
Workgroup: Network Working Group
Internet-Draft: draft-menon-svr-00
Published: 1 October 2021
Intended Status: Informational
Expires: 4 April 2022
A

u
t
h
o
r
s
:

A. Menon
Juniper Networks

M. Baj
Juniper Networks

P. Timmons
Juniper Networks

H. Kaplan
Juniper Networks

Secure Vector Routing (SVR)

Abstract

This document describes Secure Vector Routing (SVR). Secure Vectors
contain application layer metadata used for authentication and
communicating network intent between data routers. The metadata is
extensible, and could be used to transmit information, network
routes, security policies, and quality policies securely across
network boundaries. Boundaries include those formed by private
network RFC1918 networks with the IPv4 public internet, and the IPv6
public internet.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on 4 April 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
1.1. Overview
1.2. Qualified Service Name (QSN)

2. Theory of operation of Secure Vector Routing
2.1. SVR Peer Definition
2.2. SVR Peer Paths
2.3. Directionality
2.4. Metadata Handshake
2.5. Path Obstructions
2.6. Metadata removal
2.7. Modification of transport addresses
2.8. Unique 5-Tuples for Every Session
2.9. Session State Requirements
2.10. Waypoint Addresses

3. Metadata Format and Composition
3.1. Metadata Header

3.1.1. False Positives
3.1.2. Header Attributes
3.1.3. Payload Attributes
3.1.4. Forward and Reverse Attributes

3.2. Header Attributes
3.2.1. Fragment
3.2.2. Security Identifier
3.2.3. Disable Forward Metadata
3.2.4. IPv4 Router Egress Source Address
3.2.5. IPv4 Router Egress Source Address
3.2.6. Selective Acknowledgement
3.2.7. SVR Protocol Message
3.2.8. Path Metrics
3.2.9. Modify Request

3.3. Payload Attributes
3.3.1. Forward Context IPv4
3.3.2. Forward Context IPv6
3.3.3. Reverse Context IPv4
3.3.4. Reverse Context IPv6
3.3.5. Session UUID
3.3.6. Source Tenant Name
3.3.7. Service Name
3.3.8. Session Encrypted
3.3.9. TCP SYN Packet
3.3.10. Source Router Name
3.3.11. Source Router Security Name
3.3.12. Destination Router Name
3.3.13. Peer Path ID
3.3.14. IPv4 Source NAT Address

4. Metadata Exchanges and Use Cases
4.1. Establishing a Peer Path

4.1.1. Peer Path Status and Performance
4.1.2. Sharing Path Metrics between routers
4.1.3. Testing Path Availability

4.2. New Session Initiation
4.2.1. First Packet Processing

¶

4.2.2. Signing the Metadata
4.2.3. Encryption of the Metadata
4.2.4. Receiving the First Response Packet
4.2.5. Subsequent Packet Processing
4.2.6. Session Termination
4.2.7. Unicast and Asymmetric Flows

4.3. Moving a Session
5. Security Considerations

5.1. HMAC Authentication
5.2. Replay Prevention
5.3. Payload Encryption
5.4. DDoS and Unexpected Traffic on Waypoint Addresses

6. Acknowledgements
7. Normative References
Authors' Addresses

1. Introduction

There exists a need to extend network intent across multiple IP
networks and paths to provide an end-to-end experience. Selection of
specific paths and their attributes is a key intent. There is also a
need for applications to communicate their intent to networks. This
need is increasing as workloads move to public cloud and the numbers
of cloud locations increase. The standard practice today is to use
an overlay network of tunnels to create a virtual network. SVR is
being proposed as an alternative to using tunnels, which simplifies
the network by virtue of having only one network to manage and
securely transport traffic with encryption and authentication; also,
the absence of tunneling overhead reduces bandwidth. Since SVR
specifies intent abstractly, it also has the capability to interwork
policies between different networks and address spaces.

Most networks are deployed with a virtual private network (VPN)
across IP backbone facilities. VPNs have the significant
disadvantage of carrying additional payload on top of the actual
packet thereby leading to IP fragmentation as well as reduced
bandwidth. In this document, SVR is being proposed as a new
technique which is session aware and does not have the overhead of
IP tunnels.

1.1. Overview

A Secure Vector Route (SVR) describes a network intent and shares
this intent in the form of metadata with a routing peer. The intent
to a peer router is conveyed by means of a cookie, often referred to
as first packet metadata, which is placed on the first packet that
is targeted towards the peer. SVR is session aware on every router
and sets up a biflow (forward and reverse flows) based on the
intent. Once the session is set up, the cookie is not sent for the
subsequent packets.

¶

¶

¶

 +---------+ +---------+
 +----+ | Edge | (-------------) | Edge | +----+
 |CPE |--| Router |--(IP Backbone)---| Router |--|CPE |
 +----+ | | (-------------) | | +----+
 +---------+ +---------+
 <-------SVR ------->

Figure 1

This intent must include:

Authority: This defines the owner of the namespace to be used for
defining policies. Each namespace owner can allocate Tenant names
(representing collections of network endpoints sharing common
network enforcement policy), and Service names (representing
accessible destinations and traffic treatment policy). Authority
namespace allocation will be managed like any other domain name
reservation.

Context: This is the original "5-tuple" of an IP packet,
including source IP, source port, destination IP, destination
port, and protocol. Optionally, Layer 2 information such as MAC
Address or VLAN tags may be included for certain use cases if
required.

Signature: The metadata must be cryptographically signed using
HMAC by the source router, so the next hop router can
authenticate the sender of the data. The portion of the packet
that is signed must not include the IP header, as it may go
through a NAT or IPv4 to IPv6 conversion.

Direction: This is the intended client to server direction. The
initial network packet of a communication session indicates the
direction. For example, a TCP SYN packet would travel from client
to server, defining the direction of an intent. Forward direction
is always client to server, and reverse is always server to
client. These directions have nothing to do with a network
topology (for example, hub and spoke), and a single network path
could have forward sessions going bi-directionally -- traffic
going from node A to node B may represent the forward direction
for some sessions and the reverse direction for other sessions.

Tenant(s): This is a textual description defining network
endpoints that share common access policy (allowlists or
blocklists to network destinations). These may be mapped using
any known technique including source IP address mask, a VLAN tag,
ingress interface, provided by an authentication system, or even
client supplied, and this mapping is outside the scope of this
document. Often these are location specific definitions, but the
tenant has global meaning within an authority. Tenant names can
conform to domain name syntax, and be expressed as hierarchical
structures (i.e., location.department.company).

Service(s): This is a textual description of what server(s) can
be accessed with this intent. Examples include Zoom, or
Office365/Outlook. Although outside the scope of this document,
these could be defined with any known technique, including URLs,
IP address(es) protocol(s) and port(s), CIDR block(s), etc.
Having a single text name to describe a network destination makes
applying network intent easier. This Service name can be used to
define all other attributes of network intent including:

Quality Policy: Associated or imputed by the Service, a
description of the bandwidth quality that is required. These
can be implementation specific.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

-

¶

Security Policy: Associated or imputed by the Service, a
description of what kinds of encryption may be required and
security processing that is required. These can be
implementation specific.

These additional attributes are outside the scope of this
protocol as they are locally defined and associated locally to
the specific Service.

When performing HMAC signatures, or payload encryption, key
management is also outside the scope of this document. Standard
IKEv2 techniques could be applied, or integration with
authentication systems may be appropriate.

1.2. Qualified Service Name (QSN)

A Secure Vector Route can be described as a Qualified Service Name
(QSN). This is shorthand for a human understanding of a specific
network intent definition. This shorthand is used in use case
examples, but is not part of the specific protocol.

The QSN conforms with the definition of a URL. The QSN describes the
Direction, Tenant, and Service of an SVR. The QSN introduces the
concept of a naming authority, which controls the namespace for
subtenants, tenants, services, and subservices. Examples of QSNs
include the following:

These examples indicate that juniper and acme are different
authorities, and can each completely describe a QSN without defining
overlapping intents in any way. The first example is a name for the
intent definition for engineering at juniper to access github for a
specific project. In the second case, engineering at acme can access
any resources defined as github. QSNs will be used in this document
and are useful in describing a high-level intent.

2. Theory of operation of Secure Vector Routing

The SVR metadata must be inserted into existing packets directly
after the L4 header, even if the resulting increase in packet size
would cause the packet to require fragmentation. The metadata must
be in the very first packet of a new session (TCP or UDP
bidirectional flow) to have any role in path selection or security.
Metadata may be sent in any subsequent packet to change/update the
networking intent. The metadata is inserted into the payload portion
of a packet to guarantee it makes it unchanged through the network.
Packet lengths and checksums must be adjusted accordingly, although
adjusting TCP sequence numbers is not necessary.

2.1. SVR Peer Definition

A SVR Peer is any client, server, or network element that can
understand and participate in SVR. Having pre-shared cryptographic
keys, and the ability to authenticate and decrypt metadata is a

-

¶

¶

¶

¶

 QSN://[subtenant.]tenant.authority/service/subservice¶

¶

 QSN://engineering.juniper/github/project
 QSN://engineering.acme/github

¶

¶

¶

prerequisite to being a peer. Peers do not have to be directly
adjacent, but reachable via IP networking, even across network
boundaries. Examples of peers include:

A branch router and a data center edge router:

A client desktop computer and a nearby router:

A WIFI AP and an edge router:

A data center edge router and a VPC based router in a public cloud:

2.2. SVR Peer Paths

SVR Peers may have many different possible pathways between them.
Each path must be discovered, and its service state should be known
prior to sending metadata. Techniques such as BFD (RFC 5580) could
be used to determine path availability. Each of these individual
paths between peers is called a "peer path." Secure Vector routes
are always defined and used between peers and can support session
resiliency across multiple paths.

Peer paths are defined by their IP addresses or hostnames. Routers
with multiple interfaces may have multiple peer paths to a next hop
router. The IP addresses routers use on their interfaces are also
referred to as waypoints. Every peer path can be defined by a pair
of waypoint addresses. To avoid confusion when branch or edge
devices obtain new IP addresses dynamically, these peer paths are
assigned a hostname which is used instead. The named pathway and
associated keys(ip-address/hostname and peer name) are provisioned
and presumed available in this specification. Details of this
provisioning are outside the scope of this document.

¶

¶

 +-----------+ +-----------+
 | | | |
 | Branch | ---------------------------->| Datacenter|
 | Router | Secure Vector Routing(SVR) | Router |
 | | | |
 +-----------+ +-----------+

¶

¶

 +-----------+
 +-----------+ | |
 | Computer | ---------------------------->| Router |
 +-----------+ Secure Vector Routing(SVR) | |
 +-----------+

¶

¶

 +-----------+
 +-----------+ | |
 | Wifi AP | ---------------------------->| Router |
 +-----------+ Secure Vector Routing(SVR) | |
 +-----------+

¶

¶

 +-----------+ +-----------+
 | | | |
 | Edge | ---------------------------->| Cloud VPC |
 | Router | Secure Vector Routing(SVR) | |
 | | | |
 +-----------+ +-----------+

¶

¶

¶

2.3. Directionality

The protocol utilizes the concept of direction. Direction is either
forward or reverse; it is not tied to network topology, but rather
the direction of session establishment. For TCP, the forward
direction is always the client side towards the server side. For
UDP, the forward direction is from the sender of the first packet.
Reverse is the opposite direction.

These directions can be used to qualify a path between a pair of SVR
Peers, the ingress and the egress (forward is from ingress to
egress); or to qualify metadata (forward metadata is inserted by the
ingress).

2.4. Metadata Handshake

To ensure the metadata is received and understood between peers, a
handshake is performed. A router that supports SVR peer paths
inserts metadata for each packet flow in the following
circumstances:

It is a "forward" packet representing a new session and the
ingress node has not yet received any reverse metadata from the
recipient egress node.

It is a "reverse" packet from the recipient egress node to the
initiating ingress node and recipient egress node has not
received forward packets from this session without metadata.

These two comprise what is known as the "metadata handshake" -- that
is, the initiating router includes metadata in all packets it sends
to the recipient router until it receives a reverse packet with
metadata from that recipient. Likewise, the recipient continues to
send metadata to the initiating router until it receives a packet
without metadata. This is how two routers acknowledge receipt of
metadata from their counterparts: the absence of metadata in a
packet indicates that it has received metadata from its counterpart.

2.5. Path Obstructions

Firewalls and middleboxes that sit along a peer path may not
tolerate TCP SYN messages with data in the payload, or may verify
sequence numbers in TCP streams (which are invalidated due to the
inclusion of SVR metadata). The two devices that represent the peer
path endpoints may determine through testing if there is a firewall,
NAT, or other active middlebox between the two routers. Procedures
for this (like STUN/TURN/ICE) are well known, and not included in
this document. If a middlebox is detected, the packets can be UDP-
transformed ie; the protocol byte can be changed from TCP to UDP by
the transmitting router and restored to TCP by the receiving router
for packets flowing in both directions. The sequence number of the
TCP packet will be copied to the TCP checksum location as it will be
overwritten by the UDP header. The original protocol in use is part
of the context in the metadata and can be restored by the receiving
peer.

¶

¶

¶

*

¶

*

¶

¶

¶

2.6. Metadata removal

To prevent breaking any applications, there must be a 100% guarantee
that metadata inserted by a participating SVR device is removed
prior to the consumption of the data by the application service. If
the client and server support metadata, then the network intent can
be sent end-to-end. When a mid-stream packet router wants to insert
SVR metadata, it must guarantee that the packet is directed to a
next hop device that will understand and remove the metadata.

2.7. Modification of transport addresses

To guarantee that the packet will go to a specific device, the
destination address for the packet is changed to the waypoint
address of the next hop. Because the original addresses are stored
in the context field, they can be recovered if needed. This is
similar to IPv6 segment routing or a LISP RLOC with the exception
that the original addresses are stored in metadata within the
payload portion of the packet, and not the IP Header.

To communicate to the next hop the origin of the packet and to
define and open a return path, the source address of the packet is
NATted to the interface of the source router. This is called a
source waypoint address. This provides a return path and can be used
to guarantee symmetric flows if desired. Once again, the original
addresses are state information that the source router must
maintain.

2.8. Unique 5-Tuples for Every Session

To avoid sharing a hash with all traffic, and to make sessions
completely independent, the source port and destination port can be
assigned any values that are unique by the source router. When there
are no NATs between the two router interfaces, this permits 2^32
(4,294,967,296) different unique sessions on a peer path. If there
are source NATs, this will be reduced to 2^16 (65,536) different
unique sessions. Ports can be reassigned if not in active use. It is
also possible that middle boxes will limit what destination ports
are permissible, reducing the number of possibilities. The range of
ports that can be used could be discovered at run time by testing a
peer path, provisioned, or both.

Note: The ingress SVR peer (client side) assigns both source and
destination ports. The ingress side always chooses even ports for
local (source port) and odd ports for remote(destination port) This
provides total uniqueness between any two peers, with no negotiation
or collision possibilities. Think of the two ports as a Sessions
Identification Tag. Even if a session traveling in the opposite
direction was allocated the same exact ports, because the source
address and destination addresses would be swapped, the 5 tuples on
the wire remain unique.

2.9. Session State Requirements

Each participant (peer) in secure vector routing must maintain state
for every active session. This includes the full set of original
addresses and translations required. This allows participants to
stop sending metadata once it has been received by the peer. Should

¶

¶

¶

¶

¶

Cookie (8 bytes)

Version (4 bits)

one side lose state information, it can notify the other that it
must send metadata to restore a session. Typically a path change
will trigger metadata to be turned on for the subsequent forward
packets so that the new session state including the waypoints can be
maintained by the next hop router.

2.10. Waypoint Addresses

Each SVR router (peer) must statefully remember the source address
that a session with metadata was received on. This may not be the
same address the router sent a packet from due to a NAT or Firewall
in the pathway. Routers use provisioned waypoint addresses, but
statefully record and store the actual waypoint addresses.

3. Metadata Format and Composition

The format of metadata has both Header attributes as well as Payload
attributes. Header attributes are always guaranteed to be
unencrypted. These headers may be inspected by intermediate network
elements but can't be changed. Payload attributes optionally can be
encrypted by the sender. The pre-existing security association and
key sharing is outside the scope of this document. Each attribute
listed below will indicate whether it is a header attribute
(unencrypted) or payload attribute (optionally encrypted). There are
no attributes that can exist in both sections.

3.1. Metadata Header

The metadata header is shown below. A well-known "cookie"
(0x4c48dbc6ddf6670c in network byte order or 0x0c67f6ddc6db484c in
host byte order) is built into the header which is used in concert
with contextual awareness of the packet itself to determine the
presence of metadata within a packet. This is an eight-byte pattern
that immediately follows the L4 header and is an indicator to a
receiving router that a packet contains metadata. NOTE: Because
packets are not normally directed to a routers interface, all
packets arriving on a waypoint should include metadata or they will
be dropped.

Figure 2

The fingerprint of metadata. This value is used to
determine the existence of metadata within a packet.

Field representing the version of the metadata
header. The current version of metadata is 0x1.

¶

¶

¶

¶

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 + Cookie +
 | |
 +-+
 |Version| Header Length | Payload Length |
 +-+
 | Header TLVs ... | Payload TLVs ... |
 +-+

¶

¶

Header Length (12 bits)

Payload Length (2 bytes)

Length of the metadata header including any added optional
attributes that are guaranteed to be unencrypted. The value of
the number of bytes in the header.

Length of data following the metadata
header, not including the size of the header. This data could be
encrypted. The value of this field is the number of bytes in the
payload.

3.1.1. False Positives

Given that no byte sequence is truly unique in the payload of a
packet, in the scenario where the original payload after the L4
header contained the same byte sequence as the cookie, false
positive logic is enacted on the packet. If the metadata signature
can't verify that the metadata is valid, then a false positive
metadata header is added to the packet to indicate that the first
eight bytes of the payload matches the cookie. The structure of a
false positive metadata packet is one which has a metadata header
length that is the same as the base header size as well as having
zero payload length. The receiving side of a packet with false
positive metadata will strip out the metadata header if the next hop
of the packet is not expecting a metadata header.

In the scenario where a router receives a false positive metadata
header but intends to add metadata to the packet, the false positive
metadata header is modified to contain the newly added attributes.
Once attributes are added, the metadata header is no longer
considered to be false positive.

3.1.2. Header Attributes

Header attributes are unencrypted and not associated with any one
specific session, and do not have a forward or reverse direction.
These are tied instead to the router peer path itself. The metadata
header contains a 12-bit field associated with the header length of
the metadata header. The field represents the overall length of the
header. Its base value is 0xC which is the initial length of the
metadata header.

The value 0xC comes from:

Any value greater than 0xC would indicate that there are optional
attributes associated with this metadata header which are guaranteed
to be unencrypted.

An example of an optional attribute which would reside in the
guaranteed unencrypted section of metadata would be per-packet
fabric fragment attribute. This attribute is not associated with any
session or encryption schema and as such must not be encrypted.

¶

¶

¶

¶

¶

¶

 64 bits Cookie Length
 4 bits Metadata Version
 12 bits Header Length
 + 16 bits Payload Length

 96 bits = 12 bytes decimal = 0xC hex

¶

¶

¶

Type = 1 decimal (0x01) (2 bytes)

Length (2 bytes)

Extended ID (4 bytes)

Original ID (2 bytes)

Flags (3 bits)

3.1.3. Payload Attributes

The metadata header contains a two-byte payload length field which
is associated with attributes that can be encrypted.

3.1.4. Forward and Reverse Attributes

Each metadata payload attribute may be valid in the forward
direction, the reverse direction, or both. If not valid, it is
ignored quietly by the receiving side.

3.2. Header Attributes

3.2.1. Fragment

When a packet is fragmented to insert metadata, a new fragmentation
mechanism must be added to prevent fragmentation attacks and to
support reassembly (which requires protocol and port information).
If a packet is received that IS a fragment, and it must transit
through a metadata signaled pathway, it must also have this metadata
attached to properly bind the fragment with the correct session.

All fragments will have a metadata header and the fragment TLV added
to the guaranteed unencrypted portion of the metadata header. If the
original packet already has a metadata header on it, the fragment
TLV will be added to it.

Figure 3

Identifier for the Fragment TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

Value used for differentiating fragment
tuples.

Original identification value of the L3
header.

Field used for identifying fragment attributes. They
are (in order, from most significant to least significant):

bit 0: Reserved; must be zero.

¶

¶

¶

¶

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 1 | Length = 10 |
 +-+
 | Extended ID |
 +-+
 | Original ID |Flags| Fragment Offset |
 +-+
 | Largest Seen Fragment |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

¶

Fragment Offset (13 bits)

Largest Seen Fragment (2 bytes)

Type = 16 Decimal (0x10) (2 bytes)

Length (2 bytes)

Security Identifier (4 bytes)

Type = 18 Decimal (0x12) (2 bytes)

bit 1: Don't fragment (DF).

bit 2: More fragments (MF).

Field associated with the number of
eight-byte segments the fragment payload contains.

Used along with a given egress
network interface MTU to determine the fragment size of a
reassembled packet.

3.2.2. Security Identifier

A versioning identifier used to determine which security key version
should be used when handling features dealing with security and
authenticity of a packet.

Figure 4

Identifier for the Security
Identifier TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

This is a four-byte security key
version identifier. This is used to identify the algorithmic
version used for metadata authentication and encryption.

3.2.3. Disable Forward Metadata

An indication that forward metadata should be disabled. This is sent
in the reverse metadata to acknowledge receipt of the metadata. This
is the second part of the metadata handshake.

Figure 5

Note: The binding of the forward
metadata to this is based on the 5-tuple address on the wire.
Every session first packet with metadata will have a unique 5-
tuple as it leaves the router. This unique address is used to
bind a forward and reverse metadata. See metadata handshake in
Section 2.4.

¶

¶

¶

¶

¶

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type = 16 | Length = 4 |
+-+
| Security Key ID |
+-+

¶

¶

¶

¶

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 18 | Length = 0 |
 +-+

¶

Length (2 bytes)

Type = 20 decimal (0x14) (2 bytes)

Length (2 bytes)

Source Address (4 bytes)

Number of bytes associated with the length of the value (not
including the 4 bytes associated with the type and length
fields).

Note: This type does not contain any value as its existence in
metadata indicates a true value.

3.2.4. IPv4 Router Egress Source Address

The IP address of the originating packet on the wire. This is sent
by the source to the destination because there may be a NAT between
the two routers. By recognizing the actual source packet on the
wire, and comparing it with this field, a router can detect a NAT is
present.

Figure 6

Identifier for the Source
Address (IPv4) TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

Original IPv4 source address of the
originating router.

3.2.5. IPv4 Router Egress Source Address

The IP address of the originating packet. This is sent by the source
to the destination because there may be a NAT between the two
routers. By recognizing the actual source packet on the wire, and
comparing it with this field, a router can detect a NAT is present.

Figure 7

¶

¶

¶

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 20 | Length = 4 |
 +-+
 | Source Address |
 +-+

¶

¶

¶

¶

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 21 | Length = 16 |
 +-+
 | |
 + +
 | |
 + Source Address +
 | |
 + +
 | |
 +-+

Type 21 decimal (Ox15) (2 bytes)

Length (2 bytes)

Source Address (16 bytes)

Type = 23 decimal (0x17) (2 bytes)

Length (2 bytes)

ACK Sequence Number (4 bytes)

Variable Number of Selective Ack Blocks (8 bytes per block)

Left Edge (4 bytes)

Right Edge (4 bytes)

Identifier for the Source Address (IPv6) TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

Original IPv6 source address of the
originating router.

3.2.6. Selective Acknowledgement

Used for TCP session optimization between peers. Allows sending side
in long latency situations to queue packets and retransmit them to
optimize TCP traffic.

Figure 8

Identifier for the Selective
Acknowledgement TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

Sequence number for the last TCP
message received.

Left Edge of the Selective Ack Block.

Right Edge of the Selective Ack Block.

3.2.7. SVR Protocol Message

The SVR Protocol Message is a force drop message that is used as an
out-of-band signaling mechanism between 128T routers. These are
messages that are internally generated and not intended to be
forwarded through the router to another destination. Any sessions
utilizing the 5 tuples defined by the received packet with metadata
may be acted upon based on the drop reason.

¶

¶

¶

¶

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 23 | Length = variable |
 +-+
 | SACK Seq. No. |
 +-+

¶

¶

¶

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Left Edge |
 +-+
 | Right Edge |
 +-+

¶

¶

¶

¶

Type 24 decimal (0x18) (2 bytes)

Length (2 bytes)

Drop Reason (1 byte)

Figure 9

Identifier for the force drop TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

Reason why this packet should be dropped.

0 = Unknown. This value is reserved and used for backwards
compatibility.

1 = Keep Alive. A packet that is dropped by the receiving
node. Used only to keep NAT pinholes alive on middleboxes.

2 = Enable Metadata. When packets are received on a 128T's
wayport address and does not have metadata, the receiving
128T treats the packet as a new session, requesting the
sending 128T to resend the packet with Metadata in the
packet. If state is lost, this can help with recovery.

3 = Disable Metadata. An indication that forward metadata
should be disabled. This is sent in the reverse metadata to
acknowledge receipt of the metadata. If recovery is
complete, this can be sent.

3.2.8. Path Metrics

Inline flow performance metrics to compute jitter, latency and loss
per service, per path, per traffic class.

Figure 10

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 24 | Length = 1 |
 +-+
 | Drop Reason |
 +-+-+-+-+-+-+-+-+

¶

¶

¶

*
¶

*
¶

*

¶

*

¶

¶

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 26 | Length = 10 |
 +-+
 | Tx Co | Transmit TimeValue |
 +-+
 | Rx Co | Received TimeValue |
 +-+
 |D| Previous Rx Color Count |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Type = 26 decimal (Ox1A) (2 bytes)

Length (2 bytes)

Transmit Color (4 bits)

Transmit Time Value (28 bits)

Received Color (4 bits)

Receive Time Value (28 bits)

Drop Bit (1 bit)

Previous Rx Color Count (15 bits)

Type = 28 decimal (0x1C) (2 bytes)

Length (2 bytes)

F (1 bit)

D (1 bit)

Reserved (2 bits)

Identifier for the Path Metrics TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

Current color of a transmitting node.

Current time value in milliseconds at
time of marking. This time value represents the amount of time
which has elapsed since the start of a transmit color.

Most recently received color from a remote
node.

Cached time value in milliseconds from
adjacent node adjusted by the elapsed time between caching of the
value and current time. This time value is associated with the
received color.

Should this packet be dropped.

Number of packets received from
the previous color block. This count is in reference to the color
previous to the current RX color which is defined above.

3.2.9. Modify Request

A modify operation on an existing session, which diverts the packet
to the service area for additional treatment and processing. This
forces an "inline" session modify instead of allocating new
waypoints to cause the same behavior.

Figure 11

Identifier for the Modify
Request TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

Direction - forward or reverse. 0 = reverse. 1 = forward.

Divert - Whether the modify can be handled inline in the
fastpath or needs to be diverted to the service area. 1 = divert.
0 = do not divert.

Reserved for future use. Value is 00.

¶

¶

¶

¶

¶

¶

¶

¶

¶

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 28 | Length = 2 |
 +-+
 |F|D|res| sequence number |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

Sequence Number (12 bits)

Type = 2 decimal (0x02) (2 bytes)

Length (2 bytes)

Source Address (4 bytes)

Destination Address (4 bytes)

Source Port (2 bytes)

Destination Port (2 bytes)

Protocol (1 byte)

The number of modifications the session has undergone.

3.3. Payload Attributes

Payload attributes are used for session establishment and can be
encrypted to provide privacy. Encryption can be disabled for
debugging.

3.3.1. Forward Context IPv4

The context contains a five-tuple associated with the original
addresses, ports, and protocol of the packet. This is also known as
the Forward Session Key.

Figure 12

Identifier for the Forward
Session Key (IPv4) TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

Original IPv4 source address of the
packet.

Original IPv4 destination address of
the packet.

Original source port of the packet.

Original destination port of the packet.

Original protocol of the packet.

3.3.2. Forward Context IPv6

A five-tuple associated with the original addresses, ports, and
protocol of the packet for IPv6.

¶

¶

¶

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 2 | Length = 13 |
 +-+
 | Source Address |
 +-+
 | Destination Address |
 +-+
 | Source Port | Destination Port |
 +-+
 | Protocol |
 +-+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

¶

¶

¶

Type = 3 decimal (0x03) (2 bytes)

Length (2 bytes)

Source Address (16 bytes)

Destination Address (16 bytes)

Source Port (2 bytes)

Destination Port (2 bytes)

Protocol (1 byte)

Figure 13

Identifier for the Forward
Session Key (IPv6) TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

Original IPv6 source address of the
packet.

Original IPv6 destination address of
the packet.

Original source port of the packet.

Original destination port of the packet.

Original protocol of the packet.

3.3.3. Reverse Context IPv4

Five-tuple associated with the egress (router) addresses, ports, and
protocol of the packet. Forward context and reverse context session
keys are not guaranteed to be symmetrical due to functions which
apply source NAT, destination NAT, or both to a packet before
leaving the router.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 3 | Length = 37 |
 +-+
 | |
 + +
 | |
 + Source Address +
 | |
 + +
 | |
 +-+
 | |
 + +
 | |
 + Destination Address +
 | |
 + +
 | |
 +-+
 | Source Port | Destination Port |
 +-+
 | Protocol |
 +-+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

¶

¶

¶

Type = 4 decimal (0x04) (2 bytes)

Length (2 bytes)

Source Address (4 bytes)

Destination Address (4 bytes)

Source Port (2 bytes)

Destination Port (2 bytes)

Protocol (1 byte)

Figure 14

Identifier for the Reverse
Session Key (IPv4) TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

Egress IPv4 source address of the packet.

Egress IPv4 destination address of
the packet.

Egress source port of the packet.

Egress destination port of the packet.

Original protocol of the packet.

3.3.4. Reverse Context IPv6

Five-tuple associated with the egress (router) addresses, ports, and
protocol of the packet. Forward and reverse session keys are not
guaranteed to be symmetrical due to functions which apply source
NAT, destination NAT, or both to a packet before leaving the router.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 4 | Length = 13 |
 +-+
 | Source Address |
 +-+
 | Destination Address |
 +-+
 | Source Port | Destination Port |
 +-+
 | Protocol |
 +-+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

¶

¶

¶

Type = 3 decimal (0x03) (2 bytes)

Length (2 bytes)

Source Address (16 bytes)

Destination Address (16 bytes)

Source Port (2 bytes)

Destination Port (2 bytes)

Protocol (1 byte)

Figure 15

Identifier for the Reverse
Session Key (IPv6) TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

Egress IPv6 source address of the packet.

Egress IPv6 destination address of
the packet.

Egress source port of the packet.

Egress destination port of the packet.

Original protocol of the packet.

3.3.5. Session UUID

Unique identifier of a session. This is assigned by the peer that is
initiating a session. Once assigned, it is maintained through all
participating routers end-to-end.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 3 | Length = 37 |
 +-+
 | |
 + +
 | |
 + Source Address +
 | |
 + +
 | |
 +-+
 | |
 + +
 | |
 + Destination Address +
 | |
 + +
 | |
 +-+
 | Source Port | Destination Port |
 +-+
 | Protocol |
 +-+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

¶

¶

¶

Type = 6 decimal (0x06) (2 bytes)

Length (2 bytes)

UUID (16 bytes)

Type 7 decimal (0x07) (2 bytes)

Length (2 bytes)

Name (variable length)

Figure 16

Identifier for the Session UUID
TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

Unique identifier of a session.

3.3.6. Source Tenant Name

An alphanumeric ASCII string which dictates what tenancy the session
belongs to.

Figure 17

Identifier for the Tenant ID TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

The tenant name represented as a string.

3.3.7. Service Name

An alphanumeric string which dictates what service the session
belongs to. This attribute must be present in all forward metadata
packets.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 6 | Length = 16 |
 +-+
 | |
 + +
 | |
 + UUID +
 | |
 + +
 | |
 +-+

¶

¶

¶

¶

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 7 | Length = variable |
 +-+
 | Name |
 +-+

¶

¶

¶

¶

Type = 10 decimal (0x0A) (2 bytes)

Length (2 bytes)

Name (variable length)

Type = 11 decimal (0x0B) (2 bytes)

Length (2 bytes)

Figure 18

Identifier for the Service Name
TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

The service name represented as a string.

3.3.8. Session Encrypted

Indicates if the session is having its payload encrypted. This
enables payload encryption with tenant specific attributes and keys.
Details of key management and encryption types are outside the scope
of this standard.

Figure 19

Identifier for the Session
Encrypted TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

Note: This type does not contain any value as its existence in
metadata indicates a value.

3.3.9. TCP SYN Packet

Indicates if the packet in question is a TCP SYN packet. Due to the
potential that this packet could have had its TCP header transformed
to UDP temporarily, the flags in the TCP header may not be
accessible.

Figure 20

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 10 | Length = variable |
 +-+
 | Name |
 +-+

¶

¶

¶

¶

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 11 | Length = 0 |
 +-+

¶

¶

¶

¶

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 12 | Length = 0 |
 +-+

Type = 12 decimal (0x0C) (2 bytes)

Length (2 bytes)

Type = 14 decimal (0x0E) (2 bytes)

Length (2 bytes)

Name (variable length)

Type = 15 decimal (0x0F) (2 bytes)

Length (2 bytes)

Identifier for the TCP SYN packet TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

Note: This type does not contain any value as its existence in
metadata indicates a value.

3.3.10. Source Router Name

An alphanumeric string which dictates which source router the packet
is originating from. This attribute may be present in all forward
metadata packets if needed.

Figure 21

Identifier for the Source Router
Name TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

The router name represented as a string.

3.3.11. Source Router Security Name

An alphanumeric string which dictates what security policy to be
used for encrypting metadata when sending reverse packets back to
this router. This attribute is optional.

Figure 22

Identifier for the Source Router
Security Name TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

¶

¶

¶

¶

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 14 | Length = variable |
 +-+
 | Name |
 +-+

¶

¶

¶

¶

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 15 | Length = variable |
 +-+
 | Name |
 +-+

¶

¶

Name (variable length)

Type = 17 decimal (0x11) (2 bytes)

Length (2 bytes)

Name (variable length)

Type = 19 decimal (0x13) (2 bytes)

Length (2 bytes)

Name (variable length)

The peer security name represented as a string.

3.3.12. Destination Router Name

An alphanumeric string which dictates which destination router the
packet is sent to. This attribute may be present if needed.

Figure 23

Identifier for the Destination
Router Name TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

The destination router name represented as a
string.

3.3.13. Peer Path ID

An alphanumeric string which dictates which router path has been
chosen for a packet. This name can be the hostname or IP address of
the egress interface of the originating router. Any two routers may
have multiple pathways between them. This enables association of
policies with specific paths.

Figure 24

Identifier for the Peer Path ID
TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

The peer path name which is represented as a
string.

¶

¶

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 17 | Length = variable |
 +-+
 | Name |
 +-+

¶

¶

¶

¶

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 19 | Length = variable |
 +-+
 | Name |
 +-+

¶

¶

¶

Type = 25 decimal (0x19) (2 bytes)

Length (2 bytes)

Source Address (4 bytes)

3.3.14. IPv4 Source NAT Address

An alphanumeric string which dictates which router path has been
chosen for a packet. This name can be the hostname or IP address of
the egress interface of the originating router. Any two routers may
have multiple pathways between them. This enables association of
policies with specific paths.

Figure 25

Identifier for the Source NAT
Address (IPv4) TLV.

Number of bytes associated with the length of the
value (not including the 4 bytes associated with the type and
length fields).

Source NATed address of the packet.

4. Metadata Exchanges and Use Cases

Metadata can be inserted and used to share network intent between
routers. Below are examples for specific use cases. The metadata is
not limited to these use cases, these are just illustrative.

4.1. Establishing a Peer Path

Before a client or router can send metadata to a next hop router or
server, it must know apriori of the next hop router's existence (and
interface IP Address or waypoint). The client or router must also
have a routed path to the IP Address (as determined by L2 and L3
routing protocols). The mechanism to obtain the router's address is
outside the scope of this document. This could be through
configuration, a DNS lookup, a LISP like RLOC query, or through a
registry service. Routing protocols can be used to share topology as
needed to locate supporting routers, and to obtain and share
cryptographic keys.

Client software that does not have access to routing layers can
generate packets to test if the default route supports metadata by
sending specially constructed packets to the default gateway.

4.1.1. Peer Path Status and Performance

If a router or client learns the IP address of a participating peer,
it can then verify the path and performance by using BFD or other
quality measurement techniques. Once connectivity is established (at
L2, L3, and SVR), the peer path status and performance measurements
can be measured. This measured criteria can be used to select which
peer path to use. This is outside the scope of this document.

¶

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 25 | Length = 4 |
 +-+
 | Name |
 +-+

¶

¶

¶

¶

¶

¶

¶

4.1.2. Sharing Path Metrics between routers

Two routers that can send metadata between each other are said to be
"peers". The interface addresses they use to talk to each other are
called "waypoints". A router can send its "peer" a quality report of
what it has measured from its point of view with a peer. This
provides a view from the peers point of view that may be useful in
deciding algorithmically what peer path to select. To send
information to a peer, one can include a Path Metrics Header as
defined in Section 3.2.8.

This header can be included in any metadata sent, at any time. The
receiving side can use this information as needed. There are no
standard timeframes for sending this information, and it is
implementation specific.

4.1.3. Testing Path Availability

Testing path availability is outside the scope of this document. BFD
is frequently used to verify that a path to a router is available.
Lack of a metadata response when sending sessions to a router
indicates that path is unavailable as well. Since routers are also
running routing protocols, should the waypoint address become
unreachable, the path is also declared down.

4.2. New Session Initiation

When a client or router detects that a new session is being
established, metadata must be inserted into the first packet to
communicate intent to a next hop router. Detecting a new session is
protocol specific. For TCP, it's a new 5 Tuple packet (new flow)
that is a SYN packet. For UDP, it's simply a new 5 Tuple packet not
currently in use. These are easily detected because:

The packet search key generates a flow miss which indicates it's
a new 5 tuple to the router.

Any packet arriving at the router's interface address that is a
flow miss MUST have metadata to be processed.

Because it is a flow miss, the router will forward the packet
internally to a branch of code that will look up routes and insert
metadata.

4.2.1. First Packet Processing

For illustrative purposes, assume that the packet is an engineer at
Juniper Networks attempting to access a Zoom video conference
service. The resulting QSN is: QSN://engineer.juniper/zoom.

Locally, the source IPv4 address for the engineer is 10.0.1.1.
Engineers are assigned to vlan 10, and DNS resolves the Zoom address
to be 3.208.72.109. When the packet arrives at the branch router
with the name "Branch 1", the following steps will be performed:

Determine the Tenant. This is just a text name which describes
the routes and policies that are available for a group of source
IP addresses. In our example, the "engineer" is based upon VLAN

¶

¶

¶

¶

*
¶

*
¶

¶

¶

¶

*

10, and the tenant will be "engineer" as named by the authority
"juniper".

Using the destination IP address, determine a Service. Some
services have a single IP Address, while others have multiple
CIDR blocks. The Service name can also be obtained by using DPI
(SNI/URL/CN from Certificate) or by proxying DNS resolutions.

The determination of a service is essential. With Zoom by example,
the current published list of IP addresses, protocol, and ports
include over 230 CIDR block ranges where the most common block is a
/25. Describing network intent would be difficult using IP
Addresses.

Once the tenant and service are known, the routing intent can be
determined. The routing policies are checked, specifically:

Are engineers allowed to use Zoom.

Is there a valid L3 route to 3.208.72.109. If no valid route
exists, is there another Zoom service address configured?

Look up security policies for Zoom.

Look up QoS policies for Zoom. Assign Video Conferencing QoS
policy.

Select a peer to send the session to:

The Source Peer/Destination Peer defines a peer path that has
been chosen. This establishes the source and destination IP
Addresses on the wire.

There may be more than one path acceptable, and they are rank
ordered for the forwarding plane to use.

Choose a peer path, and establish fast path rules for subsequent
packets:

Pick the best peer path for communication. The algorithm for
selecting the best peer path could include any criteria or
algorithm and is not part of this protocol definition.

Allocate source and destination[AM2] ports for the waypoint IP
addresses chosen for each peer path. to create a unique 5
tuple session between peers.

Install fast path NAT rules for the packet in the forward
direction.

Install fast path NAT rules for packets that will come in the
reverse direction.

Once all of these local L2/L3 parameters are mapped to Tenant/
Service routing intent, then metadata can be constructed an inserted
into the first packet (for TCP A SYN Packet).

¶

*

¶

¶

¶

* ¶

*
¶

* ¶

*
¶

* ¶

-

¶

-
¶

*
¶

-

¶

-

¶

-
¶

-
¶

¶

The metadata attributes that will be inserted includes:

Header: Security Identifier

Payload: Forward Context

Payload: Source Tenant Name

Payload: Service Name

Payload: Session UUID

Payload: Source Router Name

Payload: Source Router Security Name

Payload: Peer Path Name

When the first packet is sent, the sending side will include the
same exact metadata on every packet until a packet in the opposite
direction (reverse direction) arrives with metadata indicating a
complete handshake. For TCP, the SYN packet contains metadata, and
typically a SYN-ACK from the server side responds with metadata, and
there is no further metadata inserted in a session.

For UDP, metadata can be inserted in packets until there is a
reverse flow packet.

4.2.2. Signing the Metadata

The metadata is signed with an HMAC signature that is a defined
number of bytes long. The signature used is defined by RFC2104. The
HMAC signature is placed at the very end of the packet, extending
the packet length by the number of bytes. The shared keys used for
signing and verifying the authenticity of the packet are outside the
scope of this document, but could be any well known and trusted key
distribution scheme.

4.2.3. Encryption of the Metadata

The metadata Payload Headers are encrypted utilizing AES256, with
the initialization vector (IV) supplied directly after the encrypted
data to guarantee the receiver can decrypt the information
statelessly.

4.2.4. Receiving the First Response Packet

When a next hop router receives a packet directed to an interface
the router owns that has a uniquely new 5 tuple, it can reasonably
expect the packet (if not a routing protocol packet) contains
metadata. By performing DPI on the received packet, the router can
determine positively if metadata is present. If so, the metadata can
be authenticated, decrypted, parsed for network intent, and removed.
The packet is forwarded (possibly through a second SVR). When a
first reverse packet is received for the session, the router will

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

 Client ----> TCP SYN w/Metadata ----> Server
 Server <---- TCP SYN-ACK w/Metadata <---- Server

¶

¶

¶

¶

construct a block of metadata in the reverse direction. The purpose
of this is:

Indicate to the sender that it can stop sending metadata.

Provide backward information about the service for routing of
future instances.

The reverse metadata attributes that will be inserted include:

Header: Security Identifier

Payload: Reverse Context

Payload: Tenant Name

Payload: Destination Router Name

Payload: Peer Path ID

4.2.5. Subsequent Packet Processing

As soon as the initiating router gets confirmation that the next hop
router understands the metadata, it can stop sending metadata. In
the case of the TCP transport layer, this occurs with the 2nd packet
of the session, first reverse packet, the TCP SYN-ACK response.

4.2.6. Session Termination

No metadata is sent upon normal session termination. The router can
monitor the TCP state machine and have a guard timer after seeing a
FIN/ACK or RST exchange. After the guard timer, the session can be
removed from the system. If a new session arrives during this period
(A TCP SYN), then it will cause immediate termination of the
existing session. In addition, all protocols also have an associated
inactivity timeout, after which the session gets terminated if no
packets flow in either direction.

4.2.7. Unicast and Asymmetric Flows

When there are multicast flows, or asymmetry, the sender must assume
for TCP when the sequence number is advancing, that there is end-to-
end communication, and one can stop sending metadata. For UDP
asymmetry the sending router will send a maximum of 11 packets with
metadata and if no reverse packets are seen, the receiving peer
router will trigger a disable metadata packet to the originating
router to turn off metadata for subsequent forward packets.

4.3. Moving a Session

To change the pathway of a session between two routers, one simply
reinserts the metadata described in section 3.2.1. but retains the
same Session UUID. This will cause the upstream router to do the
following:

Update its Fast Packet forwarding tables to reflect the new IP
addresses and ports for transport.

¶

* ¶

*
¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

*
¶

When the sender of the metadata sees packets returning on the new
interface, the old fast path entries can be removed.

5. Security Considerations

5.1. HMAC Authentication

HMAC signatures are mandatory for the packets that contain Metadata
to guarantee the contents were not changed, and that the router
sending it is known to the receiver. Any HMAC algorithm can be used,
from SHA128, SHA256 or MD5, as long as both sides agree. HMAC is
always performed on the layer 4 payload of the packet.

5.2. Replay Prevention

Optional HMAC signatures can be added to every packet. This prevents
any mid-stream attempts to corrupt or impact sessions that are
ongoing. The signature must include all of the packet after Layer 4,
and include a current time of day to prevent replay attacks.

Both the sending and receiving routers must agree on these optional
HMAC signatures, details of which are outside the scope of this
document.

5.3. Payload Encryption

Payload encryption can use AES-CBC-128 or AES-CBC-256 ciphers which
can be configured. Since these are block-ciphers, the payload should
be divisible by 16. If the actual payload length is divisible by 16,
then the last 16 bytes will be all 0s. If the actual payload is not
divisible by 16, then the remaining data will be padded by 0's and
the last byte will indicate the length.

5.4. DDoS and Unexpected Traffic on Waypoint Addresses

Waypoint addresses could be addressed by any client at any time. IP
Packets that arrive on the router's interface will be processed with
the assumption that they MUST contain metadata OR be part of an
existing established routing protocol.

Routers will only accept metadata from routers that they are
provisioned to speak with. As such an ACL on incoming source
addresses is limited to routers provisioned to communicate. All
other packets are dropped.

When a packet is received the "cookie" in the metadata header is
reviewed first. If the cookie isn't correct, the packet is dropped.

The HMAC signature is checked. If the signature validates, the
packet is assumed good, and processing continues. If the HMAC fails,
the packet is dropped.

These methods prevent distributed denial of service attacks on the
waypoint addresses of routers.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC2234]

6. Acknowledgements

The authors would like to thank Anya Yungelson, Scott McCulley, and
Patrick MeLampy for their input into this document.

7. Normative References

Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for
Syntax Specifications: ABNF", RFC 2234, DOI 10.17487/
RFC2234, November 1997, <https://www.rfc-editor.org/info/
rfc2234>.

Authors' Addresses

Abilash Menon
Juniper Networks
200 Summit Dr #600
Burlington, MA 01803
United States of America

Email: abilashm@juniper.net

Michael Baj
Juniper Networks
200 Summit Dr #600
Burlington, MA 01803
United States of America

Email: mbaj@juniper.net

Patrick Timmons
Juniper Networks
200 Summit Dr #600
Burlington, MA 01803
United States of America

Email: ptimmons@juniper.net

Hadriel Kaplan
Juniper Networks
200 Summit Dr #600
Burlington, MA 01803
United States of America

Email: hkaplan@juniper.net

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2234
https://www.rfc-editor.org/info/rfc2234
mailto:abilashm@juniper.net
mailto:mbaj@juniper.net
mailto:ptimmons@juniper.net
mailto:hkaplan@juniper.net

	Secure Vector Routing (SVR)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Overview
	1.2. Qualified Service Name (QSN)

	2. Theory of operation of Secure Vector Routing
	2.1. SVR Peer Definition
	2.2. SVR Peer Paths
	2.3. Directionality
	2.4. Metadata Handshake
	2.5. Path Obstructions
	2.6. Metadata removal
	2.7. Modification of transport addresses
	2.8. Unique 5-Tuples for Every Session
	2.9. Session State Requirements
	2.10. Waypoint Addresses

	3. Metadata Format and Composition
	3.1. Metadata Header
	3.1.1. False Positives
	3.1.2. Header Attributes
	3.1.3. Payload Attributes
	3.1.4. Forward and Reverse Attributes

	3.2. Header Attributes
	3.2.1. Fragment
	3.2.2. Security Identifier
	3.2.3. Disable Forward Metadata
	3.2.4. IPv4 Router Egress Source Address
	3.2.5. IPv4 Router Egress Source Address
	3.2.6. Selective Acknowledgement
	3.2.7. SVR Protocol Message
	3.2.8. Path Metrics
	3.2.9. Modify Request

	3.3. Payload Attributes
	3.3.1. Forward Context IPv4
	3.3.2. Forward Context IPv6
	3.3.3. Reverse Context IPv4
	3.3.4. Reverse Context IPv6
	3.3.5. Session UUID
	3.3.6. Source Tenant Name
	3.3.7. Service Name
	3.3.8. Session Encrypted
	3.3.9. TCP SYN Packet
	3.3.10. Source Router Name
	3.3.11. Source Router Security Name
	3.3.12. Destination Router Name
	3.3.13. Peer Path ID
	3.3.14. IPv4 Source NAT Address

	4. Metadata Exchanges and Use Cases
	4.1. Establishing a Peer Path
	4.1.1. Peer Path Status and Performance
	4.1.2. Sharing Path Metrics between routers
	4.1.3. Testing Path Availability

	4.2. New Session Initiation
	4.2.1. First Packet Processing
	4.2.2. Signing the Metadata
	4.2.3. Encryption of the Metadata
	4.2.4. Receiving the First Response Packet
	4.2.5. Subsequent Packet Processing
	4.2.6. Session Termination
	4.2.7. Unicast and Asymmetric Flows

	4.3. Moving a Session

	5. Security Considerations
	5.1. HMAC Authentication
	5.2. Replay Prevention
	5.3. Payload Encryption
	5.4. DDoS and Unexpected Traffic on Waypoint Addresses

	6. Acknowledgements
	7. Normative References
	Authors' Addresses

