
Internet Draft: IMAP Extension for Conditional STORE A. Melnikov
Document: draft-melnikov-imap-condstore-09.txt S. Hole
Expires: June 2003 ACI WorldWide/MessagingDirect
 December 2002

IMAP Extension for Conditional STORE operation

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026. Internet-Drafts are
 working documents of the Internet Engineering Task Force (IETF), its
 areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt. The list of Internet-

 Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The Internet Society 2001-2002. All Rights Reserved.

0.1. Open issues

 1). Should conditional STORE be atomic accross message set (i.e. either
 all messages in message set weren't changed since and conditional
 STORE succeeds or operation fails for all messages)?
 This can be difficult to implement for some servers.

0.2. Change History

 Changes from -08 to -09:
 1. Added an extended example about reporting regular (non-conditional)
flag
 changes to other sessions.
 2. Simplified FETCH MODSEQ syntax by removing per-metadata requests and
 responses.

 Changes from -07 to -08:
 1. Added note saying the change to UIDVALIDITY also invalidates
HIGHESTMODSEQ.
 2. Fixed several bugs in ABNF for STATUS and STORE commands.

https://datatracker.ietf.org/doc/html/draft-melnikov-imap-condstore-09.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 Changes from -06 to -07:
 1. Added clarification that when a server does command reordering, the
second
 completed operation gets the higher mod sequence.
 2. Renamed annotation type specifier "both" to "all" as per suggestion
 from Minneapolis meeting.
 3. Removed PERFLAGMODSEQ capability, as it doesn't buy anything: a
client
 has to work with both types of servers (i.e. servers that support per
 message per flag modseqs and servers that support only per message
 modseqs) anyway.
 4. Per flag modsequences are optional for a server to return. Updated
syntax.
 5. Allow MODSEQ response code only as a result of SEARCH/SORT as
suggested
 by John Myers. MODSEQ response code is not allowed after FETCH or
STORE.

 Changes from -05 to -06:
 1. Replaced "/message/flags/system" with "/message/flags" to
 match ANNOTATE draft.
 2. Extended FETCH/SEARCH/SORT syntax to allow for specifying
 whether an operation should be performed on a shared or a private
 annotation (or both).
 3. Corrected some examples.

 Changes from -04 to -05:
 1. Added support for SORT extension.
 2. Multiple language/spelling fixes by Randall Gellens.

 Changes from -03 to -04:
 1. Added text saying that MODSEQ fetch data items cause server
 to include MODSEQ data response in all subsuquent unsolicited FETCH
 responses.
 2. Added "authors address" section.

 Changes from -02 to -03:
 1. Changed MODTIME untagged response to MODTIME response code.
 2. Added MODTIME response code to the tagged OK response for SEARCH.
 Updated examples accordingly.
 3. Changed rule for sending untagged FETCH response as a result of
 STORE when .SILENT prefix is used. If .SILENT prefix is used,
 server doesn't have to send untagged FETCH response, because
 MODTIME response code already contains modtime.
 4. Renamed MODTIME to MODSEQ to make sure there is no confusion
 between mod-sequence and ACAP modtime.
 5. Minor ABNF changes.
 6. Minor language corrections.

 Changes from -01 to -02:

 1. Added MODTIME data item to STATUS command.
 2. Added OK untagged response to SELECT/EXAMINE.
 3. Clarified that MODIFIED response code contains list of UIDs for
 conditional UID STORE and message set for STORE.
 4. Added per-message modtime.
 5. Added PERFLAGMODTIME capability.
 6. Fixed several bugs in examples.
 7. Added more comments to ABNF.

 Changes from -00 to -01:
 1. Refreshed the list of Open Issues.
 2. Changed "attr-name" to "entry-name", because modtime applies to
 entry, not attribute.
 3. Added MODTIME untagged response.
 4. Cleaned up ABNF.
 5. Added "Acknowledgments" section.
 6. Fixed some spelling mistakes.

 Table of Contents

 1 Abstract .. X
 2 Conventions Used in This Document X
 3 Introduction and Overview X
 4 IMAP Protocol Changes X
 4.1 New OK untagged responses for SELECT and EXAMINE X
 4.1.1 HIGHESTMODSEQ response code X
 4.2 STORE and UID STORE Commands X
 4.3 MODSEQ message data item in FETCH Command X
 4.4 MODSEQ search criterion in SEARCH X
 4.5 MODSEQ Sort Criterion X
 4.6 MODSEQ Response code for successful SEARCH and SORT X
 4.7 HIGHESTMODSEQ status data items X
 5 Formal Syntax ... X
 6 Security Considerations X
 7 References .. X
 7.1 Normative References X
 7.2 Informative References X
 8 Acknowledgments ... X
 9 Author's Addresses .. X
 10 Full Copyright Statement X

1. Abstract

 Often, multiple IMAP clients need to coordinate changes to a common
 IMAP mailbox. Examples include different clients for the same user,
 and multiple users accessing shared mailboxes. These clients
 need a mechanism to synchronize state changes for messages within the
 mailbox. They must be able to guarantee that only one client can change
 message state (e.g., message flags or annotations) at any time. An

 example of such an application is use of an IMAP mailbox as a message
 queue with multiple dequeueing clients.

 The Conditional Store facility provides a protected update mechanism for
 message state information that can detect and resolve conflicts between
 multiple writers.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [KEYWORDS].

 In examples, lines beginning with "S:" are sent by the IMAP server, and
 lines beginning with "C:" are sent by the client. Line breaks may appear
 in example commands solely for editorial clarity; when present in
 the actual message they are represented by "CRLF".

 Formal syntax is defined using ABNF [ABNF] as modified by [IMAP4].

 The term "metadata" or "metadata item" is used throughout this document.
 It refers to any system or user defined keyword or an annotation
 [ANNOTATE].

 Some IMAP mailboxes are private, accessible only to the owning user.
 Other mailboxes are not, either because the owner has set an ACL
 [ACL] which permits access by other users, or because it is a
 shared mailbox. Let's call a metadata item "shared" for the mailbox
 if any changes to the metadata items are persistent and visible to all
 other users accessing the mailbox. Otherwise the metadata item is called
 "private". Note, that private metadata items are still visible to all
 sessions accessing the mailbox as the same user. Also note, that different
 mailboxes may have different metadata items as shared.

3. Introduction and Overview

 The Conditional STORE extension is present in any IMAP4 implementation
 which returns "CONDSTORE" as one of the supported capabilities in the
 CAPABILITY command response.

 Every IMAP message has an associated positive unsigned 64-bit value called
a
 modification sequence (mod-sequence). This is an opaque value updated by
 the server whenever a metadata item is modified. The value is intended to
 be used only for comparisons within a server. However, the server MUST
 guarantee that each STORE command performed on the same mailbox, including
 simultaneous stores to different metadata items from different connections,
 will get a different mod-sequence value. Also, for any two successfull
 STORE operations performed in the same session on the same mailbox,
 the mod-sequence of the second completed operation MUST be greater than

https://datatracker.ietf.org/doc/html/rfc2119

 the mod-sequence of the first completed. Note that the latter rule
disallows
 the use of the system clock as a mod-sequence, because if system time
changes
 (e.g., a NTP [NTP] client adjusting the time), the next generated value
might
 be less than the previous one.

 Mod-sequences allow a client that supports the CONDSTORE extension to
 determine if a message metadata has changed since some known
 moment. Whenever the state of a flag changes (i.e., the flag is added and
 before it wasn't set, or the flag is removed and before it was set) the
 value of the modification sequence for the message MUST be updated.
 Adding the flag when it is already present or removing when it is not
 present SHOULD NOT change the mod-sequence.

 When a message is appended to a mailbox (via the IMAP APPEND command,
 COPY to the mailbox or using an external mechanism) the server
 generates a new modification sequence that is higher than the highest
 modification sequence of all messages in the mailbox and assigns it to
 the appended message.

 When an annotation is added, modified or removed the corresponding message
 mod-sequence MUST be updated.

 The server MAY store separate (per message) modification sequence values
for
 different metadata items. If the server does so, per message modsequence is
 the highest modsequence of all metadata items for the specified message.

 This extension makes the following changes to the IMAP4 protocol:

 a) extends the syntax of the STORE command to allow STORE
 modifiers

 b) adds the MODIFIED response code which should be used with
 a NO response to the STORE command

 c) adds a new MODSEQ message data item for use with the FETCH command

 d) adds a new MODSEQ search criterion

 e) adds a new MODSEQ response code

 f) adds a new OK untagged responses for the SELECT and EXAMINE commands

 g) adds the HIGHESTMODSEQ status data item to the STATUS command

 h) adds a new MODSEQ sort criterion

 The rest of this document describes the protocol changes more rigorously.

4. IMAP Protocol Changes

4.1. New OK untagged responses for SELECT and EXAMINE

4.1.1. HIGHESTMODSEQ response code

 This document adds a new response code that is returned in the OK
 untagged response for the SELECT and EXAMINE commands. A server
 supporting the CONDSTORE extension MUST send the OK untagged
 response including HIGHESTMODSEQ response code with every successful
 SELECT or EXAMINE command:

 OK [HIGHESTMODSEQ <mod-sequence-value>]

 Where <mod-sequence-value> is the highest mod-sequence value of all
 messages in the mailbox. When the server changes UIDVALIDITY for a
 mailbox, it doesn't have to keep the same HIGHESTMODSEQ for the
 mailbox.

 A disconnected client can use the value of HIGHESTMODSEQ to check if
 it has to refetch flags and/or annotations from the server. If the
 UIDVALIDITY value has changed for the selected mailbox, the client
 MUST delete the cached value of HIGHESTMODSEQ. If UIDVALIDITY for
 the mailbox is the same and if the HIGHESTMODSEQ value stored in
 the client's cache is less than the value returned by the server,
 then some metadata items on the server have changed since the last
 synchronization, and the client needs to update its cache. The client
 MAY use SEARCH MODSEQ as described in section 4.4 to find out exactly
 which metadata items have changed.

 Example: C: A142 SELECT INBOX
 S: * 172 EXISTS
 S: * 1 RECENT
 S: * OK [UNSEEN 12] Message 12 is first unseen
 S: * OK [UIDVALIDITY 3857529045] UIDs valid
 S: * OK [UIDNEXT 4392] Predicted next UID
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS (\Deleted \Seen *)] Limited
 S: * OK [HIGHESTMODSEQ 20010715194045007]
 S: A142 OK [READ-WRITE] SELECT completed

4.2. STORE and UID STORE Commands

 Arguments: message set
 OPTIONAL store modifiers
 message data item name
 value for message data item

 Responses: untagged responses: FETCH

 Result: OK - store completed
 NO - store error: can't store that data
 BAD - command unknown or arguments invalid

 This document extends the syntax of the STORE and UID STORE
 commands (see section 6.4.6 of [IMAP]) to include an optional STORE
 modifier. The document defines the following modifier:

 UNCHANGEDSINCE
 If the mod-sequence of any metadata item specified in the STORE
 operation for any message in the message set is greater than the
 specified unchangedsince value, then the command fails.
 On failure, a MODIFIED response code is returned which includes
 the message set (for STORE) or set of UIDs (for UID STORE)
 of all messages that failed the UNCHANGESINCE test.

 Example:

 C: a101 STORE 7,5,9 (UNCHANGEDSINCE 20000320162338)
 +FLAGS.SILENT (\Deleted)
 S: a101 NO [MODIFIED 7,9] Conditional STORE failed

 In spite of the failure of the conditional STORE operation
 for message 7, the server continues to process the conditional
 STORE in order to find all messages which fail the test.

 Use of UNCHANGEDSINCE with a modification sequence of 0
 always fails if the metadata item exists.

 Example:

 C: a102 STORE 12 (UNCHANGEDSINCE 0)
 +FLAGS.SILENT ($MDNSent)
 S: a102 NO [MODIFIED 12] Conditional STORE failed

 If the operation is successful the server MUST update the
 mod-sequence attribute for every message that was changed.
 Untagged FETCH responses MUST be sent (even if .SILENT is
 specified) and each response MUST include MODSEQ message data
 item if its mod-sequence has changed. This is required to
 update clients cache with the correct mod-sequence values.
 See section 4.3 for more details.

 Example:

 C: a103 UID STORE 6,4,8 (UNCHANGEDSINCE 200012121230045)
 +FLAGS.SILENT (\Deleted)
 S: * 1 FETCH (UID 4 MODSEQ (200012121231000))
 S: * 2 FETCH (UID 6 MODSEQ (200012101230852))
 S: * 4 FETCH (UID 8 MODSEQ (200012121130956))

 S: a103 OK Conditional Store completed

 Example:

 C: a104 STORE * (UNCHANGEDSINCE 200012121230045) +FLAGS.SILENT
 (\Deleted $Processed)
 S: * 50 FETCH (MODSEQ (200012111230045))
 S: a104 OK Store (conditional) completed

 Note: If a message is specified multiple times in the message
 set, and the server doesn't internally eliminate duplicates from
 the message set, it MUST NOT fail the conditional STORE
 operation for the second (or subsequent) occurrence of the message
 if the operation completed successfully for the first occurrence.
 For example, if the client specifies:

 a100 STORE 7,3:9 (UNCHANGEDSINCE 200012121230045)
 +FLAGS.SILENT (\Deleted)

 the server must not fail the operation for message 7 as part of
 processing "3:9" if it succeeded when message 7 was processed
 the first time.

4.3. MODSEQ message data item in FETCH Command

 This extension adds a MODSEQ message data item to the FETCH command.
 The MODSEQ message data item allows clients to retrieve mod-sequence
 values for a range of messages in the currently selected mailbox.

 Once the client specified the MODSEQ message data item in a FETCH request,
 the server MUST include the MODSEQ fetch response data items in all
 subsequent unsolicited FETCH responses.

 Syntax: MODSEQ [<entry-names>]

 The MODSEQ message data item causes the server to return MODSEQ fetch
 response data items.

 Syntax: MODSEQ (<permsg-modsequence>)

 MODSEQ response data items contain per-message mod-sequences.

 The MODSEQ response data item is returned if the client issued FETCH
with
 MODSEQ message data item. It also allows the server to notify the
client
 about mod-sequence changes caused by conditional STOREs (section 4.2)
and/or
 changes caused by external sources.

 Example:

 C: a FETCH 1:3 (MODSEQ)
 S: * 1 FETCH (MODSEQ (20000624140003))
 S: * 2 FETCH (MODSEQ (20000624140007))
 S: * 3 FETCH (MODSEQ (20000624140005))
 S: a OK Fetch complete

 In this example the client requests per message modsequences for a
 set of messages.

 When a flag for a message is modified in a different session, the
server
 sends an unsolicited FETCH response containing the modsequence for the
 message.

 Example:

 (Session 1, authenticated as a user "alex"). The user adds a shared
 flag \Deleted:

 C: A142 SELECT INBOX
 ...
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS (\Answered \Deleted \Seen *)] Limited
 ...

 C: A160 STORE 7 +FLAGS.SILENT (\Deleted)
 S: * 7 FETCH (MODSEQ (200012121231000))
 S: A160 OK Store completed

 (Session 2, also authenticated as the user "alex"). Any changes to
flags
 are always reported to all sessions authenticated as the same user as
in
 the session 1.

 C: C180 NOOP
 S: * 7 FETCH (FLAGS (\Deleted \Answered) MODSEQ (200012121231000))
 S: C180 OK Noop completed

 (Session 3, authenticated as a user "andrew"). As \Deleted is a shared
 flag, changes in the session 1 are also reported in the session 3:

 C: D210 NOOP
 S: * 7 FETCH (FLAGS (\Deleted \Answered) MODSEQ (200012121231000))
 S: D210 OK Noop completed

 The user modifies a private flag \Seen in the session 1 ...

 C: A240 STORE 7 +FLAGS.SILENT (\Seen)
 S: * 7 FETCH (MODSEQ (200012121231777))

 S: A240 OK Store completed

 ... which is only reported in the session 2 ...

 C: C270 NOOP
 S: * 7 FETCH (FLAGS (\Deleted \Answered \Seen) MODSEQ
(200012121231777))
 S: C270 OK Noop completed

 ... but not in the session 3.

 C: D300 NOOP
 S: D300 OK Noop completed

 And finally the user removes flags \Answered (shared) and \Seen
(private)
 in the session 1.

 C: A330 STORE 7 -FLAGS.SILENT (\Answered \Seen)
 S: * 7 FETCH (MODSEQ (200012121245160))
 S: A330 OK Store completed

 Both changes are reported in the session 2 ...

 C: C360 NOOP
 S: * 7 FETCH (FLAGS (\Deleted) MODSEQ (200012121245160))
 S: C360 OK Noop completed

 ... and only changes to shared flags are reported in session 3.

 C: D390 NOOP
 S: * 7 FETCH (FLAGS (\Deleted) MODSEQ (200012121245160))
 S: D390 OK Noop completed

4.4. MODSEQ search criterion in SEARCH

 The MODSEQ criterion for the SEARCH command allows a client to search
 for the metadata items that were modified since a specified moment.

 Syntax: MODSEQ [<entry-name> <entry-type-req>] <mod-sequence-value>

 Messages that have modification values which are equal to or
 greater than <mod-sequence-value>. This allows a client, for
example,
 to find out which messages contain metadata items that have
changed
 since the last time it updated its disconnected cache.
 The client can also specify <entry-name> and entry type (one of
 "shared", "private" or "all") before <mod-sequence-value>.
 If the server doesn't store internally separate mod-sequences
 for different flags and annotations, it MUST ignore

 <entry-name> and <entry-type-req>. Otherwise the server should
 use them to narrow down the search.

 If client specifies a MODSEQ criterion in a SEARCH command and
 the server returns a non-empty SEARCH result, the server MUST also
 return a MODSEQ response code in the tagged OK response. The MODSEQ
 response code covers all messages returned in the untagged SEARCH results.
 See also section 4.6.

 Example:
 C: a SEARCH MODSEQ "/message/flags/draft" all 20010320162338
 ANNOTATION "/message/comment" "value" "IMAP4"
 S: * SEARCH 2 5 6 7 11 12 18 19 20 23
 S: a OK [MODSEQ 2,5:7,11:12,18:20,23 20010917162500] Search complete

 In the above example, the message numbers of any messages
 containing the string "IMAP4" in the "value" attribute of the
 "/message/comment" entry and having a mod-sequence equal to or
 greater than 20010320162338 for the "\Draft" flag are returned in
 the search results.

 Example:
 C: a SEARCH OR NOT MODSEQ 20010320162338 LARGER 50000
 S: * SEARCH
 S: a OK Search complete, nothing found

4.5. MODSEQ Sort Criterion

 If a server implementing CONDSTORE also implements the SORT
 extension as defined by [SORT], it MUST also support sorting on
 per-message mod-sequence.

 Syntax: MODSEQ

 If client specifies a MODSEQ search (as per section 4.4) or sort
 criterion in the SORT command and the server returns a non-empty
 SORT result, the server MUST also return a MODSEQ response
 code in the tagged OK response which covers all messages returned
 in untagged SORT responses. See also section 4.6.

 Example:
 C: A282 SORT (SUBJECT MODSEQ) UTF-8 SINCE 1-Feb-2001
 S: * SORT 2 81 83 84 82 882
 S: A282 OK [MODSEQ 2,81:84,882 117] SORT completed

 Example:
 C: A283 SORT (SUBJECT REVERSE DATE) UTF-8 MODSEQ 21
 S: * SORT 6 3 4 5 2
 S: A283 OK [MODSEQ 2:6 125] SORT completed

 Example:

 C: A284 SORT (MODSEQ) KOI8-R OR NOT MODSEQ 20010320162338
 SUBJECT "Privet"
 S: * SORT
 S: A284 OK Sort complete, nothing found

4.6. MODSEQ Response code for successful SEARCH and SORT

 Data: message set
 mod-sequence value

 The MODSEQ response code is sent in the following two cases:

 1) If a client specifies a MODSEQ criterion in a SEARCH command
 and the server returns a non-empty SEARCH result, the server MUST
 also return a MODSEQ response code in the tagged OK response.
 The MODSEQ response code MUST be for all messages which were returned
 in the untagged SEARCH response.

 The MODSEQ response code contains the message set to which
 the mod-sequence applies if it is in response to a SEARCH command;
 or the UID set if it is caused by a UID SEARCH command.

 2) If client specifies a MODSEQ search or sort criterion in a
 SORT command and the server returns a non-empty SORT result,
 the server MUST also return a MODSEQ response code in the tagged
 OK response for all messages returned in the untagged SORT response.

 The MODSEQ response code contains the message set to which
 the mod-sequence applies if it is sent in response to a SORT command,
 or the UID set if it is caused by UID SORT.

4.7. HIGHESTMODSEQ status data items

 This document defines a new status data item:

 HIGHESTMODSEQ
 The highest mod-sequence value all messages
 in the mailbox. This is the same value that is returned by the server
 in the HIGHESTMODSEQ response code in OK untagged response
 (see section 4.1.1).

 Example: C: A042 STATUS blurdybloop (UIDNEXT MESSAGES HIGHESTMODSEQ)
 S: * STATUS blurdybloop (MESSAGES 231 UIDNEXT 44292
 HIGHESTMODSEQ 200201011231777)
 S: A042 OK STATUS completed

5. Formal Syntax

 The following syntax specification uses the Augmented Backus-Naur

 Form (ABNF) notation as specified in [ABNF].

 Non-terminals referenced but not defined below are as defined by
 [IMAP4].

 Except as noted otherwise, all alphabetic characters are case-
 insensitive. The use of upper or lower case characters to define token
 strings is for editorial clarity only. Implementations MUST accept
 these strings in a case-insensitive fashion.

 capability =/ "CONDSTORE"

 status = "STATUS" SP mailbox SP
 "(" status-att-req *(SP status-att-req) ")"
 ;; redefine STATUS command syntax defined in [IMAP4]

 status-att-req = status-att / "HIGHESTMODSEQ"

 mailbox-data =/ "STATUS" SP mailbox SP "("
 [status-rsp-info *(SP status-rsp-info)] ")"

 status-rsp-info = status-att SP number /
 "HIGHESTMODSEQ" SP mod-sequence-value

 store = "STORE" SP set store-modifiers SP store-att-flags

 store-modifiers = [SP "(" store-modifier *(SP store-modifier) ")"]

 store-modifier = "UNCHANGEDSINCE" SP mod-sequence-value
 ;; Only single "UNCHANGEDSINCE" may be specified
 ;; in a STORE operation

 fetch-att =/ fetch-mod-sequence
 ;; modifies original IMAP4 fetch-att

 fetch-mod-sequence = "MODSEQ"

 fetch-mod-resp = "MODSEQ" SP "(" permsg-modsequence ")"

 search-key =/ search-modsequence
 ;; modifies original IMAP4 search-key

 search-modsequence = "MODSEQ" [search-modseq-ext] SP mod-sequence-value

 search-modseq-ext = SP entry-name SP entry-type-req

 resp-text-code =/ "HIGHESTMODSEQ" SP mod-sequence-value /
 "MODIFIED" SP set /
 "MODSEQ" SP set SP mod-sequence-value
 ;; set of message numbers for STORE/FETCH or
 ;; set of UIDs for UID STORE/UID FECTH

 entry-name = '"' "/message/flags/" attr-flag '"'
 ;; each system or user defined flag <flag>
 ;; is mapped to "/message/flags/<flag>",
 ;; where <flag> has no leading "\" for system
 ;; flags and has a leading "-" for all user
 ;; defined flags.

 entry-type-resp = "private" | "shared"
 ;; metadata item type

 entry-type-req = entry-type-resp | "all"
 ;; perform SEARCH operation on private
 ;; metadata item, shared metadata item or both

 permsg-modsequence = mod-sequence-value
 ;; per message mod-sequence

 mod-sequence-value = 1*DIGIT
 ;; Unsigned 64-bit integer (mod-sequence)
 ;; (0 <= n < 18,446,744,073,709,551,615)

;;Borrowed from IMAP4rev1 and modified accordingly:

 attr-flag = "Answered" / "Flagged" / "Deleted" /
 "Seen" / "Draft" / "-" attr-flag-keyword /
 attr-flag-extension
 ;; Does not include "\Recent"

 attr-flag-extension = atom
 ;; Future expansion. Client implementations
 ;; MUST accept flag-extension flags. Server
 ;; implementations MUST NOT generate
 ;; flag-extension flags except as defined by
 ;; future standard or standards-track
 ;; revisions of this specification.

 attr-flag-keyword = atom

;;Extension to SORT

 sort-key =/ "MODSEQ"

6. Security Considerations

 There are no known security issues with this extension, not already
 found in [IMAP4].

7. References

7.1. Normative References

 [KEYWORDS] Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, Harvard University, March 1997.

 [ABNF] Crocker, Overell, "Augmented BNF for Syntax Specifications:
 ABNF", RFC 2234, Internet Mail Consortium, Demon Internet Ltd,
 November 1997.

 [IMAP4] Crispin, M., "Internet Message Access Protocol - Version
 4rev1", RFC 2060, University of Washington, December 1996.

 [ANNOTATE] Gellens, R., Daboo, C., "IMAP ANNOTATE Extension",
 work in progress.
 <http://www.ietf.org/internet-drafts/draft-ietf-imapext-annotate-xx.txt>

 [SORT] Crispin, M., "Internet Message Access Protocol -- SORT
 Extension", work in progress.
 <http://www.ietf.org/internet-drafts/draft-crispin-imapext-sort-xx.txt>

7.2. Informative References

 [ACAP] Newman, Myers, "ACAP -- Application Configuration Access
 Protocol", RFC 2244, Innosoft, Netscape, November 1997.
 <ftp://ftp.isi.edu/in-notes/rfc2244.txt>

 [ACL] Myers, "IMAP4 ACL extension", RFC 2086, Carnegie Mellon,
 January 1997.
 <ftp://ftp.isi.edu/in-notes/rfc2086.txt>

 [NTP] Mills, D, "Network Time Protocol (Version 3) Specification,
 Implementation and Analysis", RFC 1305, March 1992.
 <ftp://ftp.isi.edu/in-notes/rfc1305.txt>

8. Acknowledgments

 Some text was borrowed from "IMAP ANNOTATE Extension" by Randall Gellens
 and Cyrus Daboo, and "ACAP -- Application Configuration Access Protocol"
 by Chris Newman and John Myers.

 Many thanks to Randall Gellens for his comments on how CONDSTORE should
 interact with ANNOTATE extension and for thorough review of the document.

 Authors also acknowledge the feedback provided by Cyrus Daboo, Larry
 Greenfield, Chris Newman and Arnt Gulbrandsen.

9. Author's Addresses

 Alexey Melnikov
 mailto: Alexey.Melnikov@messagingdirect.com

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2060
http://www.ietf.org/internet-drafts/draft-ietf-imapext-annotate-xx.txt
http://www.ietf.org/internet-drafts/draft-crispin-imapext-sort-xx.txt
https://datatracker.ietf.org/doc/html/rfc2244
ftp://ftp.isi.edu/in-notes/rfc2244.txt
https://datatracker.ietf.org/doc/html/rfc2086
ftp://ftp.isi.edu/in-notes/rfc2086.txt
https://datatracker.ietf.org/doc/html/rfc1305
ftp://ftp.isi.edu/in-notes/rfc1305.txt

 ACI WorldWide/MessagingDirect
 59 Clarendon Road, Watford, Hertfordshire,
 WD17 1FQ, United Kingdom

 Steve Hole
 mailto: Steve.Hole@messagingdirect.com

 ACI WorldWide/MessagingDirect
 #900, 10117 Jasper Avenue,
 Edmonton, Alberta, T5J 1W8, CANADA

10. Full Copyright Statement

 Copyright (C) The Internet Society 2001-2002. All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
 are included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

