
IMAPEXT Working Group A. Melnikov
Internet Draft: IMAP4 Disconnected Access Editor
Document: draft-melnikov-imap-disc-03.txt December 2003

Synchronization operations for disconnected IMAP4 clients

Status of this Memo

 This document is an Internet Draft and is in full conformance with
 all provisions of Section 10 of RFC 2026.

 Internet Drafts are working documents of the Internet Engineering
 Task Force (IETF), its Areas, and its Working Groups. Note that
 other groups may also distribute working documents as Internet
 Drafts. Internet Drafts are draft documents valid for a maximum of
 six months. Internet Drafts may be updated, replaced, or obsoleted
 by other documents at any time. It is not appropriate to use
 Internet Drafts as reference material or to cite them other than as
 ``work in progress''.

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This is a draft document based on the expired draft written by
 the IETF IMAP Working Group. A revised version of this draft document
 will be submitted to the RFC editor as an Informational RFC for the
 Internet Community. Discussion and suggestions for improvement are
 requested, and should be sent to imap@CAC.Washington.EDU.

 This memo is for informational use and does not constitute a
 standard. Distribution of this memo is unlimited.

1. Abstract

 This document attempts to address some of the issues involved in building
 a disconnected IMAP4 client. In particular, it deals with the issues
 of what might be called the "driver" portion of the synchronization
 tool: the portion of the code responsible for issuing the correct set
 of IMAP4 commands to synchronize the disconnected client in the way
 that is most likely to make the human who uses the disconnected
 client happy.

 This note describes different strategies that can be used by disconnected
 clients as well as shows how to use IMAP protocol in order to minimize the
 time of synchronization process.

https://datatracker.ietf.org/doc/html/draft-melnikov-imap-disc-03.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

2. Conventions Used in this Document

 In examples, "C:" and "S:" indicate lines sent by the client and
 server respectively.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [KEYWORDS].

 Editorial comments/questions or missing paragraphs are marked in the
 text with << and >>.

3. Design Principles

 All mailbox state or content information stored on the disconnected
 client should be viewed strictly as a cache of the state of the
 server. The "master" state remains on the server, just as it would
 with an interactive IMAP4 client. The one exception to this rule is
 that information about the state of the disconnected client's cache
 (the state includes flag changes while offline and scheduled message
uploads)
 remains on the disconnected client: that is, the IMAP4 server is not
 responsible for remembering the state of the disconnected IMAP4 client.

 We assume that a disconnected client is a client that, for whatever
 reason, wants to minimize the length of time that it is "on the
 phone" to the IMAP4 server. Often this will be because the client is
 using a dialup connection, possibly with very low bandwidth, but
 sometimes it might just be that the human is in a hurry to catch an
 airplane, or some other event beyond our control. Whatever the
 reason, we assume that we must make efficient use of the network
 connection, both in the usual sense (not generating spurious traffic)
 and in the sense that we would prefer not to have the connection
 sitting idle while the client and/or the server is performing
 strictly local computation or I/O. Another, perhaps simpler way of
 stating this is that we assume that network connections are
 "expensive".

 Practical experience with disconnected mail systems has shown that
 there is no single synchronization strategy that is appropriate
 for all cases. Different humans have different preferences,
 and the same human's preference will vary depending both on
 external circumstance (how much of a hurry the human is in today)
 and on the value that the human places on the messages being
 transferred. The point here is that there is no way that
 the synchronization program can guess exactly what the human
 wants to do, so the human will have to provide some guidance.

 Taken together, the preceding two principles lead to the conclusion
 that the synchronization program must make its decisions based on

https://datatracker.ietf.org/doc/html/rfc2119

 some kind of guidance provided by the human by selecting the appropriate
 options in UI or through some sort of configuration file, but almost
 certainly should not pause for I/O with the human during the middle
 of the synchronization process. The human will almost certainly have
 several different configurations for the synchronization program, for
 different circumstances.

 Since a disconnected client has no way of knowing what changes might
 have occurred to the mailbox while it was disconnected, message
 numbers are not useful to a disconnected client. All disconnected
 client operations should be performed using UIDs, so that the client
 can be sure that it and the server are talking about the same
 messages during the synchronization process.

4. Overall picture of synchronization

 The basic strategy for synchronization is outlined below.
 Note that the real strategy may vary from one application to another
 or may depend on a synchronization mode.

 a) Process any "actions" that were pending on the client that
 were not associated with any mailbox (in particular sending
 messages composed offline with SMTP. This is not part of IMAP
 synchronization, but it is mentioned here for completeness);

 b) Fetch the current list of "interesting" mailboxes (The disconnected
 client should allow the user to skip this step completely);

 c) "Client-to-server synchronization" - for each IMAP "action" that
 were pending on the client:

 1) If the action implies opening a new mailbox (any operation
 that operates on messages) - open the mailbox. Check its UID
 validity value (see section 5.1 for more details) returned in
 the UIDVALIDITY response code. If the UIDVALIDITY value returned
 by the server differs, the client MUST empty the local cache of
 the mailbox and remove any pending "actions" which refer to UIDs
 in that mailbox.

 2) Perform the action. If the action is to delete a mailbox (DELETE),
 make sure that the mailbox is closed first.

 d) "Server-to-client synchronization" - for each mailbox that requires
 synchronization, do the following:

 1) Check the mailbox UIDVALIDITY (see section 5.1 for more details).
 with SELECT/EXAMINE/STATUS.
 If UIDVALIDITY value returned by the server differs,
 the client MUST

 * empty the local cache of that mailbox;

 * remove any pending "actions" which refer to UIDs in
 that mailbox;
 * skip step 2-II;

 2) Fetch the current "descriptors";

 I) Discover new messages.

 II) Discover changes to old messages.

 3) Fetch the bodies of any "interesting" messages that the client
 doesn't already have.

 d) Close all open mailboxes not required for further operations
 (if staying online) or disconnect all open connections (if going
 offline).

 Terms used:

 "Actions" are queued requests that were made by the human to the
 client's MUA software while the client was disconnected.

 Let define "descriptors" as a set of IMAP4 FETCH data items.
 Conceptually, a message's descriptor is that set of
 information that allows the synchronization program to decide what
 protocol actions are necessary to bring the local cache to the
 desired state for this message; since this decision is really up
 to the human, this information probably includes a at least a few
 header fields intended for human consumption. Exactly what will
 constitute a descriptor depends on the client implementation. At
 a minimum, the descriptor contains the message's UID and FLAGS.
 Other likely candidates are the RFC822.SIZE, RFC822.HEADER and
 BODYSTRUCTURE data items.

 Comments:

 1). The list of actions should be ordered. E.g., if the human deletes
 message A1 in mailbox A, then expunges mailbox A, then deletes
 message A2 in mailbox A, the human will expect that message A1 is
 gone and that message A2 is still present but is now deleted.

 By processing all the actions before proceeding with
 synchronization, we avoid having to compensate for the local MUA's
 changes to the server's state. That is, once we have processed
 all the pending actions, the steps that the client must take to
 synchronize itself will be the same no matter where the changes to
 the server's state originated.

 2). Steps a) and b) can be performed in parallel. Alternatively step a)
 can be performed after d).

 3). On step b) the set of "interesting" mailboxes pretty much has to be

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

 determined by the human. What mailboxes belong to this set may
 vary between different IMAP4 sessions with the same server,
 client, and human. An interesting mailbox can be a mailbox
 returned by LSUB command. Special mailbox "INBOX" SHOULD always
 be considered "interesting".

 4). On step d-2-II) the client also finds out about
 changes to the flags of messages that the client already has in
 its local cache, as well as finding out about messages in the
 local cache that no longer exist on the server (i.e., messages that
 have been expunged).

 5). "Interesting" messages are those messages that the synchronization
 program thinks the human wants to have cached locally, based on
 the configuration and the data retrieved in step (b).

 The rest of this discussion will focus primarily on the synchronization
 issues for a single mailbox.

5. Mailbox synchronization steps and strategies

5.1. Checking UID Validity

 The "UID validity" of a mailbox is a number returned in an
 UIDVALIDITY response code in an OK untagged response at mailbox
 selection time. The UID validity value changes between sessions when
 UIDs fail to persist between sessions.

 Whenever the client selects a mailbox, the client must compare the
 returned UID validity value with the value stored in the local cache.
 If the UID validity values differ, the UIDs in the client's cache are
 no longer valid. The client MUST then empty the local cache of
 that mailbox and remove any pending "actions" which refer to UIDs in
 that mailbox. The client MAY also issue a warning to the human.
 The client MUST NOT cancel any scheduled uploads (i.e. APPENDs) for
 the mailbox.

 Note that UIDVALIDITY is not only returned on a mailbox selection.
 COPYUID and APPENDUID response codes defined in [UIDPLUS] extension
 (see also 5.2.2) and UIDVALIDITY STATUS response data item also contain
 a UIDVALIDITY value for some other mailbox. The client SHOULD behave as
 described in the previous paragraph (but it should act on the other
mailbox's
 cache), no matter how it obtained the UIDVALIDITY value.

5.2. Synchronizing local changes with the server

5.2.1. Uploading messages to the mailbox

 There are two most typical examples of operations that will result in

message
 uploads:

 1) Saving a draft message
 2) Message copy between remote mailboxes on two different IMAP servers
 or a local mailbox and a remote mailbox.

 Message upload is performed with APPEND command. A message scheduled to be
 uploaded has no UID associated with it, as all UIDs are assigned by the
 server. The APPEND command will effectively associate a UID with the
uploaded
 message that can be stored in the local cache for a future reference.
 However [IMAP4] doesn't describe a simple mechanism to discover the message
UID
 by just performing the APPEND command. In order to discover UID the client
can
 do one of the following:

 1) Remove the uploaded message from cache. After that use the mechanism
described
 in 5.3 to fetch the information about the uploaded message as if it was
uploaded
 by some other client.

 2) Try to fetch header information as described in 5.2.2 in order to find a
message
 that corresponds to the uploaded message. One strategy of doing that is
described
 in 5.2.2.

 Case 1) describes a non particularly smart client.

 C: A003 APPEND Drafts (\Seen $MDNSent) {310}
 S: + Ready for literal data
 C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST)
 C: From: Fred Foobar <foobar@Blurdybloop.COM>
 C: Subject: afternoon meeting
 C: To: mooch@owatagu.siam.edu
 C: Message-Id: <B27397-0100000@Blurdybloop.COM>
 C: MIME-Version: 1.0
 C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 C:
 C: Hello Joe, do you think we can meet at 3:30 tomorrow?
 C:
 S: A003 OK APPEND Completed

 Fortunately there is a simpler way to discover the message UID in the
presence
 of [UIDPLUS] extension:

 C: A003 APPEND Drafts (\Seen $MDNSent) {310}

 S: + Ready for literal data
 C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST)
 C: From: Fred Foobar <foobar@Blurdybloop.COM>
 C: Subject: afternoon meeting
 C: To: mooch@owatagu.siam.edu
 C: Message-Id: <B27397-0100000@Blurdybloop.COM>
 C: MIME-Version: 1.0
 C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 C:
 C: Hello Joe, do you think we can meet at 3:30 tomorrow?
 C:
 S: A003 OK APPEND [APPENDUID 1022843275 77712] completed

 The UID of the appended message is the second parameter of APPENDUID
response code.

5.2.2. Optimizing "move" and "copy" operations

 Practical experience with IMAP, and other mailbox access
 protocols that support multiple mailboxes suggests that moving a
 message from one mailbox to another is an extremely common operation.

5.2.2.1. Moving a message between two mailboxes on the same server

 In IMAP4 a "move" operation between two mailboxes on the same server
 is really a combination of a COPY operation and a STORE +FLAGS (\Deleted)
 operation. This makes good protocol sense for IMAP, but it leaves
 a simple-minded disconnected client in the silly position of deleting
 and possibly expunging its cached copy of a message, then fetching
 an identical copy via the network.

 However, the presence of UIDPLUS extension support in the server can help:
 A001 UID COPY 567,414 "Interesting Messages"
 A001 OK [COPYUID 1022843275 414,567 5:6] Completed
 This tells the client that the message with UID 414 in the current mailbox
 was successfully copied to the mailbox "Interesting Messages" and was given
 the UID 5, and that the message with UID 567 was given the UID 6.

 In the absence of UIDPLUS extension support in the server the following
 trick can be used. By including the Message-ID: header and the INTERNALDATE
 data item as part of the descriptor, the client can check the descriptor of
a
 "new" message against messages that are already in its cache, and
 avoid fetching the extra copy. Of course, it's possible that the
 cost of checking to see if the message is already in the local cache
 may exceed the cost of just fetching it, so this technique should not
 be used blindly. If the MUA implements a "move" command, it make
 special provisions to use this technique when it knows that a
 copy/delete sequence is the result of a "move" command.

 Since it's theoretically possible for this algorithm to find the
 wrong message (given sufficiently malignant Message-ID headers),
 implementors should provide a way to disable this optimization, both
 permanently and on a message-by-message basis.

<< Example >>

5.2.2.2. Moving a message from a remote mailbox to a local

 Moving a message from a remote mailbox to a local is done with FETCH
 (that includes FLAGS and INTERNALDATE) followed by
 UID STORE <uid> +FLAGS.SILENT (\Deleted):

 C: A003 UID FETCH 123 (RFC822 INTERNALDATE FLAGS)
 S: * 27 FETCH (UID 123 INTERNALDATE "31-May-2002 05:26:59 -0600"
 FLAGS (\Seen $MDNSent) RFC822
 S: ...message body...
 S:)
 S: A003 OK UID FETCH completed
 C: A004 UID STORE <uid> +FLAGS.SILENT (\Deleted)
 S: A004 STORE completed

 Note, that there is no reason to fetch the message during synchronization
 if it already in the client's cache. Also, the client SHOULD preserve
 delivery date in the local cache.

5.2.2.3. Moving a message from a local mailbox to a remote

 Moving a message from a local mailbox to a remote is done with APPEND:

 C: A003 APPEND Drafts (\Seen $MDNSent) "31-May-2002 05:26:59 -0600" {310}
 S: + Ready for literal data
 C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST)
 C: From: Fred Foobar <foobar@Blurdybloop.COM>
 C: Subject: afternoon meeting
 C: To: mooch@owatagu.siam.edu
 C: Message-Id: <B27397-0100000@Blurdybloop.COM>
 C: MIME-Version: 1.0
 C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 C:
 C: Hello Joe, do you think we can meet at 3:30 tomorrow?
 C:
 S: A003 OK APPEND [APPENDUID 1022843275 77712] completed

 The client SHOULD specify delivery date from the local cache in the APPEND.

5.2.2.4. Moving a message between two mailbox on two different servers

 Moving a message between two mailbox on two different servers is a

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

 combination of the 5.2.2.2 followed by 5.2.2.3.

5.2.2.5. Uploading multiple messages to a remote mailbox with MULTIAPPEND

 When there is a need to upload multiple messages to a remote mailbox
 (e.g. as per 5.2.2.3), the presence of certain IMAP extensions may
 significantly improve performance. One of them is [MULTIAPPEND].

 For some mail stores opening a mailbox for appending might be expensive.
 [MULTIAPPEND] tells the server to open mailbox once (instead of opening
 and closing it "n" times per "n" messages to be uploaded) and keep it
 open while a group of messages is being uploaded to the server.

 Also, if the server supports both [MULTIAPPEND] and [LITERAL+] extensions,
 the entire upload is accomplished in a single command/response round trip.

 Note: Client implementors should be aware, that [MULTIAPPEND] performs
 append of multiple messages atomically. This means, for example,
 if there is not enough space to save "n"-th message (or the message
 has invalid structure and is rejected by the server) after successful
 upload of "n-1" messages, the whole upload operation fails and no
 message will be saved in the mailbox. Although, this behavior might
 be desirable in certain situations, it might not be what you want.
 See also section 6.1 for discussions of error recovery.

 Note: MULTIAPPEND can be used together with UIDPLUS extension in a way
 similar to what was described in section 5.2.1. [MULTIAPPEND]
 extends syntax of APPENDUID response code to allow for multiple
 message UIDs in the second parameter.

 Example:
 An example below demonstrates the use of MULTIAPPEND together with
 UIDPLUS (synchronization points where the client waits for confirmations
 from the server are marked with "<--->"):

 C: A003 APPEND Jan-2002 (\Seen $MDNSent) "31-May-2002 05:26:59
-0600" {310}
 <--->
 S: + Ready for literal data
 C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST)
 C: From: Fred Foobar <foobar@Blurdybloop.COM>
 C: Subject: afternoon meeting
 C: To: mooch@owatagu.siam.edu
 C: Message-Id: <B27397-0100000@Blurdybloop.COM>
 C: MIME-Version: 1.0
 C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 C:
 C: Hello Joe, do you think we can meet at 3:30 tomorrow?
 C: (\Seen) " 1-Jun-2002 22:43:04 -0800" {286}
 <--->

 S: + Ready for literal data
 C: Date: Mon, 7 Feb 1994 22:43:04 -0800 (PST)
 C: From: Joe Mooch <mooch@OWaTaGu.siam.EDU>
 C: Subject: Re: afternoon meeting
 C: To: foobar@blurdybloop.com
 C: Message-Id: <a0434793874930@OWaTaGu.siam.EDU>
 C: MIME-Version: 1.0
 C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 C:
 C: 3:30 is fine with me.
 C:
 S: A003 OK APPEND [APPENDUID 1022843275 77712,77713] completed

 The upload takes 3 round trips.

 Example:
 The example above was modified for the case when the server supports
 MULTIAPPEND, LITERAL+ and UIDPLUS. The upload takes only 1 round trip.

 C: A003 APPEND Jan-2002 (\Seen $MDNSent) "31-May-2002 05:26:59
-0600" {310+}
 C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST)
 C: From: Fred Foobar <foobar@Blurdybloop.COM>
 C: Subject: afternoon meeting
 C: To: mooch@owatagu.siam.edu
 C: Message-Id: <B27397-0100000@Blurdybloop.COM>
 C: MIME-Version: 1.0
 C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 C:
 C: Hello Joe, do you think we can meet at 3:30 tomorrow?
 C: (\Seen) " 1-Jun-2002 22:43:04 -0800" {286+}
 C: Date: Mon, 7 Feb 1994 22:43:04 -0800 (PST)
 C: From: Joe Mooch <mooch@OWaTaGu.siam.EDU>
 C: Subject: Re: afternoon meeting
 C: To: foobar@blurdybloop.com
 C: Message-Id: <a0434793874930@OWaTaGu.siam.EDU>
 C: MIME-Version: 1.0
 C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 C:
 C: 3:30 is fine with me.
 C:
 S: A003 OK APPEND [APPENDUID 1022843275 77712,77713] completed

5.2.3. Replaying local flag changes

 The disconnected client uses STORE command to synchronize local flag state
 with the server. The disconnected client SHOULD use +FLAGS.SILENT or -
FLAGS.SILENT
 in order to set or unset flags modified by the user while offline. FLAGS
 form must not be used, as there is a risk that this will overwrite flags

 on the server that has been changed by some other client.

 Example:
 For the message with UID 15, the disconnected client stores the following
 flags \Seen and $Highest. The flags were modified on the server by some
other
 client: \Seen, \Answered and $Highest.
 While offline the user requested to remove $Highest flags and to add
\Deleted.
 The flag synchronization sequence for the message should look like:

 C: A001 UID STORE 15 +FLAGS.SILENT (\Deleted)
 S: A001 STORE completed
 C: A002 UID STORE 15 -FLAGS.SILENT ($Highest)
 S: A002 STORE completed

 If the disconnected client is able to store an additional binary state
 information (or a piece of information that can take a value from a
predefined
 set of values) in the local cache of an IMAP mailbox or in a local mailbox
 (e.g. message priority), and if the server supports storing of arbitrary
 keywords, the client MUST use keywords to store this state on the server.

 Example:
 Imagine a speculative mail client that can mark a message as one of work-
related
 ($Work), personal ($Personal) or spam ($Spam). In order to mark a message
as
 personal the client issues:

 C: A001 UID STORE 15 +FLAGS.SILENT ($Personal)
 S: A001 STORE completed
 C: A002 UID STORE 15 -FLAGS.SILENT ($Work $Spam)
 S: A002 STORE completed

 In order to mark the message as neither work, nor personal, not spam, the
client
 issues:

 C: A003 UID STORE 15 -FLAGS.SILENT ($Personal $Work $Spam)
 S: A003 STORE completed

5.2.4. Processing mailbox compression (expunge) requests

 A naive disconnected client implementation that supports compressing a
mailbox
 while offline may decide to issue an EXPUNGE command to the server in order
 to expunge messages marked \Deleted. The problem with this command during
 synchronization is that it permanently erases all messages with \Deleted
flag set,
 i.e. even those messages that were marked as \Deleted on the server while

the user
 was offline. Doing so will lead the user to an unpleasant surprise.

 Fortunately [UIDPLUS] extension can help in this case as well. The extension
 introduces UID EXPUNGE command, that, unlike EXPUNGE, takes a UID set
parameter,
 that lists UIDs of all messages that can be expunged. When processing this
command
 server erases only messages with \Deleted flag listed in the UID list. Thus,
 a message not listed in the UID set will not be expunged even if it has
\Deleted
 flag set.

 Example: While offline 3 messages with UIDs 7, 27 and 65 were marked
\Deleted
 when the user requested to compress the open mailbox. Another client
marked
 a message \Deleted on the server (UID 34). During synchronization the
 disconnected client issues:

 C: A001 UID EXPUNGE 7,27,65
 S: * ... EXPUNGE
 S: * ... EXPUNGE
 S: * ... EXPUNGE
 S: A001 UID EXPUNGE completed

 If another client issues UID SEARCH DELETED command (to find all messages
with
 \Deleted flag) before and after the UID EXPUNGE it will get:

 Before:
 C: B001 UID SEARCH DELETED
 S: * SEARCH 65 34 27 7
 S: B001 UID SEARCH completed

 After:
 C: B002 UID SEARCH DELETED
 S: * SEARCH 34
 S: B002 UID SEARCH completed

 In the absence of [UIDPLUS] extension the following sequence of command can
be
 used as an approximation. Note, that when this sequence is performed, there
is a
 possibility that another client marks additional messages as deleted and
these
 messages will be expunged as well.

 1). Find all messages marked \Deleted on the server:

 C: A001 UID SEARCH DELETED

 S: * SEARCH 65 34 27 7
 S: A001 UID SEARCH completed

 2). Find all messages that must not be erased (for the previous example
 the list will consist of the message with UID 34)

 3). Temporary remove \Deleted flag on all messages found on the step 2)

 C: A002 UID STORE 34 -FLAGS.SILENT (\Deleted)
 S: A002 UID STORE completed

 4). Expunge the mailbox

 C: A003 EXPUNGE
 S: * 20 EXPUNGE
 S: * 7 EXPUNGE
 S: * 1 EXPUNGE
 S: A003 EXPUNGE completed

 Here message with UID 7 has message number 1; with UID 27 - message
 number 7 and with UID 65 - message number 20.

 5). Restore \Deleted flag on all messages found when performing step 2)

 C: A004 UID STORE 34 +FLAGS.SILENT (\Deleted)
 S: A004 UID STORE completed

5.2.5. Closing a mailbox

 When the disconnected client has to close a mailbox, it SHOULD NOT use
 CLOSE command, because CLOSE does a silent EXPUNGE (section 5.2.4 explains
 why EXPUNGE must not be used by a disconnected client). It is safe to use
 CLOSE only if the mailbox was opened with EXAMINE.

 If the mailbox was opened with SELECT, the client can use one of the
 following commands to implicitly close the mailbox and prevent the silent
 expunge:

 1). UNSELECT - This is a command described in [UNSELECT] that works as
 CLOSE, but doesn't cause the silent EXPUNGE. This command is
 supported by the server if it reports UNSELECT in its CAPABILITY list.
 2). SELECT <another_mailbox> - SELECT causes implicit CLOSE without EXPUNGE.
 3). If the client intends to issue LOGOUT after closing the mailbox, it may
 just issue LOGOUT, because LOGOUT causes implicit CLOSE without EXPUNGE
 as well.
 4). SELECT <non_existing_mailbox> - if the client knows a mailbox that
doesn't
 exist or can't be selected, it MAY SELECT it.

 If the client opened the mailbox with SELECT and just wants to avoid
 implicit EXPUNGE without closing the mailbox, it may also use the following:

 5). EXAMINE <mailbox> - reselect the same mailbox in read-only mode.

5.3. Details of "Normal" synchronization of a single mailbox

 The most common form of synchronization is where the human trusts the
 integrity of the client's copy of the state of a particular mailbox,
 and simply wants to bring the client's cache up to date so that it
 accurately reflects the mailbox's current state on the server.

5.3.1. Discovering new messages and changes to old messages

 Let <lastseenuid> represent the highest UID that the client knows about
 in this mailbox. Since UIDs are allocated in strictly ascending
 order, this is simply the UID of the last message in the mailbox that
 the client knows about. Let <lastseenuid+1> represent <lastseenuid>'s UID
 plus one. Let <descriptors> represent a list consisting of all the
 FETCH data item items that the implementation considers to be part of
 the descriptor; at a minimum this is just the FLAGS data item, but
 it usually also includes BODYSTRUCTURE and RFC822.SIZE. At this step
 <descriptors> SHOULD NOT include RFC822.

 With no further information, the client can issue the following
 two commands:
 tag1 UID FETCH <lastseen+1>:* <descriptors>
 tag2 UID FETCH 1:<lastseenuid> FLAGS

 The first command will request some information about "new" messages
 (i.e. messages received by the server since the last synchronization).
 It will also allow the client to build a message number to UID map
 (only for new messages). The second command allows the client to
 1) update cached flags for old messages;
 2) find out which old messages got expunged;
 3) build a mapping between message numbers and UIDs (for old messages).

 The order here is significant. We want the server to start returning
 the list of new message descriptors as fast as it can, so that the
 client can start issuing more FETCH commands, so we start out by
 asking for the descriptors of all the messages we know the client
 cannot possibly have cached yet. The second command fetches the
 information we need to determine what changes may have occurred to
 messages that the client already has cached. Note, that the latter
 command should only be issued if the UIDNEXT value cached by the client
 differs from the one returned by the server. Once the client has
 issued these two commands, there's nothing more the client can do
 with this mailbox until the responses to the first command start
 arriving. A clever synchronization program might use this time to
 fetch its local cache state from disk, or start the process of
 synchronizing another mailbox.

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

 Example of the first FETCH:
 C: A011 UID fetch 131:* (FLAGS BODYSTRUCTURE INTERNALDATE RFC822.SIZE)
 S: ...

 The second FETCH command will result in nil or more untagged fetch
 responses. Each response will have a corresponding UID FETCH data item.
 All messages that didn't have a matching untagged FETCH response
 MUST be removed from the local cache.

 For example, if the <lastseenuid> had a value 15000 and the local cache
 contained 3 messages with the UIDs 12, 777 and 14999 respectively, than
 after receiving the following responses from the server:

 S: * 1 FETCH (UID 12 FLAGS (\Seen))
 S: * 2 FETCH (UID 777 FLAGS (\Answered \Deleted))

 the client must remove the message with UID 14999 from its local cache.

 Note: If the client is not interested in flag changes (i.e. the client
 only wants to know which old messages are still on the server), the second
 FETCH command can be substituted with:
 tag2 UID SEARCH UID 1:<lastseenuid>

 This command will generate less traffic. However an implementor should be
 aware that in order to build the mapping table from message numbers to UIDs
 the output of the SEARCH command MUST be sorted first, because there is
 no requirement for a server to return UIDs in SEARCH response in the
ascending
 order.

5.3.2. Searching for "interesting" messages.

 This step is either performed entirely on the client (from the information
received
 in step 5.3.1), after performing additional searches on the server or both.
 The decision on what is an "interesting" message is up to the client
software
 and the human. One easy criterion that should probably be implemented in
any
 client is whether the message is "too big" for automatic retrieval, where
"too big"
 is a parameter defined in the client's configuration.

 Another commonly used criteria is the age of a message. For example, the
client
 may choose to download only messages received in the last week (in this
case, <date>
 would be today's date minus 7 days):

 tag3 UID SEARCH UID <uidset> SINCE <date>

https://datatracker.ietf.org/doc/html/rfc822

 Keep in mind that a date search disregards time and timezone.
 The client can avoid doing this search if it specified INTERNALDATE in
<descriptors>
 on step 5.3.1. If the client did, it can perform the search itself.

 At this step the client also decides what kind of information about a
particular
 message to fetch from the server. In particular, even for a message that is
considered
 to be "too big" the client MAY choose to fetch some part(s) of it. For
example,
 if the message is a multipart/mixed containing a text part and a MPEG
attachment,
 there is no reason for the client not to fetch the text part. The decision
of which
 part should or should not be fetched can be based on the information
received in
 BODYSTRUCTURE FETCH response data item (i.e. if BODYSTRUCTURE was included
in
 <descriptors> on step 5.3.1).

5.3.3. Populating cache with "interesting" messages.

 Once the client found out which messages are "interesting", the client
 can start issuing appropriate FETCH commands for "interesting" messages or
 bodyparts thereof.

 It is important to note that fetching a message into the disconnected
 client's local cache does NOT imply that the human has (or even will)
 read the message. Thus, the synchronization program for a
 disconnected client should always be careful to use the .PEEK
 variants of the FETCH data items that implicitly set the \Seen flag.

 Once the last descriptor has arrived and the last FETCH command has
 been issued, the client simply needs to process the incoming fetch
 items, using them to update the local message cache.

 In order to avoid deadlock problems, the client must give processing
 of received messages priority over issuing new FETCH commands during
 this synchronization process. This may necessitate temporary local
 queuing of FETCH requests that cannot be issued without causing a
 deadlock. In order to achieve the best use of the "expensive" network
 connection, the client will almost certainly need to pay careful
 attention to any flow-control information that it can obtain from the
 underlying transport connection (usually a TCP connection).

 Example: After fetching a message BODYSTRUCTURE the client discovers
 a complex MIME message. Than it decides to fetch MIME headers
 of the nested MIME messages and some body parts.

 C: A011 UID fetch 11 (BODYSTRUCTURE)
 S: ...
 C: A012 UID fetch 11 (BODY[HEADER] BODY[1.MIME] BODY[1.1.MIME]
 BODY[1.2.MIME] BODY[2.MIME] BODY[3.MIME] BODY[4.MIME] BODY[5.MIME]
 BODY[6.MIME] BODY[7.MIME] BODY[8.MIME] BODY[9.MIME] BODY[10.MIME]
 BODY[11.MIME] BODY[12.MIME] BODY[13.MIME] BODY[14.MIME] BODY[15.MIME]
 BODY[16.MIME] BODY[17.MIME] BODY[18.MIME] BODY[19.MIME] BODY[20.MIME]
 BODY[21.MIME])
 S: ...
 C: A013 UID fetch 11 (BODY[1.1] BODY[1.2])
 S: ...
 C: A014 UID fetch 11 (BODY[3] BODY[4] BODY[5] BODY[6] BODY[7] BODY[8]
 BODY[9] BODY[10] BODY[11] BODY[13] BODY[14] BODY[15] BODY[16]
 BODY[21])
 S: ...

5.3.4. User initiated synchronization

 After the client finished the main synchronization that was described in
 5.3.1-5.3.3 the user may optionally request additional synchronization steps
 while the client is still online. This is not any different from the process
 described in 5.3.2 and 5.3.3.

 Typical examples are:
 1) fetch all messages selected in UI.
 2) fetch all messages marked as \Flagged on the server.

5.4. Special case: descriptor-only synchronization

 For some mailboxes, fetching the descriptors might be the entire
 synchronization step. Practical experience with IMAP has shown that
 a certain class of mailboxes (e.g., "archival" mailboxes) are used
 primarily for long-term storage of important messages that the human
 wants to have instantly available on demand but does not want
 cluttering up the disconnected client's cache at any other time.
 Messages in this kind of mailbox would be fetched exclusively by
 explicit actions queued by the local MUA. Thus, the only
 synchronization that is necessary for a mailbox of this kind is
 fetching the descriptor information that the human will use to
 identify messages that should be explicitly fetched.

 Special mailboxes that receive traffic from a high volume, low
 priority mailing list might also be in this category, at least when
 the human is in a hurry.

5.5. Special case: fast new-only synchronization

 In some cases the human might be in such a hurry that s/he doesn't
 care about changes to old messages, just about new messages. In this

 case, the client can skip the UID FETCH command that obtains the
 flags and UIDs for old messages (1:<lastseenuid>).

5.6. Special case: blind FETCH

 In some cases the human may know (for whatever reason) that s/he
 always wants to fetch any new messages in a particular mailbox,
 unconditionally. In this case, the client can just fetch the
 messages themselves, rather than just the descriptors, by using a
 command like:
 tag1 UID FETCH <lastseen+1>:* (FLAGS RFC822.PEEK)

 Note, that this example ignores the fact that the messages can
 be arbitrary long. The disconnected client MUST always check
 for message size before downloading, unless explicitly told otherwise.
 A good behaving client should use instead something like the following:

 1) Issue "tag1 UID FETCH <lastseen+1>:* (FLAGS RFC822.SIZE)"
 2) From the message sizes returned in step 1 construct UID set
 <required_messages>
 3) Issue "tag2 UID FETCH <required_messages> (RFC822.PEEK)"

 or

 1) Issue "tag1 UID FETCH <lastseen+1>:* (FLAGS)"
 2) Construct UID set <old_uids> from the responses of 1)
 3) Issue "tag2 SEARCH UID <old_uids> SMALLER <message_limit>"
 Construct UID set <required_messages> from the result of
 the SEARCH command.
 4) Issue "tag3 UID FETCH <required_messages> (RFC822.PEEK)"

6. Implementation considerations

 Below are listed some common implementation problems that should be
 considered when implementing a disconnected client.

golden rules that should be considered when implementing
 a good disconnected IMAP client.

<<*>>
 1) Don't reorder operations during synchronization.

 It is not always safe to reorder operations during synchronization,
 because some operations may have dependencies. So if in doubt, don't do
that.
 The following example demonstrates this:

 Example 1: The user copies a message out of a mailbox and then deletes
 the mailbox.

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

 C: A001 SELECT Old-Mail
 S: ...
 C: A002 UID COPY 111 ToDo
 S: A002 OK [COPYUID 1022843345 111 94] Copy completed
 ...
 C: A015 CLOSE
 S: A005 OK Completed
 C: A016 DELETE Old-Mail
 S: A016 OK Mailbox deletion completed successfully

 If the client performs DELETE (tag A016) first and COPY (tag A002)
second,
 than the COPY fails.

<< Describe one case when it is safe to reorder: the disconnected client
 doesn't allow to perform DELETE and RENAME while offline and EXPUNGE
 is never used (UID EXPUNGE is used instead or its emulation as described
 in 5.2.3 >>

 2) Implementing fake UIDs on the client.

 A message scheduled to be uploaded has no UID, as UIDs are selected by
 the server. The client may implement fake UIDs internally in order to
 reference not yet uploaded messages in further operations. For example,
 message was scheduled to be uploaded and later marked deleted or copied
 to another mailbox). However, the client MUST NOT under any circumstances
 sent these fake UIDs to the server. Also, client implementors should
 be reminded that according to [IMAP4] an UID is a 32bit unsigned integer
 excluding 0. So, both 4294967295 and 2147483648 are valid UIDs and 0 and
-1
 are both invalid. Existing disconnected mail clients are known to send
 "-1" as a message UID to servers during synchronization.

6.1. Error recovery during playback

 Error recovery during synchronization is one of the trickiest parts
 to get right. Below, we will discuss certain error conditions
 and suggest possible choices to handle them:

 1). Lost connection to the server.

 The client MUST remember the current position in playback log and
 replay it starting from the interrupted operation (<<is it always safe?
>>)
 next time it is connected to the same server.
 <<What about operations that can produce different end result when
called twice?
 For example, the client is doing one of those operations (e.g.
DELETE),
 connection was lost and the client doesn't know if it succeeded.

 Should check for mailbox existence, instead of calling DELETE twice.>>

 2). Copying/appending messages to a mailbox that doesn't exist.

 The user should be advised about the situation and be given
 one of the following choices:
 a). Try to recreate a mailbox;
 b). Copy/upload messages to another mailbox;
 c). Skip copy/upload.
 d). Abort replay.

 3). Copying messages from, rename or get/change ACLs [ACL] on
 a mailbox that doesn't exist:

 a). Skip operation
 b). Abort replay

 4). Message to perform operation on doesn't exist.

 a). Skip operation
 b). Abort replay

<< To be completed later >>

 Note 1: Several synchronization operations map to multiple IMAP commands
 (for example "move" described in 5.2.2). The client must guaranty
 atomicity of each such multistep operation. For example,
 when performing "move" between two mailboxes on the same server,
 if the server is unable to copy messages, the client MUST NOT set
 \Deleted flag on the messages being copied, all the more expunging
 them. However the client MAY consider that move operation succeeded
 even if the server was unable to set \Deleted flag on copied messages.

 Note 2: Many synchronization operations have "data" dependencies.
 A failed operation should cause all dependent operations to fail as
 well. The client should check that and MUST NOT try to perform
 all dependent operations blindly (unless the user corrected the original
 problem). For example, a message may be scheduled to be appended to
 a mailbox on the server and than later on the same message may be copied
 to another mailbox. If the APPEND operation fails, the client must not
 attempt to copy message later on. (See also Section 6, example 1).

6.2. Quality of implementation issues.

 Below listed some quality of implementation issues for disconnected clients.
 They will help to write a disconnected client that works correctly, performs
 synchronization as quickly as possible (and thus can make the user
 happier as well as save her some money) and minimizes the server load:

 1) Don't loose information.

 2) Don't do work unless explicitly asked. Be flexible. Ask all questions
 BEFORE starting synchronization, if possible.

 3) Minimize traffic

 The client MUST NOT issue a command if the client already received
 the required information from the server.

 The client MUST make use of UIDPLUS extension if it is supported
 by the server.

 4) Minimize number of round trips.

 Round trips kill performance, especially on links with high latency.
 Sections 5.2.2.5 and 6.2 give some advices how to minimize number of
 round trips.

 5) Perform some synchronization steps in parallel, if possible.

 Several synchronization steps don't depend on each other and thus can
 be performed in parallel. Because the server machine is usually more
 powerful than the client machine and can perform some operations in
 parallel, this may speed up the total time of synchronization.

 In order to achieve such parallelization the client will have to open
 more than one connection to the same server. Client writers should not
 forget about non-trivial cost associated with establishing a TCP
connection
 and performing an authentication. The disconnected client MUST NOT use
 a connection per each mailbox. In most cases it is sufficient to have
 two connections.

 Any mailbox synchronization MUST start with checking of the UIDVALIDITY
 as described in section 5.1 of this document. The client MAY use STATUS
 command to check UID Validity of a non selected mailbox. This is
preferable
 to opening many connections to the same server to perform synchronization
 of multiple mailboxes simultaneously. As described in section 6.3.10 of
 [IMAP4], this SHOULD NOT be used on the selected mailbox.

6.3. Optimizations

 Some useful optimizations are described in this section. A disconnected
 client that supports recommendations listed below will give the user
 a more pleasant expirience.

 1) Initial OK or PREATH responses may contain CAPABILITY response code
 as described in section 7.1 of [IMAP4]. This response code gives
 the same information as returned by CAPABILITY command. A disconnected
 client that pays attention to this response code will be able
 to avoid sending CAPABILITY command and will save a round trip.

<< Keep mailboxes open during synchronization if possible >>

<< More to be added later >>

7. IMAP extensions that may help

 The following extensions can save traffic and/or number of round trips:

 1) The use of [UIDPLUS] is discussed in 5.1, 5.2.1, 5.2.2.1 and 5.2.4.

 2) The use of MULTIAPPEND and LITERAL+ extensions for uploading messages
 is discussed in 5.2.2.5.

7.1. CONDSTORE extension

 An advance disconnected mail client should use [CONDSTORE] extension
 when it is supported by the server. The client must cache the value from
 HIGHESTMODSEQ OK response code received on mailbox opening and update
 it whenever the server sends MODSEQ FETCH data items.

 If the client receives NOMODSEQ OK untagged response instead of
 HIGHESTMODSEQ, it MUST remove the last known HIGHESTMODSEQ value from its
 cache and follow more general instructions in section 4.

 When the client opens the mailbox for synchronization it first compares
 UIDVALIDITY as described in step d)1) in section 4. If the cached
 UIDVALIDITY value matches the one returned by the server, the client
 MUST compare the cached value of HIGHESTMODSEQ with the one returned
 by the server. If the cached HIGHESTMODSEQ value also matches the
 one returned by the server, then the client MUST NOT fetch flags for
 cached messages, as they hasn't changed. If the value on the server
 is higher than the cached one, the client MAY use
 "SEARCH MODSEQ <cached-value>" to find all messages with flags
 changed since the last time the client was online and had the mailbox
 opened. Alternatively the client MAY use
 "FETCH 1:* (FLAGS) (CHANGEDSINCE <cached-value>)". The latter operation
 combines searching for changed messages and fetching new information.

 In all cases the client still need to fetch information about new
 messages (if requested by the user) and discover which messages got
 expunged.

 Step d) ("Server-to-client synchronization") in section 4 in the presence
 of CONDSTORE extension is amended as follows:

 d) "Server-to-client synchronization" - for each mailbox that requires
 synchronization, do the following:

 1a) Check the mailbox UIDVALIDITY (see section 5.1 for more details).
 with SELECT/EXAMINE/STATUS.
 If UIDVALIDITY value returned by the server differs,
 the client MUST

 * empty the local cache of that mailbox;
 * "forget" the cached HIGHESTMODSEQ value for the mailbox;
 * remove any pending "actions" which refer to UIDs in
 that mailbox;
 * skip steps 1b and 2-II;

 1b) Check the mailbox HIGHESTMODSEQ. If the cached value is the same
 as the one returned by the server, skip fetching message flags
 on step 2-II (i.e. the client only has to find out which messages
 got expunged).

 2) Fetch the current "descriptors";

 I) Discover new messages.

 II) Discover changes to old messages using
 "FETCH 1:* (FLAGS) (CHANGEDSINCE <cached-value>)" or
 "SEARCH MODSEQ <cached-value>".

 3) Fetch the bodies of any "interesting" messages that the client
 doesn't already have.

 Example (HIGHESTMODSEQ value changed on the server while offline):

 C: A142 SELECT INBOX
 S: * 172 EXISTS
 S: * 1 RECENT
 S: * OK [UNSEEN 12] Message 12 is first unseen
 S: * OK [UIDVALIDITY 3857529045] UIDs valid
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS (\Deleted \Seen *)] Limited
 S: * OK [HIGHESTMODSEQ 20010715194045007]
 S: A142 OK [READ-WRITE] SELECT completed

 after that either:
 C: A143 UID FETCH 1:* (FLAGS) (CHANGEDSINCE 20010715194032001)
 S: * 2 FETCH (UID 6 MODSEQ (20010715205008000) FLAGS (\Deleted))
 S: * 5 FETCH (UID 9 MODSEQ (20010715195517000) FLAGS ($NoJunk
 $AutoJunk $MDNSent))
 ...
 S: A143 OK FETCH completed

 or:

 C: A143 SEARCH MODSEQ 20010715194032001
 S: * SEARCH 2 5 6 7 11 12 18 19 20 23 (MODSEQ 20010917162500)
 S: A143 OK Search complete

8. Security Considerations

 Security considerations are not discussed in this memo.

9. References

 [KEYWORDS] Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, Harvard University, March 1997.

 [IMAP4] Crispin, M., "Internet Message Access Protocol - Version
 4rev1", RFC 3501, University of Washington, March 2003.

 [UIDPLUS] Myers, J., "IMAP4 UIDPLUS extension", RFC 2359, June 1988.

 [LITERAL+] Myers, J. "IMAP4 non-synchronizing literals", RFC 2088,
 January 1997.

 [CONDSTORE] Melnikov, A., Hole, S., "IMAP Extension for Conditional
 STORE operation", Work in progress, draft-melnikov-imap-condstore-XX.txt,
 Isode Ltd., ACI WorldWide/MessagingDirect.

 [MULTIAPPEND] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL -
 MULTIAPPEND EXTENSION", RFC 3502, University of Washington,
 March 2003.

 [UNSELECT] Melnikov, A., "IMAP UNSELECT command", Work in progress,
draft-melnikov-imap-unselect-XX.txt, Isode Ltd.

 [ACL] Myers, J., "IMAP4 ACL Extension", RFC 2086, January 1997.
 and
 Melnikov, A., "IMAP4 ACL Extension", draft-ietf-imapext-acl-XX.txt,
 Work in Progress.

10. Acknowledgment

 This document is a revision of the draft-ietf-imap-disc-01.txt written
 by Rob Austein <sra@epilogue.com> in November 1994.

 The editor appreciate comments posted by Mark Crispin to the IMAP mailing
 list and the comments and corrections and ideas received from Cyrus Daboo,
 John G. Myers and Chris Newman.

 The editor would also like to thank the developers of Netscape Messenger
 and Mozilla mail clients for providing examples of disconnected mail clients
 that served as a base for many recommendations in this document.

11. Editor's Address

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc2359
https://datatracker.ietf.org/doc/html/rfc2088
https://datatracker.ietf.org/doc/html/draft-melnikov-imap-condstore-XX.txt
https://datatracker.ietf.org/doc/html/rfc3502
https://datatracker.ietf.org/doc/html/draft-melnikov-imap-unselect-XX.txt
https://datatracker.ietf.org/doc/html/rfc2086
https://datatracker.ietf.org/doc/html/draft-ietf-imapext-acl-XX.txt
https://datatracker.ietf.org/doc/html/draft-ietf-imap-disc-01.txt

 Alexey Melnikov
 mailto: mel@isode.com

 Isode Limited
 5 Castle Business Village,
 36 Station Road,
 Hampton, Middlesex,
 United Kingdom, TW12 2BX

 Phone: +44 77 53759732

12. Full Copyright Statement

 Copyright (C) The Internet Society 2002-2003. All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
 are included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

