
Workgroup: IPPM

Internet-Draft:

draft-mdt-ippm-explicit-flow-measurements-00

Published: 2 November 2020

Intended Status: Informational

Expires: 6 May 2021

Authors: M. Cociglio

Telecom Italia

A. Ferrieux

Orange Labs

G. Fioccola

Huawei Technologies

I. Lubashev

Akamai Technologies

F. Bulgarella

Telecom Italia

I. Hamchaoui

Orange Labs

M. Nilo

Telecom Italia

R. Sisto

Politecnico di Torino

D. Tikhonov

LiteSpeed Technologies

Explicit Flow Measurements Techniques

Abstract

This document describes protocol independent methods called Explicit

Flow Measurement Techniques that employ few marking bits, inside the

header of each packet, for loss and delay measurement. The

endpoints, marking the traffic, signal these metrics to intermediate

observers allowing them to measure connection performance, and to

locate the network segment where impairments happen. Different

alternatives are considered within this document. These signaling

methods apply to all protocols but they are especially valuable when

applied to protocols that encrypt transport header and do not allow

traditional methods for delay and loss detection.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the IPPM Working Group

mailing list (ippm@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/ippm/.

Source for this draft and an issue tracker can be found at https://

github.com/igorlord/draft-xxx-ippm-flow-measurements.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/ippm/
https://mailarchive.ietf.org/arch/browse/ippm/
https://github.com/igorlord/draft-xxx-ippm-flow-measurements
https://github.com/igorlord/draft-xxx-ippm-flow-measurements
https://datatracker.ietf.org/drafts/current/

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 6 May 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Notational Conventions

3. Latency Bits

3.1. Spin Bit

3.2. Delay Bit

3.2.1. Generation Phase

3.2.2. Reflection Phase

3.2.3. Two Bits Delay Measurement: Spin Bit + Delay Bit

3.2.4. Observer's Algorithm and Edge Rejection Interval

4. Loss Bits

4.1. T Bit - Round Trip Loss Bit

4.1.1. Round Trip Packet Loss Measurement

4.1.2. Setting the Round Trip Loss Bit on Outgoing Packets

4.1.3. Observer's Logic for Round Trip Loss Signal

4.1.4. Loss Coverage and Signal Timing

4.2. Q Bit - Square Bit

4.2.1. Q Block Length Selection

4.2.2. Upstream Loss

4.2.3. Identifying Q Block Boundaries

4.3. L Bit - Loss Event Bit

4.3.1. End-To-End Loss

4.3.2. Loss Profile Characterization

4.4. L+Q Bits - Upstream, Downstream, and End-to-End Loss

Measurements

4.4.1. Correlating End-to-End and Upstream Loss

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

4.5. R Bit - Reflection Square Bit

4.5.1. R+Q Bits - Using R and Q Bits for Passive Loss

Measurement

4.5.2. Enhancement of R Block Length Computation

4.5.3. Improved Resilience to Packet Reordering

5. Summary of Delay and Loss Marking Methods

6. ECN-Echo Event Bit

6.1. Setting the ECN-Echo Event Bit on Outgoing Packets

6.2. Using E Bit for Passive ECN-Reported Congestion Measurement

7. Protocol Ossification Considerations

8. Examples of Application

8.1. QUIC

8.2. TCP

9. Security Considerations

9.1. Optimistic ACK Attack

10. Privacy Considerations

11. IANA Considerations

12. Change Log

13. Contributors

14. Acknowledgements

15. References

15.1. Normative References

15.2. Informative References

Authors' Addresses

1. Introduction

Packet loss and delay are hard and pervasive problems of day-to-day

network operation. Proactively detecting, measuring, and locating

them is crucial to maintaining high QoS and timely resolution of

crippling end-to-end throughput issues. To this effect, in a TCP-

dominated world, network operators have been heavily relying on

information present in the clear in TCP headers: sequence and

acknowledgment numbers and SACKs when enabled (see [RFC8517]). These

allow for quantitative estimation of packet loss and delay by

passive on-path observation. Additionally, the problem can be

quickly identified in the network path by moving the passive

observer around.

With encrypted protocols, the equivalent transport headers are

encrypted and passive packet loss and delay observations are not

possible, as described in [TRANSPORT-ENCRYPT].

Measuring TCP loss and delay between similar endpoints cannot be

relied upon to evaluate encrypted protocol loss and delay. Different

protocols could be routed by the network differently, and the

fraction of Internet traffic delivered using protocols other than

TCP is increasing every year. It is imperative to measure packet

loss and delay experienced by encrypted protocol users directly.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

This document defines Explicit Flow Measurement Techniques. These

hybrid measurement path signals (see [IPM-Methods]) are to be

embedded into a transport layer protocol and are explicitly intended

for exposing RTT and loss rate information to on-path measurement

devices. These measurement mechanisms are applicable to any

transport-layer protocol, and, as an example, the document describes

QUIC and TCP bindings.

The Explicit Flow Measurement Techniques described in this document

can be used alone or in combination with other Explicit Flow

Measurement Techniques. Each technique uses a small number of bits

and exposes a specific measurement.

Following the recommendation in [RFC8558] of making path signals

explicit, this document proposes adding a small number of dedicated

measurement bits to the clear portion of the protocol headers. These

bits can be added to an encrypted portion of a header belonging to

any protocol layer, e.g. IP (see [IP]) and IPv6 (see [IPv6]) headers

or extensions, such as [IPv6AltMark], UDP surplus space (see [UDP-

OPTIONS] and [UDP-SURPLUS]), reserved bits in a QUIC v1 header (see

[QUIC-TRANSPORT]).

The measurements are not designed for use in automated control of

the network in environments where signal bits are set by untrusted

hosts. Instead, the signal is to be used for troubleshooting

individual flows as well as for monitoring the network by

aggregating information from multiple flows and raising operator

alarms if aggregate statistics indicate a potential problem.

The spin bit, delay bit and loss bits explained in this document are

inspired by [AltMark], [SPIN-BIT], [I-D.trammell-tsvwg-spin] and [I-

D.trammell-ippm-spin].

Additional details about the Performance Measurements for QUIC are

described in the paper [ANRW19-PM-QUIC].

2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

3. Latency Bits

This section introduces bits that can be used for round trip latecy

measurements. Whenever this section of the specification refers to

packets, it is referring only to packets with protocol headers that

include the latency bits.

¶

¶

¶

¶

¶

¶

¶

¶

[QUIC-TRANSPORT] introduces an explicit per-flow transport-layer

signal for hybrid measurement of RTT. This signal consists of a spin

bit that toggles once per RTT. [SPIN-BIT] discusses an additional

two-bit Valid Edge Counter (VEC) to compensate for loss and

reordering of the spin bit and increase fidelity of the signal in

less than ideal network conditions.

This document introduces an additional single-bit delay signal that

can be used together with the spin bit by passive observers to

measure the RTT of a network flow, avoiding the spin bit ambiguities

that arise as soon as network conditions deteriorate.

3.1. Spin Bit

This section is a small recap of the spin bit working mechanism. For

a comprehensive explanation of the algorithm, please see [SPIN-BIT].

The spin bit is an alternate marking [AltMark] generated signal,

where the size of the alternation changes with the flight size each

RTT.

The latency spin bit is a single bit signal that toggles once per

RTT, enabling latency monitoring of a connection-oriented

communication from intermediate observation points.

A "spin period" is a set of packets with the same spin bit value

sent during one RTT time interval. A "spin period value" is the

value of the spin bit shared by all packets in a spin period.

The client and server maintain an internal per-connection spin value

(i.e. 0 or 1) used to set the spin bit on outgoing packets. Both

endpoints initialize the spin value to 0 when a new connection

starts. Then:

when the client receives a packet with the packet number larger

than any number seen so far, it sets the connection spin value to

the opposite value contained in the received packet;

when the server receives a packet with the packet number larger

than any number seen so far, it sets the connection spin value to

the same value contained in the received packet.

The computed spin value is used by the endpoints for setting the

spin bit on outgoing packets. This mechanism allows the endpoints to

generate a square wave such that, by measuring the distance in time

between pairs of consecutive edges observed in the same direction, a

passive on-path observer can compute the round trip delay of that

network flow.

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

Spin bit enables round trip latency measurement by observing a

single direction of the traffic flow.

Note that packet reordering can cause spurious edges that require

heuristics to correct. The spin bit performance deteriorates as soon

as network impairments arise as explained in Section 3.2.

3.2. Delay Bit

The delay bit, different from a two-bit VEC, has been designed to

overcome accuracy limitations experienced by the spin bit under

difficult network conditions:

packet reordering leads to generation of spurious edges and

errors in delay estimation;

loss of edges causes wrong estimation of spin periods and

therefore wrong RTT measurements;

application-limited senders cause the spin bit to measure the

application delays instead of network delays.

If enabled, delay bit has to be used in addition to the spin bit.

Unlike the spin bit, which is set in every packet transmitted on the

network, the delay bit is set only once per round trip.

When the delay bit is used, a single packet with a second marked bit

(the delay bit) bounces between a client and a server during the

entire connection lifetime. This single packet is called "delay

sample".

An observer placed at an intermediate point, observing a single

direction of traffic, tracking the delay sample and the relative

timestamp in every spin period, can measure the round trip delay of

the connection.

The delay sample lifetime is comprised of two phases: initialization

and reflection. The initialization is the generation of the delay

sample, while the reflection realizes the bounce behavior of this

single packet between the two endpoints.

The next figure describes the Delay bit mechanism: the first bit is

the spin bit and the second one is the delay bit.

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

 +--------+ -- -- -- -- -- +--------+

 | | -----------> | |

 | Client | | Server |

 | | <----------- | |

 +--------+ -- -- -- -- -- +--------+

 (a) No traffic at beginning.

 +--------+ 00 00 01 -- -- +--------+

 | | -----------> | |

 | Client | | Server |

 | | <----------- | |

 +--------+ -- -- -- -- -- +--------+

 (b) The Client starts sending data and

 sets the first packet as Delay Sample.

 +--------+ 00 00 00 00 00 +--------+

 | | -----------> | |

 | Client | | Server |

 | | <----------- | |

 +--------+ -- -- 01 00 00 +--------+

 (c) The Server starts sending data

 and reflects the Delay Sample.

 +--------+ 10 10 11 00 00 +--------+

 | | -----------> | |

 | Client | | Server |

 | | <----------- | |

 +--------+ 00 00 00 00 00 +--------+

 (d) The Client inverts the spin bit and

 reflects the Delay Sample.

 +--------+ 10 10 10 10 10 +--------+

 | | -----------> | |

 | Client | | Server |

 | | <----------- | |

 +--------+ 00 00 11 10 10 +--------+

 (e) The Server reflects the Delay Sample.

 +--------+ 00 00 01 10 10 +--------+

 | | -----------> | |

 | Client | | Server |

 | | <----------- | |

 +--------+ 10 10 10 10 10 +--------+

 (f) The client reverts the spin

 bit and reflects the Delay Sample.

Figure 1: Spin bit and Delay bit

3.2.1. Generation Phase

Only client is actively involved in the generation phase.

When connection starts and spin bit is set to 0, the client

initializes the delay bit of the first packet to 1, so it becomes

the delay sample for that marking period. Only this packet is marked

with the delay bit set to 1 for this round trip period; the other

ones will carry the spin bit, while the delay bit will be set to 0.

The server initializes the delay bit to 0 at the beginning of the

connection, and its only task during the connection is described in

Section 3.2.2.

In absence of network impairments, the delay sample should bounce

between client and server continuously, for the entire duration of

the connection. That is highly unlikely for two reasons:

the packet carrying the delay bit might be lost;

an endpoint could stop or delay sending packets because the

application is limiting the amount of traffic transmitted;

To deal with these problems, the algorithm provides a procedure

named "recovery process" to regenerate the delay sample and to

inform a possible observer of the problem so the measurement can be

restarted.

3.2.1.1. The Recovery Process

Absent packet loss or reordering, every spin period ends with a

delay sample inside. If that does not happen and a spin period

terminates without a delay sample inside, the client waits a further

spin period; then, it creates a new delay sample by setting the

delay bit to 1 on the first outgoing packet of the subsequent

period.

The spin period with all delay bits set to 0 informs observers that

there was a problem and delay measurements for this flow should be

reset till the next delay sample is received.

¶

¶

¶

¶

1. ¶

2.

¶

¶

¶

¶

3.2.2. Reflection Phase

Reflection is the process that enables the bouncing of the delay

sample between a client and a server. The behavior of the two

endpoints is slightly different.

Server side reflection: when a delay sample arrives, the server

marks the first packet in the opposite direction as the delay

sample, if the outgoing packet has the same spin bit value as the

delay sample. Otherwise, the delay sample is ignored.

Client side reflection: when a delay sample arrives, the client

marks the first packet in the opposite direction as the delay

sample, if the outgoing packet has the opposite spin bit value

then the delay sample. Otherwise, the delay sample is ignored.

In both cases, if the outgoing delay sample is being transmitted

with a delay greater than a predetermined threshold after the

reception of the incoming delay sample (1ms by default), the delay

sample is not reflected, and the outgoing delay bit is kept at 0.

Note that reflection takes place for the delay sample regardless of

its position within the spin period, as long as it stays within its

original spin period.

A time threshold for the retransmission of the delay sample is used

to eliminate measurements that would overestimate the delay due to

lack of traffic on the endpoints. Hence, the maximum estimation

error would amount to twice the threshold (e.g. 2ms) per

measurement.

3.2.3. Two Bits Delay Measurement: Spin Bit + Delay Bit

When the Delay Bit is used, a passive observer can use delay samples

directly and avoid inherent ambiguities in the calculation of the

RTT in spin bit analysis, such as heuristic validation of the

goodness of an edge signal.

3.2.3.1. RTT Measurement

The delay sample generation process ensures that only one packet

marked with the delay bit set to 1 runs back and forth between two

endpoints per round trip time. To determine the RTT measurement of a

flow, an on-path passive observer computes the time difference

between two delay samples observed in a single direction.

To ensure a valid measurement, the observer must identify spin

periods in the packet flow and assign delay samples to spin periods.

If a spin period is missing a delay sample, the measurement needs to

be restarted from the subsequent delay sample. Hence, measurements

¶

*

¶

*

¶

¶

¶

¶

¶

¶

must take into account delay samples belonging to adjacent spin

periods.

Figure 2: Round-trip time (both direction)

3.2.3.2. Half-RTT Measurement

An observer that is able to observe both forward and return traffic

directions can use the delay samples to measure "upstream" and

"downstream" RTT components, also known as the half-RTT

measurements. It does this by measuring the time between a delay

sample observed in one direction and the reflected delay sample

observed in the opposite direction.

As with RTT measurement, the observer must identify spin periods in

the packet flow and assign delay samples to spin periods. If a spin

period is missing a delay sample, the measurement needs to be

restarted from the subsequent delay sample. So a measurement, to be

valid, must take into account delay samples belonging to adjacent

periods, for the upstream component, or to the same period for the

downstream component.

Note that upstream and downstream sections of paths between the

endpoints and the observer, i.e. observer-to-client vs client-to-

observer and observer-to-server vs server-to-observer, may have

different delay characteristics due to the difference in network

congestion and other factors.

¶

 =======================|======================>

 = ********** -----Obs----> ********** =

 = * Client * * Server * =

 = ********** <------------ ********** =

 <==

 (a) client-server RTT

 ==>

 = ********** ------------> ********** =

 = * Client * * Server * =

 = ********** <----Obs----- ********** =

 <======================|=======================

 (b) server-client RTT

¶

¶

¶

Figure 3: Half Round-trip time (both direction)

3.2.3.3. Intra-Domain RTT Measurement

Intra-domain RTT is the portion of the entire RTT used by a flow to

traverse the network of a provider. To measure intra-domain RTT, two

observers capable of observing traffic in both directions must be

employed simultaneously at ingress and egress of the network to be

measured. Intra-domain RTT is difference between the two computed

upstream (or downstream) RTT components.

Figure 4: Intra-domain Round-trip time (client-observer: upstream)

 =======================>

 = ********** ------|-----> **********

 = * Client * Obs * Server *

 = ********** <-----|------ **********

 <=======================

 (a) client-observer half-RTT

 =======================>

 ********** ------|-----> ********** =

 * Client * Obs * Server * =

 ********** <-----|------ ********** =

 <=======================

 (b) observer-server half-RTT

¶

 ===>

 = =====================>

 = = ********** ---|--> ---|--> **********

 = = * Client * Obs Obs * Server *

 = = ********** <--|--- <--|--- **********

 = <=====================

 <===

 (a) client-observer RTT components (half-RTTs)

 ==================>

 ********** ---|--> ---|--> **********

 * Client * Obs Obs * Server *

 ********** <--|--- <--|--- **********

 <==================

 (b) the intra-domain RTT resulting from the

 subtraction of the above RTT components

3.2.4. Observer's Algorithm and Edge Rejection Interval

To provide a formal description of the observer behavior, we define

a "matching delay sample" to be a delay sample with the spin bit

value that matched the spin bit value of then-current spin period.

Upon detecting a matching delay sample, if a matching delay sample

was also detected in the previous period, then the two delay samples

can be used to calculate RTT measurement.

If the observer can observe both forward and return traffic flows,

and it is able to determine which direction contains the client and

the server (e.g. by observing the spin bit or connection handshake):

If matching delay samples have been detected in both directions

in the current spin period, they can be used to measure the

observer-server half-RTT.

If a matching delay sample has been detected in client-to-

observer direction, AND a matching delay sample had been detected

in observer-to-client direction in the previous spin period, they

can be used to measure the observer-client half-RTT.

The described observer behavior depends on the ability to accurately

identify current spin periods and to reject spurious spin edges,

caused by packet reordering. Failure to do so will lead to many

missed measurement opportunities and will decrease the amount of

usable delay samples available to the observer.

To implement spurious edge rejection, every time a spin bit edge is

detected, the observer starts a new spin period and begins a time

interval during which it rejects spin edges (e.g. 5ms). This

guarantees protection against spurious edges due to packets that

have been reordered by less than the time interval. The mechanism

only works for intervals smaller than the RTT of the observed

connection; if RTT is smaller than the edge rejection interval, the

observer cannot measure the RTT.

4. Loss Bits

This section introduces bits that can be used for loss measurements.

Whenever this section of the specification refers to packets, it is

referring only to packets with protocol headers that include the

loss bits - the only packets whose loss can be measured.

T: the "round Trip loss" bit is used in combination with the Spin

bit to measure round-trip loss. See Section 4.1.

Q: the "sQuare signal" bit is used to measure upstream loss. See

Section 4.2.

¶

¶

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

L: the "Loss event" bit is used to measure end-to-end loss. See

Section 4.3.

R: the "Reflection square signal" bit is used in combination with

Q bit to measure end-to-end loss. See Section 4.1.

Loss measurements enabled by T, Q, and L bits can be implemented by

those loss bits alone (T bit requires a working Spin Bit). Two-bit

combinations Q+L and Q+R enable additional measurement opportunities

discussed below.

Each endpoint maintains appropriate counters independently and

separately for each separately identifiable flow (each sub-flow for

multipath connections).

Since loss is reported independently for each flow, all bits (except

for L bit) require a certain minimum number of packets to be

exchanged per flow before any signal can be measured. Therefore,

loss measurements work best for flows that transfer more than a

minimal amount of data.

4.1. T Bit - Round Trip Loss Bit

The round Trip loss bit is used to mark a variable number of packets

exchanged twice between the endpoints realizing a two round-trip

reflection. A passive on-path observer, observing either direction,

can count and compare the number of marked packets seen during the

two reflections, estimating the loss rate experienced by the

connection. The overall exchange comprises:

The client selects, generates and consequently transmits a first

train of packets, by setting the T bit to 1;

The server, upon receiving each packet included in the first

train, reflects to the client a respective second train of

packets of the same size as the first train received, by setting

the T bit to 1;

The client, upon receiving each packet included in the second

train, reflects to the server a respective third train of packets

of the same size as the second train received, by setting the T

bit to 1;

The server, upon receiving each packet included in the third

train, finally reflects to the client a respective fourth train

of packets of the same size as the third train received, by

setting the T bit to 1.

*

¶

*

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

Packets belonging to the first round trip (first and second train)

represent the Generation Phase, while those belonging to the second

round trip (third and fourth train) represent the Reflection Phase.

A passive on-path observer can count and compare the number of

marked packets seen during the two round trips (i.e. the first and

third or the second and the fourth trains of packets, depending on

which direction is observed) and estimate the loss rate experienced

by the connection. This process is repeated continuously to obtain

more measurements as long as the endpoints exchange traffic. These

measurements can be called Round Trip losses.

Since packet rates in two directions may be different, the number of

marked packets in the train is determined by the direction with the

lowest packet rate. See Section 4.1.2 for details on packet

generation and for a mechanism to allow an observer to distinguish

between trains belonging to different phases (Generation and

Reflection).

4.1.1. Round Trip Packet Loss Measurement

Since the measurements are performed on a portion of the traffic

exchanged between the client and the server, the observer calculates

the end-to-end Round Trip Packet Loss (RTPL) that, statistically,

will correspond to the loss rate experienced by the connection along

the entire network path.

Figure 5: Round-trip packet loss (both direction)

This methodology also allows the Half-RTPL measurement and the

Intra-domain RTPL measurement in a way similar to RTT measurement.

¶

¶

¶

¶

 =======================|======================>

 = ********** -----Obs----> ********** =

 = * Client * * Server * =

 = ********** <------------ ********** =

 <==

 (a) client-server RTPL

 ==>

 = ********** ------------> ********** =

 = * Client * * Server * =

 = ********** <----Obs----- ********** =

 <======================|=======================

 (b) server-client RTPL

¶

Figure 6: Half Round-trip packet loss (both direction)

Figure 7: Intra-domain Round-trip packet loss (observer-server)

4.1.2. Setting the Round Trip Loss Bit on Outgoing Packets

The round Trip loss signal requires a working Spin-bit signal to

separate trains of marked packets (packets with T bit set to 1). A

"pause" of at least one empty spin-bit period between each phase of

the algorithm serves as such separator for the on-path observer.

 =======================>

 = ********** ------|-----> **********

 = * Client * Obs * Server *

 = ********** <-----|------ **********

 <=======================

 (a) client-observer half-RTPL

 =======================>

 ********** ------|-----> ********** =

 * Client * Obs * Server * =

 ********** <-----|------ ********** =

 <=======================

 (b) observer-server half-RTPL

 ===>

 =====================> =

 ********** ---|--> ---|--> ********** = =

 * Client * Obs Obs * Server * = =

 ********** <--|--- <--|--- ********** = =

 <===================== =

 <===

 (a) observer-server RTPL components (half-RTPLs)

 ==================>

 ********** ---|--> ---|--> **********

 * Client * Obs Obs * Server *

 ********** <--|--- <--|--- **********

 <==================

 (b) the intra-domain RTPL resulting from the

 subtraction of the above RTPL components

¶

The client is in charge of launching trains of marked packets and

does so according to the algorithm:

Generation Phase. The client starts generating marked packets

for two consecutive spin-bit periods; it maintains a

"generation token" count that is reset to zero at the beginning

of the algorithm phase and is incremented every time a packet

arrives. When the client transmits a packet and a "generation

token" is available, the client marks the packet and retires a

"generation token". If no token is available, the outgoing

packet is transmitted unmarked. At the end of the first spin-

bit period spent in generation, the reflection counter is

unlocked to start counting incoming marked packets that will be

reflected later;

Pause Phase. When the generation is completed, the client

pauses till it has observed one entire spin bit period with no

marked packets. That spin bit period is used by the observer as

a separator between generated and reflected packets. During

this marking pause, all the outgoing packets are transmitted

with T bit set to 0. The reflection counter is still

incremented every time a marked packet arrives;

Reflection Phase. The client starts transmitting marked

packets, decrementing the reflection counter for each

transmitted marked packet until the reflection counter reached

zero. The "generation token" method from the generation phase

is used during this phase as well. At the end of the first

spin-period spent in reflection, the reflection counter is

locked to avoid incoming reflected packets incrementing it;

Pause Phase 2. The pause phase is repeated after the reflection

phase and serves as a separator between the reflected packet

train and a new packet train.

The generation token counter should be capped to limit the effects

of a subsequent sudden reduction in the other endpoint's packet rate

that could prevent that endpoint from reflecting collected packets.

The most conservative cap value is 1.

A server maintains a "marking counter" that starts at zero and is

incremented every time a marked packet arrives. When the server

transmits a packet and the "marking counter" is positive, the server

marks the packet and decrements the "marking counter". If the

"marking counter" is zero, the outgoing packet is transmitted

unmarked.

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

¶

4.1.3. Observer's Logic for Round Trip Loss Signal

The on-path observer counts marked packets and separates different

trains by detecting spin-bit periods (at least one) with no marked

packets. The Round Trip Packet Loss (RTPL) is the difference between

the size of the Generation train and the Reflection train.

In the following example, packets are represented by two bits (first

one is the spin bit, second one is the loss bit):

Figure 8: Round Trip Loss signal example

Note that 5 marked packets have been generated of which 4 have been

reflected.

4.1.4. Loss Coverage and Signal Timing

A cycle of the round Trip loss signaling algorithm contains 2 RTTs

of Generation phase, 2 RTTs of Reflection phase, and two Pause

phases at least 1 RTT in duration each. Hence, the loss signal is

delayed by about 6 RTTs since the loss events.

The observer can only detect loss of marked packets that occurs

after its initial observation of the Generation phase and before its

subsequent observation of the Reflection phase. Hence, if the loss

occurs on the path that sends packets at a lower rate (typically

ACKs in such asymmetric scenarios), 2/6 (1/3) of the packets will be

sampled for loss detection.

If the loss occurs on the path that sends packets at a higher rate,

lowPacketRate/(3*highPacketRate) of the packets will be sampled for

loss detection. For protocols that use ACKs, the portion of packets

sampled for loss in the higher rate direction during unidirectional

data transfer is 1/(3*packetsPerAck), where the value of

packetsPerAck can vary by protocol, by implementation, and by

network conditions.

4.2. Q Bit - Square Bit

The sQuare bit (Q bit) takes its name from the square wave generated

by its signal. Every outgoing packet contains the Q bit value, which

is initialized to the 0 and inverted after sending N packets (a

¶

¶

 Generation Pause Reflection Pause

 ____________________ ______________ ____________________ ________

 | | | | |

 01 01 00 01 11 10 11 00 00 10 10 10 01 00 01 01 10 11 10 00 00 10

¶

¶

¶

¶

sQuare Block or simply Q Block). Hence, Q Period is 2*N. The Q bit

represents "packet color" as defined by [AltMark].

Observation points can estimate upstream losses by watching a single

direction of the traffic flow and counting the number of packets in

each observed Q Block, as described in Section 4.2.2.

4.2.1. Q Block Length Selection

The length of the block must be known to the on-path network probes.

There are two alternatives to selecting the Q Block length. The

first one requires that the length is known a priori and therefore

set within the protocol specifications that implements the marking

mechanism. The second requires the sender to select it.

In this latter scenario, the sender is expected to choose N (Q Block

length) based on the expected amount of loss and reordering on the

path. The choice of N strikes a compromise - the observation could

become too unreliable in case of packet reordering and/or severe

loss if N is too small, while short flows may not yield a useful

upstream loss measurement if N is too large (see Section 4.2.2).

The value of N should be at least 64 and be a power of 2. This

requirement allows an Observer to infer the Q Block length by

observing one period of the square signal. It also allows the

Observer to identify flows that set the loss bits to arbitrary

values (see Section 7).

If the sender does not have sufficient information to make an

informed decision about Q Block length, the sender should use N=64,

since this value has been extensively tried in large-scale field

tests and yielded good results. Alternatively, the sender may also

choose a random power-of-2 N for each flow, increasing the chances

of using a Q Block length that gives the best signal for some flows.

The sender must keep the value of N constant for a given flow.

4.2.2. Upstream Loss

Blocks of N (Q Block length) consecutive packets are sent with the

same value of the Q bit, followed by another block of N packets with

an inverted value of the Q bit. Hence, knowing the value of N, an

on-path observer can estimate the amount of upstream loss after

observing at least N packets. The upstream loss rate (uloss) is one

minus the average number of packets in a block of packets with the

same Q value (p) divided by N (uloss=1-avg(p)/N).

The observer needs to be able to tolerate packet reordering that can

blur the edges of the square signal, as explained in Section 4.2.3.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Figure 9: Upstream loss

4.2.3. Identifying Q Block Boundaries

Packet reordering can produce spurious edges in the square signal.

To address this, the observer should look for packets with the

current Q bit value up to X packets past the first packet with a

reverse Q bit value. The value of X, a "Marking Block Threshold",

should be less than N/2.

The choice of X represents a trade-off between resiliency to

reordering and resiliency to loss. A very large Marking Block

Threshold will be able to reconstruct Q Blocks despite a significant

amount of reordring, but it may erroneously coalesce packets from

multiple Q Blocks into fewer Q Blocks, if loss exceeds 50% for some

Q Blocks.

4.3. L Bit - Loss Event Bit

The Loss Event bit uses an Unreported Loss counter maintained by the

protocol that implements the marking mechanism. To use the Loss

Event bit, the protocol must allow the sender to identify lost

packets. This is true of protocols such as QUIC, partially true for

TCP and SCTP (losses of pure ACKs are not detected) and is not true

of protocols such as UDP and IP/IPv6.

The Unreported Loss counter is initialized to 0, and L bit of every

outgoing packet indicates whether the Unreported Loss counter is

positive (L=1 if the counter is positive, and L=0 otherwise).

The value of the Unreported Loss counter is decremented every time a

packet with L=1 is sent.

The value of the Unreported Loss counter is incremented for every

packet that the protocol declares lost, using whatever loss

detection machinery the protocol employs. If the protocol is able to

 =====================>

 ********** -----Obs----> **********

 * Client * * Server *

 ********** <------------ **********

 (a) in client-server channel (uloss_up)

 ********** ------------> **********

 * Client * * Server *

 ********** <----Obs----- **********

 <=====================

 (b) in server-client channel (uloss_down)

¶

¶

¶

¶

¶

rescind the loss determination later, a positive Unreported Loss

counter may be decremented due to the rescission, but it should NOT

become negative due to the rescission.

This loss signaling is similar to loss signaling in [ConEx], except

the Loss Event bit is reporting the exact number of lost packets,

whereas Echo Loss bit in [ConEx] is reporting an approximate number

of lost bytes.

For protocols, such as TCP ([TCP]), that allow network devices to

change data segmentation, it is possible that only a part of the

packet is lost. In these cases, the sender must increment Unreported

Loss counter by the fraction of the packet data lost (so Unreported

Loss counter may become negative when a packet with L=1 is sent

after a partial packet has been lost).

Observation points can estimate the end-to-end loss, as determined

by the upstream endpoint, by counting packets in this direction with

the L bit equal to 1, as described in Section 4.3.1.

4.3.1. End-To-End Loss

The Loss Event bit allows an observer to estimate the end-to-end

loss rate by counting packets with L bit value of 0 and 1 for a

given flow. The end-to-end loss rate is the fraction of packets with

L=1.

The assumption here is that upstream loss affects packets with L=0

and L=1 equally. If some loss is caused by tail-drop in a network

device, this may be a simplification. If the sender's congestion

controller reduces the packet send rate after loss, there may be a

sufficient delay before sending packets with L=1 that they have a

greater chance of arriving at the observer.

4.3.2. Loss Profile Characterization

In addition to measuring the end-to-end loss rate, the Loss Event

bit allows an observer to characterize loss profile, since the

distribution of observed packets with L bit set to 1 roughly

corresponds to the distribution of packets lost between 1 RTT and 1

RTO before (see Section 4.4.1). Hence, observing random single

instances of L bit set to 1 indicates random single packet loss,

while observing blocks of packets with L bit set to 1 indicates loss

affecting entire blocks of packets.

¶

¶

¶

¶

¶

¶

¶

4.4. L+Q Bits - Upstream, Downstream, and End-to-End Loss Measurements

Combining L and Q bits allows a passive observer watching a single

direction of traffic to accurately measure:

upstream loss: sender-to-observer loss (see Section 4.2.2)

downstream loss: observer-to-receiver loss (see Section 4.4.1.1)

end-to-end loss: sender-to-receiver loss on the observed path

(see Section 4.3.1) with loss profile characterization (see

Section 4.3.2)

4.4.1. Correlating End-to-End and Upstream Loss

Upstream loss is calculated by observing packets that did not suffer

the upstream loss (Section 4.2.2). End-to-end loss, however, is

calculated by observing subsequent packets after the sender's

protocol detected the loss. Hence, end-to-end loss is generally

observed with a delay of between 1 RTT (loss declared due to

multiple duplicate acknowledgments) and 1 RTO (loss declared due to

a timeout) relative to the upstream loss.

The flow RTT can sometimes be estimated by timing protocol handshake

messages. This RTT estimate can be greatly improved by observing a

dedicated protocol mechanism for conveying RTT information, such as

the Spin bit (see Section 3.1) or Delay bit (see Section 3.2).

Whenever the observer needs to perform a computation that uses both

upstream and end-to-end loss rate measurements, it should use

upstream loss rate leading the end-to-end loss rate by approximately

1 RTT. If the observer is unable to estimate RTT of the flow, it

should accumulate loss measurements over time periods of at least 4

times the typical RTT for the observed flows.

If the calculated upstream loss rate exceeds the end-to-end loss

rate calculated in Section 4.3.1, then either the Q Period is too

short for the amount of packet reordering or there is observer loss,

described in Section 4.4.1.2. If this happens, the observer should

adjust the calculated upstream loss rate to match end-to-end loss

rate, unless the following applies.

In case of a protocol like TCP and SCTP that does not track losses

of pure ACK packets, observing a direction of traffic dominated by

pure ACK packets could result in measured upstream loss that is

higher than measured end-to-end loss, if said pure ACK packets are

lost upstream. Hence, if the measurement is applied to such

protocols, and the observer can confirm that pure ACK packets

dominate the observed traffic direction, the observer should adjust

the calculated end-to-end loss rate to match upstream loss rate.

¶

* ¶

* ¶

*

¶

¶

¶

¶

¶

¶

4.4.1.1. Downstream Loss

Because downstream loss affects only those packets that did not

suffer upstream loss, the end-to-end loss rate (eloss) relates to

the upstream loss rate (uloss) and downstream loss rate (dloss) as

(1-uloss)(1-dloss)=1-eloss. Hence, dloss=(eloss-uloss)/(1-uloss).

4.4.1.2. Observer Loss

A typical deployment of a passive observation system includes a

network tap device that mirrors network packets of interest to a

device that performs analysis and measurement on the mirrored

packets. The observer loss is the loss that occurs on the mirror

path.

Observer loss affects upstream loss rate measurement, since it

causes the observer to account for fewer packets in a block of

identical Q bit values (see Section 4.2.2). The end-to-end loss rate

measurement, however, is unaffected by the observer loss, since it

is a measurement of the fraction of packets with the L bit value of

1, and the observer loss would affect all packets equally (see

Section 4.3.1).

The need to adjust the upstream loss rate down to match end-to-end

loss rate as described in Section 4.4.1 is an indication of the

observer loss, whose magnitude is between the amount of such

adjustment and the entirety of the upstream loss measured in Section

4.2.2. Alternatively, a high apparent upstream loss rate could be an

indication of significant packet reordering, possibly due to packets

belonging to a single flow being multiplexed over several upstream

paths with different latency characteristics.

4.5. R Bit - Reflection Square Bit

R bit requires a deployment alongside Q bit. Unlike the square

signal for which packets are transmitted into blocks of fixed size,

the Reflection square signal (being an alternate marking signal too)

produces blocks of packets whose size varies according to these

rules:

when the transmission of a new block starts, its size is set

equal to the size of the last Q Block whose reception has been

completed;

if, before transmission of the block is terminated, the reception

of at least one further Q Block is completed, the size of the

block is updated to the average size of the further received Q

Blocks. Implementation details follow.

¶

¶

¶

¶

¶

*

¶

*

¶

The Reflection square value is initialized to 0 and is applied to

the R-bit of every outgoing packet. The Reflection square value is

toggled for the first time when the completion of a Q Block is

detected in the incoming square signal (produced by the opposite

node using the Q-bit). When this happens, the number of packets (p),

detected within this first Q Block, is used to generate a reflection

square signal which toggles every M=p packets (at first). This new

signal produces blocks of M packets (marked using the R-bit) and

each of them is called "Reflection Block" (R Block).

The M value is then updated every time a completed Q Block in the

incoming square signal is received, following this formula:

M=round(avg(p)).

The parameter avg(p) is the average number of packets in a marking

period computed considering all the Q Blocks received since the

beginning of the current R Block.

To ensure a proper computation of the M value, endpoints

implementing the R bit must identify the boundaries of incoming Q

Blocks. The same approach described in {#endmarkingblock} should be

used.

Looking at the R-bit, unidirectional observation points have an

indication of losses experienced by the entire unobserved channel

plus those occurred in the path from the sender up to them.

Since the Q Block is sent in one direction, and the corresponding

reflected R Block is sent in the opposite direction, the reflected R

signal is transmitted with the packet rate of the slowest direction.

Namely, if the observed direction is the slowest, there can be

multiple Q Blocks transmitted in the unobserved direction before a

complete R Block is transmitted in the observed direction. If the

unobserved direction is the slowest, the observed direction can be

sending R Blocks of the same size repeatedly before it can update

the signal to account for a newly-completed Q Block.

4.5.1. R+Q Bits - Using R and Q Bits for Passive Loss Measurement

Since both sQuare and Reflection square bits are toggled at most

every N packets (except for the first transition of the R-bit as

explained before), an on-path observer can count the number of

packets of each marking block and, knowing the value of N, can

estimate the amount of loss experienced by the connection. An

observer can calculate different measurements depending on whether

it is able to observe a single direction of the traffic or both

directions.

¶

¶

¶

¶

¶

¶

¶

Single directional observer:

upstream loss in the observed direction: the loss between the

sender and the observation point (see Section 4.2.2)

"three-quarters" connection loss: the loss between the receiver

and the sender in the unobserved direction plus the loss between

the sender and the observation point in the observed direction

end-to-end loss in the unobserved direction: the loss between the

receiver and the sender in the opposite direction

Two directions observer (same metrics seen previously applied to

both direction, plus):

client-observer half round-trip loss: the loss between the client

and the observation point in both directions

observer-server half round-trip loss: the loss between the

observation point and the server in both directions

downstream loss: the loss between the observation point and the

receiver (applicable to both directions)

4.5.1.1. Three-Quarters Connection Loss

Except for the very first block in which there is nothing to reflect

(a complete Q Block has not been yet received), packets are

continuously R-bit marked into alternate blocks of size lower or

equal than N. Knowing the value of N, an on-path observer can

estimate the amount of loss occurred in the whole opposite channel

plus the loss from the sender up to it in the observation channel.

As for the previous metric, the three-quarters connection loss rate

(tqloss) is one minus the average number of packets in a block of

packets with the same R value (t) divided by N (tqloss=1-avg(t)/N).

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

¶

Figure 10: Three-quarters connection loss

The following metrics derive from this last metric and the upstream

loss produced by the Q Bit.

4.5.1.2. End-To-End Loss in the Opposite Direction

End-to-end loss in the unobserved direction (eloss_unobserved)

relates to the "three-quarters" connection loss (tqloss) and

upstream loss in the observed direction (uloss) as (1-

eloss_unobserved)(1-uloss)=1-tqloss. Hence,

eloss_unobserved=(tqloss-uloss)/(1-uloss).

Figure 11: End-To-End loss in the opposite direction

4.5.1.3. Half Round-Trip Loss

If the observer is able to observe both directions of traffic, it is

able to calculate two "half round-trip" loss measurements - loss

 =======================>

 = ********** -----Obs----> **********

 = * Client * * Server *

 = ********** <------------ **********

 <==

 (a) in client-server channel (tqloss_up)

 ==>

 ********** ------------> ********** =

 * Client * * Server * =

 ********** <----Obs----- ********** =

 <=======================

 (b) in server-client channel (tqloss_down)

¶

¶

 ********** -----Obs----> **********

 * Client * * Server *

 ********** <------------ **********

 <==

 (a) in client-server channel (eloss_down)

 ==>

 ********** ------------> **********

 * Client * * Server *

 ********** <----Obs----- **********

 (b) in server-client channel (eloss_up)

from the observer to the receiver (in a given direction) and then

back to the observer in the opposite direction. For both directions,

"half round-trip" loss (hrtloss) relates to "three-quarters"

connection loss (tqloss_opposite) measured in the opposite direction

and the upstream loss (uloss) measured in the given direction as (1-

uloss)(1-hrtloss)=1-tqloss_opposite. Hence,

hrtloss=(tqloss_opposite-uloss)/(1-uloss).

Figure 12: Half Round-trip loss (both direction)

4.5.1.4. Downstream Loss

If the observer is able to observe both directions of traffic, it is

able to calculate two downstream loss measurements using either end-

to-end loss and upstream loss, similar to the calculation in Section

4.4.1.1 or using "half round-trip" loss and upstream loss in the

opposite direction.

For the latter, dloss=(hrtloss-uloss_opposite)/(1-uloss_opposite).

¶

 =======================>

 = ********** ------|-----> **********

 = * Client * Obs * Server *

 = ********** <-----|------ **********

 <=======================

 (a) client-observer half round-trip loss (hrtloss_co)

 =======================>

 ********** ------|-----> ********** =

 * Client * Obs * Server * =

 ********** <-----|------ ********** =

 <=======================

 (b) observer-server half round-trip loss (hrtloss_os)

¶

¶

Figure 13: Downstream loss

4.5.2. Enhancement of R Block Length Computation

The use of the rounding function used in the M computation

introduces errors that can be minimized by storing the rounding

applied each time M is computed, and using it during the computation

of the M value in the following R Block.

This can be achieved introducing the new r_avg parameter in the

computation of M. The new formula is Mr=avg(p)+r_avg; M=round(Mr);

r_avg=Mr-M where the initial value of r_avg is equal to 0.

4.5.3. Improved Resilience to Packet Reordering

When a protocol implementing the marking mechanism is able to detect

when packets are received out of order, it can improve resilience to

packet reordering beyond what is possible using methods described in

Section 4.2.3.

This can be achieved by updating the size of the current R Block

while this is being transmitted. The reflection block size is then

updated every time an incoming reordered packet of the previous Q

Block is detected. This can be done if and only if the transmission

of the current reflection block is in progress and no packets of the

following Q Block have been received.

5. Summary of Delay and Loss Marking Methods

This section summarizes the marking methods described in this draft.

For the Delay measurement, it is possible to use the spin bit alone

or combined with the delay bit. A unidirectional or bidirectional

observer can be used.

 =====================>

 ********** ------|-----> **********

 * Client * Obs * Server *

 ********** <-----|------ **********

 (a) in client-server channel (dloss_up)

 ********** ------|-----> **********

 * Client * Obs * Server *

 ********** <-----|------ **********

 <=====================

 (b) in server-client channel (dloss_down)

¶

¶

¶

¶

¶

¶

Figure 14: Delay Comparison

For the Loss measurement, each row in the table of Figure 15

represents a loss marking method. For each method the table

specifies the number of bits required in the header, the available

metrics using an unidirectional or bidirectional observer,

applicable protocols, measurement fidelity and delay.

 +------------------+----+-------------------------+---------------+

 | Method |# of| Available | |

 | |bits| Delay Metrics | Impairments |

 | | +------------+------------+ Resiliency |

 | | | UNIDIR | BIDIR | |

 | | | Observer | Observer | |

 +------------------+----+------------+------------+---------------+

 |S: Spin Bit | 1 | RTT | x2 | lower |

 | | | | Half RTT | |

 +------------------+----+------------+------------+---------------+

 |SD: Spin Bit + | 2 | RTT | x2 | higher |

 | Delay Bit | | | Half RTT | |

 +------------------+----+------------+------------+---------------+

 x2 Same metric for both directions.

¶

Figure 15: Loss Comparison

6. ECN-Echo Event Bit

While the primary focus of the draft is on exposing packet loss and

delay, modern networks can report congestion before they are forced

to drop packets, as described in [ECN]. When transport protocols

keep ECN-Echo feedback under encryption, this signal cannot be

observed by the network operators. When tasked with diagnosing

network performance problems, knowledge of a congestion downstream

of an observation point can be instrumental.

 +-------------+-+-----------------------+-+------------------------+

 | Method |B| Available |P| Measurement Aspects |

 | |i| Loss Metrics |r+------------+-----------+

 | |t| UNIDIR | BIDIR |t| Fidelity | Delay |

 | |s| Observer | Observer |o| | |

 +-------------+-+-----------+-----------+-+------------+-----------+

 |T: Round Trip|$| RT | x2 | | Rate by | ~6 RTT |

 | Loss Bit |1| | Half RT |*| sampling +-----------+

 | | | | | | 1/3 to 1/(3*ppa) of |

 | | | | | | pkts over 2 RTT |

 +-------------+-+-----------+-----------+-+------------+-----------+

 |Q: Square Bit|1| Upstream | x2 |*| Rate over | N pkts |

 | | | | | | N pkts | (e.g. 64) |

 | | | | | | (e.g. 64) | |

 +-------------+-+-----------+-----------+-+------------+-----------+

 |L: Loss Event|1| E2E | x2 |#| Loss shape | Min: RTT |

 | Bit | | | | | (and rate) | Max: RTO |

 +-------------+-+-----------+-----------+-+------------+-----------+

 |QL: Square + |2| Upstream | x2 | | -> see Q | Up: see Q |

 | Loss Ev. | | Downstream| x2 |#| -> see Q|L | Others: |

 | Bits | | E2E | x2 | | -> see L | see L |

 +-------------+-+-----------+-----------+-+------------+-----------+

 |QR: Square + |2| Upstream | x2 | | Rate over | Up: see Q |

 | Ref. Sq. | | 3/4 RT | x2 | | N*ppa pkts | Others: |

 | Bits | | !E2E | E2E |*| (see Q bit | N*ppa pk |

 | | | | Downstream| | for N) | (see Q |

 | | | | Half RT | | | for N) |

 +-------------+-+-----------+-----------+-+------------+-----------+

 * All protocols

 # Protocols employing loss detection (w/ or w/o pure ACK loss

 detection)

 $ Require a working spin bit

 ! Metric relative to the opposite channel

 x2 Same metric for both directions

 ppa Packets-Per-Ack

 Q|L See Q if Upstream loss is significant; L otherwise

¶

If downstream congestion information is desired, this information

can be signaled with an additional bit.

E: The "ECN-Echo Event" bit is set to 0 or 1 according to the

Unreported ECN Echo counter, as explained below in Section 6.1.

6.1. Setting the ECN-Echo Event Bit on Outgoing Packets

The Unreported ECN-Echo counter operates identically to Unreported

Loss counter (Section 4.3), except it counts packets delivered by

the network with CE markings, according to the ECN-Echo feedback

from the receiver.

This ECN-Echo signaling is similar to ECN signaling in [ConEx]. ECN-

Echo mechanism in QUIC provides the number of packets received with

CE marks. For protocols like TCP, the method described in [ConEx-

TCP] can be employed. As stated in [ConEx-TCP], such feedback can be

further improved using a method described in [ACCURATE].

6.2. Using E Bit for Passive ECN-Reported Congestion Measurement

A network observer can count packets with CE codepoint and determine

the upstream CE-marking rate directly.

Observation points can also estimate ECN-reported end-to-end

congestion by counting packets in this direction with a E bit equal

to 1.

The upstream CE-marking rate and end-to-end ECN-reported congestion

can provide information about downstream CE-marking rate. Presence

of E bits along with L bits, however, can somewhat confound precise

estimates of upstream and downstream CE-markings in case the flow

contains packets that are not ECN-capable.

7. Protocol Ossification Considerations

Accurate loss and delay information is not critical to the operation

of any protocol, though its presence for a sufficient number of

flows is important for the operation of networks.

The delay and loss bits are amenable to "greasing" described in

[RFC8701], if the protocol designers are not ready to dedicate (and

ossify) bits used for loss reporting to this function. The greasing

could be accomplished similarly to the Latency Spin bit greasing in

[QUIC-TRANSPORT]. Namely, implementations could decide that a

fraction of flows should not encode loss and delay information and,

instead, the bits would be set to arbitrary values. The observers

would need to be ready to ignore flows with delay and loss

information more resembling noise than the expected signal.

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

8. Examples of Application

8.1. QUIC

The binding of the delay bit signal to QUIC is partially described

in [QUIC-TRANSPORT], which adds the spin bit to the first byte of

the short packet header, leaving two reserved bits for future

experiments.

To implement the additional signals discussed in this document, the

first byte of the short packet header can be modified as follows:

the delay bit (D) can be placed in the first reserved bit (i.e.

the fourth most significant bit 0x10) while the loss bit (L) in

the second reserved bit (i.e. the fifth most significant bit

0x08); the proposed scheme is:

Figure 16: Scheme 1

alternatively, a two bits loss signal (QL or QR) can be placed in

both reserved bits; the proposed schemes, in this case, are:

Figure 17: Scheme 2A

Figure 18: Scheme 2B

8.2. TCP

The signals can be added to TCP by defining bit 4 of byte 13 of the

TCP header to carry the spin bit, and eventually bits 5 and 6 to

carry additional information, like the delay bit and the round-trip

loss bit, or a two bits loss signal (QL or QR).

¶

¶

*

¶

 0 1 2 3 4 5 6 7

 +-+-+-+-+-+-+-+-+

 |0|1|S|D|L|K|P|P|

 +-+-+-+-+-+-+-+-+

*

¶

 0 1 2 3 4 5 6 7

 +-+-+-+-+-+-+-+-+

 |0|1|S|Q|L|K|P|P|

 +-+-+-+-+-+-+-+-+

 0 1 2 3 4 5 6 7

 +-+-+-+-+-+-+-+-+

 |0|1|S|Q|R|K|P|P|

 +-+-+-+-+-+-+-+-+

¶

9. Security Considerations

Passive loss and delay observations have been a part of the network

operations for a long time, so exposing loss and delay information

to the network does not add new security concerns for protocols that

are currently observable.

In the absence of packet loss, Q and R bits signals do not provide

any information that cannot be observed by simply counting packets

transiting a network path. In the presence of packet loss, Q and R

bits will disclose the loss, but this is information about the

environment and not the endpoint state. The L bit signal discloses

internal state of the protocol's loss detection machinery, but this

state can often be gleamed by timing packets and observing

congestion controller response.

Hence, loss bits do not provide a viable new mechanism to attack

data integrity and secrecy.

9.1. Optimistic ACK Attack

A defense against an Optimistic ACK Attack, described in [QUIC-

TRANSPORT], involves a sender randomly skipping packet numbers to

detect a receiver acknowledging packet numbers that have never been

received. The Q bit signal may inform the attacker which packet

numbers were skipped on purpose and which had been actually lost

(and are, therefore, safe for the attacker to acknowledge). To use

the Q bit for this purpose, the attacker must first receive at least

an entire Q Block of packets, which renders the attack ineffective

against a delay-sensitive congestion controller.

A protocol that is more susceptible to an Optimistic ACK Attack with

the loss signal provided by Q bit and uses a loss-based congestion

controller, should shorten the current Q Block by the number of

skipped packets numbers. For example, skipping a single packet

number will invert the square signal one outgoing packet sooner.

Similar considerations apply to the R Bit, although a shortened R

Block along with a matching skip in packet numbers does not

necessarily imply a lost packet, since it could be due to a lost

packet on the reverse path along with a deliberately skipped packet

by the sender.

10. Privacy Considerations

To minimize unintentional exposure of information, loss bits provide

an explicit loss signal - a preferred way to share information per

[RFC8558].

¶

¶

¶

¶

¶

¶

¶

[ConEx]

[ConEx-TCP]

[ECN]

New protocols commonly have specific privacy goals, and loss

reporting must ensure that loss information does not compromise

those privacy goals. For example, [QUIC-TRANSPORT] allows changing

Connection IDs in the middle of a connection to reduce the

likelihood of a passive observer linking old and new sub-flows to

the same device. A QUIC implementation would need to reset all

counters when it changes the destination (IP address or UDP port) or

the Connection ID used for outgoing packets. It would also need to

avoid incrementing Unreported Loss counter for loss of packets sent

to a different destination or with a different Connection ID.

11. IANA Considerations

This document makes no request of IANA.

12. Change Log

TBD

13. Contributors

The following people provided valuable contributions to this

document:

Marcus Ihlar, Ericsson, marcus.ihlar@ericsson.com

Jari Arkko, Ericsson, jari.arkko@ericsson.com

Emile Stephan, Orange, emile.stephan@orange.com

14. Acknowledgements

TBD

15. References

15.1. Normative References

Mathis, M. and B. Briscoe, "Congestion Exposure (ConEx)

Concepts, Abstract Mechanism, and Requirements", RFC

7713, DOI 10.17487/RFC7713, December 2015, <https://

www.rfc-editor.org/info/rfc7713>.

Kuehlewind, M., Ed. and R. Scheffenegger, "TCP

Modifications for Congestion Exposure (ConEx)", RFC 7786,

DOI 10.17487/RFC7786, May 2016, <https://www.rfc-

editor.org/info/rfc7786>.

Ramakrishnan, K., Floyd, S., and D. Black, "The Addition

of Explicit Congestion Notification (ECN) to IP", RFC

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

https://www.rfc-editor.org/info/rfc7713
https://www.rfc-editor.org/info/rfc7713
https://www.rfc-editor.org/info/rfc7786
https://www.rfc-editor.org/info/rfc7786

[IP]

[IPM-Methods]

[IPv6]

[RFC2119]

[RFC8558]

[TCP]

[ACCURATE]

[AltMark]

[ANRW19-PM-QUIC]

3168, DOI 10.17487/RFC3168, September 2001, <https://

www.rfc-editor.org/info/rfc3168>.

Postel, J., "Internet Protocol", STD 5, RFC 791, DOI

10.17487/RFC0791, September 1981, <https://www.rfc-

editor.org/info/rfc791>.

Morton, A., "Active and Passive Metrics and Methods

(with Hybrid Types In-Between)", RFC 7799, DOI 10.17487/

RFC7799, May 2016, <https://www.rfc-editor.org/info/

rfc7799>.

Deering, S. and R. Hinden, "Internet Protocol, Version 6

(IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/

RFC8200, July 2017, <https://www.rfc-editor.org/info/

rfc8200>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Hardie, T., Ed., "Transport Protocol Path Signals", RFC

8558, DOI 10.17487/RFC8558, April 2019, <https://www.rfc-

editor.org/info/rfc8558>.

Postel, J., "Transmission Control Protocol", STD 7, RFC

793, DOI 10.17487/RFC0793, September 1981, <https://

www.rfc-editor.org/info/rfc793>.

15.2. Informative References

Briscoe, B., Kuehlewind, M., and R. Scheffenegger, "More

Accurate ECN Feedback in TCP", Work in Progress,

Internet-Draft, draft-ietf-tcpm-accurate-ecn-12, 28

October 2020, <http://www.ietf.org/internet-drafts/draft-

ietf-tcpm-accurate-ecn-12.txt>.

Fioccola, G., Ed., Capello, A., Cociglio, M.,

Castaldelli, L., Chen, M., Zheng, L., Mirsky, G., and T.

Mizrahi, "Alternate-Marking Method for Passive and Hybrid

Performance Monitoring", RFC 8321, DOI 10.17487/RFC8321,

January 2018, <https://www.rfc-editor.org/info/rfc8321>.

Bulgarella, F., Cociglio, M., Fioccola, G., Marchetto,

G., and R. Sisto, "Performance measurements of QUIC

communications", DOI 10.1145/3340301.3341127, Proceedings

of the Applied Networking Research Workshop, July 2019,

<https://doi.org/10.1145/3340301.3341127>.

https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc7799
https://www.rfc-editor.org/info/rfc7799
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8558
https://www.rfc-editor.org/info/rfc8558
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc793
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-accurate-ecn-12.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-accurate-ecn-12.txt
https://www.rfc-editor.org/info/rfc8321
https://doi.org/10.1145/3340301.3341127

[I-D.trammell-ippm-spin]

[I-D.trammell-tsvwg-spin]

[IPv6AltMark]

[QUIC-TRANSPORT]

[RFC8517]

[RFC8701]

[SPIN-BIT]

[TRANSPORT-ENCRYPT]

Trammell, B., "An Explicit Transport-Layer

Signal for Hybrid RTT Measurement", Work in Progress,

Internet-Draft, draft-trammell-ippm-spin-00, 9 January

2019, <http://www.ietf.org/internet-drafts/draft-

trammell-ippm-spin-00.txt>.

Trammell, B., "A Transport-Independent

Explicit Signal for Hybrid RTT Measurement", Work in

Progress, Internet-Draft, draft-trammell-tsvwg-spin-00, 2

July 2018, <http://www.ietf.org/internet-drafts/draft-

trammell-tsvwg-spin-00.txt>.

Fioccola, G., Zhou, T., Cociglio, M., Qin, F., and R.

Pang, "IPv6 Application of the Alternate Marking Method",

Work in Progress, Internet-Draft, draft-ietf-6man-ipv6-

alt-mark-02, 13 October 2020, <http://www.ietf.org/

internet-drafts/draft-ietf-6man-ipv6-alt-mark-02.txt>.

Iyengar, J. and M. Thomson, "QUIC: A UDP-Based

Multiplexed and Secure Transport", Work in Progress,

Internet-Draft, draft-ietf-quic-transport-32, 20 October

2020, <http://www.ietf.org/internet-drafts/draft-ietf-

quic-transport-32.txt>.

Dolson, D., Ed., Snellman, J., Boucadair, M., Ed., and C.

Jacquenet, "An Inventory of Transport-Centric Functions

Provided by Middleboxes: An Operator Perspective", RFC

8517, DOI 10.17487/RFC8517, February 2019, <https://

www.rfc-editor.org/info/rfc8517>.

Benjamin, D., "Applying Generate Random Extensions And

Sustain Extensibility (GREASE) to TLS Extensibility", RFC

8701, DOI 10.17487/RFC8701, January 2020, <https://

www.rfc-editor.org/info/rfc8701>.

Trammell, B., Vaere, P., Even, R., Fioccola, G., Fossati,

T., Ihlar, M., Morton, A., and S. Emile, "Adding Explicit

Passive Measurability of Two-Way Latency to the QUIC

Transport Protocol", Work in Progress, Internet-Draft,

draft-trammell-quic-spin-03, 14 May 2018, <http://

www.ietf.org/internet-drafts/draft-trammell-quic-

spin-03.txt>.

Fairhurst, G. and C. Perkins, "Considerations around

Transport Header Confidentiality, Network Operations, and

the Evolution of Internet Transport Protocols", Work in

Progress, Internet-Draft, draft-ietf-tsvwg-transport-

encrypt-17, 8 September 2020, <http://www.ietf.org/

http://www.ietf.org/internet-drafts/draft-trammell-ippm-spin-00.txt
http://www.ietf.org/internet-drafts/draft-trammell-ippm-spin-00.txt
http://www.ietf.org/internet-drafts/draft-trammell-tsvwg-spin-00.txt
http://www.ietf.org/internet-drafts/draft-trammell-tsvwg-spin-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-6man-ipv6-alt-mark-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-6man-ipv6-alt-mark-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-32.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-32.txt
https://www.rfc-editor.org/info/rfc8517
https://www.rfc-editor.org/info/rfc8517
https://www.rfc-editor.org/info/rfc8701
https://www.rfc-editor.org/info/rfc8701
http://www.ietf.org/internet-drafts/draft-trammell-quic-spin-03.txt
http://www.ietf.org/internet-drafts/draft-trammell-quic-spin-03.txt
http://www.ietf.org/internet-drafts/draft-trammell-quic-spin-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-transport-encrypt-17.txt

[UDP-OPTIONS]

[UDP-SURPLUS]

internet-drafts/draft-ietf-tsvwg-transport-

encrypt-17.txt>.

Touch, J., "Transport Options for UDP", Work in

Progress, Internet-Draft, draft-ietf-tsvwg-udp-

options-08, 12 September 2019, <http://www.ietf.org/

internet-drafts/draft-ietf-tsvwg-udp-options-08.txt>.

Herbert, T., "UDP Surplus Header", Work in Progress,

Internet-Draft, draft-herbert-udp-space-hdr-01, 8 July

2019, <http://www.ietf.org/internet-drafts/draft-herbert-

udp-space-hdr-01.txt>.

Authors' Addresses

Mauro Cociglio

Telecom Italia

Via Reiss Romoli, 274

10148 Torino

Italy

Email: mauro.cociglio@telecomitalia.it

Alexandre Ferrieux

Orange Labs

Email: alexandre.ferrieux@orange.com

Giuseppe Fioccola

Huawei Technologies

Riesstrasse, 25

80992 Munich

Germany

Email: giuseppe.fioccola@huawei.com

Igor Lubashev

Akamai Technologies

Email: ilubashe@akamai.com

Fabio Bulgarella

Telecom Italia

Via Reiss Romoli, 274

10148 Torino

Italy

Email: fabio.bulgarella@guest.telecomitalia.it

Isabelle Hamchaoui

http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-transport-encrypt-17.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-transport-encrypt-17.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-udp-options-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-udp-options-08.txt
http://www.ietf.org/internet-drafts/draft-herbert-udp-space-hdr-01.txt
http://www.ietf.org/internet-drafts/draft-herbert-udp-space-hdr-01.txt
mailto:mauro.cociglio@telecomitalia.it
mailto:alexandre.ferrieux@orange.com
mailto:giuseppe.fioccola@huawei.com
mailto:ilubashe@akamai.com
mailto:fabio.bulgarella@guest.telecomitalia.it

Orange Labs

Email: isabelle.hamchaoui@orange.com

Massimo Nilo

Telecom Italia

Email: massimo.nilo@telecomitalia.it

Riccardo Sisto

Politecnico di Torino

Email: riccardo.sisto@polito.it

Dmitri Tikhonov

LiteSpeed Technologies

Email: dtikhonov@litespeedtech.com

mailto:isabelle.hamchaoui@orange.com
mailto:massimo.nilo@telecomitalia.it
mailto:riccardo.sisto@polito.it
mailto:dtikhonov@litespeedtech.com

	Explicit Flow Measurements Techniques
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Notational Conventions
	3. Latency Bits
	3.1. Spin Bit
	3.2. Delay Bit
	3.2.1. Generation Phase
	3.2.1.1. The Recovery Process

	3.2.2. Reflection Phase
	3.2.3. Two Bits Delay Measurement: Spin Bit + Delay Bit
	3.2.3.1. RTT Measurement
	3.2.3.2. Half-RTT Measurement
	3.2.3.3. Intra-Domain RTT Measurement

	3.2.4. Observer's Algorithm and Edge Rejection Interval

	4. Loss Bits
	4.1. T Bit - Round Trip Loss Bit
	4.1.1. Round Trip Packet Loss Measurement
	4.1.2. Setting the Round Trip Loss Bit on Outgoing Packets
	4.1.3. Observer's Logic for Round Trip Loss Signal
	4.1.4. Loss Coverage and Signal Timing

	4.2. Q Bit - Square Bit
	4.2.1. Q Block Length Selection
	4.2.2. Upstream Loss
	4.2.3. Identifying Q Block Boundaries

	4.3. L Bit - Loss Event Bit
	4.3.1. End-To-End Loss
	4.3.2. Loss Profile Characterization

	4.4. L+Q Bits - Upstream, Downstream, and End-to-End Loss Measurements
	4.4.1. Correlating End-to-End and Upstream Loss
	4.4.1.1. Downstream Loss
	4.4.1.2. Observer Loss

	4.5. R Bit - Reflection Square Bit
	4.5.1. R+Q Bits - Using R and Q Bits for Passive Loss Measurement
	4.5.1.1. Three-Quarters Connection Loss
	4.5.1.2. End-To-End Loss in the Opposite Direction
	4.5.1.3. Half Round-Trip Loss
	4.5.1.4. Downstream Loss

	4.5.2. Enhancement of R Block Length Computation
	4.5.3. Improved Resilience to Packet Reordering

	5. Summary of Delay and Loss Marking Methods
	6. ECN-Echo Event Bit
	6.1. Setting the ECN-Echo Event Bit on Outgoing Packets
	6.2. Using E Bit for Passive ECN-Reported Congestion Measurement

	7. Protocol Ossification Considerations
	8. Examples of Application
	8.1. QUIC
	8.2. TCP

	9. Security Considerations
	9.1. Optimistic ACK Attack

	10. Privacy Considerations
	11. IANA Considerations
	12. Change Log
	13. Contributors
	14. Acknowledgements
	15. References
	15.1. Normative References
	15.2. Informative References

	Authors' Addresses

