address_family,
 int socket_type);

 int close(int sd);

McQuistin, et al. Expires May 4, 2017 [Page 5]

Internet-Draft Low Latency Transport Services October 2016

 socket() returns a socket descriptor (sd) on success, while close()
 returns 0 on success, and -1 on failure.

3.2. Socket Options

 Socket options can be set and read using the setsockopt() and
 getsockopt() functions respectively. This mirrors the standard
 Berkeley sockets API.

 The function signatures are:

 int getsockopt(int sd,
 int level,
 int option,
 void *value,
 socklen_t *len);

 int setsockopt(int sd,
 int level,
 int option,
 const void *value,
 socklen_t len);

 Both return 0 on success, and -1 on failure.

3.3. Connection Handling

 The connection primitives are the same as those of TCP sockets.
 Servers bind() to a particular address and port, then listen() for
 and accept() incoming connections. Clients connect() to a server.

 The function signatures are:

 int bind(int sd,
 struct sockaddr *addr,
 socklen_t addrlen);

 int listen(int sd);

 int accept(int sd,
 struct sockaddr *addr,
 socklen_t *addrlen);

 int connect(int sd,
 const struct sockaddr *addr,
 socklen_t addrlen);

 All return 0 on success, and -1 on failure.

McQuistin, et al. Expires May 4, 2017 [Page 6]

Internet-Draft Low Latency Transport Services October 2016

3.4. Timing

 Once a connection has been establised, the receiver then indicates
 its media play-out delay, in milliseconds, via the set_po_delay()
 function. This specifies how long the application will buffer data
 for before it is rendered to the user. The play-out delay is fed
 back to the sender, for use in estimating message liveness.

 The function signature is:

 int set_po_delay(int delay);

 The function returns 0 on success, and -1 on failure.

3.5. Messaging

 Message-oriented data transmission is exposed by the send_message()
 and recv_message() functions. These expose a partially reliable
 message delivery service to the application, framing data such that
 either the complete message is delivered, or lost in its entirety.

 The function signatures are:

 int send_message(int sd,
 const void *buf,
 size_t len,
 uint16_t *seq_num,
 int lifetime,
 uint16_t depends_on,
 uint8_t substream);

 int recv_message(int sd,
 void *buf,
 size_t len,
 uint16_t *seq_num,
 uint8_t *substream);

 send_message() returns the number of bytes sent and the sequence
 number of the message, while recv_message returns the sub-stream
 identifier and length of the message, along with the received message
 data.

 It is instructive to compare the partially reliable send and receive
 functions to their Berkeley sockets API counterparts. The
 send_message() call takes three additional parameters, providing
 support for the transport services described in Section 2:

McQuistin, et al. Expires May 4, 2017 [Page 7]

Internet-Draft Low Latency Transport Services October 2016

 o Lifetime: combined with an estimate of the round-trip time, the
 time that the message has spent in the sending buffer, and the
 play-out delay, to estimate message liveness

 o Dependency message sequence number: used to determine if this
 message depends on another that was not sent successfully

 o Sub-stream identifier: to provide the multistreaming service

 send_message() returns the sequence number of the sent message,
 allowing it to be used as the dependency of future messages. The
 sequence number will increase by 1 for each message sent (and wrap
 around within the 16-bit field). recv_message() returns the sequence
 number of the received message, allowing the application to identify
 gaps in the sequence space (indicating reordering or loss).

 [Discussion question: would it be useful for recv_message() to expose
 the message arrival time?]

3.6. Utilities

 Two utility functions are needed to support the other services. To
 allow applications to size messages to increase their utility,
 get_pmtu() provides the path MTU. get_rtt_est() provides an estimate
 of the round-trip time, to enable applications to calculate an
 appropriate play-out delay value.

 The function signatures are:

 int get_pmtu(int sd);

 int get_rtt_est(int sd);

 get_pmtu() returns the path MTU in bytes. get_rtt_est() returns the
 current round-trip time estimate in milliseconds.

 Endpoints need to send data regularly to obtain an accurate RTT
 estimate. Where an endpoint would not otherwise transmit data, the
 messages sent by set_po_delay() will allow an RTT estimate to be
 calculated.

3.7. Design Assumptions

 The API specified here makes a number of assumptions about how the
 services described in Section 2 should be provided. For example, the
 way in which sequence numbers are implemented limits messages to
 expressing their dependence on messages that have been sent

McQuistin, et al. Expires May 4, 2017 [Page 8]

Internet-Draft Low Latency Transport Services October 2016

 previously. A different API may be implement a different set of
 constraints on the dependency management service.

 [Discussion questions: does this mean that the services aren't
 properly defined? How much flexibility should be given when
 designing an API?]

4. Example Usage

 In this section, examples of how applications might use the API
 described in Section 3 are given. This is important, not only for
 demonstrating the usability of the API, but for validating the
 selection of transport services described.

4.1. HTTP/1.1

 tbd

 [Not typically described as "low latency", but is used by many
 applications that would benefit from lower latency. Mapping to a
 message-oriented transport service is not obvious.]

4.2. HTTP/2

 tbd

 [Mapping to message-oriented transport is a lot more obvious.]

4.3. Real-Time Multimedia

 Real-time multimedia applications typically make use of RTP [RFC3550]
 as their application-layer protocol. This adds a header to each
 message, with timing and sequencing metadata. RTP is compatible with
 the partially reliable, unordered message delivery model described,
 making its mapping to the API straightforward.

 Sender:

 o The sender opens a socket(), and bind()s to a particular address
 and port. It then listen()s for and accept()s incoming
 connections.

 o Messages are sent using send_message(). The application specifies
 the lifetime of the message; this is the maximum delay each
 message can tolerate. For example, a VOIP application would set
 this to 150ms. The sequence number of message this message
 depends on is set, and the sub-stream specified. get_pmtu() can be
 used to help determine the message sizes.

https://datatracker.ietf.org/doc/html/rfc3550

McQuistin, et al. Expires May 4, 2017 [Page 9]

Internet-Draft Low Latency Transport Services October 2016

 o At the end of the connection, the sender close()s the socket.

 Receiver:

 o The receiver opens a socket(), and connect()s to a server.

 o Once the connection has been established, the receiver sets its
 play-out delay, in milliseconds, using set_po_delay(). The
 utility function get_rtt_est() can be used in calculating this
 value. The play-out delay can be changed over time.

 o Messages are received using recv_message(). The application
 receives the sequence number and sub-stream identifier alongside
 the message data.

 o At the end of the connection, the receiver close()s the socket.

5. IANA Considerations

 This memo includes no request to IANA.

6. Security Considerations

 The transport services described do not themselves introduce any
 security considerations beyond those of TCP or UDP. No additional
 metadata needs to be exposed on the wire to provide the transport
 services described. The transport services result in a partially
 reliable, message-oriented delivery model. As a result, Datagram TLS
 [RFC6347] is required for security and encryption.

 [Discussion question: should DTLS/security be listed as an essential
 service?]

 There are a number of options for deploying the transport services
 described in this document. They could be deployed within a new
 protocol, but this will likely limit deployability. Alternatively,
 for greater deployability, existing protocols could be modified.
 Partially Reliable SCTP [RFC3758] and WebRTC's data channels
 [I-D.ietf-rtcweb-data-channel] provide a similar set of services over
 SCTP. For maximum deployability, the services should be provided
 over TCP. Modifying TCP's in-order byte stream abstraction to
 provide an out-of-order message-oriented delivery model is
 challenging. The designs of TCP Hollywood [IFIP2016], Minion
 [I-D.iyengar-minion-protocol], and QUIC
 [I-D.hamilton-quic-transport-protocol] show ways of addressing these
 challenges.

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc3758

McQuistin, et al. Expires May 4, 2017 [Page 10]

Internet-Draft Low Latency Transport Services October 2016

7. Informative References

 [CCR20] Clark, D. and D. Tennenhouse, "Architectural
 Considerations for a New Generation of Protocols", ACM
 SIGCOMM Computer Communications Review 20 (4) 200-208,
 DOI 10.1145/99508.99553, September 1990,
 <http://dx.doi.org/10.1145/99508.99553>.

 [I-D.hamilton-quic-transport-protocol]
 Hamilton, R., Iyengar, J., Swett, I., and A. Wilk, "QUIC:
 A UDP-Based Multiplexed and Secure Transport", draft-

hamilton-quic-transport-protocol-00 (work in progress),
 July 2016.

 [I-D.ietf-rtcweb-data-channel]
 Jesup, R., Loreto, S., and M. Tuexen, "WebRTC Data
 Channels", draft-ietf-rtcweb-data-channel-13 (work in
 progress), January 2015.

 [I-D.iyengar-minion-protocol]
 Jana, J., Cheshire, S., and J. Graessley, "Minion - Wire
 Protocol", draft-iyengar-minion-protocol-02 (work in
 progress), October 2013.

 [IFIP2016]
 McQuistin, S., Perkins, C., and M. Fayed, "TCP Hollywood:
 An Unordered, Time-Lined, TCP for Networked Multimedia
 Applications", IFIP Networking 2016,
 DOI 10.1109/IFIPNetworking.2016.7497221, May 2016,
 <http://dx.doi.org/10.1109/IFIPNetworking.2016.7497221>.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,
 July 2003, <http://www.rfc-editor.org/info/rfc3550>.

 [RFC3758] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
 Conrad, "Stream Control Transmission Protocol (SCTP)
 Partial Reliability Extension", RFC 3758,
 DOI 10.17487/RFC3758, May 2004,
 <http://www.rfc-editor.org/info/rfc3758>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

http://dx.doi.org/10.1145/99508.99553
https://datatracker.ietf.org/doc/html/draft-hamilton-quic-transport-protocol-00
https://datatracker.ietf.org/doc/html/draft-hamilton-quic-transport-protocol-00
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-data-channel-13
https://datatracker.ietf.org/doc/html/draft-iyengar-minion-protocol-02
http://dx.doi.org/10.1109/IFIPNetworking.2016.7497221
https://datatracker.ietf.org/doc/html/rfc3550
http://www.rfc-editor.org/info/rfc3550
https://datatracker.ietf.org/doc/html/rfc3758
http://www.rfc-editor.org/info/rfc3758
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347

McQuistin, et al. Expires May 4, 2017 [Page 11]

Internet-Draft Low Latency Transport Services October 2016

Authors' Addresses

 Stephen McQuistin
 University of Glasgow
 School of Computing Science
 Glasgow G12 8QQ
 UK

 Email: sm@smcquistin.uk

 Colin Perkins
 University of Glasgow
 School of Computing Science
 Glasgow G12 8QQ
 UK

 Email: csp@csperkins.org

 Marwan Fayed
 University of Stirling
 Department of Computing Science & Maths
 Stirling FK9 4LA
 UK

 Email: mmf@cs.stir.ac.uk

McQuistin, et al. Expires May 4, 2017 [Page 12]

