
Network Working Group A. Melnikov, Ed.
Internet-Draft Isode Ltd
Intended status: Standards Track October 18, 2015
Expires: April 20, 2016

DMAP MESSAGE ACCESS PROTOCOL
draft-melnikov-dmap-00.txt

Abstract

 The DMAP Message Access Protocol, Version 1 allows a client to access
 and manipulate electronic mail messages on a server, without
 revealing too much information about messages being accessed to the
 server. DMAP permits manipulation of mailboxes (remote message
 folders) in a way that is functionally equivalent to local folders.
 DMAP also provides the capability for an offline client to
 resynchronize with the server and for message submission. DMAP
 supports discovery of keys (signets) belonging to other users the
 client can communicate to. Syncronization and publication of keys
 (private key, might include certificates) and signets (public part,
 certificate).

 DMAP includes operations for creating, deleting, and renaming
 mailboxes, checking for new messages, permanently removing messages,
 setting and clearing flags, RFC 5322 and RFC 2045 parsing, and
 selective fetching of message attributes, texts, and portions
 thereof. Messages in DMAP are accessed by the use of numbers. These
 numbers are either message sequence numbers or unique identifiers.

 Note: This document is a very early draft and omission of specific
 syntax is intentional. It is intended to stimulate discussions about
 specific protocol syntax and general design.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Melnikov Expires April 20, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft DMAP October 2015

 This Internet-Draft will expire on April 20, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. How to Read This Document 4
1.1. Organization of This Document 4
1.2. Conventions Used in This Document 4
1.3. Special Notes to Implementors/To Do 5

2. Design Goals . 6
3. Protocol Overview . 6
3.1. Link Level . 6
3.2. Commands and Responses 7

 3.2.1. Client Protocol Sender and Server Protocol Receiver . 7
 3.2.2. Server Protocol Sender and Client Protocol Receiver . 8

3.3. Message Attributes 8
3.3.1. Message Numbers 9
3.3.2. Flags Message Attribute 11
3.3.3. Internal Date Message Attribute 12
3.3.4. Size Message Attribute 12
3.3.5. Body Structure Message Attribute 12
3.3.6. Modification Sequence (MODSEQ) Message Attribute . . 12

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Melnikov Expires April 20, 2016 [Page 2]

Internet-Draft DMAP October 2015

3.4. Message Texts . 13
4. State and Flow Diagram 13
4.1. Not Authenticated State 13
4.2. Authenticated State 13
4.3. Selected State . 13
4.4. Logout State . 13

5. Data Formats . 15
5.1. Atom . 16
5.2. Number . 16
5.3. String . 16
5.3.1. 8-bit and Binary Strings 16

5.4. Parenthesized List 16
5.5. NIL . 17

6. Operational Considerations 17
6.1. Mailbox Naming . 17
6.1.1. Mailbox Hierarchy Naming 18

6.2. Mailbox Size and Message Status Updates 18
6.3. Response when no Command in Progress 18
6.4. Autologout Timer . 19
6.5. Multiple Commands in Progress (Command Pipelining) . . . 19

7. Client Commands . 19
7.1. Client Commands - Any State 20
7.1.1. CAPABILITY Command 20
7.1.2. NOOP Command . 21
7.1.3. LOGOUT Command 21

7.2. Client Commands - Not Authenticated State 21
7.2.1. AUTHENTICATE Command 22

7.3. Client Commands - Authenticated State 24
7.3.1. SELECT Command 24
7.3.2. EXAMINE Command 25
7.3.3. CREATE Command 25
7.3.4. DELETE Command 26
7.3.5. RENAME Command 27
7.3.6. SUBSCRIBE Command 28
7.3.7. UNSUBSCRIBE Command 28
7.3.8. LIST Command . 29
7.3.9. STATUS Command 30
7.3.10. APPEND Command 31

 7.4. Client Commands - Authenticated State - Key Ring
 Management . 32

7.4.1. GETKEY Command 32
7.4.2. ADDKEY Command 32
7.4.3. DELETEKEY Command 33
7.4.4. LISTKEYS Command 33

 7.5. Client Commands - Authenticated State - Signet Ring
 Management . 33

7.6. Client Commands - Selected State 33
7.6.1. CLOSE Command . 34

Melnikov Expires April 20, 2016 [Page 3]

Internet-Draft DMAP October 2015

7.6.2. EXPUNGE Command 34
7.6.3. SEARCH Command 35
7.6.4. FETCH Command . 36
7.6.5. STORE Command . 38
7.6.6. COPY Command . 39
7.6.7. SUBMIT Command 40
7.6.8. UID Command . 41

7.7. Client Commands - Experimental/Expansion 42
7.7.1. X<atom> Command 43

8. Server Responses . 43
8.1. Server Responses - Status Responses 44
8.1.1. OK Response . 45
8.1.2. NO Response . 46
8.1.3. BAD Response . 46
8.1.4. PREAUTH Response 46
8.1.5. BYE Response . 47

8.2. Server Responses - Server and Mailbox Status 47
8.2.1. CAPABILITY Response 48
8.2.2. STATUS Response 48
8.2.3. FLAGS Response 49

8.3. Server Responses - Mailbox Size 49
8.3.1. EXISTS Response 49

8.4. Server Responses - Message Status 49
8.4.1. FETCH Response 49

8.5. Server Responses - Command Continuation Request 51
9. Sample DMAP connection 51
10. Formal Syntax . 51
11. Security Considerations 52
12. IANA Considerations . 52
13. Normative References . 52
Appendix A. Change Log . 54
Appendix B. Acknowledgement 54

 Index . 54
 Author's Address . 57

1. How to Read This Document

1.1. Organization of This Document

1.2. Conventions Used in This Document

 "Conventions" are basic principles or procedures. Document
 conventions are noted in this section.

 In examples, "C:" and "S:" indicate lines sent by the client and
 server respectively.

Melnikov Expires April 20, 2016 [Page 4]

Internet-Draft DMAP October 2015

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [KEYWORDS].

 The word "can" (not "may") is used to refer to a possible
 circumstance or situation, as opposed to an optional facility of the
 protocol.

 "User" is used to refer to a human user, whereas "client" refers to
 the software being run by the user.

 "Connection" refers to the entire sequence of client/server
 interaction from the initial establishment of the network connection
 until its termination.

 "Session" refers to the sequence of client/server interaction from
 the time that a mailbox is selected (SELECT or EXAMINE command) until
 the time that selection ends (SELECT or EXAMINE of another mailbox,
 CLOSE command, or connection termination).

 Characters are 8-bit UTF-8 unless otherwise specified.

1.3. Special Notes to Implementors/To Do

 [[CREF1: This section needs to be rewritten or removed before
 publication.]]

 This specification is experimental. While early implementations are
 encouraged, there are lots of open issues and possibility for
 drastical change to the protocol. Implementors are enouraged to
 contact authors of this specification before starting implementing
 this specification.

 The following changes are planned (this is not an exhaustive list):

 Include LITERAL+ syntax.

 Incorporate IDLE

 Merge LIST and STATUS into a single command

 Fix the mailbox (folder) hierarchy separator character to be "."

 Reorganize sections to group command by purpose.

Melnikov Expires April 20, 2016 [Page 5]

Internet-Draft DMAP October 2015

2. Design Goals

 This protocols strives to satisfy the following goals (note that some
 of the goals are in conflict, so certain compromises were made):

 Any DMAP connection is always protected by TLS. [[CREF2: Add text
 about server TLS identity verification.]]

 Most of the message content and associated metadata is encrypted
 with a key only known to DMAP clients, so DMAP servers get very
 limited access to user data.

 Open Issue: should the list of mailbox names be accessible to
 the server (unencrypted)? What about their attributes (e.g.
 mailbox roles, such as Sent or Drafts)? It might still be
 possible for a server (or MITM attacker) to figure out mailbox
 roles based on usage pattern.

 Open Issue: should it be possible for the server to search for
 messages which contain a particular message flag (in that case
 such flags should be stored unencrypted)?

 Open Issue: is it useful to support searching for all messages
 from or to a particular domain? (Compare this with searching
 for a particular sender/recipient, which is useful)

 The protocol allows for efficient bandwidth usage for mobile
 clients. For example, it should be possible to download a message
 body structure, which is much smaller than the message itself and
 allows the client to decide which body parts is worth downloading.
 Also, it should be possible to download binary body parts (without
 any Content Transfer Encoding).

 Submission of new messages through DMAP is supported in order to
 make client configuration easier.

 The best bits of the IMAP protocol are reused, making
 implementations slightly easier.

3. Protocol Overview

3.1. Link Level

 The DMAP protocol assumes a reliable data stream such as that
 provided by TCP. When TCP is used, an DMAP server listens on port
 XXX.

Melnikov Expires April 20, 2016 [Page 6]

Internet-Draft DMAP October 2015

3.2. Commands and Responses

 An DMAP connection consists of the establishment of a client/server
 network connection, mandatory TLS authentication exchange . Once TLS
 exchange completes successfully the connection proceeds with an
 initial greeting from the server, and client/server interactions.
 These client/server interactions consist of a client command, server
 data, and a server completion result response.

 [[CREF3: Might need revising if this changes.]]> All interactions
 transmitted by client and server are in the form of lines, that is,
 strings that end with a CRLF. The protocol receiver of an DMAP
 client or server is either reading a line, or is reading a sequence
 of octets with a known count followed by a line.

3.2.1. Client Protocol Sender and Server Protocol Receiver

 The client command begins an operation. Each client command is
 prefixed with an identifier (typically a short alphanumeric string,
 e.g., A0001, A0002, etc.) called a "tag". A different tag is
 generated by the client for each command.

 Clients MUST follow the syntax outlined in this specification
 strictly. It is a syntax error to send a command with missing or
 extraneous spaces or arguments.

 There are two cases in which a line from the client does not
 represent a complete command. In one case, a command argument is
 quoted with an octet count (see the description of literal in String
 under Data Formats); in the other case, the command arguments require
 server feedback (see the AUTHENTICATE command). In either case, the
 server sends a command continuation request response if it is ready
 for the octets (if appropriate) and the remainder of the command.
 This response is prefixed with the token "+".

 Note: If instead, the server detected an error in the command, it
 sends a BAD completion response with a tag matching the command
 (as described below) to reject the command and prevent the client
 from sending any more of the command.

 It is also possible for the server to send a completion response
 for some other command (if multiple commands are in progress), or
 untagged data. In either case, the command continuation request
 is still pending; the client takes the appropriate action for the
 response, and reads another response from the server. In all
 cases, the client MUST send a complete command (including
 receiving all command continuation request responses and command
 continuations for the command) before initiating a new command.

Melnikov Expires April 20, 2016 [Page 7]

Internet-Draft DMAP October 2015

 The protocol receiver of an DMAP server reads a command line from the
 client, parses the command and its arguments, and transmits server
 data and a server command completion result response.

3.2.2. Server Protocol Sender and Client Protocol Receiver

 Data transmitted by the server to the client and status responses
 that do not indicate command completion are prefixed with the token
 "*", and are called untagged responses.

 Server data MAY be sent as a result of a client command, or MAY be
 sent unilaterally by the server. There is no syntactic difference
 between server data that resulted from a specific command and server
 data that were sent unilaterally.

 The server completion result response indicates the success or
 failure of the operation. It is tagged with the same tag as the
 client command which began the operation. Thus, if more than one
 command is in progress, the tag in a server completion response
 identifies the command to which the response applies. There are
 three possible server completion responses: OK (indicating success),
 NO (indicating failure), or BAD (indicating a protocol error such as
 unrecognized command or command syntax error).

 Servers SHOULD enforce the syntax outlined in this specification
 strictly. Any client command with a protocol syntax error, including
 (but not limited to) missing or extraneous spaces or arguments,
 SHOULD be rejected, and the client given a BAD server completion
 response.

 The protocol receiver of an DMAP client reads a response line from
 the server. It then takes action on the response based upon the
 first token of the response, which can be a tag, a "*", or a "+".

 A client MUST be prepared to accept any server response at all times.
 This includes server data that was not requested. Server data SHOULD
 be recorded, so that the client can reference its recorded copy
 rather than sending a command to the server to request the data. In
 the case of certain server data, the data MUST be recorded.

 This topic is discussed in greater detail in the Server Responses
 section.

3.3. Message Attributes

 In addition to message text, each message has several attributes
 associated with it. These attributes can be retrieved individually
 or in conjunction with other attributes or message texts.

Melnikov Expires April 20, 2016 [Page 8]

Internet-Draft DMAP October 2015

3.3.1. Message Numbers

 TBD: decide if message sequence numbers are needed

 Messages in DMAP are accessed by one of two numbers; the unique
 identifier or the message sequence number.

3.3.1.1. Unique Identifier (UID) Message Attribute

 An unsigned 32-bit value assigned to each message, which when used
 with the unique identifier validity value (see below) forms a 64-bit
 value that MUST NOT refer to any other message in the mailbox or any
 subsequent mailbox with the same name forever. Unique identifiers
 are assigned in a strictly ascending fashion in the mailbox; as each
 message is added to the mailbox it is assigned a higher UID than the
 message(s) which were added previously. Unlike message sequence
 numbers, unique identifiers are not necessarily contiguous.

 The unique identifier of a message MUST NOT change during the
 session, and SHOULD NOT change between sessions. Any change of
 unique identifiers between sessions MUST be detectable using the
 UIDVALIDITY mechanism discussed below. Persistent unique identifiers
 are required for a client to resynchronize its state from a previous
 session with the server (e.g., disconnected or offline access
 clients).

 Associated with every mailbox are two 32-bit unsigned values which
 aid in unique identifier handling: the next unique identifier value
 (UIDNEXT) and the unique identifier validity value (UIDVALIDITY).

 The next unique identifier value is the predicted value that will be
 assigned to a new message in the mailbox. Unless the unique
 identifier validity also changes (see below), the next unique
 identifier value MUST have the following two characteristics. First,
 the next unique identifier value MUST NOT change unless new messages
 are added to the mailbox; and second, the next unique identifier
 value MUST change whenever new messages are added to the mailbox,
 even if those new messages are subsequently expunged.

 Note: The next unique identifier value is intended to provide a
 means for a client to determine whether any messages have been
 delivered to the mailbox since the previous time it checked this
 value. It is not intended to provide any guarantee that any
 message will have this unique identifier. A client can only
 assume, at the time that it obtains the next unique identifier
 value, that messages arriving after that time will have a UID
 greater than or equal to that value.

Melnikov Expires April 20, 2016 [Page 9]

Internet-Draft DMAP October 2015

 The unique identifier validity value is sent in a UIDVALIDITY
 response code in an OK untagged response at mailbox selection time.

 Unique identifiers MUST persist at all times. The following
 considerations about unique identifiers apply:

 1. Unique identifiers MUST be strictly ascending in the mailbox
 at all times. If the physical message store is re-ordered (or
 messages are modified) by a non-DMAP agent, this requires that
 the unique identifiers in the mailbox be regenerated, since
 the former unique identifiers are no longer strictly ascending
 as a result of the re-ordering.

 2. If the mailbox is deleted and a new mailbox with the same name
 is created at a later date (or another mailbox is renamed to
 have the name of a previously deleted or renamed mailbox), the
 server must either keep track of unique identifiers from the
 previous instance of the mailbox, or it must assign a new
 UIDVALIDITY value to the new instance of the mailbox. A good
 UIDVALIDITY value to use in this case is a 32-bit
 representation of the creation date/time of the mailbox. It
 is alright to use a constant such as 1, but only if it
 guaranteed that unique identifiers will never be reused, even
 in the case of a mailbox being deleted (or renamed) and a new
 mailbox by the same name created at some future time.

 3. The combination of mailbox name, UIDVALIDITY, and UID must
 refer to a single immutable message on that server forever.
 In particular, the internal date, message size, body
 structure, and message texts (all BODY[...] fetch data items)
 must never change. This does not include message numbers, nor
 does it include attributes that can be set by a STORE command
 (e.g., FLAGS).

3.3.1.2. Message Sequence Number Message Attribute

 A relative position from 1 to the number of messages in the mailbox.
 This position MUST be ordered by ascending unique identifier. As
 each new message is added, it is assigned a message sequence number
 that is 1 higher than the number of messages in the mailbox before
 that new message was added.

 Message sequence numbers can be reassigned during the session. For
 example, when a message is permanently removed (expunged) from the
 mailbox, the message sequence number for all subsequent messages is
 decremented. The number of messages in the mailbox is also
 decremented. Similarly, a new message can be assigned a message

Melnikov Expires April 20, 2016 [Page 10]

Internet-Draft DMAP October 2015

 sequence number that was once held by some other message prior to an
 expunge.

 In addition to accessing messages by relative position in the
 mailbox, message sequence numbers can be used in mathematical
 calculations. For example, if an untagged "11 EXISTS" is received,
 and previously an untagged "8 EXISTS" was received, three new
 messages have arrived with message sequence numbers of 9, 10, and 11.
 Another example, if message 287 in a 523 message mailbox has UID
 12345, there are exactly 286 messages which have lesser UIDs and 236
 messages which have greater UIDs.

3.3.2. Flags Message Attribute

 A list of zero or more named tokens associated with the message. A
 flag is set by its addition to this list, and is cleared by its
 removal. There are two types of flags in DMAP. A flag of either
 type can be permanent or session-only.

 A system flag is a flag name that is pre-defined in this
 specification. All system flags begin with "\". Certain system
 flags (\Deleted and \Seen) have special semantics described
 elsewhere. The currently-defined system flags are: [[CREF4: Alexey:
 some of these should be moved to the encrypted per message metadata
 block.]]

 \Seen Message has been read.

 \Answered Message has been answered.

 \Forwarded Message has been forwarded.

 \Flagged Message is "flagged" for urgent/special attention.

 \Deleted Message is "deleted" for removal by later EXPUNGE.

 \Draft Message has not completed composition (marked as a draft).

 \Submitted and \SubmitPending The \SubmitPending flag designates the
 message as awaiting to be submitted. This keyword allows storing
 messages waiting to be submitted in the same mailbox where
 messages that were already submitted and/or are being edited are
 stored. A mail client sets this flag when it decides that the
 message needs to be sent out. When a client (it might be a
 different client from the one that decided that the message is
 pending submission) starts sending the message, it atomically adds
 the \Submitted flag. Once submission is successful, the
 \SubmitPending flag is atomically cleared. The two flags allow

Melnikov Expires April 20, 2016 [Page 11]

Internet-Draft DMAP October 2015

 messages being actively submitted (messages that have both
 \Submitted and \SubmitPending flags set) to be distinguished from
 messages awaiting to be submitted, or from messages already
 submitted. They also allow all messages that were supposed to be
 submitted to be found, if the client submitting them crashes or
 quits before submitting them. [[CREF5: Update SUBMIT to also talk
 about these flags.]]

 A keyword is defined by the server implementation. Keywords do not
 begin with "\". Servers MAY permit the client to define new keywords
 in the mailbox (see the description of the PERMANENTFLAGS response
 code for more information). Keywords registered in documents that
 extend this specification SHOULD start with "$".

 A flag can be permanent or session-only on a per-flag basis.
 Permanent flags are those which the client can add or remove from the
 message flags permanently; that is, concurrent and subsequent
 sessions will see any change in permanent flags. Changes to session
 flags are valid only in that session.

3.3.3. Internal Date Message Attribute

 The internal date and time of the message on the server. This is not
 the date and time in the [RFC-5322] header, but rather a date and
 time which reflects when the message was received. In the case of
 messages delivered via DMTP , this SHOULD be the date and time of
 final delivery of the message. In the case of messages delivered by
 the DMAP COPY command, this SHOULD be the internal date and time of
 the source message. In the case of messages delivered by the DMAP
 APPEND command, this SHOULD be the date and time as specified in the
 APPEND command description. All other cases are implementation
 defined.

3.3.4. Size Message Attribute

 The number of octets in the message.

3.3.5. Body Structure Message Attribute

 A parsed representation of the body structure information of the
 message.

3.3.6. Modification Sequence (MODSEQ) Message Attribute

 A 63 bits positive integer that gets incremented every time there is
 a change to one of mutable attributes of a message. (Currently such
 mutable attributes only include message flags).

https://datatracker.ietf.org/doc/html/rfc5322

Melnikov Expires April 20, 2016 [Page 12]

Internet-Draft DMAP October 2015

3.4. Message Texts

 In addition to being able to fetch the full text of a message, DMAP
 permits the fetching of portions of the full message. Specifically,
 it is possible to fetch any message chunk.

4. State and Flow Diagram

 Once the connection between client and server is established, an DMAP
 connection is in one of four states. The initial state is identified
 in the server greeting. Most commands are only valid in certain
 states. It is a protocol error for the client to attempt a command
 while the connection is in an inappropriate state, and the server
 will respond with a BAD or NO (depending upon server implementation)
 command completion result.

4.1. Not Authenticated State

 In the not authenticated state, the client MUST supply authentication
 credentials before most commands will be permitted. This state is
 entered when a connection starts unless the connection has been pre-
 authenticated.

4.2. Authenticated State

 In the authenticated state, the client is authenticated and MUST
 select a mailbox to access before commands that affect messages will
 be permitted. This state is entered when a pre-authenticated
 connection starts, when acceptable authentication credentials have
 been provided, after an error in selecting a mailbox, or after a
 successful CLOSE command.

4.3. Selected State

 TBD: Decide if Selected state can be eliminated entirely

 In a selected state, a mailbox has been selected to access. This
 state is entered when a mailbox has been successfully selected.

4.4. Logout State

 In the logout state, the connection is being terminated. This state
 can be entered as a result of a client request (via the LOGOUT
 command) or by unilateral action on the part of either the client or
 server.

 If the client requests the logout state, the server MUST send an
 untagged BYE response and a tagged OK response to the LOGOUT command

Melnikov Expires April 20, 2016 [Page 13]

Internet-Draft DMAP October 2015

 before the server closes the connection; and the client MUST read the
 tagged OK response to the LOGOUT command before the client closes the
 connection.

 A server MUST NOT unilaterally close the connection without sending
 an untagged BYE response that contains the reason for having done so.
 A client SHOULD NOT unilaterally close the connection, and instead
 SHOULD issue a LOGOUT command. If the server detects that the client
 has unilaterally closed the connection, the server MAY omit the
 untagged BYE response and simply close its connection.

Melnikov Expires April 20, 2016 [Page 14]

Internet-Draft DMAP October 2015

 +----------------------+
 |connection established|
 +----------------------+
 ||
 \/
 +--------------------------------------+
 | server greeting |
 +--------------------------------------+
 || (1) || (2) || (3)
 \/ || ||
 +-----------------+ || ||
 |Not Authenticated| || ||
 +-----------------+ || ||
 || (7) || (4) || || | |
 || \/ \/ ||
 || +----------------+ ||
 || | Authenticated |<=++ ||
 || +----------------+ || ||
 || || (7) || (5) || (6) ||
 || || \/ || ||
 || || +--------+ || ||
 || || |Selected|==++ ||
 || || +--------+ ||
 || || || (7) ||
 \/ \/ \/ \/
 +--------------------------------------+
 | Logout |
 +--------------------------------------+
 ||
 \/
 +-------------------------------+
 |both sides close the connection|
 +-------------------------------+

 (1) connection without pre-authentication (OK greeting)
 (2) pre-authenticated connection (PREAUTH greeting)
 (3) rejected connection (BYE greeting)
 (4) successful AUTHENTICATE command
 (5) successful SELECT or EXAMINE command
 (6) CLOSE command, or failed SELECT or EXAMINE command
 (7) LOGOUT command, server shutdown, or connection closed

5. Data Formats

 DMAP uses textual commands and responses. Data in DMAP can be in one
 of several forms: atom, number, string, parenthesized list, or NIL.
 Note that a particular data item may take more than one form; for

Melnikov Expires April 20, 2016 [Page 15]

Internet-Draft DMAP October 2015

 example, a data item defined as using "astring" syntax may be either
 an atom or a string.

5.1. Atom

 An atom consists of one or more non-special characters.

5.2. Number

 A number consists of one or more digit characters, and represents a
 numeric value.

5.3. String

 A string is in one of two forms: either literal or quoted string.
 The literal form is the general form of string. The quoted string
 form is an alternative that avoids the overhead of processing a
 literal at the cost of limitations of characters which may be used.

 A literal is a sequence of zero or more octets (including CR and LF),
 prefix-quoted with an octet count in the form of an open brace ("{"),
 the number of octets, close brace ("}"), and CRLF. In the case of
 literals transmitted from server to client, the CRLF is immediately
 followed by the octet data. In the case of literals transmitted from
 client to server, the client MUST wait to receive a command
 continuation request (described later in this document) before
 sending the octet data (and the remainder of the command).

 A quoted string is a sequence of zero or more 7-bit characters,
 excluding CR and LF, with double quote (<">) characters at each end.

 The empty string is represented as either "" (a quoted string with
 zero characters between double quotes) or as {0} followed by CRLF (a
 literal with an octet count of 0).

 Note: Even if the octet count is 0, a client transmitting a
 literal MUST wait to receive a command continuation request.

5.3.1. 8-bit and Binary Strings

 ...Include direct support for BINARY-like literals.

5.4. Parenthesized List

 Data structures are represented as a "parenthesized list"; a sequence
 of data items, delimited by space, and bounded at each end by
 parentheses. A parenthesized list can contain other parenthesized
 lists, using multiple levels of parentheses to indicate nesting.

Melnikov Expires April 20, 2016 [Page 16]

Internet-Draft DMAP October 2015

 The empty list is represented as () -- a parenthesized list with no
 members.

5.5. NIL

 The special form "NIL" represents the non-existence of a particular
 data item that is represented as a string or parenthesized list, as
 distinct from the empty string "" or the empty parenthesized list ().

 Note: NIL is never used for any data item which takes the form of
 an atom. For example, a mailbox name of "NIL" is a mailbox named
 NIL as opposed to a non-existent mailbox name. This is because
 mailbox uses "astring" syntax which is an atom or a string.
 Conversely, an addr-name of NIL is a non-existent personal name,
 because addr-name uses "nstring" syntax which is NIL or a string,
 but never an atom.

6. Operational Considerations

 The following rules are listed here to ensure that all DMAP
 implementations interoperate properly.

6.1. Mailbox Naming

 Mailbox names are encoded in UTF-8.

 The case-insensitive mailbox name INBOX is a special name reserved to
 mean "the primary mailbox for this user on this server". The
 interpretation of all other names is implementation-dependent.

 In particular, this specification takes no position on case
 sensitivity in non-INBOX mailbox names. Some server implementations
 are fully case-sensitive; others preserve case of a newly-created
 name but otherwise are case-insensitive; and yet others coerce names
 to a particular case. Client implementations MUST interact with any
 of these.

 There are certain client considerations when creating a new mailbox
 name:

 1. Any character which is one of the atom-specials (see the Formal
 Syntax) will require that the mailbox name be represented as a
 quoted string or literal.

 2. CTL and other non-graphic characters are difficult to represent
 in a user interface and are thus disallowed.

Melnikov Expires April 20, 2016 [Page 17]

Internet-Draft DMAP October 2015

 3. Although the list-wildcard characters ("%" and "*") are valid in
 a mailbox name, it is difficult to use such mailbox names with
 the LIST command due to the conflict with wildcard
 interpretation.

 4. The "/" character is reserved to delimit levels of hierarchy.

6.1.1. Mailbox Hierarchy Naming

 If it is desired to export hierarchical mailbox names, mailbox names
 MUST be left-to-right hierarchical using a single "/" character to
 separate levels of hierarchy.

6.2. Mailbox Size and Message Status Updates

 At any time, a server can send data that the client did not request.
 Sometimes, such behavior is REQUIRED. For example, agents other than
 the server MAY add messages to the mailbox (e.g., new message
 delivery), change the flags of the messages in the mailbox (e.g.,
 simultaneous access to the same mailbox by multiple agents), or even
 remove messages from the mailbox. A server MUST send mailbox size
 updates automatically if a mailbox size change is observed during the
 processing of a command. A server SHOULD send message flag updates
 automatically, without requiring the client to request such updates
 explicitly.

 Special rules exist for server notification of a client about the
 removal of messages to prevent synchronization errors; see the
 description of the EXPUNGE response for more detail. In particular,
 it is NOT permitted to send an EXISTS response that would reduce the
 number of messages in the mailbox; only the EXPUNGE response can do
 this.

 Regardless of what implementation decisions a client makes on
 remembering data from the server, a client implementation MUST record
 mailbox size updates. It MUST NOT assume that any command after the
 initial mailbox selection will return the size of the mailbox.

6.3. Response when no Command in Progress

 Server implementations are permitted to send an untagged response
 (except for EXPUNGE) while there is no command in progress. Server
 implementations that send such responses MUST deal with flow control
 considerations. Specifically, they MUST either (1) verify that the
 size of the data does not exceed the underlying transport's available
 window size, or (2) use non-blocking writes.

Melnikov Expires April 20, 2016 [Page 18]

Internet-Draft DMAP October 2015

6.4. Autologout Timer

 If a server has an inactivity autologout timer that applies to
 sessions after authentication, the duration of that timer MUST be at
 least 30 minutes. The receipt of ANY command from the client during
 that interval SHOULD suffice to reset the autologout timer.

6.5. Multiple Commands in Progress (Command Pipelining)

 The client MAY send another command without waiting for the
 completion result response of a command, subject to ambiguity rules
 (see below) and flow control constraints on the underlying data
 stream. Similarly, a server MAY begin processing another command
 before processing the current command to completion, subject to
 ambiguity rules. However, any command continuation request responses
 and command continuations MUST be negotiated before any subsequent
 command is initiated.

 The exception is if an ambiguity would result because of a command
 that would affect the results of other commands. Clients MUST NOT
 send multiple commands without waiting if an ambiguity would result.
 If the server detects a possible ambiguity, it MUST execute commands
 to completion in the order given by the client.

7. Client Commands

 DMAP commands are described in this section. Commands are organized
 by the state in which the command is permitted. Commands which are
 permitted in multiple states are listed in the minimum permitted
 state (for example, commands valid in authenticated and selected
 state are listed in the authenticated state commands).

 Command arguments, identified by "Arguments:" in the command
 descriptions below, are described by function, not by syntax. The
 precise syntax of command arguments is described in the Formal Syntax
 (Section 10).

 Some commands cause specific server responses to be returned; these
 are identified by "Responses:" in the command descriptions below.
 See the response descriptions in the Responses section for
 information on these responses, and the Formal Syntax section for the
 precise syntax of these responses. It is possible for server data to
 be transmitted as a result of any command. Thus, commands that do
 not specifically require server data specify "no specific responses
 for this command" instead of "none".

Melnikov Expires April 20, 2016 [Page 19]

Internet-Draft DMAP October 2015

 The "Result:" in the command description refers to the possible
 tagged status responses to a command, and any special interpretation
 of these status responses.

 The state of a connection is only changed by successful commands
 which are documented as changing state. A rejected command (BAD
 response) never changes the state of the connection or of the
 selected mailbox. A failed command (NO response) generally does not
 change the state of the connection or of the selected mailbox; the
 exception being the SELECT and EXAMINE commands.

7.1. Client Commands - Any State

 The following commands are valid in any state: CAPABILITY, NOOP, and
 LOGOUT.

7.1.1. CAPABILITY Command

 Arguments: none

 Responses: REQUIRED untagged response: CAPABILITY

 Result: OK - capability completed
 BAD - command unknown or arguments invalid

 The CAPABILITY command requests a listing of capabilities that the
 server supports. The server MUST send a single untagged CAPABILITY
 response with "DMAP=..." (see below) as one of the listed
 capabilities before the (tagged) OK response.

 The DMAP= capability describes in which mode DMAP operates. It MUST
 be followed by one of "TRUSTFUL", "CAUTIOUS" or "PARANOID". [[CREF6:
 Add more details about different modes and how they change the
 behaviour]]

 A capability name which begins with "AUTH=" indicates that the server
 supports that particular authentication mechanism. All such names
 are, by definition, part of this specification. For example, the
 authorization capability for an experimental "blurdybloop"
 authenticator would be "AUTH=XBLURDYBLOOP" and not
 "XAUTH=BLURDYBLOOP" or "XAUTH=XBLURDYBLOOP".

 Other capability names refer to extensions, revisions, or amendments
 to this specification. See the documentation of the CAPABILITY
 response for additional information. No capabilities, beyond the
 base DMAP set defined in this specification, are enabled without
 explicit client action to invoke the capability.

Melnikov Expires April 20, 2016 [Page 20]

Internet-Draft DMAP October 2015

 See the section entitled "Client Commands - Experimental/Expansion"
 for information about the form of site or implementation-specific
 capabilities.

7.1.2. NOOP Command

 Arguments: none

 Responses: no specific responses for this command (but see below)

 Result: OK - noop completed
 BAD - arguments invalid

 The NOOP command always succeeds. It does nothing.

 Since any command can return a status update as untagged data, the
 NOOP command can be used as a periodic poll for new messages or
 message status updates during a period of inactivity (this is the
 preferred method to do this). The NOOP command can also be used to
 reset any inactivity autologout timer on the server.

7.1.3. LOGOUT Command

 Arguments: none

 Responses: REQUIRED untagged response: BYE

 Result: OK - logout completed
 BAD - command unknown or arguments invalid

 The LOGOUT command informs the server that the client is done with
 the connection. The server MUST send a BYE untagged response before
 the (tagged) OK response, and then close the network connection.

7.2. Client Commands - Not Authenticated State

 In the not authenticated state, the AUTHENTICATE command establishes
 authentication and enters the authenticated state. The AUTHENTICATE
 command provides a general mechanism for a variety of authentication
 techniques, privacy protection, and integrity checking.

 [[CREF7: Is this still a useful feature in DMAP context?]] Server
 implementations MAY allow access to certain mailboxes without
 establishing authentication. This can be done by means of the
 ANONYMOUS [SASL] authenticator described in [ANONYMOUS]. The
 restrictions placed on anonymous users are implementation-dependent.

Melnikov Expires April 20, 2016 [Page 21]

Internet-Draft DMAP October 2015

 Once authenticated (including as anonymous), it is not possible to
 re-enter not authenticated state.

 In addition to the universal commands (CAPABILITY, NOOP, and LOGOUT),
 the following commands are valid in the not authenticated state:
 AUTHENTICATE. See the Security Considerations section for important
 information about these commands.

7.2.1. AUTHENTICATE Command

 Arguments: authentication mechanism name

 Responses: continuation data can be requested

 Result: OK - authenticate completed, now in authenticated state
 NO - authenticate failure: unsupported authentication
 mechanism, credentials rejected
 BAD - command unknown or arguments invalid,
 authentication exchange cancelled

 The AUTHENTICATE command indicates a [SASL] authentication mechanism
 to the server. If the server supports the requested authentication
 mechanism, it performs an authentication protocol exchange to
 authenticate and identify the client. It MAY also negotiate an
 OPTIONAL security layer for subsequent protocol interactions. If the
 requested authentication mechanism is not supported, the server
 SHOULD reject the AUTHENTICATE command by sending a tagged NO
 response.

 The AUTHENTICATE command supports the optional "initial response"
 feature of [SASL].

 The service name specified by this protocol's profile of [SASL] is
 "DMAP".

 The authentication protocol exchange consists of a series of server
 challenges and client responses that are specific to the
 authentication mechanism. A server challenge consists of a command
 continuation request response with the "+" token followed by a BASE64
 encoded string. The client response consists of a single line
 consisting of a BASE64 encoded string. If the client wishes to
 cancel an authentication exchange, it issues a line consisting of a
 single "*". If the server receives such a response, or if it
 receives an invalid BASE64 string (e.g. characters outside the
 BASE64 alphabet, or non-terminal "="), it MUST reject the
 AUTHENTICATE command by sending a tagged BAD response.

Melnikov Expires April 20, 2016 [Page 22]

Internet-Draft DMAP October 2015

 If a security layer is negotiated through the [SASL] authentication
 exchange, it takes effect immediately following the CRLF that
 concludes the authentication exchange for the client, and the CRLF of
 the tagged OK response for the server.

 While client and server implementations MUST implement the
 AUTHENTICATE command itself, it is not required to implement any
 authentication mechanisms other than the STACIE mechanism described
 in [[Add ref]]. Also, an authentication mechanism is not required to
 support any security layers.

 Note: a server implementation MUST implement a configuration in
 which it does NOT permit any plaintext password mechanisms such as
 PLAIN. Server sites SHOULD NOT use any configuration which
 permits a plaintext password mechanism. Client and server
 implementations SHOULD implement additional [SASL] mechanisms that
 do not use plaintext passwords, such as STACIE, SCRAM [[CREF8: Add
 references]], and/or the GSSAPI mechanism described in [SASL].

 Servers and clients can support multiple authentication mechanisms.
 The server SHOULD list its supported authentication mechanisms in the
 response to the CAPABILITY command so that the client knows which
 authentication mechanisms to use.

 A server MAY include a CAPABILITY response code in the tagged OK
 response of a successful AUTHENTICATE command in order to send
 capabilities automatically. It is unnecessary for a client to send a
 separate CAPABILITY command if it recognizes these automatic
 capabilities. This should only be done if a security layer was not
 negotiated by the AUTHENTICATE command, because the tagged OK
 response as part of an AUTHENTICATE command is not protected by
 encryption/integrity checking. [SASL] requires the client to re-
 issue a CAPABILITY command in this case. The server MAY advertise
 different capabilities after a successful AUTHENTICATE command.

 If an AUTHENTICATE command fails with a NO response, the client MAY
 try another authentication mechanism by issuing another AUTHENTICATE
 command. In other words, the client MAY request authentication types
 in decreasing order of preference.

 The authorization identity passed from the client to the server
 during the authentication exchange is interpreted by the server as
 the user name whose privileges the client is requesting.

Melnikov Expires April 20, 2016 [Page 23]

Internet-Draft DMAP October 2015

7.3. Client Commands - Authenticated State

 In the authenticated state, commands that manipulate mailboxes as
 atomic entities are permitted. Of these commands, the SELECT and
 EXAMINE commands will select a mailbox for access and enter the
 selected state. [[CREF9: Should we also add "one shot resync"
 commands a la QRESYNC/JMAP?]]

 In addition to the universal commands (CAPABILITY, NOOP, and LOGOUT),
 the following commands are valid in the authenticated state: SELECT,
 EXAMINE, CREATE, DELETE, RENAME, SUBSCRIBE, UNSUBSCRIBE, LIST,
 STATUS, and APPEND, as well as key ring and signet ring management
 commands described in subsequent sections.

7.3.1. SELECT Command

 Arguments: mailbox name

 Responses: REQUIRED untagged responses: FLAGS, EXISTS
 REQUIRED OK untagged responses: PERMANENTFLAGS,
 UIDNEXT, UIDVALIDITY

 Result: OK - select completed, now in selected state
 NO - select failure, now in authenticated state: no
 such mailbox, can't access mailbox
 BAD - command unknown or arguments invalid

 The SELECT command selects a mailbox so that messages in the mailbox
 can be accessed. Before returning an OK to the client, the server
 MUST send the following untagged data to the client.

 FLAGS Defined flags in the mailbox. See the description of the
 FLAGS response for more detail.

 <n> EXISTS The number of messages in the mailbox. See the
 description of the EXISTS response for more detail.

 OK [PERMANENTFLAGS (<list of flags>)] A list of message flags that
 the client can change permanently. If this is missing, the client
 should assume that all flags can be changed permanently.

 OK [UIDNEXT <n>] The next unique identifier value. Refer to
Section 3.3.1.1 for more information.

 OK [UIDVALIDITY <n>] The unique identifier validity value. Refer to
Section 3.3.1.1 for more information. If this is missing, the

 server does not support unique identifiers.

Melnikov Expires April 20, 2016 [Page 24]

Internet-Draft DMAP October 2015

 Only one mailbox can be selected at a time in a connection;
 simultaneous access to multiple mailboxes requires multiple
 connections. The SELECT command automatically deselects any
 currently selected mailbox before attempting the new selection.
 [[CREF10: Add CLOSED response to delimit old and new mailbox state.]]
 Consequently, if a mailbox is selected and a SELECT command that
 fails is attempted, no mailbox is selected.

 If the client is permitted to modify the mailbox, the server SHOULD
 prefix the text of the tagged OK response with the "[READ-WRITE]"
 response code.

 If the client is not permitted to modify the mailbox but is permitted
 read access, the mailbox is selected as read-only, and the server
 MUST prefix the text of the tagged OK response to SELECT with the
 "[READ-ONLY]" response code. Read-only access through SELECT differs
 from the EXAMINE command in that certain read-only mailboxes MAY
 permit the change of permanent state on a per-user (as opposed to
 global) basis.

7.3.2. EXAMINE Command

 Arguments: mailbox name

 Responses: REQUIRED untagged responses: FLAGS, EXISTS
 REQUIRED OK untagged responses: PERMANENTFLAGS,
 UIDNEXT, UIDVALIDITY

 Result: OK - examine completed, now in selected state
 NO - examine failure, now in authenticated state: no
 such mailbox, can't access mailbox BAD - command unknown
 or arguments invalid

 The EXAMINE command is identical to SELECT and returns the same
 output; however, the selected mailbox is identified as read-only. No
 changes to the permanent state of the mailbox, including per-user
 state, are permitted.

 The text of the tagged OK response to the EXAMINE command MUST begin
 with the "[READ-ONLY]" response code.

7.3.3. CREATE Command

 Arguments: mailbox name

 Responses: no specific responses for this command

 Result: OK - create completed

Melnikov Expires April 20, 2016 [Page 25]

Internet-Draft DMAP October 2015

 NO - create failure: can't create mailbox with that name
 BAD - command unknown or arguments invalid

 The CREATE command creates a mailbox with the given name. [[CREF11:
 Encrypted mailbox name?]] An OK response is returned only if a new
 mailbox with that name has been created. It is an error to attempt
 to create INBOX or a mailbox with a name that refers to an extant
 mailbox. Any error in creation will return a tagged NO response.

 If the mailbox name is suffixed with the server's hierarchy separator
 character (as returned from the server by a LIST command), this is a
 declaration that the client intends to create mailbox names under
 this name in the hierarchy. Server implementations that do not
 require this declaration MUST ignore the declaration. In any case,
 the name created is without the trailing hierarchy delimiter.

 If the server's hierarchy separator character appears elsewhere in
 the name, the server SHOULD create any superior hierarchical names
 that are needed for the CREATE command to be successfully completed.
 In other words, an attempt to create "foo/bar/zap" on a server in
 which "/" is the hierarchy separator character SHOULD create foo/ and
 foo/bar/ if they do not already exist.

 If a new mailbox is created with the same name as a mailbox which was
 deleted, its unique identifiers MUST be greater than any unique
 identifiers used in the previous incarnation of the mailbox UNLESS
 the new incarnation has a different unique identifier validity value.
 See the description of the UID command for more detail.

7.3.4. DELETE Command

 Arguments: mailbox name

 Responses: no specific responses for this command

 Result: OK - delete completed
 NO - delete failure: can't delete mailbox with that name
 BAD - command unknown or arguments invalid

 The DELETE command permanently removes the mailbox with the given
 name. A tagged OK response is returned only if the mailbox has been
 deleted. It is an error to attempt to delete INBOX or a mailbox name
 that does not exist.

 The DELETE command MUST NOT remove inferior hierarchical names. For
 example, if a mailbox "foo" has an inferior "foo.bar" (assuming "."
 is the hierarchy delimiter character), removing "foo" MUST NOT remove
 "foo.bar". It is an error to attempt to delete a name that has

Melnikov Expires April 20, 2016 [Page 26]

Internet-Draft DMAP October 2015

 inferior hierarchical names and also has the \Noselect mailbox name
 attribute (see the description of the LIST response for more
 details).

 It is permitted to delete a name that has inferior hierarchical names
 and does not have the \Noselect mailbox name attribute. If the
 server implementation does not permit deleting the name while
 inferior hierarchical names exists the \Noselect mailbox name
 attribute is set for that name. In any case, all messages in that
 mailbox are removed by the DELETE command.

 The value of the highest-used unique identifier of the deleted
 mailbox MUST be preserved so that a new mailbox created with the same
 name will not reuse the identifiers of the former incarnation, UNLESS
 the new incarnation has a different unique identifier validity value.
 See the description of the UID command for more detail.

7.3.5. RENAME Command

 Arguments: existing mailbox name
 new mailbox name

 Responses: no specific responses for this command

 Result: OK - rename completed
 NO - rename failure: can't rename mailbox with that name,
 can't rename to mailbox with that name
 BAD - command unknown or arguments invalid

 The RENAME command changes the name of a mailbox. A tagged OK
 response is returned only if the mailbox has been renamed. It is an
 error to attempt to rename from a mailbox name that does not exist or
 to a mailbox name that already exists. Any error in renaming will
 return a tagged NO response.

 If the name has inferior hierarchical names, then the inferior
 hierarchical names MUST also be renamed. For example, a rename of
 "foo" to "zap" will rename "foo/bar" (assuming "/" is the hierarchy
 delimiter character) to "zap/bar".

 If the server's hierarchy separator character appears in the name,
 the server SHOULD create any superior hierarchical names that are
 needed for the RENAME command to complete successfully. In other
 words, an attempt to rename "foo/bar/zap" to baz/rag/zowie on a
 server in which "/" is the hierarchy separator character SHOULD
 create baz/ and baz/rag/ if they do not already exist.

Melnikov Expires April 20, 2016 [Page 27]

Internet-Draft DMAP October 2015

 The value of the highest-used unique identifier of the old mailbox
 name MUST be preserved so that a new mailbox created with the same
 name will not reuse the identifiers of the former incarnation, UNLESS
 the new incarnation has a different unique identifier validity value.
 See the description of the UID command for more detail.

 [[CREF12: If we always support returning roles for mailboxes, there
 is no need for this special behaviour.]] Renaming INBOX is permitted,
 and has special behavior. It moves all messages in INBOX to a new
 mailbox with the given name, leaving INBOX empty. If the server
 implementation supports inferior hierarchical names of INBOX, these
 are unaffected by a rename of INBOX.

7.3.6. SUBSCRIBE Command

 Arguments: mailbox

 Responses: no specific responses for this command

 Result: OK - subscribe completed
 NO - subscribe failure: can't subscribe to that name
 BAD - command unknown or arguments invalid

 The SUBSCRIBE command adds the specified mailbox name to the server's
 set of "active" or "subscribed" mailboxes as returned by the LIST
 (SUBSCRIBED) command. This command returns a tagged OK response only
 if the subscription is successful.

 A server MAY validate the mailbox argument to SUBSCRIBE to verify
 that it exists. However, it MUST NOT unilaterally remove an existing
 mailbox name from the subscription list even if a mailbox by that
 name no longer exists. [[CREF13: Do we need this restriction?]]

 Note: This requirement is because a server site can choose to
 routinely remove a mailbox with a well-known name (e.g., "system-
 alerts") after its contents expire, with the intention of
 recreating it when new contents are appropriate.

7.3.7. UNSUBSCRIBE Command

 Arguments: mailbox name

 Responses: no specific responses for this command

 Result: OK - unsubscribe completed
 NO - unsubscribe failure: can't unsubscribe that name
 BAD - command unknown or arguments invalid

Melnikov Expires April 20, 2016 [Page 28]

Internet-Draft DMAP October 2015

 The UNSUBSCRIBE command removes the specified mailbox name from the
 server's set of "active" or "subscribed" mailboxes as returned by the
 LIST (SUBSCRIBED) command. This command returns a tagged OK response
 only if the unsubscription is successful. [[CREF14: We can allow
 UNSUBSCRIBE to succeed for a mailbox which is not subscribed.]]

7.3.8. LIST Command

 Arguments: OPTIONAL selection options
 mailbox name with possible wildcards
 OPTIONAL return options

 Responses: untagged responses: LIST

 Result: OK - list completed
 NO - list failure: can't list that reference or name
 BAD - command unknown or arguments invalid

 [[CREF15: Update to include options, like "SUBSCRIBED".]] The LIST
 command returns a subset of names from the complete set of all names
 available to the client. Zero or more untagged LIST replies are
 returned, containing the name attributes, hierarchy delimiter, name,
 and optional mailbox status information; see the description of the
 LIST reply for more detail.

 The LIST command SHOULD return its data quickly, without undue delay.
 If each name requires 1 second of processing, then a list of 1200
 names would take 20 minutes!

 The returned mailbox names MUST match the supplied mailbox name
 pattern.

 The character "*" is a wildcard, and matches zero or more characters
 at this position. The character "%" is similar to "*", but it does
 not match a hierarchy delimiter. If the "%" wildcard is the last
 character of a mailbox name argument, matching levels of hierarchy
 are also returned. If these levels of hierarchy are not also
 selectable mailboxes, they are returned with the \Noselect mailbox
 name attribute (see the description of the LIST response for more
 details).

 Server implementations are permitted to "hide" otherwise accessible
 mailboxes from the wildcard characters, by preventing certain
 characters or names from matching a wildcard in certain situations.
 For example, a UNIX-based server might restrict the interpretation of
 "*" so that an initial "/" character does not match.

Melnikov Expires April 20, 2016 [Page 29]

Internet-Draft DMAP October 2015

 [[CREF16: Is this needed with roles?]] The special name INBOX is
 included in the output from LIST, if INBOX is supported by this
 server for this user and if the uppercase string "INBOX" matches the
 mailbox name arguments with wildcards as described above. The
 criteria for omitting INBOX is whether SELECT INBOX will return
 failure; it is not relevant whether the user's real INBOX resides on
 this or some other server.

7.3.9. STATUS Command

 Arguments: mailbox name
 status data item names

 Responses: REQUIRED untagged responses: STATUS

 Result: OK - status completed
 NO - status failure: no status for that name
 BAD - command unknown or arguments invalid

 The STATUS command requests the status of the indicated mailbox. It
 does not change the currently selected mailbox, nor does it affect
 the state of any messages in the queried mailbox.

 The STATUS command provides an alternative to opening a second DMAP
 connection and doing an EXAMINE command on a mailbox to query that
 mailbox's status without deselecting the current mailbox in the first
 DMAP connection.

 Unlike the LIST command, the STATUS command is not guaranteed to be
 fast in its response. Under certain circumstances, it can be quite
 slow. In some implementations, the server is obliged to open the
 mailbox read-only internally to obtain certain status information.
 Also unlike the LIST command, the STATUS command does not accept
 wildcards. [[CREF17: Remove this restriction?]]

 Note: The STATUS command is intended to access the status of
 mailboxes other than the currently selected mailbox. Because the
 STATUS command can cause the mailbox to be opened internally, and
 because this information is available by other means on the
 selected mailbox, the STATUS command SHOULD NOT be used on the
 currently selected mailbox.

 The STATUS command MUST NOT be used as a "check for new messages
 in the selected mailbox" operation (refer to sections 7,

Section 8.3.1 for more information about the proper method for new
 message checking).

 The currently defined status data items that can be requested are:

Melnikov Expires April 20, 2016 [Page 30]

Internet-Draft DMAP October 2015

 MESSAGES The number of messages in the mailbox.

 UIDNEXT The next unique identifier value of the mailbox. Refer to
Section 3.3.1.1 for more information.

 UIDVALIDITY The unique identifier validity value of the mailbox.
 Refer to Section 3.3.1.1 for more information.

 UNSEEN The number of messages which do not have the \Seen flag set.

7.3.10. APPEND Command

 Arguments: mailbox name
 OPTIONAL flag parenthesized list
 OPTIONAL date/time string
 message literal

 Responses: no specific responses for this command

 Result: OK - append completed
 NO - append error: can't append to that mailbox, error
 in flags or date/time or message text
 BAD - command unknown or arguments invalid

 The APPEND command appends the literal argument as a new message to
 the end of the specified destination mailbox. This argument SHOULD
 be in the format of a DMIME message. Binary data is permitted in the
 message.

 If a flag parenthesized list is specified, the flags SHOULD be set in
 the resulting message; otherwise, the flag list of the resulting
 message is set to empty by default.

 If a date-time is specified, the internal date SHOULD be set in the
 resulting message; otherwise, the internal date of the resulting
 message is set to the current date and time by default.

 If the append is unsuccessful for any reason, the mailbox MUST be
 restored to its state before the APPEND attempt; no partial appending
 is permitted.

 If the destination mailbox does not exist, a server MUST return an
 error, and MUST NOT automatically create the mailbox. Unless it is
 certain that the destination mailbox can not be created, the server
 MUST send the response code "[TRYCREATE]" as the prefix of the text
 of the tagged NO response. This gives a hint to the client that it
 can attempt a CREATE command and retry the APPEND if the CREATE is
 successful.

Melnikov Expires April 20, 2016 [Page 31]

Internet-Draft DMAP October 2015

 If the mailbox is currently selected, the normal new message actions
 MUST occur. Specifically, the server MUST notify the client
 immediately via an untagged EXISTS response.

 Note: The APPEND command is not used for message submission.

7.4. Client Commands - Authenticated State - Key Ring Management

 This section describes user's key ring management commands: GETKEY,
 ADDKEY, DELETEKEY, LISTKEYS.

7.4.1. GETKEY Command

 Arguments: key ID
 key part indicator (PRIVATE, PUBLIC or BOTH)

 Responses: REQUIRED untagged responses: KEY

 Result: OK - getkey completed
 NO - getkey failure: the key with key id was not found
 BAD - arguments invalid

 The GETKEY command requests the server to return private key, public
 key or both.

7.4.2. ADDKEY Command

 Arguments: key ID
 Signet Signing Request (might contain public key or both
 public and private key)

 Responses: none

 Result: OK - addkey completed
 NO - addkey failure: the key already exists or storage
 failure
 BAD - arguments invalid

 The ADDKEY command requests the server to add the specified public
 key or both public key and the corresponding private key to the key
 ring. [[CREF18: Whether both or just public key are uploaded depends
 on the DMAP mode.]]

 It is an error to add a key with the key id which already exists.
 [[CREF19: Add more details about the response code to be returned in
 such case.]] DELETEKEY should be used first to delete such key.

Melnikov Expires April 20, 2016 [Page 32]

Internet-Draft DMAP October 2015

7.4.3. DELETEKEY Command

 Arguments: key ID

 Responses: none

 Result: OK - deletekey completed
 NO - deletekey failure: the key is not found
 BAD - arguments invalid

 The DELETEKEY command requests the server to delete the corresponding
 public (and the associated private, if exists) key using the key
 identifier.

 DELETEKEY MUST fail with a tagged NO response if there are any
 messages on the server associated with the key id or if the expiry of
 the key hasn't been reached.

7.4.4. LISTKEYS Command

 Arguments: None

 Responses: KEY untagged response for each key

 Result: OK - listkeys completed
 NO - listkeys failure: no status for that name
 BAD - arguments invalid

 The LISTKEYS command requests the server to return key ids of all
 keys in the key ring. Each key id is returned using the KEY untagged
 response which doesn't include anything other than the key id.

7.5. Client Commands - Authenticated State - Signet Ring Management

 This section describes signet ring management commands: GETSIGNET,
 ADDSIGNET, DELETESIGNET, LISTSIGNETS.

 [[CREF20: TBD. Email address is used instead of key id to
 get/add/delete/list. LISTSIGNETS should allow for wildcards.]]

7.6. Client Commands - Selected State

 In the selected state, commands that manipulate messages in a mailbox
 are permitted.

 In addition to the universal commands (CAPABILITY, NOOP, and LOGOUT),
 and the authenticated state commands (SELECT, EXAMINE, CREATE,
 DELETE, RENAME, SUBSCRIBE, UNSUBSCRIBE, LIST, STATUS and APPEND), the

Melnikov Expires April 20, 2016 [Page 33]

Internet-Draft DMAP October 2015

 following commands are valid in the selected state: CLOSE, EXPUNGE,
 SEARCH , FETCH, STORE, COPY, SUBMIT and UID.

7.6.1. CLOSE Command

 Arguments: none

 Responses: no specific responses for this command

 Result: OK - close completed, now in authenticated state
 BAD - command unknown or arguments invalid

 The CLOSE command permanently removes all messages that have the
 \Deleted flag set from the currently selected mailbox, and returns to
 the authenticated state from the selected state. No untagged EXPUNGE
 responses are sent.

 No messages are removed, and no error is given, if the mailbox is
 selected by an EXAMINE command or is otherwise selected read-only.

 Even if a mailbox is selected, a SELECT, EXAMINE, or LOGOUT command
 MAY be issued without previously issuing a CLOSE command. The
 SELECT, EXAMINE, and LOGOUT commands implicitly close the currently
 selected mailbox without doing an expunge. However, when many
 messages are deleted, a CLOSE-LOGOUT or CLOSE-SELECT sequence is
 considerably faster than an EXPUNGE-LOGOUT or EXPUNGE-SELECT because
 no untagged EXPUNGE responses (which the client would probably
 ignore) are sent.

7.6.2. EXPUNGE Command

 Arguments: none

 Responses: untagged responses: EXPUNGE

 Result: OK - expunge completed
 NO - expunge failure: can't expunge (e.g., permission
 denied)
 BAD - command unknown or arguments invalid

 [[CREF21: Switch to returning UIDs in EXPUNGE response?]] The EXPUNGE
 command permanently removes all messages that have the \Deleted flag
 set from the currently selected mailbox. Before returning an OK to
 the client, an untagged EXPUNGE response is sent for each message
 that is removed. Note that if any messages with the \Recent flag set
 are expunged, an untagged RECENT response is sent after the untagged
 EXPUNGE(s) to update the client's count of RECENT messages.

Melnikov Expires April 20, 2016 [Page 34]

Internet-Draft DMAP October 2015

7.6.3. SEARCH Command

 Arguments: searching criteria (one or more)

 Responses: REQUIRED untagged response: SEARCH

 Result: OK - search completed
 NO - search error: can't search that criteria
 BAD - command unknown or arguments invalid

 The SEARCH command searches the mailbox for messages that match the
 given searching criteria. Searching criteria consist of one or more
 search keys. The untagged SEARCH response from the server contains a
 listing of message sequence numbers corresponding to those messages
 that match the searching criteria.

 When multiple keys are specified, the result is the intersection (AND
 function) of all the messages that match those keys. For example,
 the criteria DELETED SINCE 1-Feb-2015 refers to all deleted messages
 that were placed in the mailbox since February 1, 2015. A search key
 can also be a parenthesized list of one or more search keys (e.g.,
 for use with the OR and NOT keys).

 In all search keys that use strings, a message matches the key if the
 string is a substring of the associated text. The matching is case-
 insensitive. Note that the empty string is a substring.

 The defined search keys are as follows. Refer to the Formal Syntax
 section for the precise syntactic definitions of the arguments.

 <sequence set> Messages with message sequence numbers corresponding
 to the specified message sequence number set.

 ALL All messages in the mailbox; the default initial key for ANDing.

 BEFORE <date> Messages whose internal date (disregarding time and
 timezone) is earlier than the specified date.

 DELETED Messages with the \Deleted flag set.

 LARGER <n> Messages with an [RFC-5322] size larger than the
 specified number of octets.

 NOT <search-key> Messages that do not match the specified search
 key.

 ON <date> Messages whose internal date (disregarding time and
 timezone) is within the specified date.

https://datatracker.ietf.org/doc/html/rfc5322

Melnikov Expires April 20, 2016 [Page 35]

Internet-Draft DMAP October 2015

 OR <search-key1> <search-key2> Messages that match either search
 key.

 SEEN Messages that have the \Seen flag set.

 SINCE <date> Messages whose internal date (disregarding time and
 timezone) is within or later than the specified date.

 SMALLER <n> Messages with an [RFC-5322] size smaller than the
 specified number of octets.

 UID <sequence set> Messages with unique identifiers corresponding to
 the specified unique identifier set. Sequence set ranges are
 permitted.

 UNDELETED Messages that do not have the \Deleted flag set.

 UNSEEN Messages that do not have the \Seen flag set.

7.6.4. FETCH Command

 Arguments: sequence set
 message data item names or macro

 Responses: untagged responses: FETCH

 Result: OK - fetch completed
 NO - fetch error: can't fetch that data
 BAD - command unknown or arguments invalid

 The FETCH command retrieves data associated with a message in the
 mailbox. The data items to be fetched can be either a single atom or
 a parenthesized list.

 [[CREF22: Make sure the following statement is true once ABNF is
 done.]] Most data items, identified in the formal syntax under the
 msg-att-static rule, are static and MUST NOT change for any
 particular message. Other data items, identified in the formal
 syntax under the msg-att-dynamic rule, MAY change, either as a result
 of a STORE command or due to external events.

 For example, if a client receives a BODYSTRUCTURE for a message
 when it already knows the envelope, it can safely ignore the newly
 transmitted body structure.

 There are three macros which specify commonly-used sets of data
 items, and can be used instead of data items. A macro must be used
 by itself, and not in conjunction with other macros or data items.

https://datatracker.ietf.org/doc/html/rfc5322

Melnikov Expires April 20, 2016 [Page 36]

Internet-Draft DMAP October 2015

 FAST Macro equivalent to: (FLAGS INTERNALDATE SIZE)

 FULL Macro equivalent to: (FLAGS INTERNALDATE SIZE BODYSTRUCTURE)

 The currently defined data items that can be fetched are:

 BODY[<section>]<<partial>>

 The content of a particular chunk or of the whole message. The
 section specification has the following syntax: <chunk-
 type>.<chunk-number>. For example "0.1" - the first Tracing
 chunk. "67.2" - the second Display-Content chunk. [[CREF23:
 This needs more thought. In particular, is nesting of body
 parts allowed?]]

 The section specification can be the empty string, in which
 case the content of the whole message is returned.

 It is possible to fetch a substring of the designated text.
 This is done by appending an open angle bracket ("<"), the
 octet position of the first desired octet, a period, the
 maximum number of octets desired, and a close angle bracket
 (">") to the part specifier. If the starting octet is beyond
 the end of the text, an empty string is returned.

 Any partial fetch that attempts to read beyond the end of the
 text is truncated as appropriate. A partial fetch that starts
 at octet 0 is returned as a partial fetch, even if this
 truncation happened.

 Note: This means that BODY[]<0.2048> of a 1500-octet message
 will return BODY[]<0> with a literal of size 1500, not
 BODY[].

 The \Seen flag is implicitly set; if this causes the flags to
 change, they SHOULD be included as part of the FETCH responses.

 BODY.PEEK[<section>]<<partial>> An alternate form of BODY[<section>]
 that does not implicitly set the \Seen flag.

 BODYSTRUCTURE

 [[CREF24: Decide if this is going to be binary or human
 readable (e.g. a list).]]

Melnikov Expires April 20, 2016 [Page 37]

Internet-Draft DMAP October 2015

 The BODYSTRUCTURE FETCH item contains basic information about
 all chunks of the message which enables clients to download
 only specific chunks of the message without downloading the
 whole message. This is computed by the server by extracting
 available chunk types and associated data from the message.
 This can provide performance improvements when dealing with big
 attachments.

 FLAGS The flags that are set for this message.

 META Encrypted block of data that represents mutable state
 associated with the message, such as encrypted flags. [[CREF25:
 TBD]]

 MODSEQ The message modification sequence. It is a 63 bit unsigned
 integer (expressed as a decimal), which changes every time
 message's flags or encrypted metadata block changes. [[CREF26:
 TBD]]

 INTERNALDATE The internal date of the message.

 SIZE The size of the message in octets.

 UID The unique identifier for the message.

7.6.5. STORE Command

 Arguments: sequence set
 message data item name
 value for message data item

 Responses: untagged responses: FETCH

 Result: OK - store completed
 NO - store error: can't store that data
 BAD - command unknown or arguments invalid

 The STORE command alters data associated with a message in the
 mailbox. Normally, STORE will return the updated value of the data
 with an untagged FETCH response. A suffix of ".SILENT" in the data
 item name prevents the untagged FETCH, and the server SHOULD assume
 that the client has determined the updated value itself or does not
 care about the updated value.

 Note: Regardless of whether or not the ".SILENT" suffix was used,
 the server SHOULD send an untagged FETCH response if a change to a
 message's flags from an external source is observed. The intent

Melnikov Expires April 20, 2016 [Page 38]

Internet-Draft DMAP October 2015

 is that the status of the flags is determinate without a race
 condition.

 The currently defined data items that can be stored are:

 FLAGS <flag list> Replace the flags for the message (other than
 \Recent) with the argument. The new value of the flags is
 returned as if a FETCH of those flags was done.

 FLAGS.SILENT <flag list> Equivalent to FLAGS, but without returning
 a new value.

 +FLAGS <flag list> Add the argument to the flags for the message.
 The new value of the flags is returned as if a FETCH of those
 flags was done.

 +FLAGS.SILENT <flag list> Equivalent to +FLAGS, but without
 returning a new value.

 -FLAGS <flag list> Remove the argument from the flags for the
 message. The new value of the flags is returned as if a FETCH of
 those flags was done.

 -FLAGS.SILENT <flag list> Equivalent to -FLAGS, but without
 returning a new value.

 Example: C: A003 STORE 2:4 +FLAGS (\Deleted)
 S: * 2 FETCH (FLAGS (\Deleted \Seen))
 S: * 3 FETCH (FLAGS (\Deleted))
 S: * 4 FETCH (FLAGS (\Deleted \Flagged \Seen))
 S: A003 OK STORE completed

7.6.6. COPY Command

 Arguments: sequence set
 mailbox name

 Responses: no specific responses for this command

 Result: OK - copy completed
 NO - copy error: can't copy those messages or to that
 name
 BAD - command unknown or arguments invalid

 The COPY command copies the specified message(s) to the end of the
 specified destination mailbox. The flags and internal date of the
 message(s) SHOULD be preserved, and the Recent flag SHOULD be set, in
 the copy.

Melnikov Expires April 20, 2016 [Page 39]

Internet-Draft DMAP October 2015

 If the destination mailbox does not exist, a server SHOULD return an
 error. It SHOULD NOT automatically create the mailbox. Unless it is
 certain that the destination mailbox can not be created, the server
 MUST send the response code "[TRYCREATE]" as the prefix of the text
 of the tagged NO response. This gives a hint to the client that it
 can attempt a CREATE command and retry the COPY if the CREATE is
 successful.

 If the COPY command is unsuccessful for any reason, server
 implementations MUST restore the destination mailbox to its state
 before the COPY attempt.

 Example: C: A003 COPY 2:4 MEETING
 S: A003 OK COPY completed

7.6.7. SUBMIT Command

 Arguments: message number of the message to send
 OPTIONAL list of delivery options (e.g. "delay submission
 until", etc.)

 Responses: FETCH response with updated message flags

 Result: OK - Message submitted for delivery
 NO - Submission error: can't move to the Sent mailbox,
 error
 in flags or date/time or message text
 BAD - arguments invalid

 The SUBMIT command submits the specified message using DMTP protocol.
 The server ensures that the current user key is used with the message
 being submitted, so the server MUST reject messages which don't
 contain a valid signature using the current signing key. The server
 MUST also ensure that the origin chunk provides the correct author
 information (which may be distinct from the "From" header embedded in
 the meta chunk). [[CREF27: Add DMIME reference here.]] The server
 also sets/clears some message flags in the process in order to
 prevent other DMAP clients from submitting the same message at the
 same time. This is described in more details below.

 [[CREF28: One of the delivery options can specify whether to move the
 submitted message to the Sent mailbox. TBD.]]

 Clients MUST NOT submit a message which is either not marked with the
 \SubmitPending keyword , or which is marked with the \Submitted
 keyword. Servers MUST reject such a command with a tagged NO bearing
 the SUBMISSIONRACE response code.

Melnikov Expires April 20, 2016 [Page 40]

Internet-Draft DMAP October 2015

 In the course of submission, servers MUST atomically add the
 \Submitted flag to the message. A transient state where the message
 is temporarily marked with both \Submitted and \SubmitPending flags
 MAY be hidden from any IMAP session or it MAY be visible in some or
 all of them.

 If the command succeeded, the message MUST be marked with the
 \Submitted flag, the \SubmitPending flag MUST be cleared and a FETCH
 response containing the message UID and its new flags MUST be sent.

 If the command fails, the server MUST clear both the \Submitted or
 \SubmitPending flags.

 Clients MUST be prepared to handle failing submission at any time.
 Servers MAY reject message submission for any reason.

 [[CREF29: Delivery options: TBD.]] The server MUST process all
 specified delivery options and their detailed options. The server
 MUST respond with a tagged BAD if the client used unrecognized or
 unannounced option, or if a recognized option is used in an invalid
 way. If the server cannot honor a recognized and announced option,
 it MUST respond with a tagged NO with the POLICYDENIED response code
 and the message MUST NOT be submitted, nor its flags changed.

7.6.8. UID Command

 Arguments: command name
 command arguments

 Responses: untagged responses: FETCH, SEARCH

 Result: OK - UID command completed
 NO - UID command error
 BAD - command unknown or arguments invalid

 The UID command has two forms. In the first form, it takes as its
 arguments a COPY, FETCH, or STORE command with arguments appropriate
 for the associated command. However, the numbers in the sequence set
 argument are unique identifiers instead of message sequence numbers.
 Sequence set ranges are permitted, but there is no guarantee that
 unique identifiers will be contiguous.

 A non-existent unique identifier is ignored without any error message
 generated. Thus, it is possible for a UID FETCH command to return an
 OK without any data or a UID COPY or UID STORE to return an OK
 without performing any operations.

Melnikov Expires April 20, 2016 [Page 41]

Internet-Draft DMAP October 2015

 In the second form, the UID command takes a SEARCH command with
 SEARCH command arguments. The interpretation of the arguments is the
 same as with SEARCH; however, the numbers returned in a SEARCH
 response for a UID SEARCH command are unique identifiers instead of
 message sequence numbers. For example, the command UID SEARCH 1:100
 UID 443:557 returns the unique identifiers corresponding to the
 intersection of two sequence sets, the message sequence number range
 1:100 and the UID range 443:557.

 Note: in the above example, the UID range 443:557 appears. The
 same comment about a non-existent unique identifier being ignored
 without any error message also applies here. Hence, even if
 neither UID 443 or 557 exist, this range is valid and would
 include an existing UID 495.

 Also note that a UID range of 559:* always includes the UID of the
 last message in the mailbox, even if 559 is higher than any
 assigned UID value. This is because the contents of a range are
 independent of the order of the range endpoints. Thus, any UID
 range with * as one of the endpoints indicates at least one
 message (the message with the highest numbered UID), unless the
 mailbox is empty.

 The number after the "*" in an untagged FETCH response is always a
 message sequence number, not a unique identifier, even for a UID
 command response. However, server implementations MUST implicitly
 include the UID message data item as part of any FETCH response
 caused by a UID command, regardless of whether a UID was specified as
 a message data item to the FETCH.

 Note: The rule about including the UID message data item as part of a
 FETCH response primarily applies to the UID FETCH and UID STORE
 commands, including a UID FETCH command that does not include UID as
 a message data item. Although it is unlikely that the other UID
 commands will cause an untagged FETCH, this rule applies to these
 commands as well.

 Example: C: A999 UID FETCH 4827313:4828442 FLAGS
 S: * 23 FETCH (FLAGS (\Seen) UID 4827313)
 S: * 24 FETCH (FLAGS (\Seen) UID 4827943)
 S: * 25 FETCH (FLAGS (\Seen) UID 4828442)
 S: A999 OK UID FETCH completed

7.7. Client Commands - Experimental/Expansion

Melnikov Expires April 20, 2016 [Page 42]

Internet-Draft DMAP October 2015

7.7.1. X<atom> Command

 Arguments: implementation defined

 Responses: implementation defined

 Result: OK - command completed
 NO - failure
 BAD - command unknown or arguments invalid

 Any command prefixed with an X is an experimental command. Commands
 which are not part of this specification, a standard or standards-
 track revision of this specification, or an IESG-approved
 experimental protocol, MUST use the X prefix.

 Any added untagged responses issued by an experimental command MUST
 also be prefixed with an X. Server implementations MUST NOT send any
 such untagged responses, unless the client requested it by issuing
 the associated experimental command.

 Example: C: a441 CAPABILITY
 S: * CAPABILITY DMAP XPIG-LATIN
 S: a441 OK CAPABILITY completed
 C: A442 XPIG-LATIN
 S: * XPIG-LATIN ow-nay eaking-spay ig-pay atin-lay
 S: A442 OK XPIG-LATIN ompleted-cay

8. Server Responses

 Server responses are in three forms: status responses, server data,
 and command continuation request. The information contained in a
 server response, identified by "Contents:" in the response
 descriptions below, is described by function, not by syntax. The
 precise syntax of server responses is described in the Formal Syntax
 section.

 The client MUST be prepared to accept any response at all times.

 Status responses can be tagged or untagged. Tagged status responses
 indicate the completion result (OK, NO, or BAD status) of a client
 command, and have a tag matching the command.

 Some status responses, and all server data, are untagged. An
 untagged response is indicated by the token "*" instead of a tag.
 Untagged status responses indicate server greeting, or server status
 that does not indicate the completion of a command (for example, an
 impending system shutdown alert). For historical reasons, untagged
 server data responses are also called "unsolicited data", although

Melnikov Expires April 20, 2016 [Page 43]

Internet-Draft DMAP October 2015

 strictly speaking, only unilateral server data is truly
 "unsolicited".

 Certain server data MUST be recorded by the client when it is
 received; this is noted in the description of that data. Such data
 conveys critical information which affects the interpretation of all
 subsequent commands and responses (e.g., updates reflecting the
 creation or destruction of messages).

 Other server data SHOULD be recorded for later reference; if the
 client does not need to record the data, or if recording the data has
 no obvious purpose (e.g., a SEARCH response when no SEARCH command is
 in progress), the data SHOULD be ignored.

 An example of unilateral untagged server data occurs when the DMAP
 connection is in the selected state. In the selected state, the
 server checks the mailbox for new messages as part of command
 execution. Normally, this is part of the execution of every command;
 hence, a NOOP command suffices to check for new messages. If new
 messages are found, the server sends untagged EXISTS and RECENT
 responses reflecting the new size of the mailbox. Server
 implementations that offer multiple simultaneous access to the same
 mailbox SHOULD also send appropriate unilateral untagged FETCH and
 EXPUNGE responses if another agent changes the state of any message
 flags or expunges any messages.

 Command continuation request responses use the token "+" instead of a
 tag. These responses are sent by the server to indicate acceptance
 of an incomplete client command and readiness for the remainder of
 the command.

8.1. Server Responses - Status Responses

 Status responses are OK, NO, BAD, PREAUTH and BYE. OK, NO, and BAD
 can be tagged or untagged. PREAUTH and BYE are always untagged.

 Status responses MAY include an OPTIONAL "response code". A response
 code consists of data inside square brackets in the form of an atom,
 possibly followed by a space and arguments. The response code
 contains additional information or status codes for client software
 beyond the OK/NO/BAD condition, and are defined when there is a
 specific action that a client can take based upon the additional
 information.

 The currently defined response codes are:

Melnikov Expires April 20, 2016 [Page 44]

Internet-Draft DMAP October 2015

 ALERT The human-readable text contains a special alert that MUST be
 presented to the user in a fashion that calls the user's attention
 to the message.

 CAPABILITY Followed by a list of capabilities. This can appear in
 the initial OK or PREAUTH response to transmit an initial
 capabilities list. This makes it unnecessary for a client to send
 a separate CAPABILITY command if it recognizes this response.

 PERMANENTFLAGS Followed by a parenthesized list of flags, indicates
 which of the known flags the client can change permanently. Any
 flags that are in the FLAGS untagged response, but not the
 PERMANENTFLAGS list, can not be set permanently. If the client
 attempts to STORE a flag that is not in the PERMANENTFLAGS list,
 the server will either ignore the change or store the state change
 for the remainder of the current session only. The PERMANENTFLAGS
 list can also include the special flag *, which indicates that it
 is possible to create new keywords by attempting to store those
 flags in the mailbox.

 READ-ONLY The mailbox is selected read-only, or its access while
 selected has changed from read-write to read-only.

 READ-WRITE The mailbox is selected read-write, or its access while
 selected has changed from read-only to read-write.

 TRYCREATE An APPEND or COPY attempt is failing because the target
 mailbox does not exist (as opposed to some other reason). This is
 a hint to the client that the operation can succeed if the mailbox
 is first created by the CREATE command.

 UIDNEXT Followed by a decimal number, indicates the next unique
 identifier value. Refer to Section 3.3.1.1 for more information.

 UIDVALIDITY Followed by a decimal number, indicates the unique
 identifier validity value. Refer to Section 3.3.1.1 for more
 information.

 Additional response codes defined by particular client or server
 implementations SHOULD be prefixed with an "X" until they are added
 to a revision of this protocol. Client implementations SHOULD ignore
 response codes that they do not recognize.

8.1.1. OK Response

 Contents: OPTIONAL response code
 human-readable text

Melnikov Expires April 20, 2016 [Page 45]

Internet-Draft DMAP October 2015

 The OK response indicates an information message from the server.
 When tagged, it indicates successful completion of the associated
 command. The human-readable text MAY be presented to the user as an
 information message. The untagged form indicates an information-only
 message; the nature of the information MAY be indicated by a response
 code.

 The untagged form is also used as one of three possible greetings at
 connection startup. It indicates that the connection is not yet
 authenticated and that an AUTHENTICATE command is needed.

 Example: S: * OK DMAP server ready
 [...]
 C: A001 SELECT mailbox
 [...]
 S: * OK [ALERT] System shutdown in 10 minutes
 S: A001 OK SELECT Completed

8.1.2. NO Response

 Contents: OPTIONAL response code
 human-readable text

 The NO response indicates an operational error message from the
 server. When tagged, it indicates unsuccessful completion of the
 associated command. The untagged form indicates a warning; the
 command can still complete successfully. The human-readable text
 describes the condition.

8.1.3. BAD Response

 Contents: OPTIONAL response code
 human-readable text

 The BAD response indicates an error message from the server. When
 tagged, it reports a protocol-level error in the client's command;
 the tag indicates the command that caused the error. The untagged
 form indicates a protocol-level error for which the associated
 command can not be determined; it can also indicate an internal
 server failure. The human-readable text describes the condition.

8.1.4. PREAUTH Response

 Contents: OPTIONAL response code
 human-readable text

 The PREAUTH response is always untagged, and is one of three possible
 greetings at connection startup. It indicates that the connection

Melnikov Expires April 20, 2016 [Page 46]

Internet-Draft DMAP October 2015

 has already been authenticated by external means; thus no
 AUTHENTICATE command is needed.

 Example: S: * PREAUTH DMAP server logged in as Smith

8.1.5. BYE Response

 Contents: OPTIONAL response code
 human-readable text

 The BYE response is always untagged, and indicates that the server is
 about to close the connection. The human-readable text MAY be
 displayed to the user in a status report by the client. The BYE
 response is sent under one of four conditions:

 1. as part of a normal logout sequence. The server will close the
 connection after sending the tagged OK response to the LOGOUT
 command.

 2. as a panic shutdown announcement. The server closes the
 connection immediately.

 3. as an announcement of an inactivity autologout. The server
 closes the connection immediately.

 4. as one of three possible greetings at connection startup,
 indicating that the server is not willing to accept a connection
 from this client. The server closes the connection immediately.

 The difference between a BYE that occurs as part of a normal LOGOUT
 sequence (the first case) and a BYE that occurs because of a failure
 (the other three cases) is that the connection closes immediately in
 the failure case. In all cases the client SHOULD continue to read
 response data from the server until the connection is closed; this
 will ensure that any pending untagged or completion responses are
 read and processed.

 Example: S: * BYE Autologout; idle for too long

8.2. Server Responses - Server and Mailbox Status

 These responses are always untagged. This is how server and mailbox
 status data are transmitted from the server to the client. Many of
 these responses typically result from a command with the same name.

Melnikov Expires April 20, 2016 [Page 47]

Internet-Draft DMAP October 2015

8.2.1. CAPABILITY Response

 Contents: capability listing

 The CAPABILITY response occurs as a result of a CAPABILITY command.
 The capability listing contains a space-separated listing of
 capability names that the server supports.

 The capability listing MUST include the atom "DMAP=...", which
 describes in which mode DMAP operates. It MUST be followed by one of
 "TRUSTFUL", "CAUTIOUS" or "PARANOID".

 A capability name which begins with "AUTH=" indicates that the server
 supports that particular authentication mechanism.

 Other capability names indicate that the server supports an
 extension, revision, or amendment to the DMAP protocol. Server
 responses MUST conform to this document until the client issues a
 command that uses the associated capability.

 Capability names MUST either begin with "X" or be standard or
 standards-track DMAP extensions, revisions, or amendments registered
 with IANA. A server MUST NOT offer unregistered or non-standard
 capability names, unless such names are prefixed with an "X".

 Client implementations SHOULD NOT require any capability name other
 than "DMAP", and MUST ignore any unknown capability names.

 A server MAY send capabilities automatically, by using the CAPABILITY
 response code in the initial PREAUTH or OK responses, and by sending
 an updated CAPABILITY response code in the tagged OK response as part
 of a successful authentication. It is unnecessary for a client to
 send a separate CAPABILITY command if it recognizes these automatic
 capabilities.

 Example: S: * CAPABILITY DMAP AUTH=GSSAPI XPIG-LATIN

8.2.2. STATUS Response

 Contents: encrypted mailbox name
 status parenthesized list

 The STATUS response occurs as a result of an STATUS command. It
 returns the mailbox name that matches the STATUS specification and
 the requested mailbox status information.

 Example: S: * STATUS blurdybloop (MESSAGES 231 UIDNEXT 44292)

Melnikov Expires April 20, 2016 [Page 48]

Internet-Draft DMAP October 2015

8.2.3. FLAGS Response

 Contents: flag parenthesized list

 The FLAGS response occurs as a result of a SELECT or EXAMINE command.
 The flag parenthesized list identifies the flags (at a minimum, the
 system-defined flags) that are applicable for this mailbox. Flags
 other than the system flags can also exist, depending on server
 implementation.

 The update from the FLAGS response MUST be recorded by the client.

 Example: S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)

8.3. Server Responses - Mailbox Size

 These responses are always untagged. This is how changes in the size
 of the mailbox are transmitted from the server to the client.
 Immediately following the "*" token is a number that represents a
 message count.

8.3.1. EXISTS Response

 Contents: none

 The EXISTS response reports the number of messages in the mailbox.
 This response occurs as a result of a SELECT or EXAMINE command, and
 if the size of the mailbox changes (e.g., new messages).

 The update from the EXISTS response MUST be recorded by the client.

 Example: S: * 23 EXISTS

8.4. Server Responses - Message Status

 [[CREF30: Get rid of message numbers altogether?]] These responses
 are always untagged. This is how message data are transmitted from
 the server to the client, often as a result of a command with the
 same name. Immediately following the "*" token is a number that
 represents a message sequence number.

8.4.1. FETCH Response

 Contents: message data

 The FETCH response returns data about a message to the client. The
 data are pairs of data item names and their values in parentheses.

Melnikov Expires April 20, 2016 [Page 49]

Internet-Draft DMAP October 2015

 This response occurs as the result of a FETCH or STORE command, as
 well as by unilateral server decision (e.g., flag updates).

 The current data items are:

 BODY[<section>]<<origin octet>>

 A string expressing the contents of the specified chunk or of
 the whole message. The section string has the following
 syntax: <chunk-type>.<number>. For example "0.1" - the first
 Tracing chunk. "67.2" - the second Display-Content chunk.
 [[CREF31: This needs more thought.]]

 The section specification can be the empty string, in which
 case the content of the whole message is returned.

 If the origin octet is specified, this string is a substring of
 the entire body contents, starting at that origin octet. This
 means that BODY[]<0> MAY be truncated, but BODY[] is NEVER
 truncated.

 Note: The origin octet facility MUST NOT be used by a server
 in a FETCH response unless the client specifically requested
 it by means of a FETCH of a BODY[<section>]<<partial>> data
 item.

 Binary data is allowed in responses.

 BODYSTRUCTURE

 [[CREF32: Decide if this is going to be binary or human
 readable (e.g. a list).]]

 The BODYSTRUCTURE FETCH item contains basic information about
 all chunks of the message which enables clients to download
 only specific chunks of the message without downloading the
 whole message. This can provide performance improvements when
 dealing with big attachments.

 For each chunk of the message, the BODYSTRUCTURE includes (in
 the following order):

 chunk type One octet (for binary representation).

 body size A number giving the size of the chunk in octets (3
 octets in network byte order for binary representation).

 FLAGS A parenthesized list of flags that are set for this message.

Melnikov Expires April 20, 2016 [Page 50]

Internet-Draft DMAP October 2015

 META Encrypted block of data that represents mutable state
 associated with the message, such as encrypted flags. [[CREF33:
 TBD]]

 MODSEQ A 63 bit unsigned integer (expressed as a decimal), which
 represents the message modification sequence. [[CREF34: TBD]]

 INTERNALDATE A string representing the internal date of the message
 (delivery date or date specified in the APPEND that created the
 message).

 SIZE A number expressing the size of the message in octets.

 UID A number expressing the unique identifier of the message.

 Example: S: * 23 FETCH (FLAGS (\Seen) SIZE 44827)

8.5. Server Responses - Command Continuation Request

 The command continuation request response is indicated by a "+" token
 instead of a tag. This form of response indicates that the server is
 ready to accept the continuation of a command from the client. The
 remainder of this response is a line of text.

 This response is used in the AUTHENTICATE command to transmit server
 data to the client, and request additional client data. This
 response is also used if an argument to any command is a literal.

 [[CREF35: Add non sync literals?]] The client is not permitted to
 send the octets of the literal unless the server indicates that it is
 expected. This permits the server to process commands and reject
 errors on a line-by-line basis. The remainder of the command,
 including the CRLF that terminates a command, follows the octets of
 the literal. If there are any additional command arguments, the
 literal octets are followed by a space and those arguments.

9. Sample DMAP connection

 The following is a transcript of an DMAP connection. A long line in
 this sample is broken for editorial clarity.

 TBD

10. Formal Syntax

 The following syntax specification uses the Augmented Backus-Naur
 Form (ABNF) notation as specified in [ABNF].

Melnikov Expires April 20, 2016 [Page 51]

Internet-Draft DMAP October 2015

 In the case of alternative or optional rules in which a later rule
 overlaps an earlier rule, the rule which is listed earlier MUST take
 priority. For example, "\Seen" when parsed as a flag is the \Seen
 flag name and not a flag-extension, even though "\Seen" can be parsed
 as a flag-extension. Some, but not all, instances of this rule are
 noted below.

 Note: [ABNF] rules MUST be followed strictly; in particular:

 (1) Except as noted otherwise, all alphabetic characters are case-
 insensitive. The use of upper or lower case characters to define
 token strings is for editorial clarity only. Implementations MUST
 accept these strings in a case-insensitive fashion.

 (2) In all cases, SP refers to exactly one space. It is NOT
 permitted to substitute TAB, insert additional spaces, or
 otherwise treat SP as being equivalent to LWSP.

 (3) The ASCII NUL character, %x00, MUST NOT be used at any time.

 TBD

11. Security Considerations

12. IANA Considerations

 IMAP4 capabilities are registered by publishing a standards track or
 IESG approved experimental RFC. The registry is currently located
 at: http://www.iana.org/assignments/dmap-capabilities

13. Normative References

 [ABNF] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [ANONYMOUS]
 Zeilenga, K., "Anonymous Simple Authentication and
 Security Layer (SASL) Mechanism", RFC 4505, June 2006,
 <http://www.rfc-editor.org/info/rfc4505>.

 [CHARSET] Freed, N. and J. Postel, "IANA Charset Registration
 Procedures", BCP 19, RFC 2978, October 2000,
 <http://www.rfc-editor.org/info/rfc2978>.

http://www.iana.org/assignments/dmap-capabilities
https://datatracker.ietf.org/doc/html/rfc5234
http://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc4505
http://www.rfc-editor.org/info/rfc4505
https://datatracker.ietf.org/doc/html/bcp19
https://datatracker.ietf.org/doc/html/rfc2978
http://www.rfc-editor.org/info/rfc2978

Melnikov Expires April 20, 2016 [Page 52]

Internet-Draft DMAP October 2015

 [DIGEST-MD5]
 Leach, P. and C. Newman, "Using Digest Authentication as a
 SASL Mechanism", RFC 2831, May 2000,
 <http://www.rfc-editor.org/info/rfc2831>.

 [DISPOSITION]
 Troost, R., Dorner, S., and K. Moore, Ed., "Communicating
 Presentation Information in Internet Messages: The
 Content-Disposition Header Field", RFC 2183, August 1997,
 <http://www.rfc-editor.org/info/rfc2183>.

 [PLAIN] Zeilenga, K., Ed., "The PLAIN Simple Authentication and
 Security Layer (SASL) Mechanism", RFC 4616, August 2006,
 <http://www.rfc-editor.org/info/rfc4616>.

 [KEYWORDS]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [LANGUAGE-TAGS]
 Alvestrand, H., "Content Language Headers", RFC 3282, May
 2002, <http://www.rfc-editor.org/info/rfc3282>.

 [LOCATION]
 Palme, J., Hopmann, A., and N. Shelness, "MIME
 Encapsulation of Aggregate Documents, such as HTML
 (MHTML)", RFC 2557, March 1999,
 <http://www.rfc-editor.org/info/rfc2557>.

 [MD5] Myers, J. and M. Rose, "The Content-MD5 Header Field",
RFC 1864, October 1995,

 <http://www.rfc-editor.org/info/rfc1864>.

 [MIME-HDRS]
 Moore, K., "MIME (Multipurpose Internet Mail Extensions)
 Part Three: Message Header Extensions for Non-ASCII Text",

RFC 2047, November 1996,
 <http://www.rfc-editor.org/info/rfc2047>.

 [MIME-IMB]
 Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996,
 <http://www.rfc-editor.org/info/rfc2045>.

https://datatracker.ietf.org/doc/html/rfc2831
http://www.rfc-editor.org/info/rfc2831
https://datatracker.ietf.org/doc/html/rfc2183
http://www.rfc-editor.org/info/rfc2183
https://datatracker.ietf.org/doc/html/rfc4616
http://www.rfc-editor.org/info/rfc4616
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3282
http://www.rfc-editor.org/info/rfc3282
https://datatracker.ietf.org/doc/html/rfc2557
http://www.rfc-editor.org/info/rfc2557
https://datatracker.ietf.org/doc/html/rfc1864
http://www.rfc-editor.org/info/rfc1864
https://datatracker.ietf.org/doc/html/rfc2047
http://www.rfc-editor.org/info/rfc2047
https://datatracker.ietf.org/doc/html/rfc2045
http://www.rfc-editor.org/info/rfc2045

Melnikov Expires April 20, 2016 [Page 53]

Internet-Draft DMAP October 2015

 [MIME-IMT]
 Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 November 1996, <http://www.rfc-editor.org/info/rfc2046>.

 [RFC-5322]
 Resnick, P., Ed., "Internet Message Format", RFC 5322,
 October 2008, <http://www.rfc-editor.org/info/rfc5322>.

 [SASL] Melnikov, A., Ed. and K. Zeilenga, Ed., "Simple
 Authentication and Security Layer (SASL)", RFC 4422, June
 2006, <http://www.rfc-editor.org/info/rfc4422>.

 [TLS] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

Appendix A. Change Log

 1. TBD

Appendix B. Acknowledgement

 This protocol was born after discussions with Ladar Levison. However
 he might not necessarily agree with its content and all errors belong
 to the editor of this document.

 This document is heavily influenced by IMAP (RFC 3501) by Mark
 Crispin.

 This document borrows some text from draft-kundrat-imap-submit-02.txt

Index

 +
 +FLAGS <flag list> 39
 +FLAGS.SILENT <flag list> 39

 -
 -FLAGS <flag list> 39
 -FLAGS.SILENT <flag list> 39

 A
 ADDKEY (command) 32
 ALERT (response code) 45
 ALL (search key) 35
 APPEND (command) 31
 AUTHENTICATE (command) 22

https://datatracker.ietf.org/doc/html/rfc2046
http://www.rfc-editor.org/info/rfc2046
https://datatracker.ietf.org/doc/html/rfc5322
http://www.rfc-editor.org/info/rfc5322
https://datatracker.ietf.org/doc/html/rfc4422
http://www.rfc-editor.org/info/rfc4422
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/draft-kundrat-imap-submit-02.txt

Melnikov Expires April 20, 2016 [Page 54]

Internet-Draft DMAP October 2015

 B
 BAD (response) 46
 BODY.PEEK[<section>]<<partial>> (fetch item) 37
 BODYSTRUCTURE (fetch item) 37
 BODYSTRUCTURE (fetch result) 50
 BODY[<section>]<<origin octet>> (fetch result) 50
 BODY[<section>]<<partial>> (fetch item) 37
 BYE (response) 47
 Body Structure (message attribute) 12

 C
 CAPABILITY (command) 20
 CAPABILITY (response code) 45
 CAPABILITY (response) 48
 CLOSE (command) 34
 COPY (command) 39
 CREATE (command) 25

 D
 DELETE (command) 26
 DELETED (search key) 35
 DELETEKEY (command) 33

 E
 EXAMINE (command) 25
 EXPUNGE (command) 34

 F
 FAST (fetch item) 37
 FETCH (command) 36
 FETCH (response) 49
 FLAGS (fetch item) 38
 FLAGS (fetch result) 50
 FLAGS (response) 49
 FLAGS <flag list> (store command data item) 39
 FLAGS.SILENT <flag list> (store command data item) 39
 FULL (fetch item) 37
 Flags (message attribute) 11

 G
 GETKEY (command) 32

 I
 INTERNALDATE (fetch item) 38
 INTERNALDATE (fetch result) 51
 Internal Date (message attribute) 12

 K

Melnikov Expires April 20, 2016 [Page 55]

Internet-Draft DMAP October 2015

 Keyword (type of flag) 12

 L
 LARGER <n> (search key) 35
 LIST (command) 29
 LISTKEYS (command) 33
 LOGOUT (command) 21

 M
 MAY (specification requirement term) 5
 MESSAGES (status item) 31
 META (fetch result) 38, 51
 MODSEQ (fetch result) 38, 51
 MUST (specification requirement term) 5
 MUST NOT (specification requirement term) 5
 Message Sequence Number (message attribute) 10
 Modification Sequence (message attribute) 12

 N
 NO (response) 46
 NOOP (command) 21
 NOT <search-key> (search key) 35

 O
 OK (response) 45
 ON <date> (search key) 35
 OPTIONAL (specification requirement term) 5
 OR <search-key1> <search-key2> (search key) 36

 P
 PERMANENTFLAGS (response code) 45
 PREAUTH (response) 46
 Permanent Flag (class of flag) 12

 R
 READ-ONLY (response code) 45
 READ-WRITE (response code) 45
 RECOMMENDED (specification requirement term) 5
 RENAME (command) 27
 REQUIRED (specification requirement term) 5

 S
 SEARCH (command) 35
 SEEN (search key) 36
 SELECT (command) 24
 SHOULD (specification requirement term) 5
 SHOULD NOT (specification requirement term) 5
 SINCE <date> (search key) 36

Melnikov Expires April 20, 2016 [Page 56]

Internet-Draft DMAP October 2015

 SIZE (fetch item) 38
 SIZE (fetch result) 51
 SMALLER <n> (search key) 36
 STATUS (command) 30
 STATUS (response) 48
 STORE (command) 38
 SUBMIT (command) 40
 SUBSCRIBE (command) 28
 Session Flag (class of flag) 12
 Size (message attribute) 12
 System Flag (type of flag) 11

 T
 TRYCREATE (response code) 45

 U
 UID (command) 41
 UID (fetch item) 38
 UID (fetch result) 51
 UID <sequence set> (search key) 36
 UIDNEXT (response code) 45
 UIDNEXT (status item) 31
 UIDVALIDITY (response code) 45
 UIDVALIDITY (status item) 31
 UNDELETED (search key) 36
 UNSEEN (search key) 36
 UNSEEN (status item) 31
 UNSUBSCRIBE (command) 28
 Unique Identifier (UID) (message attribute) 9

 X
 X<atom> (command) 43

 \
 \Answered (system flag) 11
 \Deleted (system flag) 11
 \Draft (system flag) 11
 \Flagged (system flag) 11
 \Forwarded (system flag) 11
 \Seen (system flag) 11
 \Submitted and \SubmitPending (system flags) 11

Author's Address

Melnikov Expires April 20, 2016 [Page 57]

Internet-Draft DMAP October 2015

 Alexey Melnikov (editor)
 Isode Ltd
 14 Castle Mews
 Hampton, Middlesex TW12 2NP
 UK

 Email: Alexey.Melnikov@isode.com

Melnikov Expires April 20, 2016 [Page 58]

