
Workgroup: Network Working Group

Internet-Draft: draft-menon-svr-01

Published: 29 March 2022

Intended Status: Informational

Expires: 30 September 2022

Authors: A. Menon

Juniper Networks

P. MeLampy

Juniper Networks

M. Baj

Juniper Networks

P. Timmons

Juniper Networks

H. Kaplan

Juniper Networks

Secure Vector Routing (SVR)

Abstract

This document describes Secure Vector Routing (SVR). SVR is an

overlay inter-networking protocol that operates at the session

layer. SVR provides end-to-end communication of network requirements

not possible or practical using network header layers. SVR uses

application layer cookies that eliminate the need to create and

maintain non-overlapping address spaces necessary to manage network

routing requirements. SVR is an overlay networking protocol that

works through middleboxes and address translators including those

existing between private networks, the IPv4 public internet, and the

IPv6 public internet. SVR enables SD-WAN and multi-cloud use cases

and improve security at the networking routing plane. SVR eliminates

the need for encapsulation and decapsulation often used to create

non-overlapping address spaces.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 30 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document.

Table of Contents

1. Introduction

1.1. Terminology

1.2. Overview

1.3. Definitions

2. Theory of operation of Secure Vector Routing

2.1. Directionality

2.2. SVR with Other Traffic

2.3. Metadata Handshake

2.4. Pathway Obstructions

2.5. Metadata removal

2.6. Modification of transport addresses

2.7. Optional use of Tenants and Service names for Routing

2.8. Unique 5-Tuples for Every Session

2.9. Session Packets Post Metadata Exchange

2.10. Session State Requirements

2.11. NATs and Session Keep Alive

3. SVR Example

3.1. SVR Multi-path Routing Description

3.2. Optional FIB Containing Service Names

3.3. SVR Security Definitions

3.4. Time Based HMAC Details

3.5. Security Rekeying Considerations

3.6. New Session Initiation Detailed

3.6.1. East First Packet Processing

3.6.1.1. Determine Tenant

3.6.1.2. Determine Service

3.6.1.3. Determine Network Requirements

3.6.1.4. Picking a Peer Path

3.6.1.5. Allocate Source NAT if Necessary

3.6.1.6. Allocation of Ports

3.6.1.7. Session State and Metadata Construction

3.6.1.8. Encryption of Metadata

3.6.1.9. Insert Metadata

3.6.1.10. Signing SVR Packet

3.6.1.11. Sending the First Packet

3.6.2. West First Packet Processing

3.6.2.1. Verify Source Address is a Waypoint

3.6.2.2. Verify Metadata Block

3.6.2.3. Parse Metadata and Save State and Translations

3.6.2.4. Restore Addresses and Route Packet

¶

https://trustee.ietf.org/license-info

3.6.2.5. Detection of a Looping Session

3.6.3. Return Packet Path Pre-Established

3.6.4. Sending Reverse Metadata

3.6.5. Subsequent Packet Processing

3.6.6. Session Termination

3.6.7. Unidirectional/Asymmetric Flows

3.6.8. Multi-Hop Session Ladder Diagram

4. SVR Protocol Definition

4.1. SVR Session Definitions and Types

4.2. SVR Metadata Insertion

4.2.1. Metadata Packet Location

4.2.2. Metadata Prerequisites

4.2.3. Metadata Port Allocation

4.2.4. Metadata on Idle Session

4.2.5. Metadata Packet Structure

4.2.6. Prevention of False Positives

4.2.7. TCP to UDP Transformation

4.3. Required and Optional TLVs

4.3.1. New IP Sessions TLVs

4.3.2. ICMP TLVs

4.4. Metadata Encryption

4.5. SVR Packet Authentication

4.5.1. HMAC Signatures

4.5.2. HMAC Verification

4.6. Processing SVR Packets with Potential Metadata

4.6.1. Detection of Potential Metadata in Packets

4.6.2. Verification of Metadata in Packets

4.6.2.1. TLV Parsing

4.6.2.2. Decryption of Metadata Blocks

4.6.3. UDP to TCP Transformation

4.6.4. SVR Session Packets

4.6.5. Tenant/Service Overview

4.6.5.1. Interpretation of the Service

4.6.5.2. Determination and Interpretation of the Tenant

4.6.6. Security Policy and Payload Encryption

5. Additional Metadata Exchanges and Use Cases

5.1. Moving a Session

5.2. NAT Keep Alive

5.3. Adaptive Encryption

5.4. Packet Fragmentation

5.5. ICMP and SVR

6. Metadata Format and Composition

6.1. Metadata Header

6.1.1. False Positives

6.1.2. Forward and Reverse Attributes

6.2. TLVs for Attributes

6.3. Header Attributes

6.3.1. Fragment

6.3.2. Security Identifier

6.3.3. Disable Forward Metadata

6.3.4. IPv4 ICMP Error Location Address

6.3.5. IPv6 ICMP Error Location Address

6.3.6. SVR Control Message

6.3.7. Path Metrics

6.4. Payload Attributes

6.4.1. Forward Context IPv4

6.4.2. Forward Context IPv6

6.4.3. Reverse Context IPv4

6.4.4. Reverse Context IPv6

6.4.5. Session UUID

6.4.6. Tenant Name

6.4.7. Service Name

6.4.8. Session Encrypted

6.4.9. TCP SYN Packet

6.4.10. Source Router Name

6.4.11. Security KEY

6.4.12. Peer Pathway ID

6.4.13. IPv4 Source NAT Address

7. Security Considerations

7.1. HMAC Authentication

7.2. Replay Prevention

7.3. Payload Encryption

7.4. DDoS and Unexpected Traffic on Waypoint Addresses

8. IANA Considerations

9. Acknowledgements

10. Normative References

Authors' Addresses

1. Introduction

There exists a need to communicate network requirements between IP

routers and networks to provide an end-to-end experience. Selection

of specific paths whose attributes meet or exceed the networking

requirements are an objective of SVR. There is also a need for

applications to communicate their requirements to networks. This

need is increasing as workloads move to public clouds and the

numbers of cloud locations increase. The standard practice today is

to use an overlay network of tunnels to create a virtual network.

SVR overlay is being proposed as an alternative to using tunnels.

SVR simplifies the network by virtue of having only one network

layer. SVR securely transports traffic with authentication and

adaptive encryption. The absence of tunneling overhead reduces

bandwidth. Since SVR specifies requirements abstractly, it also has

the capability to interwork policies between different networks and

address spaces.

Most WAN networks are deployed with a virtual private network (VPN)

across IP backbone facilities. VPNs have the significant

¶

disadvantage of carrying additional network layers increasing packet

size and leading to IP fragmentation as well as reduced bandwidth.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.2. Overview

Figure 1

An SVR implementation describes a network requirement semantically

and shares this as metadata with a routing peer. The requirement to

a peer is conveyed by means of a cookie, often referred to as first

packet metadata, which is placed in the first packet of a session

that is targeted towards the SVR peer. SVR requires session state on

every participating SVR router and sets up a bi-flow (matching

forward and reverse flows) based on the requirement. Once the

session is established bi-directionally, the cookie is not sent in

subsequent packets, resulting in elimination of additional overhead.

Benefits from this approach include:

Tunnel Compression: The metadata contains information required to

eliminate tunnel header information for established sessions.

This can result in anywhere from 12% to 100% bandwidth savings

when compared to IPSEC based tunnels depending on the original

packet size.

Elimination of Elephant Flow problems: Tunnels are very long

lived and often contain large aggregates of inner flows. Tunnels

are also often fixed on a specific network "hash" while each SVR

session has a unique network hash.

¶

¶

 +---------+

 |Network2 |

+----------+ | | +----------+

| SVR<---->+<-L3-IP->+<---->SVR |

| | +---------+ | |

|Network1 | +---------+ |Network 4 |

| SVR<--->SVR SVR<--->SVR |

+----------+ | | +----------+

 |Network3 |

+----------+ | |

|Client SVR|<---->SVR |

+----------+ +---------+

¶

¶

*

¶

*

¶

Authority:

Tenant(s):

Service(s):

QoS support is per flow, not per packet: Because each SVR flow

has a unique 5-tuple on the wire, standard MPLS routing and QoS

techniques work seamlessly. Adding QoS to Tunnels requires QoS on

entry to a tunnel, tunnel DSCP markings, and policies to copy/map

inner packet DSCP to Tunnel Packet DSCP. In practice many core

networks do not look at the DSCP markings once a fast path

forwarding rules are established.

Avoid Re-encryption: Tunnels often encrypt all traffic. Much of

the traffic in the tunnel is already encrypted, thus there is a

re-encryption penalty. SVR support adaptive encryption which

performs encryption on only those sessions that require it.

Firewalls and security proxies can intercept TLS sessions and

perform decryption and encryption if they support SVR metadata.

This is not possible with IPSEC tunnels by design.

Scaling of software based encryption is much higher when session

state is available. Encryption performance is limited to what is

possible in a single processing core for a single session, and at

the time of this document being written the limit is currently

1.5GigE for Tunnel termination.

1.3. Definitions

The following terms are used throughout this document.

This defines the owner of an SVR namespace. Each

namespace owner can allocate Tenant names (representing

collections of network endpoints sharing common network

enforcement policy), and Service names (representing accessible

destinations and traffic treatment policy). Authority namespaces

must be unique to permit internetworking. Claiming and resolving

disputes about authority naming are outside the scope of this

document.

This is a textual description defining network endpoints

that share common access policy (allow lists or block lists to

network destinations). These may be mapped using any known

technique including source IP address mask, a VLAN tag, ingress

interface, provided by an authentication system, or even client

supplied, and this mapping is outside the scope of this document.

Often these are location specific definitions, but the Tenant has

global meaning within an authority. Tenant names can conform to

domain name syntax, and be expressed as hierarchical structures

(i.e., location.department.example).

This is a textual description of what server(s) can be

accessed with this intent. Examples include Zoom, or Office365/

Outlook. Although outside the scope of this document, these could

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

Context:

Signature:

Direction:

Peer:

Waypoint:

be defined with any known technique, including URLs, IP

address(es) protocol(s) and port(s), CIDR block(s), etc. Having a

single text name to describe a network destination makes defining

network requirements easier. Other Service specific network

requirements including Quality Policies and Security Policies can

be associated with Services in data models, but are not described

in this document.

This is the original "5-tuple" of an IP packet, including

source IP, source port, destination IP, destination port, and

protocol. Optionally, Layer 2 information such as MAC Address or

VLAN tags may be included for certain use cases if required.

The metadata packets MUST be cryptographically signed

using HMAC by the source router, and all packets traversing an

SRV peer pathway SHOULD have an HMAC signature so the next hop

router can authenticate the sender of the data and verify its

integrity. The portion of the packet that is signed must not

include the IP header, as it may go through a NAT or IPv4 to IPv6

conversion.

This is inferred, and not a specific metadata field. The

Direction represents the intended client to server direction. The

initial network packet of a communication session indicates this

direction. For example, a TCP SYN packet would travel from client

to server, defining the direction of an service. Forward

direction is always client to server, and reverse is always

server to the client. These directions have nothing to do with a

network topology (for example, hub and spoke), and a single

network path could have forward sessions going bi-directionally

-- traffic going from node A to node B may represent the forward

direction for some sessions and the reverse direction for other

sessions.

An SVR Peer is a client, server, or router that supports the

SVR protocol. The SVR Peer could be either directly adjacent, or

reachable through an IP network. The SVR Peer should not be

confused with BGP Peer. Since SVR Peers must be able to reach

each other, and because SVR Peers are often deployed at network

edges, SVR Peers can also be BGP Peers. In this document peer

will always mean SVR Peer.

A Waypoint is a reachable IP Address associated with an

SVR Routers interface. Some physical interfaces may have multiple

IP Addresses, and as such a single physical interface could

represent multiple Waypoints. In some cases, routers use

dynamically assigned addresses on interfaces. In these cases, a

Waypoint address may change dynamically.

¶

¶

¶

¶

¶

¶

Peer Pathway:
An SVR Peer Pathway is a unique pair of Waypoint

addresses that can reach each other. The path can be defined as

either a pair of IP addresses or a pair of domain names that

resolve to IP Addresses. Peer Pathways have attributes related to

availability, performance (jitter, latency, packet loss) and

cost. Techniques such as BFD [RFC5580].

2. Theory of operation of Secure Vector Routing

Secure Vector Routing is a session stateful routing overlay that

operates at edges of networks where stateful NATs are normally

performed. It is at these same locations where multi-path routing is

being deployed. These locations include edge routers located at

branches, data centers, and public clouds. SVR maps local network

requirements into administratively defined text strings that have

global meaning. These are communicated or signaled by insertion of a

networking cookie called SVR metadata directly into IP Packets in

transit.

SVR metadata is inserted into existing packets directly after the L4

header (see Section 4.2.) The metadata in the first packet of a new

session (TCP or UDP bidirectional flow) can be used in path

selection and security. Metadata can be inserted in any subsequent

packet to change/update the networking requirements. The metadata is

inserted into the payload portion of a packet to guarantee it makes

it unchanged between SVR routers.

Sessions supported by SVR include TCP, UDP, UDP Unicast, point-to-

point ethernet, and ICMP. Sessions are characterized by having an

initial first packet that is unique to an SVR router. Often this is

described as a unique 5-tuples as seen by the router. Sessions start

when the first packet is processed, and end when either the L4

protocol indicates the session is completed (TCP FIN/FIN ACK) or

there has been no activity for a length of time (UDP, ICMP, UDP

Unicast, point-to-point ethernet).

2.1. Directionality

SVR utilizes the concept of session direction. The direction of the

session is what creates a Secure Vector. Routing policies include a

Tenant (source) and Service (destination) pair that exactly match

the direction of sessions. When describing metadata in this

document, direction is either forward or reverse; it is not tied to

network topology, but rather the direction of session establishment.

For TCP, the forward direction is always the client side towards the

server side. For UDP, the forward direction is from the sender of

the first packet. Reverse is the opposite direction. On a given

¶

¶

¶

¶

pathway Secure Vector routes could be traversing on the same

pathways with opposite directions.

Metadata formats described in this document will be labeled as

"forward" or "reverse". Forward metadata is inserted in packets

going from client to server. Reverse metadata is inserted in packets

that travel from server to client.

2.2. SVR with Other Traffic

SVR co-exists with traditional routing. In fact, the router

interface addresses known as Waypoints in this document MUST be

reachable via traditional networking for every peer relationship.

When packet routing is being decided in the router, should the route

resolve to an SVR capable router (i.e., the next hop address

returned in the route equals a known Waypoint address of an SVR

Peer) then metadata MAY be inserted and session stateful SVR is

performed. Otherwise, the packet is forwarded like any traditional

IP router.

2.3. Metadata Handshake

To ensure the metadata is received and understood between peers, a

handshake is performed. A router that supports SVR peer pathways

inserts metadata for each packet flow in the following

circumstances:

It is a "forward" packet representing a new session and the

ingress node has not yet received any reverse metadata from the

recipient egress node.

It is a "reverse" packet from the recipient egress node to the

initiating ingress node and recipient egress node has not

received forward packets from this session without metadata.

These two comprise what is known as the "metadata handshake" -- that

is, the initiating router includes metadata in all packets it sends

to the recipient router until it receives a reverse packet with

metadata from that recipient. Likewise, the recipient continues to

send metadata to the initiating router until it receives a packet

without metadata. This is how two routers acknowledge receipt of

metadata from their counterparts: the absence of metadata in a

packet indicates that it has received metadata from its counterpart.

2.4. Pathway Obstructions

Firewalls and middleboxes that sit along a peer pathway may not

propagate TCP SYN messages with data in the payload (Despite being

valid), or may verify sequence numbers in TCP streams (which are

invalidated due to the inclusion of SVR metadata). The two devices

¶

¶

¶

¶

*

¶

*

¶

¶

that represent the peer pathway endpoints may determine through

testing if there is a firewall, NAT, or other active middlebox

between the two routers. Procedures like STUN [RFC8489], TURN

[RFC6062], and ICE [RFC8445] are well known, and not included in

this document.

If a NAT is detected on the Peer Pathway, the SVR Router that

determines its Waypoint address is being changed saves this as an

attribute of the pathway. The NAT will change the port address

assignment, and require NAT keep alives as exemplified in Section

5.2.

If a middlebox is detected, the packets can be UDP-transformed i.e.,

the protocol byte can be changed from TCP to UDP by the transmitting

router and restored to TCP by the receiving router for packets

flowing in both directions. See Section 4.2.7 and Section 4.6.3 for

more information.

2.5. Metadata removal

To prevent breaking any applications, there MUST be a 100% guarantee

that metadata inserted by a participating SVR device is removed

prior to the consumption of the data by the application service. If

the client and server support metadata, then the network intent can

be sent end-to-end. When a mid-stream packet router wants to insert

SVR metadata, it must guarantee that the packet is directed to a

next hop device that will understand and remove the metadata.

A router can be certain an SVR capable router is on the path when

the next-hop address returned from a FIB table exactly matches a

known peer Waypoint address. Before sending the packet with metadata

to the Waypoint address, the originating SVR router should determine

the Peer reachability as exemplified in Section 3.1.

If the next-hop is not a known reachable peer, SVR metadata

insertion MUST not be performed.

2.6. Modification of transport addresses

To guarantee that the packet will go to a specific router, the

destination address for the packet is changed to the waypoint

address of the chosen peer. The original addresses are stored in the

forward context (see Section 6.4.1) and can be recovered when

needed. This is similar to IPv6 segment routing (see [RFC8986]) or a

LISP (see [RFC6830]) RLOC with the exception that the original

addresses are stored in metadata within the payload portion of the

packet, and not the IP Network Header.

Selection of the Waypoint address to send is implementation

specific. In the general case a standard FIB lookup returns one or

¶

¶

¶

¶

¶

¶

¶

more IP Address(es) (Waypoints) of the next SVR peer. When more than

one Waypoint address is returned from the FIB, additional logic can

be applied to select the best Waypoint based on observed peer

pathway quality OR session layer load balancing. See Section 3.1 for

exemplary details.

To provide a return path for the return flow the source SVR peer

changes the source address to be its own egress Waypoint address.

This provides a guarantee of a symmetric flow. The state of the

session MUST be held in both the source SVR router and the

destination SVR peer.

The address translation rules for the session become state

information that is processed on every packet after the metadata

handshake. All 5 tuples of addressing information are updated

bidirectionally for the session. This action replaces tunnel

encapsulation and decapsulation (tunnel compression), and is an

order of magnitude simpler computationally.

2.7. Optional use of Tenants and Service names for Routing

The metadata contains contextual IP Addresses (sources,

destinations, and waypoints) along with textual service names (i.e.,

Zoom, Office365, etc.). The SVR routers can apply policies and route

sessions based on the textual names if they have a route information

base that contains service names. When performing name based

routing, a destination NAT is often required when exiting the SVR

network. The primary use case for this is networking between public

clouds such as AWS and Azure.

With semantic based routing, the use of Dynamic DNS to locate a

service can be eliminated if clients support SVR. Clients can simply

request the service by name, and the SVR router can resolve the

route, and deliver the session to the best location. The last SVR

Router on egress performs a destination NAT for the chosen best

instance of a service.

A local DNS server resolving service addresses to a nearby SVR

router can also provide semantic based routing. This can eliminate

the need to use dynamic DNS for locating services inside data

centers.

2.8. Unique 5-Tuples for Every Session

To avoid sharing a hash with all traffic, and to make sessions

completely independent on peer pathways, the source port and

destination port can be assigned any values that are unique by the

source router. When there are no NATs between the two router

interfaces, this permits 2^32 (4,294,967,296) different unique

sessions on a peer pathway. If there are source NATs, this will be

¶

¶

¶

¶

¶

¶

Packet is a legitimate SVR packet from a peer and State has been

lost:

reduced to 2^16 (65,536) different unique sessions. Ports can be

reassigned if not in active use. It is also possible that middle

boxes will limit what destination ports are permissible, reducing

the number of possibilities. Due to all these reasons, range of

ports that can be used on a peer pathway are provisioned by an

administrator.

The ingress SVR peer (client side) assigns both source and

destination ports, even ports for local (source port) and odd ports

for remote (destination port). This provides total uniqueness

between any two peers, with no negotiation or collision

possibilities. This reduces the number of sessions originating by a

router to half of the total sessions (or 2^30). Think of the two

ports as a Session Identification Tag. Even if a session traveling

in the opposite direction was allocated the same exact ports,

because the source address and destination addresses would be

swapped, the 5-tuples on the wire remain unique.

This unique tuple per TCP/UDP session also allows any DSCP or QoS

scheme to work properly. Those fields in the original packet were

not modified and the underlay network routers will see those fields

on a session-by-session basis.

2.9. Session Packets Post Metadata Exchange

After the metadata handshake has been completed. all subsequent

packets are simply translated (all 5-tuples, bidirectionally). This

is a very efficient process compared to IPSEC encapsulation which

requires memory copies, new header creation, completely new packet

checksums, and mandatory encryption.

2.10. Session State Requirements

Each participant (peer) in secure vector routing must maintain state

for every active session. This includes the full set of original

addresses and translations required. This allows participants to

stop sending metadata once it has been received by the peer. There

are two possible scenarios for how state could be lost. Either the

ingress of the SVR session (source peer) could lose state, or an

intermediate (downstream peer) SVR peer could lose state.

Determining if an SVR router is an ingress verses a peer SVR router

is based on the arriving packet's destination address. If the

address is NOT the interface address of the router, it is an ingress

SVR router. Alternatively, if the address matches the interface

address of the router, there are two possibilities.

¶

¶

¶

¶

¶

¶

Packet is not a valid SVR Session Packet:

Ingress SVR Loses State:

SVR Peer Loses State:

Every packet in an SVR session SHOULD have an HMAC checksum to

prevent replay attacks. If a packet arrives at an SVR router,

with the destination address of the router, and a source address

of a known peer, the HMAC checksum can be verified. If verified,

this is indeed, a case of lost state with a SVR Peer.

If either the source

address of a packet does not map to a valid peer or the HMAC

signature does not validate; the packet is invalid and MUST be

dropped. This represents a security event and should be noted as

such.

After determining if the router is an ingress or egress SVR router

when there is a flow miss, the state recovery techniques for each

type of lost state is listed below.

The ingress router will treat this packet

as a new session, allocate and insert metadata. The packet will

be forwarded to the next SVR router. This upstream SVR peer may

or may not have state for the existing session. By reviewing the

metadata's forward context (original packet 5-tuples) the router

can determine if there is a collision with an active SVR session.

If so, the terminating SVR router will accept the new metadata,

and adopt the new proposed addresses and UUID's, essentially

merging the two sessions. If there is not a collision with an

existing session, the packet is routed as a new session.

The peer router without state will create

reverse metadata asking for the remote peer SVR (i.e., where the

SVR packet was sent from) router to retransmit metadata for this

session. The metadata request will be sent back to the peer

router using the exact address and ports for the packet received

without state, only reversed. Please see Section 6.3.6 for the

reverse metadata sent. This reverse metadata request is sent on

the peer pathway that sent the packet, with the source port and

destination port matching the packet with missing state. The

upstream router will include first packet metadata for the

session in the next packet of the session.

2.11. NATs and Session Keep Alive

Each SVR router (peer) must statefully remember the source address

that a session with metadata was received on. This may not be the

same address the router sent a packet from due to a NAT or Firewall

in the pathway. Routers use both provisioned and learned waypoint

addresses. Routers MUST store the actual waypoint addresses received

on the wire from a peer.

¶

¶

¶

¶

¶

¶

When a firewall or middlebox is detected, the SVR router behind such

a device must send metadata packets periodically on idle sessions to

keep any firewall pinholes translations from being removed. For

every UDP and TCP session that has seen no packets after a

programmable length of time (20 seconds is recommended), then the

SVR Peer should send an SVR Control Message on the peer path with

the source and dest ports from the idle session's saved state. See

Section 6.3.6 for more information and see Section 5.2 for an

example.

3. SVR Example

3.1. SVR Multi-path Routing Description

The example below shows two SVR capable routing peers with multiple

peer pathways.

Figure 2

Note: The client, server, and MPLS network support the private

address space 172.15.x.x natively, but the internet and LTE networks

do not. This is an example of using secure vectors to join networks

together.

The first step is that routers would apply any locally defined

static L3 routes, and begin advertising and receiving routes using

L3 networking protocols (BGP, OSPF, etc.) from their IP peers to

build a forward information base or FIB. This is required initially

to ensure that the waypoints are reachable bidirectionally.

¶

¶

 Client

 LAN

10.x.x.x

 |

 | +--------+ +---------+

 | | | | |

 | | | | |

 +->] East [172.15.0.1<----MPLS----->172.15.10.1] West |

 | SVR | | SVR |

 | Router[107.0.8.186<-Internet-+->52.42.68.58] Router |

 | | | | |

 | [192.0.2.1<-----LTE---/ | [<--+

 | | | | |

 +--------+ +---------+ |

 <========= Peer Pathways ========> |

 |

 172.15.11.x

 LAN

 Servers

¶

¶

The second step is for both the East and West routers to establish

their SVR peering. East and West independently attempt to

communicate with BFD to each other's interfaces and measure path

characteristics such as jitter, latency, and packet loss. In our

example, assuming 100 percent success, the resulting peer pathways

would be:

Figure 3

For this example, our assumption is that there are servers that are

located inside 172.15.11.0/24 at the West location. West advertises

this route to East on each path available to it. East's FIB will

look like this:

Figure 4

Additionally we will assume there exists a network policy created by

the authority Example that defines a tenant "engineering" as

10.0.0.0/25 VLAN2, and "github.example" as 172.15.11.23 using TCP

port 22. The provisioning and/or discovery of this policy is outside

the scope of this protocol description.

A first packet from an engineering client with github as a

destination received at the East SVR Router will result in a search

of the FIB and result in two possible next-hop IP Addresses. East

will consult its SVR Peer Pathway list and recognize that three of

¶

East's Peer Pathways

 Name Description Characteristics

 MPLS 172.15.0.1->172.15.10.1 20ms Lat, 0 Loss, 2 Jit

 Internet 107.0.8.186->52.42.68.58 30ms Lat, 0 Loss, 3 Jit

 LTE 192.0.2.1->52.42.68.58 50ms Lat, 0 Loss, 15 Jit

West's Peer Pathways

 Name Description Characteristics

 MPLS 172.15.10.1->172.15.0.1 20ms Lat, 0 Loss, 2 Jit

 Internet 52.42.68.58->107.0.8.186 30ms Lat, 0 Loss, 3 Jit

 LTE 52.42.68.58->192.0.2.1 50ms Lat, 0 Loss, 15 Jit

¶

 East's Forward Information Base (FIB)

 Route Next-Hop IP Addr

 ---------------- -----------------

 172.15.11.0/24 172.15.10.1

 172.15.11.0/24 52.42.68.58

 [FIB Entries to reach waypoints omitted]

¶

Avoiding Dynamic DNS:

its peer pathways have an exact match of this next-hop IP Address.

These represent the three possible pathways that may be used for

routing this session. The resulting potential routes are:

Figure 5

The East router can now choose which pathway (peer pathway) is

desired for the specific session. If the East router has quality

service levels to maintain, it can choose from any of the peer

pathways based on their current quality metrics. If all things are

equal, the East router could load balance using approaches like

"least busy" or other techniques. Once a peer pathway is chosen, the

first packet metadata is constructed, inserted into the first

packet, and sent down the chosen pathway to the West peer router.

For this example, the private address space in the LAN supported by

the East Router is different. This is often the case with large

networks. This is illustrative of a branch router performing network

address translation (NAT) on a source address to solve overlapping

address problems.

In this specific case, assuming MPLS was chosen, East would perform

first packet processing resulting in the insertion of metadata in

the first packet (see Section 3.6.1) and send it out East's

interface with a source address of 172.15.0.1 and a destination

address of 172.15.10.1. These are the exact addresses of the MPLS

Peer Pathway.

Both the East and West routers would use the same address pairs

(only reversed) for the bidirectional session, using the allocated

source and destination ports to recognize the specific session. All

packets from all sessions on a peer path will have the same exact IP

addresses, differentiated solely by their port numbers.

3.2. Optional FIB Containing Service Names

SVR first packet metadata contains text strings that contain service

names. SVR routing can route traffic by these names if the FIB

contained text entries. There are some use cases where this might

make sense:

Dynamic DNS is used to augment network

routing protocols by answering the question: What best IP Address

is available and best for a session now? Dynamic DNS can be

plagued by delays in real time updates and additonal complexity

¶

 Possible Routes

 MPLS 20ms Latency, 0 Loss, 2 Jitter

 Internet 30ms Latency, 0 Loss, 3 Jitter

 LTE 50ms Latency, 0 Loss, 15 Jitter

¶

¶

¶

¶

¶

Multi-Cloud Networking:

and cost. In private networks, path service state may not be

reflected in Dynamic DNS responses.

Public clouds run service instances on

dynamically allocated private IP addresses. They provide very

accurate and responsive DNS updates to help find IP addresses for

networking. These DNS services are not available outside the

cloud, making internetworking difficult. SVR Routers can use DNS

resolution to find IP Addresses for named services.

Below is an example FIB that contains named services and traditional

FIB entries. The next-hop addresses were changed to Waypoint

Addresses to reflect the FIB is now an SVR fib containing service

names, protocols, and ports.

Figure 6

Longest prefix matching (LPM), protocol and port will be used to

match Routes for packets intended for github on ingress to SVR. The

text string "github.example" will be used by all other SVR routers

until egress from SVR. The SVR fib can be used to LPM match on IP

addresses and exactly match protocol and ports. In the above

illustrative example, only three protocols are supported (SSH,

Syslog, and HTTPs). All other packets will be denied by default.

The egress action in the SVR fib can be used to support three

different egress actions:

¶

¶

¶

 East's Extended SVR Forward Information Base (OPTIONAL)

 Egress

 Service Name Route Waypoint Action

 -------------- ------------------ ------------ --------

 github.example 172.15.11.23:TCP:22 172.15.10.1 FWD

 github.example 172.15.11.23:TCP:22 52.42.68.58 FWD

 logsvc.example 172.15.11.20:UDP:514 172.15.10.1 DNS

 logsvc.example 172.15.11.20:UDP:514 52.42.68.58 DNS

 https.example 172.15.11.24:TCP:443 172.15.10.1 DEST NAT

 -196.168.1.1

 -196.168.1.2

 -196.168.1.3

 [FIB Entries to reach waypoints omitted]

¶

¶

Forward Packet (Default):

DNS:

DEST NAT:

HMAC Method:

Use Time Based HMAC:

HMAC Metadata or ALL:

Metadata Block Cipher:

Restore the IP Addresses and forward. If

a source NAT is provided in the metadata, NAT the source address.

Use DNS to resovle the service name locally. In this example

DNS resolution procedures would be used on egress to resolve

"logsvc.example".

NAT the destination address to one (or load balance to a

pool of addresses). This is identical to load balancers.

These named routes can co-exist with traditional FIB entries shown

above. SVR will always matched a named route first, and fall through

to the generic routes second.

3.3. SVR Security Definitions

For basic SVR functionality to work between peers, there must be a

Authority wide provisioned set of rules. These rules include:

This describes the method/technique for signing SVR

packets. This could be SHA1, SHA256, or SHA256-128.

This is either YES or NO.

This is NONE, Metadata Only, ALL

This is either NONE, AES128, AES256.

SVR does not limit the use of ciphers and techniques to just those

listed. The requirements for both signatures and encryption are that

the results are fixed well known block sizes.

Security Policies are used during session setup to setup payload

encryption specifically for individual sessions. These are exchanged

in first packet metadata.

For this example will use the following SVR security definitions.

Figure 7

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

 HMAC: (On, time-based, SHA256-128, ALL Packets)

 Metadata Encryption (On, AES256)

3.4. Time Based HMAC Details

To positively authenticate and provide integrity for SVR session,

SVR peers use Time Based HMAC signatures. HMAC signatures are

defined in [RFC2104]. Please see Section 4.5.1.

In our example, we are using SHA256-128 with a size of 16 Bytes.

3.5. Security Rekeying Considerations

Every metadata transaction includes a security ID header TLV (see

Section 6.3.2). Although key management is outside the scope of this

document, managing which key version to use is an important aspect

of this design.

Each SRV Router will have its initial key (version 1) and may have

an updated key (version n) over time. The security key version is

always sent in metadata to ensure the peer knows which key to use to

decrypt the metadata just sent. If a peer only has version 1 of a

key, and metadata arrives specifying it is now at version 2, the SVR

router must obtain the new key before it can process any packets.

For networks that are large and actively performing key management,

there may be multiple versions of a key active, and SVR routers MUST

be able to utilize any key for a reasonable amount of time.

3.6. New Session Initiation Detailed

The diagram below shows the example github TCP session flowing

between a client and server through the East and West routers in our

example network.

Ladder Diagram for SSH Example:

¶

¶

¶

¶

¶

¶

¶

The East Router MUST construct and insert metadata[MD] in the first

packet of the SSH session, which will be a TCP SYN packet. The West

Router must remove the metadata, and forward the SYN packet, and

wait for the server to respond with a SYN/ACK. Upon receipt of the

SYN/ACK, the West Router will create reverse metadata [RMD], and

insert it into the SYN/ACK. This will create the metadata handshake

for the SSH session. All forward and reverse metadata are inserted

into existing packets if possible.

When a client or router detects that a new session is being

established, the East Router will insert metadata into the first

packet to communicate intent to the West Router. At both East and

West Routers, the first packet will require specialized handling.

Detecting a first packet for a session is protocol specific. For

TCP, it's a new 5-Tuple packet (new flow) with the just the SYN flag

set. For UDP, it's simply a new 5-Tuple packet not currently in

active use.

3.6.1. East First Packet Processing

Utilizing the same example, assume that the packet shown below

arrives on the East Router from the Client LAN. The packet is the

result of an engineer attempting to access a github service via SSH.

Arriving Packet at East Router

 Engineering Github

 Client . Server

 | |

 + East Router West Router |

 | | | |

 +---SYN----->| | |

 | |--SYN[MD]-------------->| |

 | | |--SYN----->|

 | | | |

 | | |<--SYN/ACK-|

 | |<------SYN/ACK[RMD]-----| |

 |<--SYN/ACK--| | |

 | | | |

 | | | |

 |<==== Session Packets Flow with No Metadata ====>|

¶

¶

¶

¶

¶

3.6.1.1. Determine Tenant

Determine the Tenant. The tenant is a text name which describes the

routes and policies that are available for a group of source IP

addresses. Tenants are like security zones. In our example, the

"engineer" is based upon VLAN 2, and the tenant will be "engineer"

as named by the authority "example". The configuration and data

models to map physical network attributes to named tenants is

implementation specific. Associating a default tenant with every

logical interface on a SVR Router is recommended.

3.6.1.2. Determine Service

There are multiple ways to determine what an intended service is.

Application Identification technology is used that understands all

popular SaaS offerings. These techniques use combinations of IP

address ranges and ports, SNI fields in TLS, Common Name from

Certificates, and extraction of URLs from http requests. Most

popular SaaS vendors today publish and update frequently their CIDR

blocks and ports used by their services. This is out of scope for

this document.

Longest prefix matching algorithms are used to extract the major and

key services at a site. If there is traffic which cannot be

identified accurately, often it will be placed into a "catch-all"

service called "internet".

We will assume for this document, that the address 172.15.11.23 is a

well known address for git servers at Example, and port 22 is known

to be SSH.

3.6.1.3. Determine Network Requirements

Once the tenant and service have been determined, a lookup for

network requirements can be determined. The requirements should

include

Example Network Requirements

 Packet received on LAN side East Router [1]

 Engineer using SSH to access Github

 +---------+---------------------+--------------+----------+

 |L2 HDR | IP Header | TCP Header | PAYLOAD |

 | VLAN=2 | SRC=10.0.1.1 | Sport=6969 | Data |

 | | DST=172.15.11.23 | Dport=22 | (N/A) |

 +---------+---------------------+--------------+----------+

¶

¶

¶

¶

¶

¶

¶

The above definition for github defines an example network

requirement. Access policies determine which tenants are allowed,

and if any specifically denied. The Quality policy defines the

service level experience requirements. Secure Vector Routing

exchanges tenants, services, and security policies using character

strings in metadata. Access and quality policies are defined and

used locally within a router and logically tied to the service. The

implementation of quality and access policy controls are site

specific. For example, VLAN based subnets may have different

meanings at various locations. Also, QoS management schemes may be

different for different network areas.

3.6.1.4. Picking a Peer Path

As stated previously, the East Router has three peer paths that can

reach the destination based on L3 reachability. The next step is to

apply the network requirements to see which of the peer paths

remain. Our policy requires latency to be less than 40 Msecs, and

this effectively eliminates East's LTE pathway from consideration.

The remaining two pathways MPLS and Internet are both possible. We

will choose MPLS as it has the lowest latency, offering the user the

best experience.

Many different criteria can be used in selecting a peer pathway. In

practice, how busy a peer path is and its capacity result in new

sessions routing to 2nd best options. Often simple load balancing is

used. In cases where there are higher costs (such as LTE or 5G

networking), these may be held in reserve for backup or disaster

recovery. The actual algorithms for picking peer pathways are

outside the scope of this protocol.

3.6.1.5. Allocate Source NAT if Necessary

In this github example, there is a source NAT at the East Router on

the MPLS interface to the datacenter. This by design allows all of

the remote branch sites to use overlapping addresses, and is very

common in larger networks. Routers that perform source NAT have two

options: use the interface address and allocate a new source port,

or use an IP address pool and allocate full IP addresses for each

session. Either way, this allocated address only needs to be placed

into metadata, as the existing packet address will be translated to

 SERVICE: github

 Tenants Allowed: engineering

 Tenants Denied: release.engineering

 Quality: latency < 40ms

 Payload Encryption:Not Required

¶

¶

¶

¶

waypoint addresses shortly. The egress SVR router will apply the

source NAT.

3.6.1.6. Allocation of Ports

The next step is to allocate new ports for the SVR session. The

ports being allocated must not be in use, and should not have been

used recently to avoid any issues with middleboxes. See Section 4.2.

The range of ports that can be used may be site specific and tied to

policies that exist in upstream firewalls or middleboxes. For these

reasons, the actual pool of available addresses is provisioned on

every SVR router. The East router has ports 8000 to 24000 available

for both the source and destination ports. In this example we will

allocate an even source port of 8000, and an odd destination port of

8001.

3.6.1.7. Session State and Metadata Construction

The router now has reached a point where it can forward the packet.

It has valid network requirements, available peer paths, and has

available SVR ports. The next step is to create and save all session

state information for subsequent packet processing. A session UUID

is created for end-to-end tracking of sessions. The table below

refers to metadata TLVs and specific contents that are documented in

Section 6.

Session State Table Entry

¶

¶

¶

¶

¶

The required and optional metadata attributes that must be inserted

in a first packet of a new sessions are defined in Section 4.3.1.

One optional metadata attribute is included in this example for the

pathway metrics. This is documented in Section 6.3.7.

State Information & Mappings to Metadata Fields

 Metadata TLV |------TLV------|

Category -Field VALUE Type Len Hdr

-------- ------------------ ----------------

Header 12

Header TLVs

 Security ID 1 16 4 4

 Path Metrics 26 10 4

 -Tx Color 5

 -Tx TimeValue 4200 MSecs

 -Rx Color 3

 -Rx TimeVlue 3950 MSecs

 -Drop No

 -Prev Color Count 950 Packets

 --- ---

 Total Header Length = 34 (26+8) 26 8

Payload TLVs

 Forward Context 2 13 4

 - Source IP Addr 10.0.0.1

 - Dest IP Addr 172.15.11.23

 - Protocol TCP

 - Source Port 6969

 - Dest Port 22

 Tenant Name engineering 7 11 4

 Service Name github 10 6 4

 UUID ABCDEFGHIJKLMNOP 6 16 4

 Source Router Name East Router 14 11 4

 Source NAT Address 172.15.0.1 25 4 4

 Security Policy NONE 15 4 4

 Peer Path 19 22 4

 - Source Addr 172.15.0.1

 - Dest Addr 172.15.10.1

 --- ---

 Total Payload Length = 119 (87+32) 87 32

 To West Fr West

 Allocated Ports Router Router

 -Source Port 8000 8001

 -Dest Port 8001 8000

¶

¶

¶

The order of the TLVs is arbitrary, but header TLVs must be before

any payload TLVs. If a TLV is received that is unknown to a peer, it

MUST ignore it. In this example, the header length including the two

header TLVs is 34, and the 8 payload TLV's are 119 bytes long.

3.6.1.8. Encryption of Metadata

The next step is to encrypt the metadata block as defined in Section

4.4. In our example, our provisioned security definitions include

AES256 for metadata encryption. AES has a 128 bit block size for all

key lengths. In our example, the metadata payload TLVs are 119 bytes

large. Padding will be added during encryption to make it 128 bytes

(or 9 bytes of padding). In addition, to make the encrypted data

stateless, we must also include a 16 byte initialization vector

directly after the encrypted block. The resultant encrypted metadata

block is 178 bytes and looks like this:

Metadata Block

3.6.1.9. Insert Metadata

The metadata block is inserted into the packet directly after the L4

Header. The total length of this specific metadata block is 178

bytes, 34 of which are header bytes and 119 for payload TLVs. If

there is data in the payload portion of the IP Packet, the payload

data is moved down to make room for the metadata. The packet

structure will now look like:

Metadata Added

The transport addresses in the packet are updated to use the

selected peer path.

¶

¶

¶

 +--------------+--------------+---------+----------------+

 | Metadata | Metadata |Padding | Initialization |

 | Header) | Payload TLVs | | Vector |

 | (Unecrypted) | Payload TLVs | | Vector |

 | 34 Bytes | 119 Bytes | 9 Bytes | 16 Bytes |

 +--------------+--------------+---------+----------------+

 |<---Clear---->|<---Encrypted Portion-->|

 |<----------------178 Byte Metadata Block--------------->|

¶

¶

¶

 Packet with metadata inserted

 +---------------------+--------------+----------+-----------+

 | IP Header | TCP Header |Metadata | PAYLOAD |

 | SRC=10.0.1.1 | Sport=6969 |Block | Data |

 | DST=172.15.11.23 | Dport=22 |178 Bytes | (optional)|

 +---------------------+--------------+----------+-----------+

¶

¶

Transport Addresses Updated

3.6.1.10. Signing SVR Packet

The packet containing metadata is now signed with a HMAC signature

(See Section 3.4). The HMAC signature is placed at the very end of

the packet, extending the packet size by the signature's length. The

IP header is excluded from the signature. The shared keys used for

signing and verifying the authenticity of the packet is outside the

scope of this document. In this case the HMAC is 16 bytes.

HMAC Signature Added

3.6.1.11. Sending the First Packet

The packet length and checksum is corrected, and the packet is

transmitted. The sending side will include the same exact metadata

on every packet until a packet in the opposite direction (reverse

direction) arrives with reverse metadata indicating a complete

handshake. For TCP, the SYN packet contains metadata, and typically

a SYN-ACK from the server side responds with metadata, and there is

no further metadata inserted in a session.

For UDP, metadata can be inserted in packets until there is a

reverse flow packet with metadata, except for unidirectional flows

as noted in Section 3.5.7.

¶

 Final Transformed Packet with metadata inserted

 +---------------------+--------------+----------+-----------+

 | IP Header | TCP Header |Metadata | PAYLOAD |

 | SRC=172.15.0.1 | Sport=8000 |Block | Data |

 | DST=172.15.10.1 | Dport=8001 |178 Bytes | (optional)|

 +---------------------+--------------+----------+-----------+

¶

¶

¶

 Packet with metadata inserted

 +-------------------+--------------+----------+---------+-----+

 |IP Header | TCP Header |Encrypted | PAYLOAD | HMAC|

 | SRC=172.15.0.1 | Sport=8000 | metadata | Data | 16 |

 | DST=172.15.10.1 | Dport=8001 | | |Bytes|

 +-------------------+--------------+----------+---------+-----+

 | |

 |<=========HMAC Signed Data========>|

¶

¶

 Client ----> TCP SYN w/Metadata ----> Server

 Server <---- TCP SYN-ACK w/Metadata <---- Server

¶

¶

3.6.2. West First Packet Processing

If a packet arrives at the West Router having the West Routers

Waypoint (interface address) as a destination address (i.e., the

packet was sent to the router, and not to a destination beyond the

router) the packet may likely contain metadata. When this occurs,

the following steps are taken.

3.6.2.1. Verify Source Address is a Waypoint

Packets arriving on the routers must be verified to be valid before

they are processed (see xref target="std_metadata_checking" />).

These simple checks that can eliminate any potential attack vectors.

If the packet fails authentication or validation the packet MAY be

dropped or responded to with an ICMP Destination Unreachable packet.

In the example case we are using, there are only three source

addresses that could be possible:

Possible Source Addresses

3.6.2.2. Verify Metadata Block

The very first and most efficient test is to verify that the

metadata is present is to look for header magic number (see Section

4.6.1).

The next verification step is to check the HMAC signature (see

Section 4.5.1). If the signature is invalid, the packet should be

dropped and a security event noted. If valid, processing continues.

The unencrypted portions of the metadata header should be verified

for reasonableness. The Header Length and Payload Length must be

less than the metadata block size.

3.6.2.3. Parse Metadata and Save State and Translations

The next step is to decrypt the metadata (See Section 4.6.2.2). If

there are any reasons why the metadata block can not be decrypted,

or the decryption fails, the packet is dropped.

The payload TLVs can now be parsed and the necessary state and

translations loaded into memory. If there is a failure to parse all

TLV's, the packet is dropped.

¶

¶

¶

¶

 172.15.0.1 MPLS Peer Pathway

 107.0.8.186 Internet Peer Pathway

 169.254.231.106 LTE Peer Pathway

¶

¶

¶

¶

¶

¶

Next the metadata block and HMAC signatures are removed from the

packet.

3.6.2.4. Restore Addresses and Route Packet

The metadata information is used to restore the original context to

the packet. The packet is then recursively processed exactly like

the first packet described in Section 3.6.1 with a few differences.

The Context, Tenant, Service, Security Policy and Session UUID

strings are used from the metadata (as opposed to locally

determining them) eliminating these steps. These are then used for

applying policy and routing decisions locally. The end result is the

packet may go through another SVR Peer Pathway or be delivered via

standard networking techniques. In this example, the West Router

delivers the packet to the Server LAN.

When the packet is forwarded to another SVR Peer, there are some

differences. The Tenant, Service, Session UUID, Security Policy and

the original 5-tuple addresses are all cloned. This provides

consistent data across a multi-hop SVR network. It should be noted

that the metadata must be decrypted at every SVR Router and then

reencrypted because the Waypoint addresses are different for each

selected peer pathway.

3.6.2.5. Detection of a Looping Session

Because every hop between SVR Routers utilizes the same session

UUID, a looping first packet is easy to detect. There MUST never be

two sessions with the same UUID. Any session that loops must be

dropped. By detecting looping packets during the first packet

transmitted, subsequent packets can be dropped on ingress by the SVR

Router that detected the looping behavior. SVR routers must also

decrement the TTL and operate in all ways like a traditional router

to prevent looping packets that are not detected by SVR.

When a packet arrives with metadata after the metadata handshake has

been completed, it is assumed to be an update and not classified as

looping. Updates can be used to change any attribute, but most

commonly to change a peer pathway for a session. See Section 5.1.

3.6.3. Return Packet Path Pre-Established

After processing the first forward packet at both East and West

routers, both the East and West routers have established packet

forwarding rules and translations for both directions. This means

that eastbound rules and westbound rules are all established and

installed. The router is thus capable now of recognizing 5-tuples in

either direction and acting on the packets without consulting

routing tables. This is known as fast path processing.

¶

¶

¶

¶

¶

¶

3.6.4. Sending Reverse Metadata

On a session-by-session basis, SVR Routers must know the status of a

metadata handshake. If a packet for a session arrives and the

metadata handshake is not complete, the SVR Router must insert

metadata for the session. This will continue until there is

verification that the SVR Peer has received the information. As

stated previously, for TCP SYN this is normally the first reverse

packet which is a TCP SYN/ACK. The purpose of reverse metadata is:

To indicate to the sender that it can stop sending metadata.

(Completion of the metadata handshake.)

Provide backward information about the service for routing of

future instances.

In this example, the reverse metadata includes:

Reverse Metadata Response

¶

*

¶

*

¶

¶

¶

See Section 4.3 for required and optional TLVs in reverse metadata.

One optional metadata attribute is included in this example for the

pathway metrics. This is documented in Section 6.3.7.

One of the outstanding benefits of SVR is the complete tracking end-

to-end of sessions. In this example, the metadata state located in

the SVR router contains all addresses used. The forward context

provides the egress SVR router with the addresses being used pre-

NAT, and the source NAT information. The reverse context would

likewise supply the ingress SVR destination NAT addresses. Also

 Reverse Metadata Response

State Information & Mappings to Metadata Fields

 Metadata TLV |------TLV------|

Category -Field VALUE Type Len Hdr

-------- ------------------ ----------------

Header 12

Header TLVs

 Security ID 1 16 4 4

 Path Metrics 26 10 4

 -Tx Color 3

 -Tx TimeValue 4100 MSecs

 -Rx Color 5

 -Rx TimeVlue 4050 MSecs

 -Drop No

 -Prev Color Count 1950 Packets

 --- ---

 Total Header Length = 34 (26+8) 26 8

Payload TLVs

 Reverse Context 4 13 4

 - Source IP Addr 172.15.0.1

 - Dest IP Addr 172.15.11.23

 - Protocol TCP

 - Source Port 7891

 - Dest Port 6969

 Peer Path 19 22 4

 - Source Addr 172.15.10.1

 - Dest Addr 172.15.0.1

 --- ---

 Total Payload Length = 43 (35+8) 35 8

 To East From East

 Allocated Ports Router Router

 - Source Port 8001 8000

 - Dest Port 8000 8001

¶

¶

¶

knowing the waypoint addresses used along with the ports used

provides a complete end-to-end visibility of each session.

This metadata will be encrypted, inserted, and an HMAC checksum will

be computed and attached as per the previous example. The reverse

packet in this example will have 34 bytes of header data, and 43

bytes of payload data, 5 bytes of padding, and a 16 byte

initialization vector resulting in a metadata block that is 98 bytes

long.

3.6.5. Subsequent Packet Processing

As soon as an SVR peer receives a packet of a session from another

SVR peer and there is no metadata, the SVR Handshake is complete,

and it can stop sending metadata. This work for both the East Router

and the West Router. Both will transmit metadata until they receive

a packet without metadata.

3.6.6. Session Termination

No metadata is sent upon normal session termination. The router can

monitor the TCP state machine and have a guard timer after seeing a

FIN/ACK or RST exchange. After the guard timer, the session can be

removed from the system. If a new session arrives during this period

(a TCP SYN), then it will cause immediate termination of the

existing session. In addition, all protocols also have an associated

inactivity timeout, after which the session gets terminated if no

packets flow in either direction. Should an existing session send a

packet after the inactivity timeout, it will be processed as a new

session.

3.6.7. Unidirectional/Asymmetric Flows

When there are unidirectional flows, or path asymmetry (e.g. TCP

sequence numbers advance with no reverse packets observed), and

there is end-to-end communication, one can stop sending metadata.

For UDP asymmetry, the sending router will send a maximum of 11

packets with metadata; if no reverse packets are seen during that

time, the receiving peer router generates and sends a disable

metadata packet to the originating router to complete the metadata

handshake.

3.6.8. Multi-Hop Session Ladder Diagram

The diagram below shows a typical normal TCP session flowing between

a client and server through routers in a network.

Ladder Diagram for Session Initiation with Metadata:

¶

¶

¶

¶

¶

¶

¶

Note that each router constructs metadata for the next chosen peer

in the routed pathway as depicted by metadata 1 [MD1] and metadata 2

[MD2] in the above diagram. Upon receipt of first reverse packet,

reverse metadata [RMD2] and [RMD1] is inserted. Each router

allocates its own transport addresses (waypoints) for each session.

The context, service name, tenant name, and session UUID are sent

unchanged between all routers, and can be used for determining

routing policies to apply. The session UUID is the same in MD1, MD2,

RMD1, and RMD2 in the above diagram.

Likewise, the diagram below shows a session teardown sequence for a

typical TCP session.

Ladder Diagram for Session Teardown Metadata:

 Client . Server

 | |

 + RouterA RouterB RouterC |

 | | | | |

 +---SYN----->| | | |

 | |--SYN[MD1]-->| | |

 | | |--SYN[MD2]->| |

 | | | |--SYN----->|

 | | | | |

 | | | |<--SYN/ACK-|

 | | |<--SYN/ACK--| |

 | |<--SYN/ACK---| [RMD2] | |

 |<--SYN/ACK--| [RMD1] | | |

 | | | | |

 | | | | |

 |<===== Session Packets Flow with No Metadata =====>|

¶

¶

¶

¶

No metadata is sent or required when sessions terminate. Each router

keeps its state information for a programmed length of time in case

a FIN/ACK is delayed or dropped, then the state information is

removed.

4. SVR Protocol Definition

4.1. SVR Session Definitions and Types

SVR implementations MUST support TCP, UDP, and ICMP. SVR

implementations SHOULD support UDP Unicast. Sessions are

characterized by having an initial first packet that is a unique to

an SVR router. Often this is described as a unique 5-tuples as seen

by the router. Sessions start when the first packet is processed,

and end when either the L4 protocol indicates the session is

completed (TCP FIN/FIN ACK) or there has been no activity for a

length of time (UDP, ICMP, UDP Unicast, point-to-point ethernet).

SVR is always OPTIONAL. SVR implementations can choose when to use

SVR on a session-by-session basis. SVR implementations MUST support

non-SVR traffic.

4.2. SVR Metadata Insertion

4.2.1. Metadata Packet Location

SVR implementations MUST insert metadata into packets directly after

the L4 header, even if the resulting increase in packet size would

cause the packet to require fragmentation. For Ethernet point-to-

point and ICMP error messages, IP Headers and L4 headers MUST be

created, and if associated with an existing session MUST share the

exact transport 5-tuples (SVR Waypoints and Ports) as the session

the ICMP error message relates to. The metadata MUST be in the very

 Client . Server

 | |

 + RouterA RouterB RouterC |

 | | | | |

 +---FIN----->| | | |

 | |-----FIN---->| | |

 | | |----FIN---->| |

 | | | |-----FIN-->|

 | | | | |

 | | | |<--FIN/ACK-|

 | | |<--FIN/ACK--| |

 | |<--FIN/ACK---| | |

 |<--FIN/ACK--| | | |

 | | | | |

 | | | | |

¶

¶

¶

¶

first packet of a new session (TCP or UDP bidirectional flow) to

have any role in path selection or security. Metadata SHALL be sent

in any subsequent packet in any direction to change or update the

networking requirements. The metadata is inserted into the payload

portion of a packet to guarantee it makes it unchanged through the

network. Packet lengths and checksums MUST be adjusted accordingly.

TCP sequence numbers MUST NOT be adjusted.

4.2.2. Metadata Prerequisites

A prerequisite for SVR metadata insertion is that a Peer Pathway

MUST be selected relating to a specific session. This is similar to

choosing a tunnel between two networks. This Peer Pathway has IP

addresses on either side (Waypoint Addresses), and these addresses

will always be the transport IP addresses for packets containing SVR

metadata.

4.2.3. Metadata Port Allocation

The SVR peer originating the session (client side) MUST allocate

both source and destination ports. The ingress side MUST choose even

ports for local (source port) and odd ports for remote (destination

port) This provides total uniqueness between any two peers, with no

negotiation or collision possibilities. The range of ports to use

for allocation is provisioned. Ports in use MUST be excluded from

allocation. Ports MUST be unallocated when session state is removed.

Ports MUST have a 60 second guard time before being reallocated

4.2.4. Metadata on Idle Session

SVR implementations MAY need to send metadata to a peer at a time

when there are no existing packets. In these cases an IP packet MUST

be created and inserted into the appropriate existing session with

an indication the packet should be dropped. See Section 5.2 for an

example. The packet MUST be processed, interpreted, and dropped by

the directly adjacent peer and not forwarded to any other SVR peer.

¶

¶

¶

¶

4.2.5. Metadata Packet Structure

If UDP protocol, the UDP Header MUST be updated to have the correct

packet length.

The Layer 4 header (TCP/UDP) MUST have its checksum recalculated per

the appropriate procedures.

The IP Packet length field MUST be updated to reflect the number of

bytes added for the metadata block AND the HMAC signature.

The IP Header Checksum MUST be updated after the IP Packet length is

adjusted.

If TCP protocol, the TCP Sequence numbers MUST NOT be changed.

4.2.6. Prevention of False Positives

Metadata is sent inside the payload portion of TCP and UDP packets.

Given that no byte sequence is truly unique in the payload of a

packet, in the scenario where the original payload after the L4

 Existing IP Packet with metadata inserted

 +------------------+-----------------+---------+----------+----+

 | Existing IP Hdr | Existing L4 Hdr |Metadata | PAYLOAD |HMAC|

 | Source IP Addr | Source Port |Block | Data | |

 | Dest IP Addr | Dest Port | |(optional)| |

 +------------------+-----------------+---------+----------+----+

 GeneratedIP Packet with metadata inserted

 +-------------------+------------------+---------+----+

 | Created IP Hdr | Created L4 Hdr |Metadata |HMAC|

 | Source IP Addr | Source Port |Block | |

 | Dest IP Addr | Dest Port | | |

 +-------------------+------------------+---------+----+

 ICMP Packet with metadata inserted

 +-----------------+----------------+----------+--------+----+

 | Created IP Hdr |Created UDP Hdr |Metadata | ICMP |HMAC|

 | Source IP Addr| Source Port |Block | MSG | |

 | Dest IP Addr | Dest Port | | | |

 +-----------------+----------------+----------+--------+----+

 Ethernet Packet with metadata inserted

 +-----------------+----------------+---------+---------+----+

 | Created IP Hdr |Created UDP Hdr |Metadata | Ethernet|HMAC|

 | Source IP Addr| Source Port |Block | MSG | |

 | Dest IP Addr | Dest Port | | | |

 +-----------------+----------------+---------+---------+----+

¶

¶

¶

¶

¶

¶

header contained the same byte sequence as the SVR magic number,

false positive logic is enacted on the packet. This guarantees

downstream SVR routers will not confuse metadata magic number

signatures.

False positives SHALL NOT occur when first packets are processed,

since valid metadata will always be inserted regardless of the

contents of the first 8 bytes of the payload. False positive can

only occur during existing valid SVR sessions between peers.

To implement false positive logic, SVR implementations MUST insert

an empty metadata header (12 byte header with 0 TLVs). This creates

a contract with downstream SVR routers that if the magic number is

present, there MUST be valid metadata that requires processing and

removal.

The structure of a false positive metadata includes just a header of

length 12 bytes, with zero header TLVs and zero payload TLVs. The

SVR router receiving a packet with false positive metadata will

strip out the metadata header and any TLV's as is normally expected.

The inserted metadata header has no TLV's and is not encrypted.

Metadata Location

Insertion of header or payload TLV's is OPTIONAL and at the

discretion of the implementation. If adding TLV's, standard

procedures MUST be applied including encryption if payload TLV's are

added.

4.2.7. TCP to UDP Transformation

TCP to UDP transformation is required when a middlebox blocks

certain TCP packets that contain metadata. SVR implementations

typically test Peer Pathways to ensure metadata insertion into TCP

SYN packets will pass through any middleboxes. If TCP SYN packets

with metadata are dropped by a middle box, then TCP packets are

¶

¶

¶

¶

¶

 Received Midstream SVR Packet matching SVR Magic Number

 +-------+--------+-------------------------+

 |IP Hdr | L4 Hdr |0x4c48dbc6ddf6670c |

 +-------+--------+-------------------------+

 Midstream SVR Packet with False Positive metadata inserted

 +--------+--------+--------+---------------------------+

 | IP Hdr | L4 Hdr |Metadata| 0x4c48dbc6ddf6670c |

 | | | HDR | |

 +--------+--------+--------+---------------------------+

¶

¶

transformed to UDP for SVR processing, and restored when exiting SVR

processing. The steps to transform TCP to UDP are:

The protocol field in the IP header MUST be changed from 0x06 (TCP)

to 0x11(UDP).

The UDP checksum will write over the sequence number. To save the

sequence number, it is copied to the 32 bit checksum/urgent pointer

location of the TCP header.

To positively communicate that TCP to UDP transformation has

occurred, one must add TLV 12 to the metadata being transmitted. See

Section 6.4.9.

The UDP transformation is for every packet in a session, not just

the packets with metadata. The restoration process is depicted in

Section 4.6.3.

4.3. Required and Optional TLVs

4.3.1. New IP Sessions TLVs

The metadata TLVs that MUST be inserted in a first forward metadata

packet of a new sessions include:

Header: Security Identifier: see Section 6.3.2.

Payload: Forward Context: see Section 6.4.1, Section 6.4.2.

Payload: Tenant Name: see Section 6.4.6.

Payload: Service Name: see Section 6.4.7.

Payload: Session UUID: see Section 6.4.5.

Payload: Source Router Name: see Section 6.4.10.

Payload: Security Policy: see Section 6.4.11.

Payload: Peer Pathway ID: see Section 6.4.12.

Optional metadata TLV's that MAY be included in forward metadata

are:

Header: Patch Metrics: see Section 6.3.7.

Payload: Session Encrypted: see Section 6.4.8.

Payload: TCP Syn Packet: see Section 6.4.9.

Payload: IPv4 Source NAT Address: see Section 6.4.13.

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

The order of the TLVs is arbitrary, but header TLVs must be before

any payload TLVs. If a TLV is received that is unknown to a peer, it

MUST ignore it.

The metadata TLVs that MUST be inserted in a first reverse packet of

a new sessions include:

Header: Security Identifier: see Section 6.3.2.

Payload: Reverse Context: see Section 6.4.3, Section 6.4.4.

Payload: Peer Pathway ID: see Section 6.4.12.

Optional metadata TLV's that MAY be included reverse metadata are:

Payload: Patch Metrics: see Section 6.3.7.

4.3.2. ICMP TLVs

The metadata TLVs that MUST be inserted when returning an ICMP Error

include:

Header: ICMP Error Location Address: see Section 6.3.4, Section

6.3.5.

Optional metadata TLV's that MAY be included reverse metadata are:

Header: Patch Metrics: see Section 6.3.7.

4.4. Metadata Encryption

Encryption of metadata utilizes block mode ciphers. Cipher's MUST

have a consistent block size. The cipher to use and its block size

MUST be provisioned and communicated to peers in advance. The

provisioning methodology is outside the scope of this document. The

keys, and key rotation are also outside the scope of this document.

When data is encrypted with block mode ciphers, the block will be

padded with zeros (0x0's) to equal an increment of the block size

used by the cipher. An initialization vector allows the decryption

to be performed without any state.

Metadata Block

¶

¶

* ¶

* ¶

* ¶

¶

* ¶

¶

*

¶

¶

* ¶

¶

¶

The padding can be computed as the length of the metadata payload

TLVs MOD block size.

4.5. SVR Packet Authentication

4.5.1. HMAC Signatures

Through provisioning (outside the scope of this document), an SVR

Authority MUST define if HMAC signatures are to be used. An SVR

Authority MUST also define if Time Based HMAC is to be used. AN SVR

Authority MUST determine if ALL packets are signed, or just packets

containing metadata. Due to the possibility of replay attacks, it is

RECOMMENDED that Time Based HMAC signatures be used on ALL SVR

packets. Key distribution to support HMAC signatures is outside the

scope of this document.

SVR Peers SHOULD sign all packets with HMAC signatures defined in

[RFC2104]. When present there MUST be only one HMAC signature in an

IP packet even if it fragments across multiple physical IP packets.

Time-based HMAC signatures are RECOMMENDED. For time-based HMAC

signatures, SVR routers append the current time since epoch

(measured in seconds) divided by 2 to the data being signed. SVR

routers MUST have clocks synchronized accurately. Methods for

synchronizing clocks and measuring any differences or drifts are

outside the scope of this document. Minimally NTP [RFC5905] should

be implemented. In cases where the current time cannot be relied on,

one may need to disable the time based HMAC and use a standard HMAC,

but this is NOT RECOMMENDED.

The HMAC signature is always added to the very end of a packet. The

size of the HMAC signature depends on which signature is used. Well

known HMAC types are used with SVR including SHA1, SHA256-128, and

SHA256.

 Cipher Block Size IV Size

 ------- ----------------- -------

 AES256 128 Bits(16 Bytes) 16 Bytes

 AES128 128 Bits(16 Bytes) 16 Bytes

 +----------+--------+---------+--------+----------------+

 | Metadata | Header | Payload |Padding | Initialization |

 | Header | TLVs | TLVs | | Vector |

 +----------+--------+---------+--------+----------------+

 |<------Clear------>|<-- Encrypted --->|

 |<---------------------- Metadata Block ---------------->|

¶

¶

¶

¶

¶

4.5.2. HMAC Verification

If HMAC signatures are present in an SVR implementation, SVR

implementations MUST verify and remove the signature. Verification

provides both authentication of the SVR router that sent the packet,

and integrity that the packet has not been modified in any way

intentionally, or through transmission errors between two SVR

routers.

Through provisioning (outside the scope of this document), an SVR

Authority MUST define if HMAC signatures are present. An SVR

Authority MUST also define if Time Based HMAC is to be used. AN SVR

Authority MUST determine if ALL packets are signed, or just packets

containing metadata. Due to the possibility of replay attacks, it is

RECOMMENDED that Time Based HMAC signatures be used on ALL SVR

packets. Key distribution to support HMAC signatures is outside the

scope of this document.

To verify the HMAC signature, a new signature is generated on the

packet and bytewise compared to the signature transmitted in the

packet.

 SVR Packet with metadata inserted

 +-----------+--------------+---------+----------+-------+

 |IP Header | L4 Header |Metadata | PAYLOAD | HMAC |

 | | | |(optional)| |

 +-----------+--------------+---------+----------+-------+

 | |

 |<======= HMAC Signed Data ========>|

 Subsequent SVR Packet

 +-----------+--------------+---------+-------+

 |IP Header | L4 Header |Payload | HMAC |

 | | | | |

 +-----------+--------------+---------+-------+

 | |

 |<== HMAC Signed Data ==>|

 HMAC TYPE LENGTH OF SIGNATURE

 ------------------ ----------------------

 SHA1 20 Bytes

 SHA256-128 16 Bytes

 SHA256 32 Bytes

¶

¶

¶

¶

For efficiency reasons, when verifying an Time Based HMAC signature,

implementers SHOULD compute the HMAC on the packet (not including

the IP header) and save the preliminary result. Then try updating

the HMAC signature with the current window value. If this fails to

match the signature, one must try updating the preliminary result

using the next time window by adding 2 seconds (or previous by

subtracting 2). If the time window is determined to be the next time

window; it will remain that way for all packets received from a

particular peer until it advances with clock time. Keeping an active

time window per peer can make this process much more efficient.

If the signature does not match after checking adjacent time

windows, then the packet is dropped and a security event noted.

If the signature matches exactly the signature in the packet, then

the packet has been authenticated as being sent by the previous SVR

router, and assured that the packets integrity between the two

routers is good. The HMAC signature MUST be removed from the packet.

The IP Packet length field MUST be updated to reflect the number of

bytes removed.

The IP Header Checksum MUST be updated after the IP Packet length is

adjusted.

4.6. Processing SVR Packets with Potential Metadata

Routers MUST process SVR traffic and non-SVR traffic. SVR Routers

MUST keep track of sessions that are using SVR. Only sessions setup

with SVR may use the procedures described below. Traffic that is

using SVR will always originate and terminate on Waypoint addresses

(known peer pathways). This provides efficient separation of non-SVR

traffic and SVR traffic.

 SVR Packet with HMAC Signature

 +-----------+--------------+----------+-------+

 |IP Header | L4 Header | PAYLOAD | HMAC |

 | | |(optional)| |

 +-----------+--------------+----------+-------+

 | |

 |<== Signed Data ========>|

 SVR Packet with HMAC Signature removed

 +-----------+--------------+----------+

 |IP Header | L4 Header | PAYLOAD |

 | | |(optional)|

 +-----------+--------------+----------+

¶

¶

¶

¶

¶

¶

¶

Packets received on known Peer Pathways MUST be assumed to either

have metadata or be packets associated with existing SVR sessions..

4.6.1. Detection of Potential Metadata in Packets

Any packet could arrive at any time with metadata. DPI MUST be used

to scan for the presence of metadata on every packet. Metadata MAY

be expected and required for first packet processing, and the

absence of metadata will result in dropped packets.

The HMAC verification step (defined above) MUST be performed prior

to performing any other metadata verification steps. This prevents

attacks by modifying packet on the wire.

If the first 8 bytes of the payload (TCP or UDP) exactly matches the

SVR magic number (0x4c48dbc6ddf6670c) it indicates that packet MUST

have metadata. If the first 8 bytes do not match, the packet does

not contain metadata. If metadata is not present the packet SHOULD

be routed if part of an existing session (See Section 4.6.4). If not

part of an existing session the packet MUST be dropped and a

security event noted.

4.6.2. Verification of Metadata in Packets

4.6.2.1. TLV Parsing

The metadata header is parsed (see Section 6.1). If the header

length and payload length are both zero, the metadata is simply

removed and the packet is forwarded. Please see Section 4.2.6 for

description of false positive metadata header insertion.. The next

step is to walk the header TLV's to ensure they are reasonable. If

the payload length is zero, then the metadata can be accepted and

processed. Decryption of metadata is only required when there are

payload TLV's.

If a TLV is sent that is unknown to the implementation, the TLV

should be skipped and the TLV MUST not be forwarded.

If the metadata TLVs are not reasonable, the packet MUST be dropped

and security events noted.

4.6.2.2. Decryption of Metadata Blocks

If the peers have been provisioned to encrypt metadata with a

specific cipher AND the payload length in the header is non-zero,

then the SVR implementation MUST assume that an encrypted metadata

block was transmitted.

To decrypt the encrypted metadata block, an SVR implementation MUST

have the pre-provisioned Cipher, block size, and initialization

¶

¶

¶

¶

¶

¶

¶

¶

vector size. Once these are known, it is possible based on the

payload length in the metadata header to determine the exact

structure of the packet, and how to decrypt it.

Encrypted Metadata Block

The padding is equal to the payload length from the header MOD

cipher block size. The "block" is then decrypted assuming that the

IV size bytes following the "block" is the Initialization vector.

If the decryption fails, then the packet MUST be assumed invalid and

dropped. When this happens a security event is noted.

After the decryption succeeds, the payload TLV's MUST be reviewed

for reasonableness and completeness. See Section 4.3 for minimum

required TLV's. If there are insufficient TLV's present for the SVR

implementation, the packets MUST be dropped and errors noted.

After review of the TLV's, the metadata is considered valid and

accepted by the SVR implementation. The metadata block is removed

from the packet, and the IP header length and checksum MUST be

corrected. The packet signatures and decryption provide a very high

degree of assurance that the metadata is authentic and has

integrity.

4.6.3. UDP to TCP Transformation

If the received metadata block contains a TCP SYN Packet TLV (see

Section 6.4.9) then the following procedures MUST be performed on

EVERY packet of the session. This also signals to the SVR Router

that packets flowing in the opposite direction MUST also be UDP

transformed. See Section 4.2.7. The steps performed are:

The protocol field in the IP header MUST be changed from 0x11 (UDP)

to 0x06 (TCP).

¶

¶

 Known in advice: Cipher, Block Size, IV size

 From Metadata Header: Payload TLV size

 +----------+--------+-------+-------+----------------+--~~~

 | Metadata | Header |Payload|Padding| Initialization | Rest...

 | Header | TLVs |TLVs | | Vector (IV) | of ...

 | | | | | | Pkt ...

 +----------+--------+-------+-------+----------------+--~~~

 |<------Clear------>|<- Encrypted ->|

 |<------------------ Metadata Block ---------------->|

¶

¶

¶

¶

¶

¶

¶

Copy the 32 bit integer in the checksum/urgent pointer location of

the TCP header to the sequence number, effectively restoring it.

The TCP Checksum MUST be recalculated.

4.6.4. SVR Session Packets

Any packet that is has a source and destination IP address that maps

to a Peer Pathway is an SVR packet. SVR Packets that do not have

metadata are SVR session packets. Each of these MUST have

corresponding known session state. If no session state exists, these

packets MUST be dropped, or there must be an attempt to restore

session state (see Section 2.10).

Packets ingressing to a peer pathway that are part of existing SVR

sessions that do not contain metadata MUST be translated (all 5-

tuples, bidirectionally). The source address MUST be replaced with

the local Waypoint address associated with the peer pathway. The

destination address MUST be replaced with the Waypoint of the SVR

Peer chosen. The protocol either remains the same, or is modified if

UDP Transformation is required (See Section 4.2.7). The source and

destination port fields MUST be replaced with the ports allocated

for this SVR session. For efficiency, implementors SHOULD save a

single checksum delta as part of the session state because the

address/protocol/port modifications will always be identical for

each packet of a session.

Packets egressing from a peer pathway must have their addresses

restored. SVR session state MUST contain the original packet context

5-tuples for every SVR session. The original Source IP Address MUST

be restored. The original Destination IP Address MUST be restored.

The original protocol must be restored, and if it is changes from

UDP to TCP then one MUST follow the procedures defined in Section

4.6.3. The source port MUST be restored. The destination port MUST

be restored.

4.6.5. Tenant/Service Overview

A provisioned SVR Policy SHOULD include both a tenant and service.

Absence of a applicable SVR policy SHOULD prevent SVR sessions from

being established. Traditional IP routing can be used when SVR

policies do not apply.

4.6.5.1. Interpretation of the Service

Services are textual names for sets of CIDR blocks, protocols, and

ports. Services map directly to our human understanding of a network

use case. Examples include "Zoom" or "Office365".

Service Definition

¶

¶

¶

¶

¶

¶

¶

¶

Use Destination from Context:

Destination NAT Based on Local Configuration:

Resolve Destination using Local DNS:

When a packet arrives with metadata at an SVR Router the name of the

service MUST be in first packet metadata.

When a first packet arrives without metadata, the service must be

determined through a lookup of the IP destination address, port, and

protocol. The resultant string becomes the service name. If this

fails to result in a service, the name of the service can be

determined by using application recognition techniques. These are

omitted from this document, but include HTTP Request Analysis, TLS

SNI, and Common names in certificates.

Services can have associated quality policies and security policies

associated with them via provisioning. This is outside the scope of

this document.

When egressing an SVR Peer Pathway, the service name can be used to

route the packet to another SVR Peer, or to the final destination.

If another SVR peer is chosen, the service name MUST be used as

provided by the previous SVR peer. When exiting SVR and returning to

traditional network routing, the textual service name MUST be

resolved to an IP address. SVR supports several options:

This is the default action. The

original destination address will be restored and the packet will

be forwarded to the destination.

Some provisioned

service configurations locally (nearest the destination SVR

router) will map the service to one or more local IP addresses

through implementation of a destination NAT. This effectively

becomes a load balancing algorithm to destination service

instances, and is very useful in public clouds.

DNS resolution can be

provisioned for services when the IP address is not known. This

if often the case with services in private clouds.

Services SHOULD be provisioned to have lists of Tenants that are

permitted to use a Service, and tenants that are denied using a

service. These access controls are RECOMMENDED.

 svc_name

 protocol:TCP/UDP

 port ranges[]

 CIDR Blocks[]

¶

¶

¶

¶

¶

¶

¶

¶

¶

4.6.5.2. Determination and Interpretation of the Tenant

Tenant is a text string hierarchy delimited by periods. Tenants are

logically similar to VLANs, CIDR block subnets, and Security Zones.

The entire text string, including the full hierarchy is used to

define a tenant, and for policy application, the tenant MAY match

right to left in full segments (delimited by periods). The longest

match will always be used (the most segments).

Tenants SHOULD be referenced and associated with Services to create

a from-to vector. This has the benefits of associating ACLs directly

with Destinations. A provisioned SVR Policy SHOULD include both a

tenant and service. Absence of a applicable SVR policy prevents SVR

sessions from being established. The deny by default approach is

RECOMMENDED.

It is RECOMMENDED that a tenant be associated with physical

interfaces and logical interfaces (VLANs) as a default for arriving

sessions. CIDR block based tenants SHOULD override these defaults.

Tenant definitions directly from clients that self assert their

tenancy SHOULD override all other tenant definitions.

All network interface based tenant definitions are local to an SVR

router. The tenant definitions on ingress to SVR MAY not match those

on egress from SVR. This permits the use of different segmentation

techniques in different networks.

4.6.6. Security Policy and Payload Encryption

If payload encryption is required, a Security Policy is used to

describe all aspects of the agreed upon methods. Key management is

outside the scope of this document. Using a semantically named

Security Policy permits implementations to use whatever ciphers and

techniques they wish, as long as they can be named.

5. Additional Metadata Exchanges and Use Cases

Metadata can be inserted and used to share network intent between

routers. Below are examples for specific use cases. The metadata is

not limited to these use cases, these are just illustrative.

5.1. Moving a Session

To change the pathway of a session between two routers, any SVR

Router simply reinserts the metadata described in section Section

3.6.1.7 and transmits the packet on a different peer path, but

¶

¶

¶

¶

¶

¶

retains the same Session UUID of the existing session that is being

moved.

Update its fast path forwarding tables to reflect the new IP

addresses and ports (waypoints) for transport. All other aspects

of the session remains the same. The presence of middle boxes

means that routers on both sides must once again perform NATP

detection and update real transmit addresses/ports to ensure that

sessions will continue.

After 5 seconds the old path state entries can be removed. By

keeping the old and new fast path entries during this 5 second

transition, no packets in flight will be dropped. The diagram below

shows the sequence for moving sessions around a failed mid-pathway

router.

Ladder Diagram for Existing Session Reroute with Metadata:

When router C fails, metadata [MD1,MD2] can be included in the very

next packet being sent in either direction. Confirmation that the

move was completed is confirmed with reverse metadata [RMD2, RMD1].

For established TCP sessions, this is either a PUSH (as shown) or an

¶

*

¶

¶

¶

 RTR-A RTR-B RTR-C RTR-D

 Client . Server

 | | | | | |

 |--PUSH--->| | | | |

 | |--PUSH-------------->| | |

 | | | |--PUSH--->| |

 | | | | |--PUSH--->|

 | | | | |<---ACK---|

 | | | |<---ACK---| |

 | |<--------------ACK---| | |

 |<---ACK---| | | | |

 | | | | | |

 RTR-C Fails.......................

 |--PUSH--->| | | | |

 | |--PUSH--->| | | |

 | | [MD1] | | | |

 | | |--PUSH[MD2]--------->| |

 | | | | |--PUSH--->|

 | | | | |<--ACK----|

 | | |<-----ACK[RMD2]------| |

 | |<--ACK----| | | |

 |<--ACK----| [RMD1] | | | |

 | | | | | |

 |<======== Session Packets Flow without Metadata =====>|

¶

ACK (Not shown). This can reestablish the SVR session state into a

new router (Router B in this example) that previously did not have

any involvement in the session. This technique can also be used to

modify paths between two routers effectively moving TCP sessions

from one transport (MPLS for example) to another (LTE). A session

move can be initiated by any router at any time.

Ladder Diagram for Session Reroute Between Peers with Metadata:

The diagram shows moving an active TCP session from one transport

network to another by injecting metadata [MD] into any packet that

is part of the transport in either direction. Reverse metadata is

sent on any packet going in the reverse direction to confirm that

the move was successful [RMD].

5.2. NAT Keep Alive

If an SVR Router determines there is one or more NATs on a peer

pathway (See Section 2.4, the SVR Peer must maintain the NAT

bindings for each active session by sending keep alive metadata in

the direction of the NAT. For keep alive, SVR utilizes a packet that

matches the L4 header of the idle session that includes metadata

type 24 with the drop reason set to Keep Alive.

¶

¶

 +-------+ +--------+

 | +-----MPLS-----+ |

 Client--| Rtr-A | | Rtr-B +----Server

 | +------LTE-----+ |

 +-------+ +--------+

 Client . Server

 | |

 | RouterA RouterC |

 | | | |

 |---PUSH---->| | |

 | |---PUSH over MPLS-------->| |

 | | |---PUSH--->|

 MPLS has Poor Quality

 | | | |

 |---PUSH---->| | |

 | |---PUSH over LTE[MD]----->| |

 | | |---PUSH--->|

 | | |<---ACK----|

 | |<---ACK over LTE[RMD]-----| |

 |<---ACK-----| | |

 | | | |

 |<===== Session Packets Flow without Metadata =====>|

¶

¶

¶

Ladder Diagram for NAT Keep Alive with Metadata:

The metadata attributes that MUST be inserted in a keep alive for

existing packet sessions includes:

Header: SVR Control Message: see Section 6.3.6.

Because there are only header attributes, encryption is not

required.

5.3. Adaptive Encryption

Unlike a tunnel where all packets must be encrypted, each session in

SVR is unique and independent. Most of the modern applications

sessions are already using TLS or DTLS. SVR Routers have the

capability of encrypting only sessions that are not already

encrypted. Below is an example of adaptive encryption. With adaptive

encryption, every session begins unencrypted. By analyzing the first

4 packets, the router can determine that encryption is required or

not. If the fourth packet in a TLS Client hello message, encryption

is NOT required. Any sequence of packets that does not indicate TLS

or DTLS setup would immediately toggle encryption on.

Ladder Diagram of Adaptive Encryption with Client Hello:

¶

 RTR-A NAT RTR-B

 Client Server

 | | | | |

 Existing SVR Session......

 |--PUSH--->| | | |

 | |--PUSH--->| | |

 | | |---PUSH-->| |

 | | | |--PUSH--->|

 | | | |<---ACK---|

 | | |<---ACK---| |

 | |<--PUSH---| | |

 |<--PUSH---| | | |

 NO PACKETS EITHER DIRECTION FOR 20 SECS........

 | | | | |

 | |--[MD1]-->| | |

 | | |--[MD1]-->| |

 | | | | |

 NO PACKETS EITHER DIRECTION FOR 20 SECS........

 | | | | |

 | |--[MD1]-->| | |

 | | |--[MD1]-->| |

 | | | | |

¶

¶

* ¶

¶

¶

¶

If the fourth packet is not an indication that encryption will be

performed by the transport layer, then the ingress SVR Routers must

encrypt and the egress SVR router must decrypt the session

bidirectionally. This ensures that any data between the SVR Routers

is encrypted.

Ladder Diagram of Adaptive Encryption with data:

 Client Server

 | |

 + RouterA RouterB |

 +---SYN----->| | |

 | |----SYN[MD1]----->| |

 | | |--SYN----->|

 | | |<--SYN/ACK-|

 | |<----SYN/ACK------| |

 |<--SYN/ACK--| [RMD1] | |

 |---ACK----->| | |

 | |------ACK-------->| |

 | | |--ACK----->|

 |--Client--->| | |

 | Hello |<== ENCRYPTION===>| |

 | | Not Required | |

 | | | |

 | |-----Client------>| |

 | | Hello |--Client-->|

 | | | |

¶

¶

¶

Adaptive encryption is part of the security provisioning. Security

policies are associated with services, and as such certain

applications can mandate encryption; others may allow adaptive

encryption, and still others may specify no encryption.

5.4. Packet Fragmentation

When a fragmented packet is presented to a SVR Router, the packet

must be completely assembled to be processed. The SVR Router routes

IP packets, and as all SVR actions require the entire packet. As

such, the HMAC must be applied to the entire packet, and the entire

packet must be routed as a whole. Each resulting fragment must be

turned into an IP packet with 5-tuples that match the corresponding

session to ingress and pass through an SVR. The SVR Router will

simply use the same L4 header on all fragments from the session

state table (peer pathway and transit ports). a time based HMAC

signature is created for the entire packet and appended to the last

fragment. Each fragment must also have metadata inserted that

clearly identifies the fragment to the SVR routing peer.

Ladder Diagram Fragmented Packets:

 Client Server

 | |

 + RouterA RouterB |

 +---SYN----->| | |

 | |--SYN[MD1]--->| |

 | | |--SYN----->|

 | | |<--SYN/ACK-|

 | |<--SYN/ACK----| |

 |<--SYN/ACK--| [RMD1] | |

 |---ACK----->| | |

 | |----ACK------>| |

 | | |--ACK----->|

 |---Data---->| | |

 | |<==ENCRYPT===>| |

 | | Required | |

 | | | |

 | |--Encrypted-->| |

 | | Data |---Data--->|

¶

¶

¶

¶

In the diagram above, Router A collects all the fragments 1 2, and

3. Reassembly is performed. Router A records two things from the

inbound fragments: The Original ID, and the largest fragment size

received. Router A then proceeds to send the jumbo packet by

fragmenting it again, but this time sending each piece inside a

packet with a newly created L4 which maps exactly to the peer

pathway chosen with ports assigned from the session state table. The

fragment size will be the lesser of the smallest MTU on the path OR

the largest fragment seen, whichever is smaller. The Metadata header

and header TLV's are not encrypted. The packet construction looks

like this:

SVR Fragment Packet Layout

 Client . Server

 | |

 | RouterA RouterB |

 | | | |

 |--Frag 1--->| | |

 |--Frag 3--->| | |

 |--Frag 2--->| | |

 | +---+----+ | |

 | |Assemble| | |

 | +---+----+ | |

 | |----Frag 1[L4/MD]-------->| |

 | | | |

 | |----Frag 2[L4/MD]-------->| |

 | | | |

 | |----Frag 3[L4/MD]-------->| |

 | | +--------+ |

 | | |Assemble| |

 | | +--------+ |

 | | |--Frag 1-->|

 | | |--Frag 2-->|

 | | |--Frag 3-->|

¶

¶

¶

The metadata type 1 inside the SVR fragment will have its own

extended ID assigned. This allows a different number of fragments to

be between router A and B than the Client and Server have. It also

allows independent fragmentation by SVR should it be required.

Router B will process the fragments from router A. Router B will

look at its egress MTU size, and the largest fragment seen recorded

by RouterA and transmitted in Metadata to determine the proper size

fragments to send, and the packet is fragmented and sent.

There are no other metadata fields required. All information about

the session state is tied to the 5-tuple peer pathway and transports

ports.

The details on packet fragmentation are identical to what is

standardly performed in IP fragmentation, exception for the full L4

headers and metadata insertion.

If a packet traversing an SVR needs to be fragmented by the router

for an SVR segment for any reason, including the insertion of

metadata, the initiating router inserts metadata on the first packet

and duplicates the L4 header (either TCP or UDP) on subsequent

fragments and inserts metadata. In this case the Largest Fragment

Seen and Original ID field in the metadata is left blank.

Ladder Diagram Fragmented Packets:

 Fragment 1

 +-----+-----+----------+----------+---------+

 |Peer |Peer | Metadata | Header | First |

 |IP |L4 | Header | TLV-1,16 | Fragment|

 |HDR |HDR | 12 Bytes | 22 Bytes | |

 +-----+-----+----------+----------+---------+

 Fragment 2

 +-----+-----+----------+----------+---------+

 |Peer |Peer | Metadata | Header | Second |

 |IP |L4 | Header | TLV-1 | Fragment|

 |HDR |HDR | 12 Bytes | 14 Bytes | |

 +-----+-----+----------+----------+---------+

 Fragment 3

 +-----+-----+----------+----------+---------+----------+

 |Peer |Peer | Metadata | Header | Third | PKT |

 |IP |L4 | Header | TLV-1 | Fragment| HMAC |

 |HDR |HDR | 12 Bytes | 14 Bytes | | SIGNATURE|

 +-----+-----+----------+----------+---------+----------+

¶

¶

¶

¶

¶

¶

5.5. ICMP and SVR

There are two types of ICMP messages. There are messages associated

with specific packet delivery network errors. This includes:

Type 3: Destination Unreachable

Type 11: Time Exceeded (TTL)

These messages have information from the packet that generated the

error by including the IP header + 8 bytes in the ICMP message (See

[RFC0792]. It is important to deliver the ICMP message back to the

origin. For these ICMP messages, the router MUST determine what

active session the ICMP message belongs to by parsing the IP header

information inside the ICMP message. Once a session is found, the

ICMP message is transported across the SVR and reverse metadata is

applied by having its destination address changed to the waypoint

addresses of the routers.

Metadata type 20 and 21 are used to send the source of the ICMP

error backward through the networks. See Section 6.3.4 and Section

6.3.5 for information about these metadata formats. This repeats

until the ICMP packet arrives at the initial SVR router. At this

point the ICMP packet is recreated and the source address is changed

to the address communicated through metadata type 20 and 21.

SVR Fragment Packet Layout

ICMP over SVR for Network Failures

 Client . Server

 | |

 | RouterA RouterB |

 | | | |

 |--Lg Pkt--->| | |

 | |--------Frag 1[MD]------->| |

 | | | |

 | |----Frag 2[L4 Hdr|MD]---->| |

 | | |--Lg Pkt-->|

 | | | |

¶

¶

* ¶

* ¶

¶

¶

¶

 +------------+------------+----------------+--------------+

 | IP HEADER | UDP HEADER | Metadata 20/21 | ICMP Packet |

 +------------+------------+----------------+--------------+

¶

¶

The first ICMP message is directed to Router B. Router B examines

the ICMP error to find the session, and forwards backwards to the

correct waypoint for Router A. Router A recreates the ICMP message,

and sends to the Client. The address of where the error was detected

is in

The second type of ICMP message is not related to any specific

sessions. These types of messages include ICMP ECHO for example.

These are always encapsulated as UDP, and a session is created for

the ICMP message. The identifier field in ICMP and the IP addresses

are used as the 5-tuple session key. This includes:

Type 8:ECHO Request (Ping)

ICMP over SVR for Information

The ICMP message creates a session on Router A directed towards

Router B. Metadata [MD1] is inserted just like any UDP session to

establish the return pathway for the response. Reverse metadata is

inserted into the ECHO Response, effectively creating an ICMP

 Client .No Network

 | Found

 | RouterA RouterB |

 | | | |

 |----PKT---->| | |

 | |------PKT[MD]------------>| |

 | | |<--ICMP------|

 | | | (Router B) |

 | |<--UDP[ICMP[RMD]]---------| |

 |<--ICMP-----| | |

 | (Client) | | |

 | | | |

¶

¶

¶

* ¶

¶

 Client . Target

 | |

 | RouterA RouterB |

 | | | |

 |--ICMP ECHO---->| | |

 | |---UDP[ICMP ECHO]->| |

 | | [MD1] | |

 | | |---ICMP ECHO--->|

 | | |<--ECHO RESP----|

 | |<--UDP[ECHO RESP]--| |

 | | [RMD1] | |

 |<--ECHO RESP----| | |

¶

Cookie (8 bytes):

session. Subsequent identical ICMP messages will utilize this path

without metadata being inserted. This session state MUST be guarded

with an inactivity timer and the state deleted.

6. Metadata Format and Composition

The format of metadata has both Header attributes as well as Payload

attributes. Header attributes are always guaranteed to be

unencrypted. These headers may be inspected by intermediate network

elements but can't be changed. Header attributes do not have a

forward or reverse direction. Header attributes are used for router

and peer pathway controls.

Payload attributes optionally can be encrypted by the sender.

Payload attributes are associated with sessions, and as such have a

forward and reverse direction. For encryption, the pre-existing

security association and key sharing is outside the scope of this

document. Each SVR attribute defined will indicate whether it is a

header attribute (unencrypted) or payload attribute (optionally

encrypted). There are no attributes that can exist in both sections.

6.1. Metadata Header

The metadata header is shown below. A well-known "cookie"

(0x4c48dbc6ddf6670c in network byte order byte order) is built into

the header which is used in concert with contextual awareness of the

packet itself to determine the presence of metadata within a packet.

This is an eight-byte pattern that immediately follows the L4 header

and is an indicator to a receiving router that a packet contains

metadata. NOTE: Normal IP traffic will never have the Waypoint

Address as its destination. If a packet arrives at a SVR Router

Waypoint it has to have Metadata or be associated with an active SVR

session. Please see Section 2.10 for a discussion of state recovery

techniques.

Figure 8

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | |

 + Cookie +

 | |

 +-+

 |Version| Header Length | Payload Length |

 +-+

 | Header TLVs ... | Payload TLVs ... |

 +-+

Version (4 bits):

Header Length (12 bits):

Payload Length (2 bytes):

The fingerprint of metadata. This value is used to determine the

existence of metadata within a packet.

Field representing the version of the metadata

header. The current version of metadata is 0x1.

Length of the metadata header including

any added Header TLV attributes that are guaranteed to be

unencrypted. When there are no Header TLVs, the value Header

Length is 12 Bytes or OxC.

Length of data following the metadata

header, not including the size of the header. This data could be

encrypted. The value of this field is the number of bytes in the

Payload TLV's. If there are no TLV's the value is zero.

6.1.1. False Positives

Given that no byte sequence is truly unique in the payload of a

packet, in the scenario where the original payload after the L4

header contained the same byte sequence as the cookie, false

positive logic is enacted on the packet. If the metadata HMAC

signature can't verify that the metadata is valid, then a false

positive metadata header is added to the packet to indicate that the

first eight bytes of the payload matches the cookie.

The structure of a false positive metadata includes just a header of

length 12 bytes, with zero header TLVs and zero payload TLVs. The

receiving side of a packet with false positive metadata will strip

out the metadata header.

In the scenario where a router receives a false positive metadata

header but intends to add metadata to the packet, the false positive

metadata header is modified to contain the newly added attributes.

Once attributes are added, the metadata header is no longer

considered to be false positive.

6.1.2. Forward and Reverse Attributes

Payload metadata attributes may be valid in the forward direction,

the reverse direction, or both. If not valid, it is ignored quietly

by the receiving side.

6.2. TLVs for Attributes

All metadata attributes are expressed as Tag Length Values or TLV's.

This includes Header and Payload TLVs. It is recommended that

Payload TLVs be encrypted, but not mandatory. When debugging

networks, or if mid-stream routers need to consult the TLV's, they

can be transmitted in clear text. The entire metadata block is

¶

¶

¶

¶

¶

¶

¶

¶

Type (2 bytes):

Length (2 bytes):

signed, and thus the integrity of the data can be verified. No

midstream router or middlebox can modify any aspect of the metadata.

Doing so will invalidate the signature, and the metadata will be

dropped.

Figure 9

Type of data that follows. Each of different Header

and Payload TLV's are defined below.

Number of bytes associated with the length of the

value (not including the 4 bytes associated with the type and

length fields).

6.3. Header Attributes

6.3.1. Fragment

When a packet is fragmented to insert metadata, a new fragmentation

mechanism must be added to prevent fragmentation attacks and to

support reassembly (which requires protocol and port information).

If a packet is received that IS a fragment, and it must transit

through a metadata signaled pathway, it must also have this metadata

attached to properly bind the fragment with the correct session.

All fragments will have a metadata header and the fragment TLV added

to the guaranteed unencrypted portion of the metadata header. If the

original packet already has a metadata header on it, the fragment

TLV will be added to it. See [RFC0791] for information about IP

Fragmentation. For a detailed example of packet fragmentation in SVR

please see Section 5.4

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Length |

 +-+

 | Variable Length Values |

 \/

¶

¶

¶

¶

TLV:

Extended ID (4 bytes):

Original ID (2 bytes):

Flags (3 bits):

Fragment Offset (13 bits):

Largest Seen Fragment (2 bytes):

Figure 10

Type 1, Length 10.

Uniquely identifies a packet that is broken

into fragments This ID is assigned by the SVR that is processing

fragmented packets. IPv6 uses a 32-bit Extended ID, and IPv4 uses

a 16 bit ID. We use the same algorithm for fragmenting packets

for both IPv6 and IPv4, therefore we chose a 32-Bit Extended ID.

.

Original identification value of the L3

header of a received packet that is already fragmented.

Field used for identifying fragment attributes.

They are (in order, from most significant to least significant):

bit 0: Reserved; must be zero.

bit 1: Don't fragment (DF).

bit 2: More fragments (MF).

Field associated with the number of

eight-byte segments the fragment payload contains.

Each SVR router keeps track of the

largest fragment processed from each interface. This allows the

router to make inferences about the MTU size when fragmenting

packets in the opposite direction. This information is used along

with a given egress network interface MTU to determine the

fragment size of a reassembled packet.

6.3.2. Security Identifier

A versioning identifier used to determine which security key version

should be used when handling features dealing with security and

authenticity of a packet.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 1 | Length = 10 |

 +-+

 | Extended ID |

 +-+

 | Original ID |Flags| Fragment Offset |

 +-+

 | Largest Seen Fragment |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

TLV:

Security Key Version (4 bytes):

TLV:

Figure 11

Type 16, Length 4.

This is a four-byte security key

version identifier. This is used to identify the algorithmic

version used for metadata authentication and encryption.

6.3.3. Disable Forward Metadata

An indication that forward metadata should be disabled. This is sent

in the reverse metadata to acknowledge receipt of the metadata. This

is the second part of the metadata handshake.

Figure 12

Type 18, Length 0.

No other data is required. The specific session that is being

referred to is looked up based on the 5-tuple address of the packet.

See metadata handshake in Section 2.3.

6.3.4. IPv4 ICMP Error Location Address

This is exclusively used to implement ICMP messages that need to

travel backwards through SVR pathways. See Section 5.5 for more

information. The IPv4 address of the source of the ICMP message is

placed into metadata. This metadata travels in the reverse direction

backwards to the originating SVR, which restores the information and

sends an ICMP message to the originator of the packet.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 16 | Length = 4 |

 +-+

 | Security Key Version |

 +-+

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 18 | Length = 0 |

 +-+

¶

¶

¶

TLV:

Source Address (4 bytes):

TLV:

Source Address (16 bytes):

Figure 13

Type 20, Length 4.

Original IPv4 source address of the

originating router.

6.3.5. IPv6 ICMP Error Location Address

This is exclusively used to implement ICMP messages that need to

travel backwards through SVR pathways. See Section 5.5 for more

information. The IPv6 address of the source of the ICMP message is

placed into metadata. This metadata travels in the reverse direction

backwards to the originating SVR, which restores the information and

sends an ICMP message to the originator of the packet.

Figure 14

Type 21, Length 16.

Original IPv6 source address of the

originating router.

6.3.6. SVR Control Message

The SVR Control Message is used for protocol specific purposes that

are limited to a single peer pathway. This message is sent by an SVR

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 20 | Length = 4 |

 +-+

 | Source Address |

 +-+

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 21 | Length = 16 |

 +-+

 | |

 + +

 | |

 + Source Address +

 | |

 + +

 | |

 +-+

¶

¶

Keep Alive:

Turn On Metadata:

Turn Off Metadata:

TLV:

Drop Reason (1 byte):

router to a peer. This metadata is always sent in a UDP message

originating by the SVR control plane.

When an SVR peer is behind a NAT device and the SVR

peer has active sessions, the SVR peer will generate a "Keep

Alive" often enough (i.e., 20 seconds) to prevent the firewall

from closing a pinhole. This message is generated completely by

the SVR router, and directed to the SVR peer for a session. The

UDP address and ports fields must exactly match the session that

has been idle longer than the provisioned time.

When a packet is received, and there is missing

SVR Session State, the correction procedure may involve sending

this request to a peer SVR router that has the information.

Please see Section 2.10 for more information.

Disable Metadata on a specific 5-tuple. In

certain cases, the SVR peer may continue so send metadata because

there are no reverse flow packets or because metadata was enabled

to recover from a loss of state. This message is not part of the

normal metadata handshake and only has a scope of a single peer

pathway.

Figure 15

Type 24, Length 1.

Reason why this packet should be dropped.

0 = Unknown. This value is reserved and used for backwards

compatibility.

1 = Keep Alive. A packet that is dropped by the receiving

node. Used only to keep NAT pinholes alive on middleboxes.

2 = Enable Metadata. Begin sending metadata on the peer

pathway for the 5-tuple matching this control packet.

3 = Disable Metadata. Stop sending metadata on the peer

pathway for a 5-tuple matching this control packet.

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 24 | Length = 1 |

 +-+

 | Drop Reason |

 +-+-+-+-+-+-+-+-+

¶

¶

*

¶

*

¶

*

¶

*

¶

TLV:

Transmit Color (4 bits):

Transmit Time Value (28 bits):

Received Color (4 bits):

Receive Time Value (28 bits):

6.3.7. Path Metrics

This metadata type is used to allows peers to measure and compute

inline flow metrics for a specific peer pathway and a chosen subset

of traffic. class. The flow metrics can include jitter, latency and

packet loss. This is an optional metadata type.

When a peer sends this metadata, it provides the information for the

period of time to the peer.

When a peer receives this metadata type 26, it responds with

metadata type 26.

After several exchanges, each side can compute accurate path metrics

for the traffic included. This metadata can be sent at any time, but

is normally sent when metadata is being sent for other reasons. The

metadata includes "colors" which represent blocks of packets. Packet

loss and latency can be determined between routers using this in

line method. Using colors to measure inline flow performance is

outside the scope of this document. Please refer to [RFC8321]

Figure 16

Type 26, Length 10.

Current color of a transmitting node.

Current time value in milliseconds

at time of marking. This time value represents the amount of time

which has elapsed since the start of a transmit color.

Most recently received color from a remote

node. This represents the color last received from a specific

peer.

Cached time value in milliseconds

from adjacent node adjusted by the elapsed time between caching

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 26 | Length = 10 |

 +-+

 | Tx Co | Transmit TimeValue |

 +-+

 | Rx Co | Received TimeValue |

 +-+

 |D| Previous Rx Color Count |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶

¶

¶

Drop Bit (1 bit):

Previous Rx Color Count (15 bits):

of the value and current time. This time value is associated with

the received color.

Should this packet be dropped. This is required

if a packet is being sent solely to measure quality on an

otherwise idle link.

Number of packets received from

the previous color block. This count is in reference to the color

previous to the current RX color which is defined above.

6.4. Payload Attributes

Payload attributes are used for session establishment and SHOULD be

encrypted to provide privacy. Encryption can be disabled for

debugging.

6.4.1. Forward Context IPv4

The context contains a five-tuple associated with the original

addresses, ports, and protocol of the packet. This is also known as

the Forward Session Key.

Figure 17

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 2 | Length = 13 |

 +-+

 | Source Address |

 +-+

 | Destination Address |

 +-+

 | Source Port | Destination Port |

 +-+

 | Protocol |

 +-+-+-+-+-+-+-+-+

TLV:

Source Address (4 bytes):

Destination Address (4 bytes):

Source Port (2 bytes):

Destination Port (2 bytes):

Protocol (1 byte):

TLV:

Type 2, Length 13.

Original IPv4 source address of the

packet.

Original IPv4 destination address of

the packet.

Original source port of the packet.

Original destination port of the

packet.

Original protocol of the packet.

6.4.2. Forward Context IPv6

A five-tuple associated with the original addresses, ports, and

protocol of the packet for IPv6.

Figure 18

Type 3, Length 37.

¶

¶

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 3 | Length = 37 |

 +-+

 | |

 + +

 | |

 + Source Address +

 | |

 + +

 | |

 +-+

 | |

 + +

 | |

 + Destination Address +

 | |

 + +

 | |

 +-+

 | Source Port | Destination Port |

 +-+

 | Protocol |

 +-+-+-+-+-+-+-+-+

¶

Source Address (16 bytes):

Destination Address (16 bytes):

Source Port (2 bytes):

Destination Port (2 bytes):

Protocol (1 byte):

TLV:

Source Address (4 bytes):

Destination Address (4 bytes):

Source Port (2 bytes):

Destination Port (2 bytes):

Protocol (1 byte):

Original IPv6 source address of the

packet.

Original IPv6 destination address

of the packet.

Original source port of the packet.

Original destination port of the

packet.

Original protocol of the packet.

6.4.3. Reverse Context IPv4

Five-tuple associated with the egress (router) addresses, ports, and

protocol of the packet. Forward context and reverse context session

keys are not guaranteed to be symmetrical due to functions which

apply source NAT, destination NAT, or both to a packet before

leaving the router.

Figure 19

Type 4, Length 13.

Egress IPv4 source address of the packet.

Egress IPv4 destination address of

the packet.

Egress source port of the packet.

Egress destination port of the packet.

Original protocol of the packet.

¶

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 4 | Length = 13 |

 +-+

 | Source Address |

 +-+

 | Destination Address |

 +-+

 | Source Port | Destination Port |

 +-+

 | Protocol |

 +-+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

¶

TLV:

Source Address (16 bytes):

Destination Address (16 bytes):

Source Port (2 bytes):

Destination Port (2 bytes):

Protocol (1 byte):

6.4.4. Reverse Context IPv6

Five-tuple associated with the egress (router) addresses, ports, and

protocol of the packet. Forward and reverse session keys are not

guaranteed to be symmetrical due to functions which apply source

NAT, destination NAT, or both to a packet before leaving the router.

Figure 20

Type 5, Length 37.

Egress IPv6 source address of the

packet.

Egress IPv6 destination address of

the packet.

Egress source port of the packet.

Egress destination port of the packet.

Original protocol of the packet.

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 5 | Length = 37 |

 +-+

 | |

 + +

 | |

 + Source Address +

 | |

 + +

 | |

 +-+

 | |

 + +

 | |

 + Destination Address +

 | |

 + +

 | |

 +-+

 | Source Port | Destination Port |

 +-+

 | Protocol |

 +-+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

¶

TLV:

UUID (16 bytes):

TLV:

Name (variable length):

6.4.5. Session UUID

Unique identifier of a session. The UUID MUST be conformant to

[RFC4122]This is assigned by the peer that is initiating a session.

Once assigned, it is maintained through all participating routers

end-to-end.

The UUID is used to track sessions across multiple routers. The UUID

also can be used to detect a looping session. The UUID metadata

field is required for all session establishment.

Figure 21

Type 6, Length 16.

Unique identifier of a session.

6.4.6. Tenant Name

An alphanumeric ASCII string which dictates what tenancy the session

belongs to.

Figure 22

Type 7, Length variable.

The tenant name represented as a string.

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 6 | Length = 16 |

 +-+

 | |

 + +

 | |

 + UUID +

 | |

 + +

 | |

 +-+

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 7 | Length = variable |

 +-+

 | Name (1 - n bytes) |

 \/

¶

¶

TLV:

Name (variable length):

TLV:

6.4.7. Service Name

An alphanumeric string which dictates what service the session

belongs to.

Figure 23

Type 10, Length variable.

The service name represented as a string.

6.4.8. Session Encrypted

Indicates if the session is having its payload encrypted by the SVR

router. This is different from having the metadata encrypted. The

keys management and ciphers used are outside the scope of this

document. The keys used for payload encryption may be different than

the keys used for metadata encryption as the security associations

are different. The keys selected will be based on the Tenant and

Service metadata fields permitting end user specified cryptography.

This field is necessary because often traffic is already encrypted

before arriving at an SVR router. Also in certain use cases, re-

encryption may be required. This metadata TLV is always added when

an SVR is going to encrypt the payload.

Figure 24

Type 11, Length 0.

6.4.9. TCP SYN Packet

Indicates if the session is being converted from TCP to UDP to

enable passing through middle boxes that are TCP session stateful. A

SVR implementation must verify that metadata can be sent inside TCP

packets through testing the Peer Pathway. If the data is blocked,

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 10 | Length = variable |

 +-+

 | Service Name (1-n bytes) |

 \/

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 11 | Length = 0 |

 +-+

¶

TLV:

TLV:

Name (variable length):

then all TCP sessions must be converted to UDP sessions, and

restored on the destination peer.

Although this may seem redundant with the Forward Context that also

has the same originating protocol, this refers to a specific peer

pathway. In a multi-hop network, the TCP conversion to UDP could

occur at the second hop. It's important to restore the TCP session

as soon as possible after passing through the obstructive middlebox.

When TCP to UDP conversion occurs, no bytes are changed other than

the protocol value (TCP->UDP). Because the UDP message length and

checksum sit directly on top of the TCP Sequence Number, the

Sequence number is overwritten. The Sequence number is saved by

copying it to the TCP Checksum. The Checksum is recalculated upon

restoration of the packet. The packet integrity against bit loss or

malicious activity is provided through the HMAC signature.

Figure 25

Type 12, Length 0.

Note: This type does not contain any value as its existence in

metadata indicates a value.

6.4.10. Source Router Name

An alphanumeric string which dictates which source router the packet

is originating from. This attribute may be present in all forward

metadata packets if needed.

Figure 26

Type 14, Length variable.

The router name represented as a string.

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 12 | Length = 0 |

 +-+

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 14 | Length = variable |

 +-+

 | Router Name (1-n bytes) |

 \/

¶

¶

TLV:

KEY (variable length):

TLV:

Name (variable length):

6.4.11. Security KEY

An alphanumeric string containing the session key to use from this

packet onward for encryption/decryption.

Figure 27

Type 15, Length variable.

The session key to use for encryption/

decryption for this packet and future packets in a session.

6.4.12. Peer Pathway ID

An ASCII string which dictates which router peer pathway has been

chosen for a packet. This name is the hostname or IP address of the

egress interface of the originating router. This can be used to

determine the peer pathway used exactly when there may be multiple

possibilities. This enables association of policies with specific

paths.

Figure 28

Type 19, Length variable.

The peer pathway name which is represented

as a string.

6.4.13. IPv4 Source NAT Address

Routers may be provisioned to perform source NAT functions while

routing packets. When a source NAT is performed by an SVR Peer, this

metadata TLV MUST be included. When the far end router reconstructs

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 15 | Length = variable |

 +-+

 | SESSION KEY |

 \/

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 19 | Length = variable |

 +-+

 | Peer Pathway Name (1-n bytes) |

 \/

¶

¶

TLV:

Source Address (4 bytes):

the packet, it will use this address as the source address for

packets exiting the SVR.

Figure 29

Type 25, Length 4.

Source NAT address of the packet.

7. Security Considerations

7.1. HMAC Authentication

HMAC signatures are REQUIRED for the packets that contain metadata

to guarantee the contents were not changed, and that the router

sending it is known to the receiver. Any HMAC algorithm can be used,

from SHA128, or SHA256 as long as both sides agree. HMAC is always

performed on the layer 4 payload of the packet. The signature is

placed at the end of the existing packet.

7.2. Replay Prevention

Optional HMAC signatures are RECOMMENDED for every packet. This

prevents any mid-stream attempts to corrupt or impact sessions that

are ongoing. This also helps detect and correct lost state at egress

SVR routers. See Section 2.10. The signature must include all of the

packet after Layer 4, and include a current time of day to prevent

replay attacks. The signature is placed at the end of the existing

packet.

Both the sending and receiving routers must agree on these optional

HMAC signatures, details of which are outside the scope of this

document.

7.3. Payload Encryption

Payload encryption can use AES-CBC-128 or AES-CBC-256 ciphers which

can be configured. Since these are block-ciphers, the payload should

be divisible by 16. If the actual payload length is divisible by 16,

then the last 16 bytes will be all 0s. If the actual payload is not

divisible by 16, then the remaining data will be padded and the last

byte will indicate the length.

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 25 | Length = 4 |

 +-+

 | IPv4 Source Nat Address |

 +-+

¶

¶

¶

¶

¶

¶

[RFC0791]

[RFC0792]

[RFC2104]

7.4. DDoS and Unexpected Traffic on Waypoint Addresses

Waypoint addresses could be addressed by any client at any time. IP

packets that arrive on the router's interface will be processed with

the assumption that they MUST contain metadata OR be part of an

existing established routing protocol.

Routers will only accept metadata from routers that they are

provisioned to speak with. As such an ACL on incoming source

addresses is limited to routers provisioned to communicate. All

other packets are dropped.

When a packet is received the "cookie" in the metadata header is

reviewed first. If the cookie isn't correct, the packet is dropped.

The HMAC signature is checked. If the signature validates, the

packet is assumed to be good, and processing continues. If the HMAC

fails, the packet is dropped.

These methods prevent distributed denial of service attacks on the

waypoint addresses of routers.

8. IANA Considerations

This document does not require any IANA involvement.

9. Acknowledgements

The authors would like to thank Anya Yungelson, and Scott McCulley

for their input into this document.

The authors would like to thank Tony Li for his extensive support

and help with all aspects of this document.

The authors want to thank Ron Bonica, Kireeti Kompella, and other

IETFers at Juniper Networks for their support and guidance.

10. Normative References

Postel, J., "Internet Protocol", STD 5, RFC 791, DOI

10.17487/RFC0791, September 1981, <https://www.rfc-

editor.org/info/rfc791>.

Postel, J., "Internet Protocol", STD 5, RFC 792, DOI

10.17487/RFC0792, September 1981, <https://www.rfc-

editor.org/info/rfc792>.

Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-

Hashing for Message Authentication", RFC 2104, DOI

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc792
https://www.rfc-editor.org/info/rfc792

[RFC2119]

[RFC4122]

[RFC5580]

[RFC5905]

[RFC6062]

[RFC6830]

[RFC8174]

[RFC8321]

[RFC8445]

10.17487/RFC2104, February 1997, <https://www.rfc-

editor.org/info/rfc2104>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leach, P., Mealling, M., and R. Salz, "A Universally

Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI

10.17487/RFC4122, July 2005, <https://www.rfc-editor.org/

info/rfc4122>.

Tschofenig, H., Ed., Adrangi, F., Jones, M., Lior, A.,

and B. Aboba, "Carrying Location Objects in RADIUS and

Diameter", RFC 5580, DOI 10.17487/RFC5580, August 2009,

<https://www.rfc-editor.org/info/rfc5580>.

Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,

"Network Time Protocol Version 4: Protocol and Algorithms

Specification", RFC 5905, DOI 10.17487/RFC5905, June

2010, <https://www.rfc-editor.org/info/rfc5905>.

Perreault, S., Ed. and J. Rosenberg, "Traversal Using

Relays around NAT (TURN) Extensions for TCP Allocations",

RFC 6062, DOI 10.17487/RFC6062, November 2010, <https://

www.rfc-editor.org/info/rfc6062>.

Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The

Locator/ID Separation Protocol (LISP)", RFC 6830, DOI

10.17487/RFC6830, January 2013, <https://www.rfc-

editor.org/info/rfc6830>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Fioccola, G., Ed., Capello, A., Cociglio, M.,

Castaldelli, L., Chen, M., Zheng, L., Mirsky, G., and T.

Mizrahi, "Alternate-Marking Method for Passive and Hybrid

Performance Monitoring", RFC 8321, DOI 10.17487/RFC8321,

January 2018, <https://www.rfc-editor.org/info/rfc8321>.

Keranen, A., Holmberg, C., and J. Rosenberg, "Interactive

Connectivity Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal", RFC 8445, DOI

10.17487/RFC8445, July 2018, <https://www.rfc-editor.org/

info/rfc8445>.

https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc5580
https://www.rfc-editor.org/info/rfc5905
https://www.rfc-editor.org/info/rfc6062
https://www.rfc-editor.org/info/rfc6062
https://www.rfc-editor.org/info/rfc6830
https://www.rfc-editor.org/info/rfc6830
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8321
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8445

[RFC8489]

[RFC8986]

Petit-Huguenin, M., Salgueiro, G., Rosenberg, J., Wing,

D., Mahy, R., and P. Matthews, "Session Traversal

Utilities for NAT (STUN)", RFC 8489, DOI 10.17487/

RFC8489, February 2020, <https://www.rfc-editor.org/info/

rfc8489>.

Filsfils, C., Ed., Camarillo, P., Ed., Leddy, J., Voyer,

D., Matsushima, S., and Z. Li, "Segment Routing over IPv6

(SRv6) Network Programming", RFC 8986, DOI 10.17487/

RFC8986, February 2021, <https://www.rfc-editor.org/info/

rfc8986>.

Authors' Addresses

Abilash Menon

Juniper Networks

10 Technology Part Dr.

Westford, MA 01886

United States of America

Email: abilashm@juniper.net

Patrick MeLampy

Juniper Networks

10 Technology Part Dr.

Westford, MA 01886

United States of America

Email: pmelampy@juniper.net

Michael Baj

Juniper Networks

10 Technology Part Dr.

Westford, MA 01886

United States of America

Email: mbaj@juniper.net

Patrick Timmons

Juniper Networks

10 Technology Part Dr.

Westford, MA 01886

United States of America

Email: ptimmons@juniper.net

Hadriel Kaplan

Juniper Networks

10 Technology Park Dr.

https://www.rfc-editor.org/info/rfc8489
https://www.rfc-editor.org/info/rfc8489
https://www.rfc-editor.org/info/rfc8986
https://www.rfc-editor.org/info/rfc8986
mailto:abilashm@juniper.net
mailto:pmelampy@juniper.net
mailto:mbaj@juniper.net
mailto:ptimmons@juniper.net

Westford, MA 01886

United States of America

Email: hkaplan@juniper.net

mailto:hkaplan@juniper.net

	Secure Vector Routing (SVR)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Overview
	1.3. Definitions

	2. Theory of operation of Secure Vector Routing
	2.1. Directionality
	2.2. SVR with Other Traffic
	2.3. Metadata Handshake
	2.4. Pathway Obstructions
	2.5. Metadata removal
	2.6. Modification of transport addresses
	2.7. Optional use of Tenants and Service names for Routing
	2.8. Unique 5-Tuples for Every Session
	2.9. Session Packets Post Metadata Exchange
	2.10. Session State Requirements
	2.11. NATs and Session Keep Alive

	3. SVR Example
	3.1. SVR Multi-path Routing Description
	3.2. Optional FIB Containing Service Names
	3.3. SVR Security Definitions
	3.4. Time Based HMAC Details
	3.5. Security Rekeying Considerations
	3.6. New Session Initiation Detailed
	3.6.1. East First Packet Processing
	3.6.1.1. Determine Tenant
	3.6.1.2. Determine Service
	3.6.1.3. Determine Network Requirements
	3.6.1.4. Picking a Peer Path
	3.6.1.5. Allocate Source NAT if Necessary
	3.6.1.6. Allocation of Ports
	3.6.1.7. Session State and Metadata Construction
	3.6.1.8. Encryption of Metadata
	3.6.1.9. Insert Metadata
	3.6.1.10. Signing SVR Packet
	3.6.1.11. Sending the First Packet

	3.6.2. West First Packet Processing
	3.6.2.1. Verify Source Address is a Waypoint
	3.6.2.2. Verify Metadata Block
	3.6.2.3. Parse Metadata and Save State and Translations
	3.6.2.4. Restore Addresses and Route Packet
	3.6.2.5. Detection of a Looping Session

	3.6.3. Return Packet Path Pre-Established
	3.6.4. Sending Reverse Metadata
	3.6.5. Subsequent Packet Processing
	3.6.6. Session Termination
	3.6.7. Unidirectional/Asymmetric Flows
	3.6.8. Multi-Hop Session Ladder Diagram

	4. SVR Protocol Definition
	4.1. SVR Session Definitions and Types
	4.2. SVR Metadata Insertion
	4.2.1. Metadata Packet Location
	4.2.2. Metadata Prerequisites
	4.2.3. Metadata Port Allocation
	4.2.4. Metadata on Idle Session
	4.2.5. Metadata Packet Structure
	4.2.6. Prevention of False Positives
	4.2.7. TCP to UDP Transformation

	4.3. Required and Optional TLVs
	4.3.1. New IP Sessions TLVs
	4.3.2. ICMP TLVs

	4.4. Metadata Encryption
	4.5. SVR Packet Authentication
	4.5.1. HMAC Signatures
	4.5.2. HMAC Verification

	4.6. Processing SVR Packets with Potential Metadata
	4.6.1. Detection of Potential Metadata in Packets
	4.6.2. Verification of Metadata in Packets
	4.6.2.1. TLV Parsing
	4.6.2.2. Decryption of Metadata Blocks

	4.6.3. UDP to TCP Transformation
	4.6.4. SVR Session Packets
	4.6.5. Tenant/Service Overview
	4.6.5.1. Interpretation of the Service
	4.6.5.2. Determination and Interpretation of the Tenant

	4.6.6. Security Policy and Payload Encryption

	5. Additional Metadata Exchanges and Use Cases
	5.1. Moving a Session
	5.2. NAT Keep Alive
	5.3. Adaptive Encryption
	5.4. Packet Fragmentation
	5.5. ICMP and SVR

	6. Metadata Format and Composition
	6.1. Metadata Header
	6.1.1. False Positives
	6.1.2. Forward and Reverse Attributes

	6.2. TLVs for Attributes
	6.3. Header Attributes
	6.3.1. Fragment
	6.3.2. Security Identifier
	6.3.3. Disable Forward Metadata
	6.3.4. IPv4 ICMP Error Location Address
	6.3.5. IPv6 ICMP Error Location Address
	6.3.6. SVR Control Message
	6.3.7. Path Metrics

	6.4. Payload Attributes
	6.4.1. Forward Context IPv4
	6.4.2. Forward Context IPv6
	6.4.3. Reverse Context IPv4
	6.4.4. Reverse Context IPv6
	6.4.5. Session UUID
	6.4.6. Tenant Name
	6.4.7. Service Name
	6.4.8. Session Encrypted
	6.4.9. TCP SYN Packet
	6.4.10. Source Router Name
	6.4.11. Security KEY
	6.4.12. Peer Pathway ID
	6.4.13. IPv4 Source NAT Address

	7. Security Considerations
	7.1. HMAC Authentication
	7.2. Replay Prevention
	7.3. Payload Encryption
	7.4. DDoS and Unexpected Traffic on Waypoint Addresses

	8. IANA Considerations
	9. Acknowledgements
	10. Normative References
	Authors' Addresses

