
Internet-draft Media Objects Markup Language (MOML) October 2005

 SIPPING A. Saleem
 Internet Draft G. Sharratt
 Expires: April 24, 2006 Convedia

 October 21, 2005

 Media Objects Markup Language (MOML)
 draft-melanchuk-sipping-moml-06

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 14, 2005.

Copyright Notice

 Copyright (C) The Internet Society (2005). All Rights Reserved.

Saleem & Sharratt Expires - April 2006 [Page 1]

https://datatracker.ietf.org/doc/html/draft-melanchuk-sipping-moml-06
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-draft Media Objects Markup Language (MOML) October 2005

Abstract

 The Media Objects Markup Language (MOML) is a modular and extensible
 language to define media processing objects which execute on media
 servers. The base language defines a set of primitive media objects
 (called primitives) and provides tools to group primitives together
 and specify how they interact with each other. Clients use the base
 MOML, or extend MOML, to create precisely tailored media processing
 objects which may be used as parts of application interactions with
 users or conferences or to transform media flowing internal to a
 media server. IVR is an example of an application interaction with a
 user.

Table of Contents

 1. Introduction...4
 2. Conventions used in this document..............................5
 3. Overview...5
 3.1 Primitives...7
 3.2 Groups...8
 3.3 Events..11
 4. Usage with SIP..12
 5. Package Scheme..14
 6. Profile Scheme..14
 7. Structure and Modularity......................................15
 8. <moml>..17
 9. MOML Core Module..17
 9.1 Elements Received by a Media Server.......................17
 9.1.1 <send>...17
 9.1.2 <exit>...18
 9.1.3 <disconnect>...18
 9.2 Elements Sent by a Media Server...........................19
 9.2.1 <event>..19
 10. Group Module...19
 10.1 <group>..19
 10.2 <groupexit>..20
 11. Basic Primitives Module......................................20

Saleem & Sharratt Expires - April 2006 [Page 2]

Internet-draft Media Objects Markup Language (MOML) October 2005

 11.1 <play>...20
 11.1.1 Child Elements......................................22
 11.1.1.1 <audio>..22
 11.1.1.2 <video>..23
 11.1.1.3 <media>..24
 11.1.1.4 <var>..25
 11.1.1.5 <playexit>.....................................25
 11.2 <dtmfgen>..25
 11.2.1 Child Elements......................................26
 11.2.1.1 <dtmfgenexit>..................................26
 11.3 <record>...26
 11.3.1 Child Elements......................................30
 11.3.1.1 <play>...30
 11.3.1.2 <recordexit>...................................30
 11.4 <dtmf> or <collect>......................................30
 11.4.1 Child Elements......................................33
 11.4.1.1 <play>...33
 11.4.1.2 <pattern>......................................33
 11.4.1.3 <detect>.......................................33
 11.4.1.4 <noinput>......................................33
 11.4.1.5 <nomatch>......................................34
 11.4.1.6 <dtmfexit>.....................................34
 12. Transform Primitives Module..................................34
 12.1 <vad>..34
 12.1.1 Child Elements......................................35
 12.1.1.1 <voice>, <silence>, <tvoice>, <tsilence>.......35
 12.2 <gain>...35
 12.3 <agc>..36
 12.4 <gate>...36
 12.5 <clamp>..37
 12.6 <relay>..37
 13. Speech Module..37
 13.1 <speech>...37
 13.1.1 Child Elements......................................39
 13.1.1.1 <grammar>......................................39
 13.1.1.2 <match>..39
 13.1.1.3 <noinput>......................................39
 13.1.1.4 <nomatch>......................................40
 13.1.1.5 <speechexit>...................................40
 13.2 <play>...40
 13.2.1 Child Elements......................................40
 13.2.1.1 <tts>..40
 14. Fax Module...41
 14.1 <faxdetect>..41
 14.2 <faxsend>..41
 14.2.1 Child Elements......................................43
 14.2.1.1 <sendobj>......................................43
 14.2.1.2 <hdrfooter>....................................43
 14.2.1.3 <rxpoll>.......................................44

Saleem & Sharratt Expires - April 2006 [Page 3]

Internet-draft Media Objects Markup Language (MOML) October 2005

 14.2.1.4 <faxstart>.....................................45
 14.2.1.5 <faxnegotiate>.................................45
 14.2.1.6 <faxpagedone>..................................45
 14.2.1.7 <faxobjectdone>................................45
 14.2.1.8 <faxopcomplete>................................46
 14.2.1.9 <faxpollstarted>...............................46
 14.3 <faxrcv>...46
 14.3.1 Child Elements......................................47
 14.3.1.1 <rcvobj>.......................................47
 14.3.1.2 <txpoll>.......................................48
 15. Failure Codes..48
 16. Examples...49
 16.1 Announcement...49
 16.2 Voice Mail Retrieval.....................................49
 16.3 Play and Record..50
 16.4 Speech Recognition.......................................51
 16.5 Play and Collect...52
 16.6 User Controlled Gain.....................................54
 17. Change Summary...54
 18. XML Schema...56
 Security Considerations..74
 IANA Considerations..74
 References...75
 Acknowledgments..76
 Authors' Addresses...76
 Intellectual Property Statement..................................77
 Copyright Statement..77
 Disclaimer of Validity...77
 Acknowledgement..78

1. Introduction

 This document describes a markup language to configure and define
 media resource objects within a media server. The language allows the
 definition of sophisticated and complex media processing objects
 which may be used for application interactions with users, i.e. as
 part of a user dialog, or as media transformation operations. Media
 Objects Markup Language (MOML) itself does not specify a language
 suitable for constructing complete user interfaces as does VoiceXML
 [7]. Rather, it defines a language from which individual pieces of a
 dialog may be specified.

 MOML is not a standalone language but will generally be used in
 conjunction with other languages such as the Media Sessions Markup
 Language (MSML) [8] or protocols such as the Session Initiation
 Protocol (SIP). MSML is used to invoke and control many different
 services on a media server and to manipulate the flow of media

Saleem & Sharratt Expires - April 2006 [Page 4]

Internet-draft Media Objects Markup Language (MOML) October 2005

 streams within a media server. SIP is used to establish media
 sessions and there are conventions to use the SIP Request-URI to
 invoke common media server services [9].

 MOML has both a framework, which describes the composition of media
 resource objects, and the definition of an initial set of primitive
 media resource objects. The following sections describe the structure
 and usage of MOML followed by sections defining all of the MOML XML
 elements.

 Simple media resources and their composition into more complex
 operations is a central concept of this specification. This concept
 is used to precisely define the required behaviors. It is not meant
 to imply that media servers must be implemented from the same
 building blocks used to describe the behavior.

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [7 (Bradner,
 S., �Key words for use in RFCs to Indicate Requirement Levels, March
 1997.)].

3. Overview

 MOML is an XML [4] language for composing complex media objects from
 a vocabulary of simple media resource objects called primitives. It
 is primarily a descriptive or declarative language to describe media
 processing objects.

 MOML is intended to be used in different environments. As such, the
 language itself does not define how MOML is used. Each environment in
 which MOML is used must define how it is used, the set of services
 provided and the mechanism for passing information between the
 environment and MOML. The specific mechanisms used to realize the
 interface between MOML and its environment are platform specific.

 This specification defines using MOML with directly with SIP. The
 Media Session Markup Language [8] is an example of another
 environment which uses MOML.

 MOML provides two models for access to media resources and service
 creation building blocks. Both models MAY be used in conjunction with
 each other in a complementary manner. The first model (referred to as
 Media Primitives and Composites) contains media primitives (such as
 digit collection and announcements) and composite functions (such as
 play and collect combined as a single operation). The second model
 (referred to as Media Groups allows the ability to define complex

Saleem & Sharratt Expires - April 2006 [Page 5]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-draft Media Objects Markup Language (MOML) October 2005

 customized interactions, via event passing mechanisms, between media
 primitives, if required.

 Media Primitives and Composites

 Media Primitives
 <dtmf> or <collect>
 DTMF digit collection
 <play>
 Playing of Announcements
 <dtmfgen>
 Generation of DTMF digits
 <record>
 Media recording

 Media Composites
 <collect>
 Supports play and collect operation.
 Composite function with inclusion of play.
 <record>
 Supports play and record operation.
 Composite function with inclusion of play.
 Media Groups

 <group>
 Allows grouping of media primitives for parallel
 execution, with an event exchange mechanism
 between the media primitives to achieve
 customized media operations. All the above media
 primitive elements are accepted within the
 group.

 Following operations MUST be supported using elements described above
 using either the Media Primitive model or the Media Group model.

 Announcement only
 <play>
 Collection only

 <dtmf> or <collect>
 Recording only
 <record>

 Play and Collect
 <collect>
 <play/>
 </collect>

 Play and Record
 <record>

Saleem & Sharratt Expires - April 2006 [Page 6]

Internet-draft Media Objects Markup Language (MOML) October 2005

 <play/>
 </record>

 MOML MAY be used to simply expose primitive media resource objects
 but will be used more often to describe dialog operations and media
 transformation objects which can be controlled via user interaction.

 MOML does not contain any computation or flow control constructs.
 There are no results automatically generated when media operations
 complete. Results MUST be explicitly requested using a <send> or
 <exit> element within the definition of the MOML object.

3.1 Primitives

 Primitives perform a single function on a media stream such as
 generating audio, recognizing speech or DTMF, or adjusting the gain.
 They may be composed so that primitives execute concurrently.
 Primitives not composed for concurrent execution MUST simply execute
 sequentially in the order they occur in a MOML document. All
 concurrently executing primitives in the same MOML object (defined in
 one MOML document) MAY interact with each other through events.

 Currently all primitives use audio media but primitives for text and
 video will be defined in a future version of this specification.
 Primitives can roughly be considered to fall into one of three
 descriptive categories.

 o recognizers have a media input but no output. They allow
 different things within a media stream to be recognized or
 detected and for events to be generated based upon received
 media.

 o transformers have one media input and output and may send and
 receive events;

 o sources and sinks generate or consume media. They have either a
 media input or a media output but not both. They may receive
 and generate events.

 o composites combine underlying primitives to provide higher-
 level user interaction, without the need for specific event
 based exchange between the primitives. The composite elements
 provide a simpler mechanism for more commonly used services,
 such as play and collect or play and record.

 Primitives may define different media processing behavior (states)
 based upon the events which they receive. Primitives which support
 different processing states must define their default starting state

Saleem & Sharratt Expires - April 2006 [Page 7]

Internet-draft Media Objects Markup Language (MOML) October 2005

 and should support the "initial" attribute to allow that state to be
 specified when the primitive is instantiated. All primitives must
 support the "terminate" event class.

 The following types of primitives are defined within this
 specification:

 Recognizers Transformers Source/Sink Composites
 --
 dtmf agc play collect
 faxtone clamp record record
 speech gain dtmfgen
 vad gate faxsend
 relay faxrcv

 Primitives have shadow variables, similar to those within VoiceXML
 [7], which are automatically assigned values when the primitives are
 used. Upon initialization of a MOML context, all shadow variables
 have the string value "undefined". Each primitive has its own
 instance of shadow variables which are global in scope to the entire
 MOML context.

 Names SHOULD be assigned to individual primitives when more than one
 primitive of the same type is used within one MOML document. Shadow
 variables are overwritten if the primitive has not been named and is
 instantiated a second time.

 Shadow variables cannot be modified under user control. They may be
 returned from the MOML context using the <send> element.

3.2 Groups

 Primitives are composed for concurrent execution by placing them
 within a <group> element. Groups define how media flows between
 multiple concurrently executing primitives. They have one or more
 inputs and one or more outputs. A <group> represents the declaration
 of a complex media processing operation. The event interaction
 between primitives (see the following sub-section) is defined within
 the context of one or more groups. However groups themselves do not
 scope events, they simply define that primitives are concurrently
 executing and a primitive must be executing in order to receive an
 event.

 Placing primitives within a group structure is an optional feature of
 this specification. It allows for complex services to created using
 the event exchange mechanism between the primitives. For simpler
 services, such as play/collect or play/record, the use of group
 mechanism is not necessary. These basic services MAY be accomplished
 using composites and primitives instead.

Saleem & Sharratt Expires - April 2006 [Page 8]

Internet-draft Media Objects Markup Language (MOML) October 2005

 Groups may also be used to describe media objects which transform a
 media stream while optionally allowing application or user control of
 the transformation. For example a gain control could be defined which
 responds to user speech or DTMF input. In this case a recognition
 primitive would send events to a gain control primitive.

 Groups have one attribute which defines the media flow within them.
 They also have a dimension which defines how many media inputs and
 outputs they have. Currently dimensions of 1 and 2 are supported
 based upon the group topology. These correspond to a group with one
 input and one output and a group with two inputs and two outputs.

 Media flow to and from the primitives within the group is based upon
 a topology attribute of the <group> element. This differs from a
 similar mechanism in Media Policy Manipulation in the Conference
 Policy Control Protocol [3] which explicitly defined connections. The
 topology attribute defines a topology schema and implies the group
 dimension.

 There are several common ways in which primitives are often connected
 together. A schema provides a convenient template which can be
 applied to multiple primitives without having to define all of the
 individual media relationships. The following two schemas are
 initially defined for 1 dimensional groups:

 o parallel: specifies that media sent to the group is sent to
 every primitive which has an input. The group bridges the
 output from every primitive which has an output into a single
 common group output;

 o serial: specifies that the first primitive listed in the group
 receives the media sent to the group. Its output is to be
 connected to the input of the next primitive defined within the
 group and so on until the last primitive within the group which
 becomes the group output.

 Groups with these topologies are shown in the two diagrams below. The
 group on the left has a parallel topology and that on the right has a
 serial topology.

 /-> P1 --\
 / \
 G(in) +---> P2 ----> G(out) G(in) --> P1 --> P2 --> P3 --> G(out)
 \ /
 \-> P3 --/

 More complex media flows MAY be created by nesting groups of serial
 and parallel topologies within each other. For example, the diagram

Saleem & Sharratt Expires - April 2006 [Page 9]

Internet-draft Media Objects Markup Language (MOML) October 2005

 below has a group with a serial topology nested within a star
 topology.

 /-----> P1 ------------------------\
 / \
 Gs(in) +-> Gp(in) --> P2 --> P3 --> Gp(out) -+> Gs(out)

 This combination could be used to create record operation where DTMF
 was to be clamped from the recording itself, but a DTMF key press is
 still used to stop the recording. In this case, P1 would be a DTMF
 recognizer, P2 would be a clamp primitive, and P3 a recorder as shown
 by the following example. This example omits child elements and
 attributes not concerned with the core concept. The following section
 discusses sending events and the details of each of the primitives is
 defined in section 4.

 <group topology="parallel">
 <dtmf/>
 <group topology="serial">
 <clamp/>
 <record/>
 </group>
 </group>

 A single schema, "fullduplex" is defined for a two dimensional group.
 A full-duplex two dimensional group is has exactly two immediate
 children. Those children may be primitives or other one dimensional
 groups. A "fullduplex" group must only be used as the top most group
 and must not be nested. Each primitive (P1) and group (G2) becomes
 half of the full-duplex group as shown in the diagram below.

 G-A(in1) +-> G2 --> G-B(out1)

 G-A(out2) <-- P1 <-+ G-B(in2)

 Full duplex groups are symmetrical when both halves are the same.
 They are asymmetrical when they differ. Asymmetric groups need to
 have a name associated with each side. The left side is defined as
 the input of the first child of the full-duplex group combined with
 the output of the second child. The right side is reverse. These
 sides were labeled A and B respectively in the preceding diagram.

 An example of a full-duplex group is the user operated gain control
 mentioned at the beginning of this sub-section. The gain should
 operate on the audio which a user hears, but the gain is controlled
 by recognizing things such as DTMF or spoken commands in media which
 the user originates. The following shows the XML tag grouping which
 would accomplish this and corresponds to the media flow shown in the
 diagram above. If the user's audio is not required for anything other

Saleem & Sharratt Expires - April 2006 [Page 10]

Internet-draft Media Objects Markup Language (MOML) October 2005

 than control of the gain, then the <relay> is not required and the
 internal group could be omitted. A complete XML description for this
 is included in the examples section.

 <group topology="fullduplex">
 <group topology="parallel">
 <dtmf/>
 <relay/>
 </group>
 <gain/>
 </group>

 Primitives within a group MUST begin concurrently but MAY finish
 asynchronously based upon events which they receive or their task
 completes. A group MUST terminate when all of the primitives within
 it have completed. If the group contains a <groupexit> element, then
 the contents of that element MUST be executed as part of group
 termination.

 A group itself MAY receive a terminate event requesting termination.
 A terminate event sent to the group causes a terminate event to be
 sent to each of its currently active primitives. The <groupexit>
 element is not executed until all primitives have processed their
 respective terminate events.

3.3 Events

 Events provide the mechanism for primitives to interact with each
 other and for a MOML context to interact with its external
 environment. The external environment is defined by the way in which
 a MOML context has been invoked. This will often be through MSML but
 other languages and protocols such as SIP may also be used.

 Every primitive and group conceptually implements their own event
 queue. Events sent to them get placed into their associated queue.
 Events are removed from their queues and processed in order.
 Primitives within a group conceptually have their own thread of
 execution. Due to the asynchronous nature of servicing events from
 multiple queues, it cannot be assumed that several events sent in
 sequence to different queues, will be processed in the order in which
 they were sent. For example, if recognition of something led to
 sending events to both a <play> and a <record> in that order, it is
 possible that the <record> may process its event before the <play>

 Primitives each define the set of events which they support and the
 behavior associated with their handling of each event. This allow
 many types of behaviors to be defined. For example, VCR type controls

Saleem & Sharratt Expires - April 2006 [Page 11]

Internet-draft Media Objects Markup Language (MOML) October 2005

 can be constructed by defining primitives which support events
 corresponding to each control. Media recognition/detection can be
 used to cause those events to be generated.

 Alternatively, events can be originated elsewhere, such as from an
 application server, and simply received by the primitive implementing
 the control. Examples of the use of events include adjusting volume
 (gain) and pause and resume of both announcement playout and record
 creation.

 Primitives act on events based upon the longest match of an event
 name. Event names are a period '.' delimited sequence of tokens. The
 first token, or the root of the name, can be considered an event
 class. Matching allows a standard meaning to be defined and then
 extended based upon what triggers an event's generation. For example,
 a record primitive has different behavior depending upon whether it
 completed because a user stopped speaking or because it was
 cancelled. The recording is retained in the first case but not the
 second.

 Longest match allows new recognizers to be created and used without
 changing how existing primitives are defined. For example, a face
 recognition capability could be created which generates a
 terminate.frowning event when a user looks puzzled. Although no
 primitive directly defines this event, it will still effect a generic
 terminate action. Primitives which require specialized behavior based
 upon frowning may be extended to support this. As well, the event can
 still be exported from the MOML context without requiring that
 primitives receiving the event understand facial expressions.

4. Usage with SIP

 MOML MAY be used directly with SIP for IVR or fax dialog
 interactions. It can be initially invoked as part of the "Prompt and
 Collect" service described in "Basic Network Media Services with SIP"
 [9]. That defines service indicators for a small number of well
 defined services using the user part of the SIP Request-URI (R-URI).

 The prompt and collect service uses "dialog" as the service
 indicator. URI parameters further refine the specific IVR request.
 This document defines an additional parameter "moml-param" for the
 dialog service indicator as follows:

 dialog-parameters = ";" (dialog-param [vxml-parameters])
 | moml-param
 dialog-param = "voicexml=" dialog-url
 moml-param = "moml=" moml-url

Saleem & Sharratt Expires - April 2006 [Page 12]

Internet-draft Media Objects Markup Language (MOML) October 2005

 There are no additional URI parameters when MOML is used as the
 dialog language.

 MOML defines discrete IVR dialog commands. These commands MAY be
 included directly in the body of the INVITE to the "dialog" service
 indicator by using the "cid" [12] URL scheme. This scheme identifies
 a message body part which in this case would contain the MOML
 command. Note that a multipart message body, containing a single
 part, MUST be present even if the INVITE does not contain an SDP
 offer. Subsequent MOML requests are sent in the body of SIP INFO
 messages as are all messages from a media server.

 An example of SIP URI as described above is:

 sip:dialog@mediaserver.example.net;\
 moml=cid:14864099865376@appserver.example.net

 The body part that contained the MOML referenced by the URL would
 have a Content-Id header of:

 Content-Id: <14864099865376@appserver.example.net>

 The results of executing an <exit> or <disconnect>, or of executing a
 <send> which has a "target" attribute value equal to "source", are
 notified in SIP INFO messages using the <event> element. No messages
 are sent if execution completes normally without executing one of
 these elements.

 If there is an error during validation or execution, then a media
 server MUST notify the error as described above and must include the
 namelist items "moml.error.status" and "moml.error.description". The
 values for these items are defined in section 15.

 A restricted subset of MOML can also be used with the "Announcement"
 service defined in [9]. This service uses "ann" as the service
 indicator and defines parameters that describe an announcement. The
 "play=" parameter identifies the URL of a prompt or a provisioned
 announcement sequence. The value of the "play=" parameter can refer
 to a MOML body part using a "cid" URL as described above. That body
 part must only contain the <play> primitive.

 Using MOML enhances the announcement service by allowing the client
 to specify a sequence of audio segments rather than requiring each
 sequence to be provisioned. Moreover, MOML defines a standard set of
 variables in contrast to [9] which defines a parameterization
 mechanism but does not formally specify any semantics.

 If a media server does not understand the "cid" scheme or does not
 understand MOML, it must respond with the SIP response code "488 -

Saleem & Sharratt Expires - April 2006 [Page 13]

Internet-draft Media Objects Markup Language (MOML) October 2005

 not acceptable here". If the MOML body contains elements other than
 the <play> primitive, or there are errors during validation, a media
 server must respond with a SIP response code "400 - bad request".
 Finally, if there is a discrepancy between parameters specified in
 the Request-URI and corresponding attributes defined in the MOML
 body, the Request-URI parameters must be silently ignored.

 MOML MUST NOT change the operation of the announcement service from
 that defined in [9]. When the announcement completes, a media server
 issues a SIP BYE request. The INFO method MUST NOT used with the
 announcement service.

5. Package Scheme

 The primary mechanism for extending MOML is the "package". A package
 is an integrated set of one or more XML schemas that define
 additional features and functions via new or extended use of elements
 and attributes. Each package is defined in a separate standards
 document, e.g., an Internet Draft or an RFC. All packages, extending
 the base MOML functionality, MUST include references to the MOML base
 set of schemas provided in the Internet drafts.

 A schema in a package MUST extend MSML or MOML, i.e., may not mix
 MSML and MOML. A package MAY contain any combination of schemas
 extending MSML and schemas extending MOML.

 A particular MSML or MOML script will include references to all the
 schemas defining the packages whose elements and attributes it makes
 use of. A particular script MUST reference either MSML base and
 optionally package(s) or MOML base and optionally package(s). See
 IANA Considerations section.

 Each package MUST have its own namespace so that elements or
 attributes with the same name in different packages do not conflict.
 A script using a particular element or attribute MUST prefix the
 namespace name on that element or attribute's name if it is defined
 in a package (as opposed to being defined in the base).

6. Profile Scheme

 Not all devices and applications using MSML/MOML will need to support
 the entire MSML/MOML base schema. For example, a media processing
 device might support only audio announcements, only audio simple
 conferencing, or only multimedia IVR. It is high desirable to have a
 system for describing what portion of the MSML/MOML base a particular
 media processing device or application server supports.

 Since packages are the scheme used for describing chunks of MSML/MOML
 functionality beyond the MSML/MOML base, one possibility might be to

Saleem & Sharratt Expires - April 2006 [Page 14]

Internet-draft Media Objects Markup Language (MOML) October 2005

 break the MSML/MOML base into a number of packages. MSML/MOML,
 however, is an XML-based language with sophisticated capabilities,
 and audio and video capabilities, for example, are intertwined in the
 schema. So it would not be technically feasible to break the MSML
 base and the MOML base into individual packages.

 A better solution, and one more suited to the XML nature of
 MSML/MOML, is to create profiles of the MSML/MOML for the different
 uses. Each profile would identify a subset of the MOML/MOML base
 element and attributes, and each profile would be accompanied by one
 or two corresponding schemas that are a subset of the MSML base
 and/or the MOML base. To use the examples above, there could be an
 audio announcements profile, an audio simple conferencing profile,
 and a multimedia IVR profile.

 These profiles would be published separately from the MSML/MOML base
 documents, in one or more standards documents (e.g., Internet Drafts
 or RFCs) dedicated to profiles. Public profiles would not be
 registered with IANA and any organization would be free to create its
 own private profile(s) if required.

7. Structure and Modularity

 MOML is designed to be a modular language. Defining the language in
 terms of modules allows different vendors and communities to choose a
 specific language subset, or define different language extensions,
 for achieving a wide range of applications across a diverse set of
 platforms. Modularity combined with namespaces allow independent
 development of new extensions.

 MOML is structured as a set of modules. Only a single module is
 required. That simple core module, moml-core-module, defines a MOML
 request to a media server. It consists of the primitive
 abstraction, an abstract element for control flow, the sequential
 execution model, and the <send> element. That is, the core module
 allows for the execution of a sequence of one or more media
 processing primitives with the ability to notify events to the
 invocation environment.

 Primitives are divided into four modules. The first, moml-basic-
 primitives, defines the basic <play>, <record>, <dtmf>, and <vad>
 elements. Another module, moml-transform-primitives, defines the
 simple half duplex filters. More advanced primitives are defined in
 the speech and fax modules. The speech module depends on the play
 module as it extends the capability of <play> by adding synthesized
 speech. Finally, the group execution model, which is currently the
 only element which changes the flow of control is defined in a
 separate module. All of these module are optional although at least
 one primitive module is required to have a functional implementation.

Saleem & Sharratt Expires - April 2006 [Page 15]

Internet-draft Media Objects Markup Language (MOML) October 2005

 The formal process for defining extensions to MOML is to define a new
 module. The new module MUST provide a text description of what
 extensions are included and how they work. It MUST also define an XML
 schema file (if applicable) that defines the new module (which may be
 through extension or restriction of an existing module). Dependencies
 upon other modules MUST be stated. For example a module that extends
 or restricts has a dependency on the original. Finally, the new
 module MUST be assigned a unique name and version.

 The types of things which can be defined in new modules are:

 o new primitives

 o extensions to existing primitives (events, shadow variables,
 attributes, content)

 o new recognition grammars for existing primitives

 o new markup languages for speech generation

 o languages for specifying a topology schema

 o new pre-defined topology schemas

 o new variables / segment types (sets & languages)

 o new control flow elements

 Modules are assembled together to form a specific MOML profile that
 is shared between different implementations. The base MOML profile
 which is defined in this documents consists of the moml-core, group,
 and basic and transform primitives modules. Speech and facsimile are
 examples of optional modules which extend the base language.

 Modules which define primitives must define the following for each
 primitive within the module:

 o the function which the primitive performs

 o the attributes which may be used to tailor its behavior

 o the events which it is capable of understanding

 o the shadow variables which provide access to information
 determined as a result of the primitive's operation.

 The mechanism used to insure that a media server and its client share
 a compatible set of modules is not defined. Currently it is expected
 that provisioning will be used, possibly coupled with a future

Saleem & Sharratt Expires - April 2006 [Page 16]

Internet-draft Media Objects Markup Language (MOML) October 2005

 auditing capability. Additionally, when used in SIP networks, modules
 could be defined using feature tags and the procedures defined for
 Indicating User Agent Capabilities in SIP [2] used to allow a media
 server to describe its capabilities to other user agents and its
 domain registrar.

8. <moml>

 The root element for MOML. The contents of this element describe
 either a complete execution context for a media resource object or
 the event to be notified to a MOML client.

 Attributes:

 version: "1.0" Mandatory.

 id: an identifier unique to this object. Events returned from
 MOML (the "target" attribute of a <send> is equal to "source")
 will be correlated with this identifier. Mandatory.

 Events:

 terminate: terminates the MOML context. A terminate event gets
 sent to the currently executing <group> or primitive.

9. MOML Core Module

 The core module defines the structural framework and abstractions for
 MOML (via its schema). It also defines the basic elements which are
 not part of the core primitive or control abstractions. These
 elements are defined below.

9.1 Elements Received by a Media Server

9.1.1 <send>

 Sends an event and optional namelist to the recipient identified by
 the target attribute. Event names are defined by the recipient. In
 the case where the recipient is a MOML group or primitive, the events
 are defined within this document. Other recipients MAY use names that
 are suitable for their environment.

 The "target" attribute specifies the recipient of the event.
 Recipients MAY be other MOML primitives or groups executing within
 the object, the object itself, or the environment which invoked MOML.
 Any target which is unknown within the object is assumed to be
 destined to the external environment. By convention, the string
 "source" SHOULD used to address that environment but any target name
 distinct from the MOML namespace MAY be used.

Saleem & Sharratt Expires - April 2006 [Page 17]

Internet-draft Media Objects Markup Language (MOML) October 2005

 Attributes:

 event: the name of an event.

 target: the recipient of the event. The recipient MUST be a
 MOML primitive, the currently executing group, or the MOML
 environment. A primitive is specified by a primitive type,
 optionally appended by a period '.' followed by the identifier
 of a primitive. Identifiers are only needed when more than one
 primitive of the same type exists in the object. The executing
 group is specified using the token "group". The environment is
 specified using the token "source", optionally appended by a
 period '.' followed by any environment specific target.

 namelist: a list of zero or more shadow variables which are
 included with the event.

9.1.2 <exit>

 Exit causes execution of the MOML object to terminate.

 Attributes:

 namelist: a list of one or more shadow variables which MAY
 optionally be sent to the context which invoked the MOML
 object.

9.1.3 <disconnect>

 Disconnect is similar to <exit> but has the additional semantics of
 indicating to the context which invoked the MOML object, that it
 should disconnect from a media server, the media stream associated
 with the object. The method of disconnection depends upon how the
 media stream was initially established. If SIP was used, a
 <disconnect> would cause a media server to issue a BYE request. The
 request would be sent for the SIP dialog associated with media
 session on which the MOML object was operating.

 Attributes:

 namelist: a list of one or more shadow variables which MAY
 optionally be sent to the context which invoked the MOML
 object.

Saleem & Sharratt Expires - April 2006 [Page 18]

Internet-draft Media Objects Markup Language (MOML) October 2005

9.2 Elements Sent by a Media Server

9.2.1 <event>

 The <event> element is used to describe an event and its associated
 namelist when MOML is used as a standalone dialog language such as
 with SIP. Events are generated and formatted when a <send>, <exit>,
 or <disconnect> is executed.

 attributes:

 name: the type of event. If the event is generated because of
 the execution of a <send>, the value MUST be the value of the
 "event" attribute from the <send> element. If the event is
 generated because of the execution of an <exit>, the value MUST
 be "moml.exit". If the event is generated because of the
 execution of a <disconnect>, the value MUST be
 "moml.disconnect". If the even is generated because of an
 error, the value must be "moml.error". Mandatory.

 id: the identifier of the MOML object generating the event.
 Mandatory.

 <event> has two children, <name> and <value>, which contain the name
 and value respectively of each namelist item associated with the
 event.

10. Group Module

 The group module defines a single control flow construct that
 specifies concurrent execution. Future modules may define additional
 flow control constructs.

10.1 <group>

 The <group> element allows the contained primitives to be executed
 concurrently.

 Attributes:

 topology: specifies a schema which defines the flow of media
 within the group. Three schemas are initially defined.
 "fullduplex" is specified for use with two dimensional groups.
 "parallel" and "serial" are for use with one dimensional
 groups. The definition of these topologies is defined in
 section 2. Mandatory.

 id: identifies name of the group. Mandatory when groups are
 nested.

Saleem & Sharratt Expires - April 2006 [Page 19]

Internet-draft Media Objects Markup Language (MOML) October 2005

 Events:

 terminate: causes a terminate event to be sent to each element
 contained within the group.

10.2 <groupexit>

 The <groupexit> element allows events to be sent when group
 processing completes. Group processing completes when all contained
 primitives terminate.

 Attributes:

 none

 Events:

 none

11. Basic Primitives Module

 Subsections of a primitive define child elements of that primitive
 and are not themselves considered primitives. They do not receive
 events or populate shadow variables.

11.1 <play>

 Play is used to generate an audio or video stream. It MUST play in
 sequence the media created by the child media elements <audio>,
 <video>, <media>, <tts>, and <var>. When the play stops, either
 because the terminate event is received or all media generation has
 completed, the <playexit> element, if present, is executed. At least
 one media generation element must be present.

 Play supports two states; generate and suspend. Media generation
 occurs in the generate state and is suspended in the suspend state.
 Once in the suspend state, media generation continues upon receiving
 the generate event. The default initial state is generate.

 Audio MAY be generated in different languages by specifying the
 xml:lang attribute for <play> and/or the child elements of <play>.
 The language is inherited by the child elements but each child MAY
 specify its own language. Except for physical audio clips, it is an
 error if a language is specified but the media server can not render
 the audio in the requested language.

 Attributes:

Saleem & Sharratt Expires - April 2006 [Page 20]

Internet-draft Media Objects Markup Language (MOML) October 2005

 id: an optional identifier which may be referenced elsewhere
 for sending events to the play primitive.

 interval: specifies the delay between stopping one iteration
 and beginning another. The attribute has no effect if
 iterations is not also specified. Default is no interval.

 iterate: specifies the number of times the media specified by
 the child media elements should be played. Each iteration is a
 complete play of each of the child media elements in document
 order. Defaults to once '1'.

 initial: defines the initial state for the play element.
 Default is "generate".

 maxtime: defines the maximum allowed time for the <play> to
 complete.

 barge: defines whether or not audio announcements MAY be
 interrupted by DTMF detection during play-out. The DTMF digit
 barging the announcement is stored in the digit buffer. Valid
 values for barge are true or false , and the attribute is
 mandatory.

 cleardb: defines whether the digit buffer is cleared or not,
 prior to starting the announcement. Valid values for cleardb
 are true or false , and the attribute is mandatory.

 offset: defines an offset, measured in units of time, where the
 <play> is to begin media generation. Offset is only valid when
 all child media elements are <audio>.

 skip: an amount, expressed in time, which will be used to skip
 through the media when "forward" and "backward" events are
 received. Default is 3s (three seconds).

 xml:lang: specifies the language to use for content which can
 be rendered in different languages.

 Events:

 pause: causes the play to enter the suspend state.

 resume: causes play to enter the generate state.

 forward: skips forward through the media. Only has effect when
 all child media elements are <audio>.

Saleem & Sharratt Expires - April 2006 [Page 21]

Internet-draft Media Objects Markup Language (MOML) October 2005

 backward: skips backward through the media. Only has effect
 when all child media elements are <audio>.

 restart: skips to the beginning of the media. Only has effect
 when all child media elements are <audio>.

 toggle-state: causes the suspend / generate state to toggle.

 terminate: terminates the play and assigns values to the shadow
 variables.

 Shadow Variables:

 play.amt: identifies the length of time for which media was
 generated before the play was stopped. This does not include
 time which may have elapsed while the play was in the suspend
 state.

 play.end: contains the event which caused the play to stop.
 When the play stops because all media generation has completed,
 end is assigned the value "play.complete".

 Note: Attributes barge and cleardb provide a simplified mechanism for
 controlling play operations with implicit DTMF without the use of
 <group> and event exchange mechanism. When using the <play> element
 within the group framework and barge is specified, detection of barge
 condition generates an implicit terminate event to the play
 primitive.

11.1.1 Child Elements

11.1.1.1 <audio>

 Identifies pre-recorded audio to play. Local URI references may
 resolve to a single physical audio clip, a logical clip, or a
 provisioned sequence of clips (physical or logical). A logical clip
 is one which can be rendered differently based on the language
 attribute. Logical clips are provisioned for each of the languages
 that a media server supports. Remote URI references are resolved
 according to the capabilities of the remote server.

 Attributes:

 uri: Identifies the location of the audio to be played. The
 file and http schemes are supported.

 format: defines the encoding and file type of the audio
 resource. The format attribute is defined as a string type of
 form audio/<filetype>;codecs=<codec> . The keyword audio

Saleem & Sharratt Expires - April 2006 [Page 22]

Internet-draft Media Objects Markup Language (MOML) October 2005

 identifies an audio content. The codecs field identifies the
 audio file s codec to be used for decoding the audio content.
 If format attribute is not specified, the filetype MUST be
 determined from the URI and the codec information MUST be
 determined from the media resource.

 audiosamplerate: Identifies audio sample rate in kHz. If not
 specified, the sample rate SHOULD be determined from the media
 resource.

 audiosamplesize: Identifies audio sample size in bits. If not
 specified, the sample size SHOULD be determined from the media
 resource.

 iterate: specifies the number of times the audio is to be
 played. Defaults to once '1'.

 xml:lang: specifies the language to use when the URI identifies
 a logical clip, either directly, or as part of a sequence.

11.1.1.2 <video>

 Identifies pre-recorded multimedia to play. Contents identified by
 the URI attribute may contain audio only, video only, or both audio
 and video. Media Server SHOULD attempt to play both audio and video
 from the identified URI, if both are available in the content.

 Attributes:

 uri: Identifies the location of the video or multimedia to be
 played. The file and http schemes are supported.

 format: defines the encoding and file type of the video or
 multimedia resource. The format attribute is defined as a
 string type of form
 video/<filetype>;codecs=<codecx>,<codecy> . The keyword
 video identifies video only media or media containing audio
 and video. The codecs field identifies the audio and/or video
 codecs to be used for decoding the file content, where the
 order of the codec values is not significant. In the event of
 audio and video content, using video keyword, the
 codecs=<codecx>,<codecy> field MAY be used to identify the
 audio codec and the video codec. If not specified, the codec
 information SHOULD be determined from the media file.

 audiosamplerate: Identifies audio sample rate in kHz. If not
 specified, the sample rate SHOULD be determined from the media
 file.

Saleem & Sharratt Expires - April 2006 [Page 23]

Internet-draft Media Objects Markup Language (MOML) October 2005

 audiosamplesize: Identifies audio sample size in bits. If not
 specified, the sample size SHOULD be determined from the media
 file.

 codecconfig: Identifies an optional special instruction string
 for codec configuration. Default is to send no special
 configuration string to the codec.

 profile: Identifies a video profile name specific to the codec.
 If not specified, default video profile of the codec SHOULD be
 selected.

 level: Identifies a video profile level to the codec. Default
 is to send no profile information to the codec and allow the
 codec to select an internal default.

 imagewidth: Identifies the width of video image in pixels.
 Default is to use image width information from media file.

 imageheight: Identifies the height of video image in pixels.
 Default is to use image height information from media file.

 maxbitrate: Identifies the bitrate of the video signal in kbps.
 Default is to use maximum bitrate information from the media
 file.

 framerate: Identifies the video frame rate in frames per
 second. Default is to use frame rate information from the media
 file.

 iterate: specifies the number of times the audio is to be
 played. Defaults to once '1'.

11.1.1.3 <media>

 Identifies multimedia content for play. All content of <media>
 element MUST start to play concurrently. This element may be used to
 generate a multi-media stream from two independent media resources,
 one identifying audio and the other identifying video.

 The <media> element MUST contain at least one child element. Valid
 child elements of <media> are <audio> and <video>, as described
 earlier. <media> element MUST contain at most one <audio> element or
 at most one <video> element.

Saleem & Sharratt Expires - April 2006 [Page 24]

Internet-draft Media Objects Markup Language (MOML) October 2005

11.1.1.4 <var>

 Specifies the generation of audio from a variable using prerecorded
 audio segments. A variable represents a semantic concept (such as
 date or number) and dynamically produces the appropriate speech.

 Prerecorded audio allows an application vendor or service provider to
 choose the exact voice for their audio and therefore completely
 control the "sound and feel" of the service provided to end users. It
 provides very high audio quality and allows the variables to blend
 seamlessly into the surrounding audio segments.

 Text to speech (TTS) using SSML may also be used to render variables,
 but may not provide as good quality, or allow as complete control of
 the "sound and feel" or user experience. TTS is normally used for
 reading text such as emails and for very large vocabularies such as
 stock names. TTS results in a very clear difference between the
 variables and the surrounding audio segments.

 Attributes:

 type: specifies the type of variable. Mandatory. Variable type
 must be one of "date", "digits", "duration", "month", "money",
 "number", "silence", "time", or "weekday".

 subtype: specifies an optional clarification of type. Specific
 values depend upon the type.

 value: text which should be rendered appropriate to the type
 and subtype attributes.

 xml:lang: specifies the language to use when rendering the
 variable.

11.1.1.5 <playexit>

 The <playexit> element MUST be invoked when generation of all content
 of the <play> has come to completion. The contents of this element
 MAY be used to send events.

 Attributes:

 none

11.2 <dtmfgen>

 DTMF generator originates one or more DTMF digits in sequence.

 Attributes:

Saleem & Sharratt Expires - April 2006 [Page 25]

Internet-draft Media Objects Markup Language (MOML) October 2005

 id: an optional identifier which may be referenced elsewhere
 for sending events to the dtmfgen primitive.

 digits: A string of characters from the alphabet "0-9a-d#*"
 which correspond to a sequence of DTMF tones. Mandatory.

 level: used to define the power level for which the tones will
 be generated. Expressed in dBm0 in a range of 0 to -96 dBm0.
 Larger negative values express lower power levels. Note that
 values lower than -55 dBm0 will be rejected by most receivers
 (TR-TSY-000181, ITU-T Q.24A). Default is -6 dBm0.

 dur: the duration in milliseconds for which each tone should be
 generated. Implementations may round the value if they only
 support discrete durations. Default 100 ms.

 interval: the duration in milliseconds of a silence interval
 following each generated tone. Implementations may round the
 value if they only support discrete durations. Default 100 ms.

 Events:

 terminate: terminates DTMF generation and assigns values to the
 shadow variables.

 Shadow Variables:

 dtmfgen.end: contains the event which caused DTMF generation to
 stop.

11.2.1 Child Elements

11.2.1.1 <dtmfgenexit>

 The <dtmfgenexit> element MUST be invoked when the DTMF generation
 operation completes or is terminated as a result of receiving the
 terminate event. The <dtmfgenexit> element MAY be used to send events
 when the recording has completed.

 Attributes:

 none

11.3 <record>

 Record creates a recording. Similar to play, <record> supports two
 states; create and suspend. Received media becomes part of the
 recording when <record> is in the create state and is discarded when
 it is in the suspend state.

Saleem & Sharratt Expires - April 2006 [Page 26]

Internet-draft Media Objects Markup Language (MOML) October 2005

 Recording MUST be terminated when a terminate event is received or
 when a nospeech event is received and no audio has yet been recorded.
 <record> differentiates different types of terminate events.

 An optional <play> element MAY be specified as a child element of
 <record>. This mechanism provides a complete play-record operation,
 where the prompt(s) specified within the <play> element are played in
 advance of start of recording.

 Note: Attributes prespeech, postspeech, and termkey provide a
 simplified mechanism for controlling record operations using implicit
 DTMF and VAD, without the use of <group> and event exchange
 mechanism.

 Attributes:

 id: an optional identifier which may be referenced elsewhere
 for sending events to the record primitive.

 append: a boolean which defines whether the recording is
 allowed to be appended to an existing file if dest already
 exists. Default is "false". The attribute is ignored if the
 scheme is http.

 dest: the destination for the recording, which will contain
 either audio only, video only, or both audio and video
 depending on the stream(s) being recorded. Recording MAY be
 either local or external based upon the attribute value. File
 and http schemes are supported.

 audiodest: the destination for the audio only recording.
 Recording MAY be either local or external based upon the
 attribute value. All combinations of dest, audiodest, and
 videodest are valid. File and http schemes are supported.

 videodest: the destination for the video only recording.
 Recording MAY be either local or external based upon the
 attribute value. All combinations of dest, audiodest, and
 videodest are valid. File and http schemes are supported.

 format: defines the encoding and file type of the recording.
 The format attribute is defined as a string type of form
 audio|video/filetype;codecs=x,y . The keyword audio
 identifies an audio only recording, while the keyword video
 identifies video only recording or an audio plus video
 recording. The codecs field identifies the audio and/or video
 codecs to be used for the recording, where the order of the
 codec values is not significant. In the event of audio and

Saleem & Sharratt Expires - April 2006 [Page 27]

Internet-draft Media Objects Markup Language (MOML) October 2005

 video recording, using video keyword, the codecs=x,y field
 MAY be used to identify the audio codec and the video codec.

 codecconfig: Identifies an optional special instruction string
 for codec configuration. Default is to send no special
 configuration string to the codec.

 audiosamplerate: Identifies audio sample rate in kHz. If not
 specified, the sample rate SHOULD be determined from the media
 source.

 audiosamplesize: Identifies audio sample size in bits. If not
 specified, the sample size SHOULD be determined from the media
 source.

 profile: Identifies a video profile name specific to the codec.
 If not specified, default video profile of the codec SHOULD be
 selected for the recording.

 level: Identifies a video profile level to the codec. Default
 is to send no profile information to the codec and allow the
 codec to select an internal default.

 imagewidth: Identifies the width of video image in pixels.
 Default is to use image width information from the media
 source.

 imageheight: Identifies the height of video image in pixels.
 Default is to use image height information from the media
 source.

 maxbitrate: Identifies the bitrate of the video signal in kbps.
 Default is to use maximum bitrate information from the media
 source.

 framerate: Identifies the video frame rate in frames per
 second. Default is to use frame rate information from the media
 source.

 initial: defines the initial state for the record element.
 Default is "create", which starts the recording as soon as the
 <record> element is executed. The initial attribute is
 applicable only when <record> is used within the <group>
 structure.

 maxtime: defines the maximum length of the recording in units
 of time.

Saleem & Sharratt Expires - April 2006 [Page 28]

Internet-draft Media Objects Markup Language (MOML) October 2005

 prespeech: defines a timer value, in seconds, for detection of
 absence of audio energy at the start of the record operation.
 If no audio energy is detection for the amount of time
 specified by prespeech, the recording is terminated. Default is
 0s , which does not activate the prespeech timer.

 postspeech: defines a timer value, in seconds, for detection of
 absence of audio energy while the recoding is in progress.
 During an in progress recording, if absence of audio energy is
 detected as specified by the postspeech timer, the recording is
 terminated. Default is 0s , which disables the ability to
 terminate a recording due to postspeech silence.

 termkey: defines a single DTMF key which when detection
 terminates the recording. Absence of this attribute prevents
 the recording from being terminated due to detection of DTMF
 digits. When termkey is specified, the detected DTMF digit
 terminates the recording and the DTMF digit is not entered in
 the digit buffer.

 Events:

 Following describes input events to the media primitive object.
 The Group Model allows an event exchange mechanism between
 primitives.

 pause: causes the record to enter the suspend state. Received
 media is discarded.

 resume: causes record to resume if it was suspended. It has no
 effect otherwise.

 toggle-state: causes the suspend / create state to toggle.

 terminate: terminates the recording and assigns values to the
 shadow variables.

 terminate.cancelled: terminates the recording and assigns
 values to the shadow variables. If the dest attribute used the
 file scheme, the local recording is deleted. Applications are
 responsible for removing external files created using the http
 scheme.

 terminate.finalsilence: terminates the recording and assigns
 values to the shadow variables. If the dest attribute used the
 file scheme, the final silence is removed from the recording.

 nospeech: terminates the recording and assigns values to the
 shadow variables if it is received and no recording has yet

Saleem & Sharratt Expires - April 2006 [Page 29]

Internet-draft Media Objects Markup Language (MOML) October 2005

 been created. The "nospeech" event is ignored if audio has
 already been recorded.

 Shadow Variables:

 record.len: the actual length of the recording measured in
 units of time. This does not include time which may have
 elapsed while the record was in the suspend state.

 record.end: contains the event which caused the record to
 terminate. When the record terminates because maxtime is
 exceeded, end is assigned the value
 "record.complete.maxlength".

 Record termination due to prespeech silence, results in
 assigned value of record.failed.prespeech

 Record termination due to postspeech silence, results in
 assigned value of record.complete.postspeech

 Record termination due to DTMF detection, results in assigned
 value of record.complete.termkey

11.3.1 Child Elements

11.3.1.1 <play>

 The optional <play> element as a child element of <record> allows a
 prompt to be played prior to start of recording. The record operation
 starts at the end of the play sequence or if the play is barged by
 DTMF, assuming that barge=true is specified for <play>. For a
 complete description, refer to <play> element.

11.3.1.2 <recordexit>

 The <recordexit> element MUST be invoked when the record operation
 completes or when the recording is terminated as a result of
 receiving the terminate event. The <recordexit> element MAY be used
 to send events when the recording has completed.

 Attributes:

 none

11.4 <dtmf> or <collect>

 DTMF input fulfils several roles within MOML. It is used to trigger
 events which will affect the media processing operation of other
 primitives. It is also used to collect DTMF digits from a media

Saleem & Sharratt Expires - April 2006 [Page 30]

Internet-draft Media Objects Markup Language (MOML) October 2005

 stream which are to be reported back to the user of MOML. Often DTMF
 detection is used for both purposes. Barge is the most common
 example, where a prompt is stopped based upon DTMF input but more
 digits may remain to be collected.

 DTMF detection supports multiple simultaneous recognition patterns.
 Different patterns can be used to trigger sending different events in
 order to implement DTMF controls. Alternatively one pattern may be
 used to represent a collection and another pattern, a substring of
 the first, used as a barge indication.

 An optional <play> element MAY be specified as a child element of
 <dtmf> or <collect>. This mechanism provides a complete play-collect
 operation, where the prompt(s) specified within the <play> element
 are played in advance of DTMF digit collection.

 Note that all patterns share the same digit collection buffer, inter-
 digit timing, a single <nomatch> element, and a single <noinput>
 element. As such, multiple patterns may not be suitable to support
 simultaneous collections for different purposes. When this is
 required, separate <dtmf> elements should be used instead.

 <dtmf> terminates if any of the <pattern>, <noinput>, or <nomatch>
 elements are matched the maximum number of times that they are
 allowed. The number of times they may match may be specified as an
 attribute of <dtmf> or of the individual child elements.

 Element identifier <dtmf> is equivalent to <collect>. However,
 <collect> is the preferred name. MOML clients should use <collect>,
 while MOML servers should support both.

 Attributes:

 id: an optional identifier which may be referenced elsewhere
 for sending events to this primitive.

 cleardb: a boolean indication of whether the buffer for digit
 collection should be cleared of any collected digits when the
 element is instantiated. If set to false, any digits currently
 in the buffer MUST be immediately compared against the pattern
 elements.

 fdt: defines the first-digit timer value. The first-digit timer
 is started when DTMF detection is initially invoked. If no DTMF
 digits are detected during this initial interval, the <noinput>
 element MUST be invoked.

 idt: defines the inter-digit timer to be used when digits are
 being collected. When specified, the timers is started when the

Saleem & Sharratt Expires - April 2006 [Page 31]

Internet-draft Media Objects Markup Language (MOML) October 2005

 first digit is detected and restarted on each subsequent digit.
 Timer expiration is applied to all patterns. After that, if any
 patterns remain active and a nomatch element is specified, the
 nomatch is executed and DTMF input MUST terminate. The idt
 attribute should only be used when digit collection is being
 performed. No default.

 starttimer: boolean value which defines whether the first digit
 timer (fdt) is started initially. When set to false, the
 starttimer event must be received for it to start. Default
 false.

 iterate: specifies the number of times the <pattern>,
 <noinput>, and <nomatch> elements may be executed unless those
 elements specify differently. The value "forever" MAY be used
 to indicate that these may be executed any number of times.
 Default is once '1'.

 Events:

 Following describes input events to the media primitive object.
 The Group Model allows an event exchange mechanism between
 primitives.

 starttimer: starts the first digit timer (fdt) if it has not
 already been started. Has no effect otherwise.

 terminate: terminates the DTMF input and assigns values to the
 shadow variables.

 Shadow Variables:

 dtmf.digits: the string of DTMF digits which have been received
 (the contents of the digit buffer).

 dtmf.len: the number of digits in the digit buffer.

 dtmf.last: the last digit in the digit buffer.

 dtmf.end: contains the event which caused the <dtmf> to
 terminate or is assigned one of "dtmf.match", "dtmf.noinput",
 or "dtmf.nomatch" depending upon which of the corresponding
 elements reached its maximum.

Saleem & Sharratt Expires - April 2006 [Page 32]

Internet-draft Media Objects Markup Language (MOML) October 2005

11.4.1 Child Elements

11.4.1.1 <play>

 The optional <play> element as a child element of <dtmf> or <collect>
 allows a prompt to be played prior to DTMF digit collection. DTMF
 digit collection starts at the end of the play sequence or if the
 play is barged by DTMF, assuming that barge=true is specified for
 <play>. For a complete description, refer to <play> element.

11.4.1.2 <pattern>

 The pattern element describes one or more DTMF digits that are to be
 recognized. When the pattern is matched, the child elements MUST be
 executed.

 Attributes:

 digits: The digit pattern which should be matched.

 format: an enumerated value which defines the format used to
 express the digit pattern. The format may be "mgcp" or "megaco"
 for patterns expressed as digit map from those specifications,
 or as one of the simple built-in formats defined within this
 specification. Currently, a single built-in format
 "moml+digits" is defined which allows a match based on either
 one or more specific digits, or based upon a specific length
 specification with an optional return key. "moml+digits" is the
 default.

 iterate: specifies the number of times the <pattern> may be
 matched. The value "forever" may be used to indicate that
 <pattern> may be matched any number of times. This value
 overrides any specified in <dtmf>. Default is once '1'.

11.4.1.3 <detect>

 The contents of the <detect> element MUST be executed whenever any
 DTMF is first detected. It MUST be matched at most once.

 Attributes:

 none

11.4.1.4 <noinput>

 The <noinput> element is used when DTMF is being collected. Children
 of the <noinput> element MUST be executed when DTMF has not been
 detected and the first digit timeout occurs.

Saleem & Sharratt Expires - April 2006 [Page 33]

Internet-draft Media Objects Markup Language (MOML) October 2005

 Attributes:

 iterate: specifies the number of times the <noinput> may be
 triggered. The value "forever" may be used to indicate that
 <noinput> may be triggered any number of times. This value
 overrides any specified in <dtmf>. Default is once '1'.

11.4.1.5 <nomatch>

 The <nomatch> element is used when DTMF is being collected. Children
 of the <nomatch> element MUST be executed when it is determined that
 none of the individual patterns can be matched.

 Attributes:

 iterate: specifies the number of times the <nomatch> may be
 triggered. The value "forever" may be used to indicate that
 <nomatch> may be triggered any number of times. This value
 overrides any specified in <dtmf>. Default is once '1'.

11.4.1.6 <dtmfexit>

 The <dtmfexit> element MUST be invoked when the dtmf input completes
 because one of <pattern>, <noinput>, or <nomatch> occurred its
 maximum number of times.

 Attributes:

 none

12. Transform Primitives Module

 The transform primitives module gathers together the simple
 primitives which work as filters on half duplex media streams.

12.1 <vad>

 Voice activity detection (VAD) is used to detect voice and silence
 when speech recognition is not required. Similar to both speech and
 DTMF, a VAD has different media conditions which it can match. Those
 conditions can be qualified by a minimum length of time which is
 required for them to be considered recognized.

 Attributes:

 starttimer: boolean value which defines whether the timer is
 started to allow recognition of the initial condition (voice,

Saleem & Sharratt Expires - April 2006 [Page 34]

Internet-draft Media Objects Markup Language (MOML) October 2005

 silence). When set to false, the starttimer event must be
 received in order for the initial condition to be recognized.
 The timer does not affect recognition of the transition
 conditions. Default false.

 Events:

 starttimer: starts the timer to allow recognition of the
 initial condition if it has not already been started. Has no
 effect otherwise.

 terminate: terminates voice activity detection.

 Shadow Variables:

 none

12.1.1 Child Elements

12.1.1.1 <voice>, <silence>, <tvoice>, <tsilence>

 Each child element corresponds to a condition which a VAD can detect.
 The first two detect when voice or silence has been initially present
 for a minimum length of time since the VAD was started. The second
 two require that a transition to the voice or silence condition first
 occur.

 Attributes:

 len: the length of time the condition must persist in order to
 be recognized. In the case of <tvoice> and <tsilence>, the
 length of time applies only to the final recognized condition.

 sen: the maximum length of time the condition not being
 detected may occur without causing the detector to begin
 measuring that condition.

12.2 <gain>

 Gain MAY be used to adjust of the gain of a media stream by a
 specific amount.

 attributes:

 incr: an increment, expressed in dB, which will be used to
 adjust the gain when "louder" and "softer" events are received.
 Default is 3 dB.

 amt: a specific gain to apply specified in dB.

Saleem & Sharratt Expires - April 2006 [Page 35]

Internet-draft Media Objects Markup Language (MOML) October 2005

 events:

 mute: self explanatory.

 unmute: self explanatory.

 reset: sets the gain to zero dB.

 louder: makes the audio on a stream louder.

 softer: makes the audio on a stream quieter.

 amt: sets the gain to the specified value between -96 dB and 9
 dB.

12.3 <agc>

 Automatic gain control MAY be used to have a media server
 automatically adjust the gain of a media stream.

 attributes:

 tgtlvl: the desired target level for AGC specified in dBm0.

 maxgain: the maximum gain that AGC will apply specified in dB.

 events:

 mute: self explanatory.

 unmute: self explanatory.

12.4 <gate>

 A simple filter which will pass or halt media, regardless of the
 format of the media stream, based on the events it receives. <gate>
 shares the same mute and unmute events for compatibility with the
 gain primitives <gain> and <agc>.

 attributes:

 initial: the values "pass" and "halt" define whether media is
 initially allowed to pass. Default is to pass.

 events:

 mute: halts media flow through the primitive.

 unmute: allows media to pass through the primitive.

Saleem & Sharratt Expires - April 2006 [Page 36]

Internet-draft Media Objects Markup Language (MOML) October 2005

12.5 <clamp>

 This element MAY be used to filter DTMF tones from a media stream.
 Media other than DTMF tones is passed unchanged.

 attributes:

 none.

 events:

 none.

12.6 <relay>

 This element is a simple primitive which copies its input to its
 output.

 attributes:

 none.

 events:

 none.

13. Speech Module

 The speech module defines a standalone primitive which MAY be used
 for automatic speech recognition <speech> and extends the <play>
 primitive defined in the basic primitives module to include speech
 synthesis. As such, this module depends on the basic primitives
 module.

13.1 <speech>

 Activates grammars or user input rules associated with speech
 recognition. If multiple grammars are specified, all are activated.
 All active grammars share the same timers, recognition attributes,
 and <noinput> and <nomatch> elements. Each grammar may have its own
 <match> element.

 <speech> terminates if any of the <grammar>, <noinput>, or <nomatch>
 elements are matched the maximum number of times that they are
 allowed. The number of times they may match may be specified as an
 attribute of <speech> or of the individual child elements.

 Attributes:

Saleem & Sharratt Expires - April 2006 [Page 37]

Internet-draft Media Objects Markup Language (MOML) October 2005

 noint: specifies a time period during which speech input must
 be started, otherwise the associated <noinput> element is
 invoked.

 norect: specifies a maximum time period during in which speech
 must begin to be matched, otherwise the associated <nomatch>
 element is invoked.

 spcmplt: specifies the length of silence necessary after speech
 before a result will be finalized in the case where there is a
 complete match of an active grammar. Following the silence, the
 appropriate <match> element will be triggered if the result is
 above the confidence level. Otherwise a <nomatch> element will
 be triggered.

 spincmplt: specifies the length of silence necessary after
 speech before a result will be finalized in the case where
 there is a incomplete match of all active grammars. Following
 the silence, the <nomatch> element will be triggered.

 confidence: the minimum confidence level which the recognizer
 must have to consider a recognition result as matching a
 grammar. Expressed as an integer between 1-100.

 sens: specifies the sensitivity of the recognizer to determine
 whether speech is present. Lower sensitivity may be required
 for the recognizer to work well in the presence of high
 background noise or line echo.

 starttimer: boolean value which defines whether the no input
 (noint) and no recognition (norect) are started initially. When
 set to false, the starttimer event must be received in order to
 start them. Default false.

 iterate: specifies the number of times the <grammar>,
 <noinput>, and <nomatch> elements may be executed unless those
 elements specify differently. The value "forever" may be used
 to indicate that these may be executed any number of times.
 Default is once '1'.

 Events:

 sens: sets the sensitivity of the recognizer as described
 above.

 starttimer: starts the no input (noint) and no recognition
 (norect) timers if they have not already been started. Has no
 effect otherwise.

Saleem & Sharratt Expires - April 2006 [Page 38]

Internet-draft Media Objects Markup Language (MOML) October 2005

 terminate: terminates the speech input and assigns values to
 the shadow variables.

 Shadow Variables:

 speech.end: contains the event which caused the <speech> to
 terminate or is assigned one of "speech.match",
 "speech.noinput", or "speech.nomatch" depending upon which of
 the corresponding elements reached its maximum.

 speech.results: contains the results of a matched grammar. The
 results are formatted using the Natural Language Semantics
 Markup Language (NLSML) [6]. When this variable is referenced
 to return results, the results are returned as a separate MIME
 entity.

13.1.1 Child Elements

13.1.1.1 <grammar>

 Specifies and activates a speech grammar based on Speech Recognition
 Grammar Specification (SRGS) [5] XML notation. Grammars may be
 referenced by a URI or defined inline. Child elements of <match> MUST
 be executed when the specified speech grammar is matched.

 Attributes:

 uri: specifies the location of an SRGS grammar when the grammar
 is not defined inline.

 iterate: specifies the number of times the <grammar> may be
 matched. The value "forever" MAY be used to indicate that
 <grammar> may be matched any number of times. This value
 overrides any specified in <speech>. Default is once '1'.

13.1.1.2 <match>

 <match> is a child of <grammar> and specifies the actions to take
 when the corresponding grammar is matched.

13.1.1.3 <noinput>

 The <noinput> element is used when speech is being recognized.
 Children of the <noinput> element MUST be executed when speech has
 not been detected and the no input timeout (noint) occurs.

 Attributes:

Saleem & Sharratt Expires - April 2006 [Page 39]

Internet-draft Media Objects Markup Language (MOML) October 2005

 iterate: specifies the number of times the <noinput> may be
 triggered. The value "forever" may be used to indicate that
 <noinput> may be triggered any number of times. This value
 overrides any specified in <speech>. Default is once '1'.

13.1.1.4 <nomatch>

 The <nomatch> element is used when speech is being recognized.
 Children of the <nomatch> element MUST be executed when it is
 determined that none of the active grammars will match.

 Attributes:

 iterate: specifies the maximum number of times the <nomatch>
 may be triggered. The value "forever" MAY be used to indicate
 that <nomatch> may be triggered any number of times. This value
 overrides any specified in <speech>. Default is once '1'.

13.1.1.5 <speechexit>

 The <speechexit> element MUST be invoked when the speech input
 completes because one of <grammar>, <noinput>, or <nomatch> occurred
 its maximum number of times.

 Attributes:

 none

13.2 <play>

 The <play> element, as defined in the basic primitives module, is
 extended with a new child element for synthesizing speech. From an
 XML perspective, <tts> is a member of a media substitution group. See
 the schema at the end of this document for details.

13.2.1 Child Elements

13.2.1.1 <tts>

 Contents of the <tts> element are rendered using Text To Speech
 services and must be compliant to the SSML specification. Element
 content MAY be plain text, contain the SSML <speak> element, or the
 uri attribute should identify the location of text to be rendered.

 Attributes:

 uri: Identifies the location of the text to be rendered. The
 file and http schemes are supported.

Saleem & Sharratt Expires - April 2006 [Page 40]

Internet-draft Media Objects Markup Language (MOML) October 2005

 iterate: specifies the number of times the text to speech block
 is to be rendered. Defaults to once '1'.

 xml:lang: specifies the language to use when it is not
 explicitly specified as an attribute for <speak>.

14. Fax Module

 The fax module defines primitives which allow a media server to
 provide facsimile services.

14.1 <faxdetect>

 Fax tone detection is used to detect the presence of the T.30 CNG
 tone in a media stream. Child elements of <faxtone> are executed when
 the CNG tone is detected.

 Attributes:

 none

14.2 <faxsend>

 The <faxsend> primitive provides the functionality of a calling fax
 terminal. This typically means sending a set of pages. However, it
 can also mean requesting the called terminal to send pages instead
 of, or in addition to, sending pages. The fax images to send are
 defined by the <sendobj> elements, described below.

 Requesting the called terminal to send pages happens when the
 <rxpoll> element is included as part of <faxsend>. This element may
 be included in addition to, or instead of, the <sendobj> element. One
 <sendobj> (at a minimum) or <rxpoll> element must be present. When
 both are present, a media server will first send pages and will then
 poll the other terminal, requesting pages.

 Because fax is a distinct media type, the <faxsend> primitive is not
 expected to interact with other primitives. Rather, it will interact
 using fax protocols with a remote fax terminal (or gateway) and will
 send requested status events to its invoking environment. During fax
 operation, shadow variables are used to record the progress and
 parameters of the varying stages of fax operation.

 Status events are requested by including one or more status request
 elements. These elements correspond to different stages or events in
 fax operation and cause pre-defined events to be sent to the invoking
 environment when they occur. Since the only recipient of these events

Saleem & Sharratt Expires - April 2006 [Page 41]

Internet-draft Media Objects Markup Language (MOML) October 2005

 is expected to be a fax application server, requests are simplified
 by associating a pre-defined namelist of shadow variables with each
 event. This decision may be revisited to allowed tailored namelists
 based on further implementation experience. Status requests apply
 both to sending and polling operation.

 Attributes:

 lclid: the identifier that a media server uses to identify
 itself.

 minspeed: the minimum acceptable speed to negotiate for the
 operation.

 maxspeed: the maximum speed to negotiate for the operation.
 This attribute is primarily for testing purposes.

 ecm: specifies whether Error Correction Mode (ECM) is allowed
 to be used if supported by the remote terminal. Defaults to
 "true".

 Events:

 terminate: terminates the fax send operation.

 Shadow Variables:

 fax.rmtid: the identifier of the remote fax terminal.

 fax.rate: the negotiated speed for the operation.

 fax.resolution: identifies the resolution of the image. Both
 metric and inch based resolutions are defined. Metric based
 resolutions are: 75x75, 150x150, 204x98, 204x196, 204x391,
 408x391. Inch based resolutions are: 200x200, 300x300, 400x400,
 600x600.

 fax.pagesize: identifies the negotiated page size. Metric sizes
 are "A3", "A4", "A5", "A6", and "B4". Inch based page sizes are
 "Letter" and "Legal".

 fax.encoding: identifies the image encoding utilized. Valid
 values are "MH", "R", "MMR", and "JPEG".

 fax.ecm: identifies whether ECM operation was used.

 fax.pagebadlines: the number of bad lines in a page.

 fax.objbadlines: the number of bad lines in an object.

Saleem & Sharratt Expires - April 2006 [Page 42]

Internet-draft Media Objects Markup Language (MOML) October 2005

 fax.opbadlines: the number of bad lines in an operation.

 fax.objuri: the objuri of the current object.

 fax.resendcount: the number of pages resent due to errors.

 fax.totalpages: the number of pages processed or stored.

 fax.totalobjects: the count of the objects used in the
 operation.

 fax.duration: the duration of the operation expressed as a
 duration in seconds and milliseconds (e.g. "23s250ms").

 fax.result: contains the reason which caused the fax operation
 to complete. When the operation completes successfully, the
 value will be assigned "fax.success". Other values include:
 "fax.partial", "fax.nofax", "fax.remotedisconnect",
 "fax.uri.access.error", and "fax.invalid.startpage".

14.2.1 Child Elements

14.2.1.1 <sendobj>

 <sendobj> is used to define a fax transmission. There MAY be multiple
 instances of the element which will be transmitted in order.

 Attributes:

 objuri: a URI that points to the fax image that will be
 transmitted. Mandatory.

 startpage: the first page of a multi-page objuri to send.

 pagecount: page count.

14.2.1.2 <hdrfooter>

 <hdrfooter> describes the header/footer that a media server MAY put
 on pages. The header or footer may be defined as the content of the
 <format> child element. The <format> element is only allowed if the
 type attribute has a value of "header" or "footer".

 Attributes:

 type: specifies whether a header or a footer should be put on
 pages and identifies the source of the header or footer. The
 following enumerated values may be used:

Saleem & Sharratt Expires - April 2006 [Page 43]

Internet-draft Media Objects Markup Language (MOML) October 2005

 "header" indicates that the media server should put a header
 on pages using the contents of the <format>
 element.

 "nohdr" indicates that there should be no header or footer.

 "footer" indicates that the media server should put a footer
 on pages using the contents of the <format>
 element.

 style: defines the style of insertion onto a fax page that a
 media server should use for the header or footer. Valid styles
 are "append", "overlay", or "replace".

 <format> is a child of the <hdrfooter> element that defines the style
 format to be used for the header or footer. It uses a "C" language
 style format statement (as shown below) to define the contents and
 layout of the header or footer.

 code length name format

 %a 3 day of week 3-character abbreviation
 %d 2 date 01-31
 %m 2 month 01-12
 %y 2 year 00-99
 %Y 4 year 0000-9999
 %I 2 12 hour 01-12
 %H 2 24 hour 00-23
 %M 2 minute 00-59
 %S 2 seconds 00-59
 %p 2 AM/PM AM or PM
 %P 2 page number 01-99
 %T 2 total pages 01-99
 %l 20 local ID (sender) 0-9, + or spaces
 %r 20 remote ID (rcvr) 0-9, + or spaces
 %% 1 percent display % in header/ftr

14.2.1.3 <rxpoll>

 <rxpoll> provides the information necessary for a receive polling
 operation to occur. The object(s) to be received are defined by one
 or more <rcvobj> elements. The <rcvobj> is defined further under the
 child elements of <faxrcv>. The <rxpoll> element MAY also include a
 description of the header/footer that a media server SHOULD put on
 received pages. The <hdrfooter> element and it's usage is described
 above.

 Attributes:

Saleem & Sharratt Expires - April 2006 [Page 44]

Internet-draft Media Objects Markup Language (MOML) October 2005

 rmtid: specifies the identifier of the remote fax terminal that
 to be associated with a polling operation. A media server MUST
 NOT execute a polling operation unless the value of rmtid
 matches that of the connected remote machine.

14.2.1.4 <faxstart>

 Requests that an event be sent when fax operation has begun. When
 triggered, the following will be executed:

 <send target="source" event="fax.start"/>

14.2.1.5 <faxnegotiate>

 Requests that an event be sent when a negotiation has been completed.
 Multiple events MAY be sent each time a DCS frame is sent or
 received. When triggered, the following will be executed:

 <send target="source" event="fax.negotiate"
 namelist="fax.rmtid
 fax.rate
 fax.resolution
 fax.pagesize
 fax.encoding
 fax.ecm"/>

14.2.1.6 <faxpagedone>

 Requests that an event be sent when a page has been sent or received.
 When triggered, the following will be executed:

 <send target="source" event="fax.pagedone"
 namelist="fax.resolution
 fax.pagesize
 fax.encoding
 fax.pagebadlines
 fax.resendcount"/>

14.2.1.7 <faxobjectdone>

 Requests that an event be sent when an objuri has been completed.
 When triggered, the following will be executed:

 <send target="source" event="fax.objectdone"
 namelist="fax.objuri
 fax.objbadlines
 fax.resendcount
 fax.totalpages
 fax.result"/>

Saleem & Sharratt Expires - April 2006 [Page 45]

Internet-draft Media Objects Markup Language (MOML) October 2005

14.2.1.8 <faxopcomplete>

 Requests that an event be sent when an operation has been completed.
 When triggered, the following will be executed:

 <send target="source" event="fax.opcomplete"
 namelist="fax.totalpages
 fax.opbadlines
 fax.resendcount
 fax.totalobjects
 fax.duration
 fax.result"/>

14.2.1.9 <faxpollstarted>

 Requests that an event be sent when a polling operation has started.
 When triggered, the following will be executed:

 <send target="source" event="fax.opcomplete"
 namelist="fax.rmtid
 fax.rate
 fax.resolution
 fax.pagesize
 fax.encoding
 fax.ecm"/>

14.3 <faxrcv>

 The <faxrcv> primitive provides the functionality of a called fax
 terminal. Typically this type of operation is to receive pages.
 However, it can include sending pages instead of, or in addition to,
 receiving them. The fax objects to receive are defined by the
 <rcvobj> elements, described below.

 A media server SHOULD send pages as a polled terminal when the
 <txpoll> element is included as part of <faxrcv>. This element may be
 included in addition to, or instead of, the <rcvobj> element. One
 <rcvobj> or <txpoll> element must be present. When both are present,
 a media server SHOULD first receive pages and will then allow the
 other terminal to poll the media server, requesting pages.

 Because fax is a distinct media type, the <faxrcv> primitive is not
 expected to interact with other primitives. Rather, it will interact
 using fax protocols with a remote fax terminal and will send
 requested status events to its invoking environment. During fax
 operation, shadow variables are used to record the progress and
 parameters of the varying stages of fax operation.

Saleem & Sharratt Expires - April 2006 [Page 46]

Internet-draft Media Objects Markup Language (MOML) October 2005

 Status events are requested by including one or more status request
 elements. These elements correspond to different stages or events in
 fax operation and cause pre-defined events to be sent to the invoking
 environment when they occur. Since the only recipient of these events
 is expected to be a fax application server, requests are simplified
 by associating a pre-defined namelist of shadow variables with each
 event. This decision may be revisited to allowed tailored namelists
 based on further implementation experience. Status requests apply
 both to receiving and polling operation.

 Attributes:

 lclid: the identifier that a media server uses to identify
 itself.

 ecm: specifies whether ECM mode is allowed to be used if
 supported by the remote terminal. Defaults to "true".

 Events:

 terminate: terminates the fax reception operation.

 Shadow Variables:

 <faxrcv> supports the same set of shadow variables as <faxsend>

14.3.1 Child Elements

 In addition to the elements defined below, <faxrcv> MAY also have the
 following child elements which were defined under <faxsend>:

 o <hdrfooter>
 o <faxstart>
 o <faxnegotiate>
 o <faxpagedone>
 o <faxobjectdone>
 o <faxopcomplete>
 o <faxpollstarted>

 Their meaning and usage is the same as previously defined.

14.3.1.1 <rcvobj>

 <rcvobj> is used to define fax objects that a media server will
 receive. There may be multiple instances of the element which will be
 used in order.

 Attributes:

Saleem & Sharratt Expires - April 2006 [Page 47]

Internet-draft Media Objects Markup Language (MOML) October 2005

 objuri: a URI that points to the location that a received image
 is to be stored. Mandatory.

 maxpages: the maximum number of pages that will be stored in
 objuri.

14.3.1.2 <txpoll>

 <txpoll> provides the information for a polling operation to occur as
 part of a fax receive operation. Multiple object(s) to be send may be
 supplied by one or more <sendobj> elements. In the event of multiple
 occurrences, a media server MUST select the <sendobj> element whose
 rmtid attribute matches that of the remote terminal.

 The <sendobj> element was defined previously as a child element of
 <faxsend>. For <txpoll> is extended with an rmtid attribute that
 specifies the identifier of the remote fax terminal and is used to
 select the specific <sendobj> to send.

 A media server SHOULD put a header/footer on transmitted pages based
 on any <hdrfooter> element included as part of <txpoll>.

 Attributes:

 none

15. Failure Codes

 Failure codes are used to indicate reasons for failures. The
 appropriate code and description must be passed to the invoking
 environment on failure.

 Request Error (4xx)

 400 Bad Request
 401 Unknown Element
 402 Unsupported Element
 403 Missing mandatory element content
 404 Forbidden element content
 405 Invalid element content
 406 Unknown attribute
 407 Attribute not supported
 408 Missing mandatory attribute
 409 Forbidden attribute is present
 410 Invalid attribute value

 Server Error (5xx)

 500 Internal media server error

Saleem & Sharratt Expires - April 2006 [Page 48]

Internet-draft Media Objects Markup Language (MOML) October 2005

 510 Not in service
 511 Service Unavailable
 520 No resource to fulfill request
 521 Internal limit exceeded

16. Examples

16.1 Announcement

 The following is a simple announcement scenario. Two recorded audio
 files are played in sequence followed by generated speech followed by
 a variable. The results are reported once media generation completes.

 <?xml version="1.0" encoding="UTF-8"?>
 <moml version="1.0" id="12345">
 <play>
 <audio uri="file://clip1.wav"/>
 <audio uri="http://host1/clip2.wav"/>
 <tts uri="http://host2/text.ssml"/>
 <var type="date" subtype="mdy" value="20030601"/>
 </play>
 <send target="source" event="done" namelist="play.amt play.end"/>
 </moml>

16.2 Voice Mail Retrieval

 Below is an example which shows a simple voice mail retrieval
 operation consisting of playing a message and allowing the user to
 pause and resume play using '5' to toggle the state. The operation
 would terminate when the play completed or the user entered '#'.
 During the play, the user can advance forward and backward through
 the message as well as rewinding to the beginning.

 <?xml version="1.0" encoding="UTF-8"?>
 <moml version="1.0" id="12345">
 <group topology="parallel">
 <play>
 <audio uri="file://message.wav"/>
 <playexit>
 <send target="group" event="terminate"/>
 </playexit>
 </play>
 <dtmf iterate="forever">
 <pattern digits="5">
 <send target="play" event="toggle-state"/>
 </pattern>
 <pattern digits="6">
 <send target="play" event="forward"/>
 </pattern>

Saleem & Sharratt Expires - April 2006 [Page 49]

Internet-draft Media Objects Markup Language (MOML) October 2005

 <pattern digits="7">
 <send target="play" event="backward"/>
 </pattern>
 <pattern digits="8">
 <send target="play" event="restart"/>
 </pattern>
 <pattern digits="#">
 <send target="play" event="terminate"/>
 </pattern>
 </dtmf>
 </group>
 </moml>

16.3 Play and Record

 A more complex example is a play and record operation. This sources
 and sinks media and uses voice activity DTMF detection and
 recognition to influence behavior. Any DTMF input or voice activity
 will barge the play and cause the record to begin. However, if the
 prompt was barged with a DTMF digit of '#', the record terminates
 without starting. When the play terminates, it send a starttimer
 event to the VAD to allow it to recognize an initial silence
 condition. The recording will be terminated (without starting) when
 the VAD detects an initial 3 seconds of silence.

 Once resumed (based upon voice detection) the recording may be
 terminated under several conditions. It will terminate after 5
 seconds of silence or after 60 seconds elapses. It will also
 terminate if a '#' key is recognized. Every aspect of this behavior
 can be modified by changing what is recognized and the events which
 are sent.

 <?xml version="1.0" encoding="UTF-8"?>
 <moml version="1.0" id="12345">
 <group topology="parallel">
 <play>
 <audio uri="file://prompt.wav"/>
 <playexit>
 <send target="vad" event="starttimer"/>
 </playexit>
 </play>
 <dtmf>
 <pattern digits="#">
 <send target="record" event="terminate.termkey"/>
 </pattern>
 <detect>
 <send target="play" event="terminate"/>
 </detect>
 </dtmf>

Saleem & Sharratt Expires - April 2006 [Page 50]

Internet-draft Media Objects Markup Language (MOML) October 2005

 <vad>
 <voice len="10ms">
 <send target="play" event="terminate"/>
 <send target="record" event="resume"/>
 </voice>
 <silence len="3s">
 <send target="record" event="nospeech"/>
 </silence>
 <tsilence len="5s">
 <send target="record" event="terminate.finalsilence"/>
 </tsilence>
 </vad>
 <record initial="suspend" maxtime="60s"
 dest="file://record.wav" format="g729">
 <recordexit>
 <send target="group" event="terminate"/>
 </recordexit>
 </record>
 <groupexit>
 <send target="source" event="done"
 namelist="record.len record.end"/>
 </groupexit>
 </group>
 </moml>

 The following implements the same functionality, as described above,
 in an alternate mechanism, using the <record> composite mechanism for
 the play and record operation.

 <?xml version="1.0" encoding="UTF-8"?>
 <moml version="1.0" id="12345">

 <record prespeech= 3s postspeech= 5s maxtime="60s" termkey= #
 dest="file://record.wav" format="g729">
 <play barge= true >
 <audio uri="file://prompt.wav"/>
 </play>
 <recordexit>
 <send target="source" event="done"
 namelist="record.len record.end"/>
 </recordexit>
 </record>

 </moml>

16.4 Speech Recognition

 The following simple example requests that a user speak the name of a
 city and returns the result.

Saleem & Sharratt Expires - April 2006 [Page 51]

Internet-draft Media Objects Markup Language (MOML) October 2005

 <?xml version="1.0" encoding="UTF-8"?>
 <moml version="1.0" id="12345">
 <group topology="parallel">
 <play>
 <audio uri="file://prompt.wav"/>
 </play>
 <speech>
 <grammar version="1.0">
 <rule id="city" scope="public">
 <item>
 <one-of>
 <item>vancouver</item>
 <item>new york</item>
 <item>london</item>
 </one-of>
 </item>
 </rule>
 <match>
 <send target="group" event="terminate"/>
 </match>
 </grammar>
 <noinput>
 <send target="group" event="terminate"/>
 </noinput>
 <nomatch>
 <send target="group" event="terminate"/>
 </nomatch>
 </speech>
 <groupexit>
 <send target="source" event="done"
 namelist="speech.end speech.results"/>
 </groupexit>
 </group>
 </moml>

16.5 Play and Collect

 This example prompts a user to enter 4 DTMF digits terminated by the
 '#' key. The prompt will be barged and the user has 10 seconds to
 begin entering input or no input will be indicated.

 <?xml version="1.0" encoding="UTF-8"?>
 <moml version="1.0" id="12345">
 <group topology="parallel">
 <play>
 <audio uri="file://prompt.wav"/>
 <playexit>
 <send target="dtmf" event="starttimer"/>
 </playexit>

Saleem & Sharratt Expires - April 2006 [Page 52]

Internet-draft Media Objects Markup Language (MOML) October 2005

 </play>
 <dtmf fdt="10s" idt="16s">
 <pattern digits="xxxx#">
 <send target="group" event="terminate"/>
 </pattern>
 <detect>
 <send target="play" event="terminate"/>
 </detect>
 <noinput>
 <send target="group" event="terminate"/>
 </noinput>
 <nomatch>
 <send target="group" event="terminate"/>
 </nomatch>
 </dtmf>
 <groupexit>
 <send target="source" event="done"
 namelist="dtmf.digits dtmf.end"/>
 </groupexit>
 </group>
 </moml>

 The following implements the same functionality, as described above,
 in an alternate mechanism, using the <collect> composite mechanism
 for the play and collect operation.

 <?xml version="1.0" encoding="UTF-8"?>
 <moml version="1.0" id="12345">

 <collect fdt="10s" idt="16s">
 <play barge= true >
 <audio uri="file://prompt.wav"/>
 </play>
 <pattern digits="xxxx#">
 <send target="source" event="done"
 namelist="dtmf.digits dtmf.end"/>
 </pattern>
 <noinput>
 <send target="source" event="done"
 namelist="dtmf.end"/>
 </noinput>
 <nomatch>
 <send target="source" event="done"
 namelist="dtmf.end"/>
 </nomatch>
 </dtmf>

 </moml>

Saleem & Sharratt Expires - April 2006 [Page 53]

Internet-draft Media Objects Markup Language (MOML) October 2005

16.6 User Controlled Gain

 This shows an example of nesting groups to create an arbitrary full
 duplex media control. DTMF is detected on media flowing in one
 direction and used to adjust the gain applied to media flowing in the
 opposite direction. Additionally, the stream which is used to detect
 DTMF has DTMF removed and its gain automatically adjusted before
 leaving the group. This widget could be used between a conference
 participant and a conference mixer.

 <?xml version="1.0" encoding="UTF-8"?>
 <moml version="1.0" id="12345">
 <group topology="fullduplex">
 <group topology="parallel">
 <dtmf>
 <pattern digits="1" iterate="forever">
 <send target="gain" event="louder"/>
 </pattern>
 <pattern digits="2" iterate="forever">
 <send target="gain" event="softer"/>
 </pattern>
 </dtmf>
 <group topology="serial">
 <clamp/>
 <agc tgtlvl="0"/>
 </group>
 </group>
 <gain amt="0" incr="5"/>
 </group>
 </moml>

17. Change Summary

 The following are the changes between the -06 version of the draft
 and the -05 version:

 o added support for video play and video record

 o added ability for record operation to make separate audio and
 video recordings, as well as combined audio and video recording

 o added functionality to allow MOML scripts using play, to
 optionally specify and override the audio and video format
 attributes from the media file

 o added functionality to allow MOML scripts using record, to
 optionally specify audio and video format attributes to be used
 when creating the recorded file

Saleem & Sharratt Expires - April 2006 [Page 54]

Internet-draft Media Objects Markup Language (MOML) October 2005

 o added new Package Scheme section describing the ability and
 process for defining new MOML packages

 o added composite functions (play/collect and play/record) using
 <collect> and <record> elements

 o added <play> as valid child element for <dtmf> or <collect>

 o added <play> as valid child element for <record>

 o added new element named <collect>, which is identical to <dtmf>

 o added notes to Overview section to define and describe
 differences between the Media Primitives and Composites model
 and the Media Groups model.

 o added sample MOML script for play and collection operation
 using the Media Primitives and Composites model. (See section
 13.5)

 o added sample MOML script for play and record operation using
 the Media Primitives and Composites model. (See section 13.5)

 o added RFC 2119 conformance section and related updates

 The following are the changes between the -05 version of the draft
 and the -04 version:

 o no changes.

 The following are the primary changes between -04 version of the
 draft and the -01 version:

 o specified the use of MOML directly in SIP (see section 4)

 o specified the <event> element for notifying events in SIP INFO
 messages

 o added <gate> transform primitive which can gate the flow of
 media regardless of its format

 o extended sending events to "source" to allow event names
 specific to the source naming conventions to be included. This
 can allow such features as the source relaying an event to
 another MOML object it has created.

 o modularized the language and specified rules to extend it in
 order to allow it to be independently tailored to different
 environments and platforms (see section 5)

Saleem & Sharratt Expires - April 2006 [Page 55]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-draft Media Objects Markup Language (MOML) October 2005

 Between the -01 version and the -00 version the changes were:

 o added primitives to detect, send, and receive fax

 o added "xml:lang" attribute to <play> <audio> <var> and <tts>.
 children of <play> inherit from play unless overridden.

 o allow the uri in <audio> to refer to a logical clip (physical
 determined by language) and sequence as well as a physical clip
 (for local uri references).

 o restructured the schema as a partial step towards
 modularization and the ability to subset and extend the
 language in a standards compliant manner.

 o made <dtmfgen> to be the same level as <play> and not a child
 of <play>

 o changed "pipe" and "star" to be "serial" and "parallel"

 o made all termination events consistently use the root
 "terminate". previously some primitives used the root "stop"

 o changed "max" attribute to "iterate" for the <dtmf>, <pattern>,
 <noinput>, and <nomatch>, and <speech> elements.

 o change "iterations" attribute of <play> and <audio> to
 "iterate".

 o removed explicit "lhs" / "rhs" labeling of full duplex objects

18. XML Schema

 The base MOML schema defines the <moml> element and includes all of
 the modules which together define the full language. The <moml>
 element defines that a given document may be either a request to a
 media server or an event notified by a media server.

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema elementFormDefault="unqualified"
 attributeFormDefault="unqualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:include schemaLocation="moml-group-module.xsd"/>
 <xs:include schemaLocation="moml-basic-primitives-module.xsd"/>
 <xs:include schemaLocation="moml-transform-primitives-module.xsd"/>
 <xs:include schemaLocation="moml-speech-module.xsd"/>
 <xs:element name="moml">
 <xs:complexType>
 <xs:choice>

Saleem & Sharratt Expires - April 2006 [Page 56]

Internet-draft Media Objects Markup Language (MOML) October 2005

 <xs:group ref="momlRequest"/>
 <xs:element ref="event"/>
 </xs:choice>
 <xs:attribute name="version" type="xs:string"
 use="required" fixed="1.0"/>
 <xs:attribute name="id" type="momlID.datatype" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:schema>

 Following is the schema which defines the datatypes module (moml-
 datatypes.xsd). It is included by each of the other MOML modules.

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:simpleType name="momlID.datatype">
 <xs:restriction base="xs:string">
 <xs:pattern value="[a-zA-Z0-9][a-zA-Z0-9._\-]*"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="momlEvent.datatype">
 <xs:restriction base="xs:string">
 <xs:pattern value="[a-zA-Z0-9][a-zA-Z0-9._\-]*"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="momlNamelist.datatype">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 <xs:simpleType name="dtmfDigits.datatype">
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9#*]+"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="iterate.datatype">
 <xs:union memberTypes="xs:positiveInteger">
 <xs:simpleType>
 <xs:restriction base="xs:negativeInteger">
 <xs:minInclusive value="-1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="forever"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>

Saleem & Sharratt Expires - April 2006 [Page 57]

Internet-draft Media Objects Markup Language (MOML) October 2005

 <xs:simpleType name="momlTarget.datatype">
 <xs:restriction base="xs:string">
 <xs:pattern value="[a-zA-Z0-9][a-zA-Z0-9._\-]*"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="boolean.datatype">
 <xs:restriction base="xs:string">
 <xs:enumeration value="true"/>
 <xs:enumeration value="false"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="duration.datatype">
 <xs:restriction base="xs:string">
 <xs:pattern value="(\+|\-)?([0-9]*\.)?[0-9]+(ms|s)"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="posDuration.datatype">
 <xs:restriction base="xs:string">
 <xs:pattern value="(\+)?([0-9]*\.)?[0-9]+(ms|s)"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:schema>

 Following is the schema which defines the core module (moml-core-
 module.xsd). It is included by each of the other MOML modules.

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <xs:include schemaLocation="moml-datatypes.xsd"/>
 <xs:group name="momlRequest">
 <xs:choice maxOccurs="unbounded">
 <xs:group ref="executeType"/>
 <xs:element ref="send" maxOccurs="unbounded"/>
 </xs:choice>
 </xs:group>
 <xs:element name="primitive" type="primitiveType" abstract="true"/>
 <xs:complexType name="primitiveType">
 <xs:attribute name="id" type="momlID.datatype"/>
 </xs:complexType>
 <xs:element name="control" abstract="true"/>
 <xs:group name="executeType">
 <xs:choice maxOccurs="unbounded">
 <xs:element ref="primitive"/>
 <xs:element ref="control"/>
 </xs:choice>
 </xs:group>

Saleem & Sharratt Expires - April 2006 [Page 58]

Internet-draft Media Objects Markup Language (MOML) October 2005

 <xs:group name="sendType">
 <xs:choice>
 <xs:choice>
 <xs:element name="exit" type="exitType"/>
 <xs:element name="disconnect" type="exitType"/>
 </xs:choice>
 <xs:sequence>
 <xs:element ref="send" maxOccurs="unbounded"/>
 <xs:choice minOccurs="0">
 <xs:element name="exit" type="exitType"/>
 <xs:element name="disconnect" type="exitType"/>
 </xs:choice>
 </xs:sequence>
 </xs:choice>
 </xs:group>
 <xs:element name="send">
 <xs:complexType>
 <xs:attribute name="event" type="momlEvent.datatype"
 use="required"/>
 <xs:attribute name="target" type="momlTarget.datatype"
 use="required"/>
 <xs:attribute name="namelist" type="momlNamelist.datatype"/>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="exitType">
 <xs:attribute name="namelist" type="momlNamelist.datatype"/>
 </xs:complexType>
 <xs:element name="event">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="name" type="xs:string"/>
 <xs:element name="value" type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="id" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:schema>

 The schema for the group module (moml-group-module.xsd) is:

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <xs:include schemaLocation="moml-datatypes.xsd"/>
 <xs:include schemaLocation="moml-core-module.xsd"/>
 <xs:element name="group" substitutionGroup="control">
 <xs:complexType>

Saleem & Sharratt Expires - April 2006 [Page 59]

Internet-draft Media Objects Markup Language (MOML) October 2005

 <xs:sequence>
 <xs:group ref="executeType"/>
 <xs:element name="groupexit" minOccurs="0">
 <xs:complexType>
 <xs:group ref="sendType"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="id" type="momlID.datatype"/>
 <xs:attribute name="topology" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="serial"/>
 <xs:enumeration value="parallel"/>
 <xs:enumeration value="fullduplex"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:schema>

 The schema for the basic primitives module (moml-basic-primitives-
 module.xsd) is:

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema elementFormDefault="unqualified"
 attributeFormDefault="unqualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:include schemaLocation="moml-datatypes.xsd"/>
 <xs:include schemaLocation="moml-core-module.xsd"/>
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd"/>
 <xs:element name="play" substitutionGroup="primitive">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="primitiveType">
 <xs:sequence>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="audio" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="uri" type="xs:anyURI" use="required"/>
 <xs:attribute name="iterate" type="iterate.datatype"
 default="1"/>
 <xs:attribute name="format" type="xs:string"
 use="optional"/>
 <xs:attribute name="audiosamplerate"
 type="xs:positiveInteger" use="optional"/>
 <xs:attribute name="audiosamplesize"

Saleem & Sharratt Expires - April 2006 [Page 60]

Internet-draft Media Objects Markup Language (MOML) October 2005

 type="xs:positiveInteger" use="optional"/>
 <xs:attribute ref="xml:lang"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="video" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="uri" type="xs:anyURI" use="required"/>
 <xs:attribute name="iterate" type="iterate.datatype"
 use="optional" default="1"/>
 <xs:attribute name="format" type="xs:string"
 use="optional"/>
 <xs:attribute name="audiosamplerate"
 type="xs:positiveInteger" use="optional"/>
 <xs:attribute name="audiosamplesize"
 type="xs:positiveInteger" use="optional"/>
 <xs:attribute name="codecconfig" type="xs:string"
 use="optional"/>
 <xs:attribute name="profile" type="xs:string"
 use="optional"/>
 <xs:attribute name="level" type="xs:string" use="optional"/>
 <xs:attribute name="imagewidth" type="xs:positiveInteger"
 use="optional"/>
 <xs:attribute name="imageheight" type="xs:positiveInteger"
 use="optional"/>
 <xs:attribute name="maxbitrate" type="xs:positiveInteger"
 use="optional"/>
 <xs:attribute name="framerate" type="xs:positiveInteger"
 use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="media" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:choice>
 <xs:element name="audio" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="uri" type="xs:anyURI"
 use="required"/>
 <xs:attribute name="iterate" type="iterate.datatype"
 default="1"/>
 <xs:attribute name="format" type="xs:string"
 use="optional"/>
 <xs:attribute name="audiosamplerate"
 type="xs:positiveInteger"
 use="optional"/>
 <xs:attribute name="audiosamplesize"
 type="xs:positiveInteger"
 use="optional"/>
 <xs:attribute ref="xml:lang"/>
 </xs:complexType>

Saleem & Sharratt Expires - April 2006 [Page 61]

Internet-draft Media Objects Markup Language (MOML) October 2005

 </xs:element>
 <xs:element name="video" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="uri" type="xs:anyURI"
 use="required"/>
 <xs:attribute name="iterate" type="iterate.datatype"
 use="optional" default="1"/>
 <xs:attribute name="format" type="xs:string"
 use="optional"/>
 <xs:attribute name="audiosamplerate"
 type="xs:positiveInteger" use="optional"/>
 <xs:attribute name="audiosamplesize"
 type="xs:positiveInteger" use="optional"/>
 <xs:attribute name="codecconfig" type="xs:string"
 use="optional"/>
 <xs:attribute name="profile" type="xs:string"
 use="optional"/>
 <xs:attribute name="level" type="xs:string"
 use="optional"/>
 <xs:attribute name="imagewidth" type="xs:positiveInteger"
 use="optional"/>
 <xs:attribute name="imageheight"
 type="xs:positiveInteger" use="optional"/>
 <xs:attribute name="maxbitrate" type="xs:positiveInteger"
 use="optional"/>
 <xs:attribute name="framerate" type="xs:positiveInteger"
 use="optional"/>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:element ref="smedia" minOccurs="0" maxOccurs="unbounded"/>
 </xs:choice>
 <xs:choice minOccurs="0">
 <xs:element name="playexit">
 <xs:complexType>
 <xs:group ref="sendType"/>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="interval" type="posDuration.datatype"
 use="optional"/>
 <xs:attribute name="iterate" type="iterate.datatype"
 use="optional" default="1"/>
 <xs:attribute name="offset" type="duration.datatype"
 use="optional"/>
 <xs:attribute name="initial" use="optional" default="generate">

Saleem & Sharratt Expires - April 2006 [Page 62]

Internet-draft Media Objects Markup Language (MOML) October 2005

 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="generate"/>
 <xs:enumeration value="suspend"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="maxtime" type="posDuration.datatype"
 use="optional"/>
 <xs:attribute name="skip" type="duration.datatype"
 use="optional" default="3s"/>
 <xs:attribute name="barge" type="boolean.datatype"
 use="optional" default="false"/>
 <xs:attribute name="cleardb" type="boolean.datatype"
 use="optional" default="false"/>
 <xs:attribute ref="xml:lang"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="record" substitutionGroup="primitive">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="primitiveType">
 <xs:choice minOccurs="0">
 <xs:element ref="play" minOccurs="0"/>
 <xs:element name="recordexit">
 <xs:complexType>
 <xs:group ref="sendType"/>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 <xs:attribute name="append" type="boolean.datatype"
 use="optional" default="false"/>
 <xs:attribute name="dest" type="xs:anyURI" use="optional"/>
 <xs:attribute name="audiodest" type="xs:anyURI" use="optional"/>
 <xs:attribute name="videodest" type="xs:anyURI" use="optional"/>
 <xs:attribute name="format" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="codecconfig" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="audiosamplerate" type="xs:positiveInteger"
 use="optional"/>

Saleem & Sharratt Expires - April 2006 [Page 63]

Internet-draft Media Objects Markup Language (MOML) October 2005

 <xs:attribute name="audiosamplesize" type="xs:positiveInteger"
 use="optional"/>
 <xs:attribute name="profile" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="level" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="imagewidth" type="xs:positiveInteger"
 use="optional"/>
 <xs:attribute name="imageheight" type="xs:positiveInteger"
 use="optional"/>
 <xs:attribute name="maxbitrate" type="xs:positiveInteger"
 use="optional"/>
 <xs:attribute name="framerate" type="xs:positiveInteger"
 use="optional"/>
 <xs:attribute name="maxtime" type="posDuration.datatype"
 use="required"/>
 <xs:attribute name="initial" use="optional" default="create">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="create"/>
 <xs:enumeration value="suspend"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="prespeech" type="posDuration.datatype"
 use="optional" default="0s"/>
 <xs:attribute name="postspeech" type="posDuration.datatype"
 use="optional" default="0s"/>
 <xs:attribute name="termkey" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9#*ABCD]"/>
 <xs:enumeration value="create"/>
 <xs:enumeration value="suspend"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="dtmf" substitutionGroup="primitive">
 <xs:complexType>

Saleem & Sharratt Expires - April 2006 [Page 64]

Internet-draft Media Objects Markup Language (MOML) October 2005

 <xs:complexContent>
 <xs:extension base="primitiveType">
 <xs:sequence>
 <xs:element name="pattern" maxOccurs="unbounded">
 <xs:complexType>
 <xs:group ref="sendType"/>
 <xs:attribute name="digits" type="xs:string" use="required"/>
 <xs:attribute name="format">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="mgcp"/>
 <xs:enumeration value="megaco"/>
 <xs:enumeration value="moml+digits"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="iterate" type="iterate.datatype"
 default="1"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="detect" minOccurs="0">
 <xs:complexType>
 <xs:group ref="sendType"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="noinput" type="iterateSendType"
 minOccurs="0"/>
 <xs:element name="nomatch" type="iterateSendType"
 minOccurs="0"/>
 <xs:element name="dtmfexit" minOccurs="0">
 <xs:complexType>
 <xs:group ref="sendType"/>
 </xs:complexType>
 </xs:element>
 <xs:element ref="play" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="cleardb" type="boolean.datatype"
 default="true"/>
 <xs:attribute name="fdt" type="posDuration.datatype"
 default="0s"/>
 <xs:attribute name="idt" type="posDuration.datatype"
 default="4s"/>
 <xs:attribute name="edt" type="posDuration.datatype"
 default="4s"/>
 <xs:attribute name="starttimer" type="boolean.datatype"
 default="false"/>
 <xs:attribute name="iterate" type="iterate.datatype"
 default="1"/>
 </xs:extension>

Saleem & Sharratt Expires - April 2006 [Page 65]

Internet-draft Media Objects Markup Language (MOML) October 2005

 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="collect" substitutionGroup="primitive">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="primitiveType">
 <xs:sequence>
 <xs:element name="pattern" maxOccurs="unbounded">
 <xs:complexType>
 <xs:group ref="sendType"/>
 <xs:attribute name="digits" type="xs:string" use="required"/>
 <xs:attribute name="format">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="mgcp"/>
 <xs:enumeration value="megaco"/>
 <xs:enumeration value="moml+digits"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="iterate" type="iterate.datatype"
 default="1"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="detect" minOccurs="0">
 <xs:complexType>
 <xs:group ref="sendType"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="noinput" type="iterateSendType"
 minOccurs="0"/>
 <xs:element name="nomatch" type="iterateSendType"
 minOccurs="0"/>
 <xs:element name="dtmfexit" minOccurs="0">
 <xs:complexType>
 <xs:group ref="sendType"/>
 </xs:complexType>
 </xs:element>
 <xs:element ref="play" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="cleardb" type="boolean.datatype"
 default="true"/>
 <xs:attribute name="fdt" type="posDuration.datatype"
 default="0s"/>
 <xs:attribute name="idt" type="posDuration.datatype"
 default="4s"/>
 <xs:attribute name="edt" type="posDuration.datatype"
 default="4s"/>

Saleem & Sharratt Expires - April 2006 [Page 66]

Internet-draft Media Objects Markup Language (MOML) October 2005

 <xs:attribute name="starttimer" type="boolean.datatype"
 default="false"/>
 <xs:attribute name="iterate" type="iterate.datatype"
 default="1"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="dtmfgen" substitutionGroup="primitive">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="primitiveType">
 <xs:choice minOccurs="0">
 <xs:element name="dtmfgenexit">
 <xs:complexType>
 <xs:group ref="sendType"/>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 <xs:attribute name="level" use="optional" default="-6">
 <xs:simpleType>
 <xs:restriction base="xs:nonPositiveInteger">
 <xs:maxInclusive value="0"/>
 <xs:minInclusive value="-96"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="digits" type="dtmfDigits.datatype"
 use="required"/>
 <xs:attribute name="dur" type="posDuration.datatype"
 use="optional" default="100ms"/>
 <xs:attribute name="interval" type="posDuration.datatype"
 use="optional" default="100ms"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="iterateSendType">
 <xs:group ref="sendType"/>
 <xs:attribute name="iterate" type="iterate.datatype" default="1"/>
 </xs:complexType>
 <xs:element name="smedia" type="smediaType" abstract="true"/>
 <xs:complexType name="smediaType">
 <xs:attribute ref="xml:lang"/>
 <xs:attribute name="iterate" type="iterate.datatype"/>
 </xs:complexType>
 <xs:element name="var" type="smediaType"
 substitutionGroup="smedia"/>
 </xs:schema>

Saleem & Sharratt Expires - April 2006 [Page 67]

Internet-draft Media Objects Markup Language (MOML) October 2005

 The schema for the transform primitives module (moml-transform-
 primitives-module.xsd) is:

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <xs:include schemaLocation="moml-datatypes.xsd"/>
 <xs:include schemaLocation="moml-core-module.xsd"/>
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd"/>
 <xs:element name="vad" substitutionGroup="primitive">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="primitiveType">
 <xs:all>
 <xs:element name="voice" type="vadPatternType" minOccurs="0"/>
 <xs:element name="silence" type="vadPatternType" minOccurs="0"/>
 <xs:element name="tvoice" type="vadPatternType" minOccurs="0"/>
 <xs:element name="tsilence" type="vadPatternType" minOccurs="0"/>
 </xs:all>
 <xs:attribute name="starttimer" type="boolean.datatype"
 default="false"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="gain" substitutionGroup="primitive">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="primitiveType">
 <xs:attribute name="incr" default="3">
 <xs:simpleType>
 <xs:restriction base="xs:positiveInteger">
 <xs:maxInclusive value="96"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="amt" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="-96"/>
 <xs:maxInclusive value="96"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>

Saleem & Sharratt Expires - April 2006 [Page 68]

Internet-draft Media Objects Markup Language (MOML) October 2005

 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="agc" substitutionGroup="primitive">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="primitiveType">
 <xs:attribute name="tgtlvl" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:nonPositiveInteger">
 <xs:minInclusive value="-40"/>
 <xs:maxInclusive value="0"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="maxgain" default="10">
 <xs:simpleType>
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="40"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="gate" substitutionGroup="primitive">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="primitiveType">
 <xs:attribute name="initial" default="pass">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="pass"/>
 <xs:enumeration value="halt"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="clamp" substitutionGroup="primitive">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="primitiveType"/>
 </xs:complexContent>
 </xs:complexType>

Saleem & Sharratt Expires - April 2006 [Page 69]

Internet-draft Media Objects Markup Language (MOML) October 2005

 </xs:element>
 <xs:element name="relay" substitutionGroup="primitive">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="primitiveType"/>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="vadPatternType">
 <xs:group ref="sendType"/>
 <xs:attribute name="iterate" type="iterate.datatype" default="1"/>
 <xs:attribute name="len" type="posDuration.datatype"
 use="required"/>
 <xs:attribute name="sen" type="posDuration.datatype"
 use="optional"/>
 </xs:complexType>
 </xs:schema>

 Following is the schema for the speech primitives module (moml-
 speech-module.xsd). Note that several URL were split across several
 lines for formatting reasons.

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:include schemaLocation="moml-datatypes.xsd"/>
 <xs:include schemaLocation="moml-core-module.xsd"/>
 <xs:include schemaLocation="moml-basic-primitives-module.xsd"/>
 <xs:include schemaLocation="http://www.w3.org/TR/2002/WD-speech-
 synthesis-20020405/synthesis-core.xsd"/>
 <xs:include schemaLocation="http://www.w3.org/TR/speech-
 grammar/grammar-core.xsd"/>
 <xs:element name="speech" substitutionGroup="primitive">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="primitiveType">
 <xs:sequence>
 <xs:element name="grammar" maxOccurs="unbounded">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="grammar">
 <xs:choice>
 <xs:element name="match" type="iterateSendType"
 minOccurs="0"/>
 </xs:choice>
 <xs:attribute name="uri" type="xs:anyURI"/>
 <xs:attribute name="iterate" type="iterate.datatype"

Saleem & Sharratt Expires - April 2006 [Page 70]

Internet-draft Media Objects Markup Language (MOML) October 2005

 default="1"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="noinput" type="iterateSendType"
 minOccurs="0"/>
 <xs:element name="nomatch" type="iterateSendType"
 minOccurs="0"/>
 <xs:element name="speechexit" minOccurs="0">
 <xs:complexType>
 <xs:group ref="sendType"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="noint" type="posDuration.datatype"/>
 <xs:attribute name="norect" type="posDuration.datatype"/>
 <xs:attribute name="spcmplt" type="posDuration.datatype"/>
 <xs:attribute name="confidence">
 <xs:simpleType>
 <xs:restriction base="xs:positiveInteger">
 <xs:maxInclusive value="100"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="sens" type="xs:positiveInteger"/>
 <xs:attribute name="starttimer" type="boolean.datatype"
 default="false"/>
 <xs:attribute name="iterate" type="iterate.datatype"
 default="1"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="tts" type="smediaType"
 substitutionGroup="smedia"/>
 </xs:schema>

 Following is the schema for the fax primitives module (moml-fax-
 module.xsd).

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:include schemaLocation="moml-datatypes.xsd"/>
 <xs:include schemaLocation="moml-core-module.xsd"/>
 <xs:element name="faxdetect" substitutionGroup="primitive">

Saleem & Sharratt Expires - April 2006 [Page 71]

Internet-draft Media Objects Markup Language (MOML) October 2005

 <xs:complexType>
 <xs:choice>
 <xs:group ref="sendType"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 <xs:element name="faxsend" substitutionGroup="primitive">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="sendobj" type="sendobjType" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="hdrfooter" type="hdrfooterType" minOccurs="0"/>
 <xs:element name="rxpoll" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="rcvobj" type="rcvobjType"
 maxOccurs="unbounded"/>
 <xs:element name="hdrfooter" type="hdrfooterType"
 minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="rmtid" type="faxid.datatype"
 use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:group ref="faxstatusrequest"/>
 </xs:sequence>
 <xs:attribute name="lclid" type="faxid.datatype" use="optional"/>
 <xs:attribute name="minspeed" type="faxspeed.datatype"
 use="optional"/>
 <xs:attribute name="maxspeed" type="faxspeed.datatype"
 use="optional"/>
 <xs:attribute name="ecm" type="boolean.datatype" use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="faxrecv" substitutionGroup="primitive">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="rcvobj" type="rcvobjType" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="hdrfooter" type="hdrfooterType" minOccurs="0"/>
 <xs:element name="txpoll" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="sendobj" type="sendobjType"
 maxOccurs="unbounded"/>
 <xs:element name="hdrfooter" type="hdrfooterType"
 minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="rmtid" type="faxid.datatype"/>

Saleem & Sharratt Expires - April 2006 [Page 72]

Internet-draft Media Objects Markup Language (MOML) October 2005

 </xs:complexType>
 </xs:element>
 <xs:group ref="faxstatusrequest"/>
 </xs:sequence>
 <xs:attribute name="lclid" type="faxid.datatype" use="optional"/>
 <xs:attribute name="ecm" type="boolean.datatype" default="true"/>
 </xs:complexType>
 </xs:element>
 <xs:group name="faxstatusrequest">
 <xs:all>
 <xs:element name="faxstart" minOccurs="0"/>
 <xs:element name="faxnegotiate" minOccurs="0"/>
 <xs:element name="faxpagedone" minOccurs="0"/>
 <xs:element name="faxobjectdone" minOccurs="0"/>
 <xs:element name="faxopcomplete" minOccurs="0"/>
 <xs:element name="faxpollstart" minOccurs="0"/>
 </xs:all>
 </xs:group>
 <xs:complexType name="hdrfooterType">
 <xs:choice>
 <xs:element name="format" type="xs:string" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:choice>
 <xs:attribute name="type" type="hdrfooter.datatype"/>
 <xs:attribute name="style" type="hdrfooterstyle.datatype"/>
 </xs:complexType>
 <xs:complexType name="formatType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="style">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="append"/>
 <xs:enumeration value="overlay"/>
 <xs:enumeration value="replace"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="rcvobjType">
 <xs:attribute name="objuri" type="xs:anyURI" use="required"/>
 <xs:attribute name="maxpages" type="xs:positiveInteger"/>
 </xs:complexType>
 <xs:complexType name="sendobjType">
 <xs:attribute name="objuri" type="xs:anyURI" use="required"/>
 <xs:attribute name="startpage" type="xs:positiveInteger"/>
 <xs:attribute name="pagecount" type="xs:positiveInteger"/>

Saleem & Sharratt Expires - April 2006 [Page 73]

Internet-draft Media Objects Markup Language (MOML) October 2005

 </xs:complexType>
 <xs:simpleType name="faxid.datatype">
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9+*-]{20}"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="faxspeed.datatype">
 <xs:restriction base="xs:string">
 <xs:enumeration value="2400"/>
 <xs:enumeration value="4800"/>
 <xs:enumeration value="7200"/>
 <xs:enumeration value="9600"/>
 <xs:enumeration value="12000"/>
 <xs:enumeration value="14400"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="hdrfooter.datatype">
 <xs:restriction base="xs:string">
 <xs:enumeration value="header"/>
 <xs:enumeration value="footer"/>
 <xs:enumeration value="autohdr"/>
 <xs:enumeration value="nohdr"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="hdrfooterstyle.datatype">
 <xs:restriction base="xs:string">
 <xs:enumeration value="append"/>
 <xs:enumeration value="overlay"/>
 <xs:enumeration value="replace"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:schema>

Security Considerations

 MOML is invoked through other languages and protocols and as such
 security considerations depend on those environments.

 MOML being an XML based language, security considerations as defined
 by RFC 3023 [14] are applicable.

IANA Considerations

 IANA registration for 'application/moml+xml' media type is planned.

 MGCP and Megaco/H.248 packages are registered with IANA so that there
 is no conflict between packages developed by different authors. The

Saleem & Sharratt Expires - April 2006 [Page 74]

https://datatracker.ietf.org/doc/html/rfc3023

Internet-draft Media Objects Markup Language (MOML) October 2005

 package scheme planned for future extensibility of MSML/MOML will
 also require IANA registry of packages.

References

 [1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J.
 Peterson, R. Sparks, M. Handley, and E. Schooler, "SIP: Session
 Initiation Protocol", RFC3261, Internet Engineering Taskforce, June
 2002.

 [2] J. Rosenberg, H. Schulzrinne, and P. �Kyzivat, "Indicating User
 Agent Capabilities in the Session Initiation Protocol (SIP)",
 Internet Engineering Taskforce, December 2003. Work in progress.

 [3] R. Mahy and N. Ismail, "Media Policy Manipulation in the
 Conference Policy Control Protocol", Internet Draft, Internet
 Engineering Taskforce, Feb. 2003. Work in progress.

 [4] World Wide Web Consortium, "Extensible Markup Language (XML) 1.0
 (Second Edition)", W3C Recommendation, Oct. 2000.

 [5] World Wide Web Consortium, "Speech Recognition Grammar
 Specification Version 1.0" (SRGS), W3C Candidate Recommendation, June
 26, 2002

 [6] World Wide Web Consortium, "Natural Language Semantics Markup
 Language (NLSML) for the Speech Interface Framework", W3C Working
 Draft, May 2001.

 [7] World Wide Web Consortium, "Voice Extensible Markup Language
 (VoiceXML) Version 2.0, W3C Candidate Recommendation, February 20,
 2003

 [8] T. Melanchuk, "Media Sessions Markup Language (MSML)", Internet
 Draft, Internet Engineering Task Force, Feb. 2005. Work in progress.

 [9] J. Van Dyke, E. Burger, A. Spitzer, "Basic Network Media Services
 with SIP", Internet Draft, Internet Engineering Task Force, February
 2005. Work in progress.

 [10] C. Jennings, SIP Support for Application Initiation, Internet
 Draft, Internet Engineering Taskforce, Oct. 2002. Work in progress.

 [11] A. B. Roach, Session Initiation Protocol (SIP)-Specific Event
 Notification, RFC 3265, Internet Engineering Taskforce, June 2002.

 [12] E. Levinson, "Content-ID and Message-ID Uniform Resource
 Locators", RFC 2392, Internet Engineering Taskforce, August 1998.

Saleem & Sharratt Expires - April 2006 [Page 75]

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3265
https://datatracker.ietf.org/doc/html/rfc2392

Internet-draft Media Objects Markup Language (MOML) October 2005

 [13] S. Bradner, �Key words for use in RFCs to Indicate Requirement
 Levels, RFC 2119, Internet Engineering Taskforce, March 1997.

 [14] M. Murata, S. St.Laurent, and D. �Kohn, XML Media Types, RFC
 3023, Internet Engineering Taskforce, January 2001.

Acknowledgments

 Version -06 was derived from earlier versions co-authored by Tim
 Melanchuk (contact: <tim.melanchuk@gmail.com>) and Garland Sharratt.
 Adnan Saleem and Yong Xin of Convedia, have provided key insights,
 both theoretic and through development experience, on several
 versions of the drafts. Stephen Buko and George Raskulinec of Intel
 made numerous valuable contributions for new feature additions to
 MSML and MOML versions 06. Gilles Compienne of Ubiquity Software has
 provided feedback on several versions of this draft. Chris Boulton
 and Ben Smith, both of Ubiquity, and Michael Rice of VocalData helped
 clarify several issues in the -00 draft, while Bruce Walsh and �Kevin
 Fitzgerald, both of Spectel, provided important feedback on that
 draft. Cliff Schornak of Commetrex significantly contributed to the
 facsimile work.

Authors' Addresses

 Adnan Saleem
 Convedia
 4190 Still Creek Drive, Suite 300
 Vancouver, BC, V5C 6C6
 Canada

 Phone: +1 604 918 6376
 Email: asaleem@convedia.com

 Garland Sharratt
 Convedia
 4190 Still Creek Drive, Suite 300
 Vancouver, BC, V5C 6C6
 Canada

 Phone: +1 604 918 6393
 Email: gsharratt@convedia.com

Saleem & Sharratt Expires - April 2006 [Page 76]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023

Internet-draft Media Objects Markup Language (MOML) October 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TAS�K FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Saleem & Sharratt Expires - April 2006 [Page 77]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Internet-draft Media Objects Markup Language (MOML) October 2005

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Saleem & Sharratt Expires - April 2006 [Page 78]

