IP Flow Information Export WG D. Mentz ToC

Internet-Draft G. Muenz

Intended status: Informational L. Braun

Expires: January 7, 2010 TU Muenchen
July 06, 2009

Recommendations for Implementing IPFIX over DTLS
<draft-mentz-ipfix-dtls-recommendations-00>

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 7, 2010.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (http://trustee.ietf.org/license-info).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.

Abstract

This document discusses problems and solutions regarding the
implementation of the IPFIX protocol over SCTP and DTLS.


http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Table of Contents
1. Introduction
2. Terminology

3. Issues and Recommendations Regarding IPFIX over DTLS/UDP
3.1. Undetected Collector Crashes
3.2. Possible Solutions

4. Issues and Recommendations Regarding IPFIX over DTLS/SCTP
4.1. Renegotiation for DTLS and SCTP-AUTH
4.2. Possible Solutions

5. Security Considerations
Appendix A. Acknowledgements

6. References
6.1. Normative References
6.2. Informative References

8 Authors' Addresses

1. Introduction TOC

All implementations of the IPFIX protocol conforming to [RFC5101]
(Claise, B., “Specification of the IP Flow Information Export (IPFIX)
Protocol for the Exchange of IP Traffic Flow Information,”

January 2008.) must support DTLS [RFC4347] (Rescorla, E. and N.
Modadugu, “Datagram Transport lLayer Security,” April 2006.) if SCTP or
UDP is used as transport protocol.

This document discusses specific issues that have arisen during the
implementation of the IPFIX protocol over DTLS. These issues may
degrade the performance of an IPFIX Exporter as they require to
periodically interrupt the data export. As a solution, we proposes
workarounds which solve these problems without requiring any changes to
DTLS and the IPFIX protocol.

This document is to be considered as a possible update of the IPFIX
Implementation Guidelines [RFC5153] (Boschi, E., Mark, L., Quittek, J.,
Stiemerling, M., and P. Aitken, “IP Flow Information Export (IPFIX)
Implementation Guidelines,” April 2008.).

T0C



2. Terminology

This document adopts the IPFIX terminology used in [RFC5101] (Claise,
B., “Specification of the IP Flow Information Export (IPFIX) Protocol
for the Exchange of IP Traffic Flow Information,” January 2008.). As in
all IPFIX document, all IPFIX specific terms have the first letter of a
word capitalized when used in this document.

3. Issues and Recommendations Regarding IPFIX over DTLS/UDP TOC

3.1. Undetected Collector Crashes TOC

DTLS has been conceived for deployment on top of unreliable transport
protocols, such as UDP. Hence, it is able to cope with lost datagrams
and datagrams that arrive out of order at the receiver. In contrast to
UDP, which does not maintain any connection state, DTLS has to maintain
state across multiple datagrams at both endpoints. This state is
established during the DTLS handshake.

During the DTLS handshake, the two peers authenticate each other and
agree upon several parameters which are necessary to communicate over
DTLS. Among these parameters are a cipher suite as well as a shared key
that is usually established using a Diffie-Hellman key exchange. If one
of the peers crashes unexpectedly, these parameters as well as the
maintained DTLS state usually get lost. As a consequence, the peer is
not able to check the integrity of newly arrived datagrams or to
decrypted the datagrams' payload.

In the case of connection oriented transport protocols, such as TCP or
SCTP, a connection endpoint will be informed about the crash of its
correspondent by the transport protocol. UDP, however, is connection
less, which means that the crash of the receiver is not noticed by the
sender. There are situations in which the sender might receive ICMP
messages that indicate that the receiver is experiencing problems, but
there is no guarantee that those ICMP messages will be sent. As DTLS
itself does not provide any mechanisms for dead peer detection, the
crash of one of the peers has to be detected and handled by protocols
in the upper layers.

As IPFIX is a unidirectional protocol, a conform implementation of an
IPFIX Exporter only sends but does not receive any data. Hence, the
Exporter cannot tell from the absence of returning traffic that the
Collector has crashed. Instead, the Exporter keeps on sending data
which must be discarded by the recovered Collector because the
information needed to check the integrity and to decrypt the data is
lost.



3.2.

Possible Solutions TOC

There are three options to circumvent this problem.

1.

The first option is to let the Exporter periodically trigger

renegotiations on the DTLS layer. This means that both peers

have to participate in a new handshake, implying the exchange
of datagrams in both direction. Hence, due to a timeout, the

Exporter will notice that the Collector has crashed.

Under normal conditions, such a renegotiation is used to renew
the keying material in a long living connection. Depending on
whether a full or abbreviated handshake is carried out, such a
renegotiation can be very costly in terms of computational
overhead because it involves public key operations. In
addition, the DTLS specification [RFC4347] (Rescorla, E. and N.
Modadugu, “Datagram Transport lLayer Security,” April 2006.)
leaves open if application data can be sent during the
handshake or not. Typical implementations, such as OpenSSL
[OpenSSL] (, "“OpenSSL Cryptography and SSL/TLS Toolkit,”
2009.), require that sending data is interrupted until the
handshake is finished. Consequently, the export of IPFIX
Messages must be stalled for at least two round trip times,
which could lead to IPFIX Messages queuing up in the buffer of
the Exporting Process and potential loss of data.

The most substantial argument against this solution is that the
renegotiation was simply not conceived to serve as a dead peer
detection mechanism. To make sure that the Exporter learns
quickly about a crashed Collector, renegotiations would have to
be carried out in short intervals.

The authors of this draft endorse the second option which is to
periodically establish new DTLS connections and replace the
active DTLS connection by a new one. Establishing a new DTLS
connection involves a bidirectional handshake which requires
both peers to be alive. If the Collector crashes unexpectedly
and recovers quickly, then the time during which he receives
meaningless data is limited until a new DTLS connection is
established. Care should be taken that two successive
connections overlap in a way such that no data is lost at the
Exporting Process. This can be achieved by swapping the
connections only after all active templates have been sent out



3.

on the new DTLS connection.

As regards the computational overhead, this solution suffers
from the same limitations as the first one. Every new DTLS
connection might involve costly public key operations and a
small overhead in terms of the transmitted data volume.
However, public key operations do not have to be carried out if
the DTLS implementations support a feature called session
resumption which allows the reuse of keying material from an
earlier session. This feature could also be used to simplify
the renegotiation proposed in the first solution.

The main advantage over periodical renegotiations is that this
solution does not suffer from the data stall that is due to the
fact that OpenSSL does not allow sending application data
during handshakes. IPFIX records can be transmitted without
interruption due to the overlap of the old and the new DTLS
connection.

From the point of view of IPFIX, every new DTLS connection
represents a new Transport Session. At the collector side,
however, it should be straight forward to associate the
different Transport Sessions to the same Exporter since the
exporter IP address remains the same. At the beginning of every
new Transport Session, not only all active Templates have to be
sent, but also certain Data Records defined by Option
Templates. In the case of UDP, however, this does not cause
significant additional overhead because Templates and Data
Records defined by Option Templates are periodically resent
anyway .

A third alternative to detect a dead or recovered collector is
to implement the DTLS Heartbeat Extension which has been very
recently suggested in [I-D.seggelmann-tls-dtls-heartbeat]
(Seggelmann, R., Tuexen, M., and M. Williams, “Datagram
Transport lLayer Security Heartbeat Extension,” July 2009.).
This DTLS extension allows detecting a dead peer without
interfering with the ongoing data transfer. The computational
and bandwidth overhead is negligible plus the data transmission
does not stall.

The problems with this solution are that the necessary DTLS
extension has not yet been standardized and that there are
literally no implementations available at the time of writing.



4. TIssues and Recommendations Regarding IPFIX over DTLS/SCTP TOC

4.1. Renegotiation for DTLS and SCTP-AUTH TOC

The DTLS binding for SCTP is more sophisticated than the DTLS/UDP
binding. This is due to the fact that SCTP provides a connection
oriented service to upper layers. It also carries additional data items
with each user message. Among those items are:

*stream ID
*payload protocol identifiers

DTLS only protects the bare user data. Without additional security
mechanisms, a man-in-the-middle attacker could easily tamper with the
stream ID or the payload protocol identifier. He could also defeat
SCTP's efforts to provide a reliable or partially reliable service by
forging SACK and Forward-TSN chunks.

The solution to this problem is SCTP-AUTH [RFC4895] (Tuexen, M.,
Stewart, R., Lei, P., and E. Rescorla, “Authenticated Chunks for the
Stream Control Transmission Protocol (SCTP),” August 2007.) which
allows the SCTP implementation to insert an authentication chunk which
authenticates certain types of subsequent chunks in the same packet
using a Hashed Message Authentication Code (HMAC). While SCTP-AUTH
allows for the negotiation of the hash algorithm it does not provide
means for secure key agreement. Therefore a cross layer approach is
used to extract keying material from the DTLS layer and use it on the
SCTP layer. This approach is described in
[I-D.ietf-tsvwg-dtls-for-sctp] (Tuexen, M., Seggelmann, R., and E.
Rescorla, “Datagram Transport Layer Security for Stream Control
Transmission Protocol,” October 2008.) and is readily available in
OpenSSL.

Due to limitations of DTLS, no renegotiation (i.e., change of keying
material) can be performed without impeding the ongoing data transfer.
The implementation has to make sure that there is no data in flight at
the point in time that the keying material is swapped. This means that
data transfer on all streams has to stop before a renegotiation can be
initiated. Moreover, there must not be any unacknowledged messages in
the send buffers of the SCTP sockets. In practice, the renegotiation
has to wait until the SCTP sockets at both endpoints return
SCTP_SENDER_DRY_EVENT [I-D.ietf-tsvwg-sctpsocket] (Stewart, R., Poon,
K., Tuexen, M., Yasevich, V., and P. Lei, “Sockets API Extensions for
Stream Control Transmission Protocol (SCTP),” March 2010.). Only after
the handshake has been completed, the data transfer can continue
because DTLS does not guarantee the proper authentication and




decryption of user messages that were secured with outdated keying
material.

In the case of IPFIX, this means that the Exporting Process has to
interrupt the export of IPFIX Messages for a certain period of time.
IPFIX Messages generated in the meantime have to be buffered or dropped
until the renegotiation is over.

4.2. Possible Solutions TOC

To solve this problem of data stall, the authors of this draft suggest
to employ the same mechanism as in the UDP case, which is to
periodically establish a new DTLS/SCTP association between Exporter and
Collector in parallel to the existing one. Only after the handshakes of
SCTP and DTLS are completed and the IPFIX Templates are sent on the new
association, the Exporter starts sending Data Records on the new
Transport Session.

Again, the establishment of a new SCTP association represents a new
IPFIX Transport Session. Some overhead is produced because Templates as
well as certain Data Records defined by Option Template have to be
resent, which would not be necessary if the o0ld Transport Session was
kept. However, the amount of additional data that has to be sent is
assumed to be rather small.

5. Security Considerations TOC

The recommendations in this document do not introduce any additional

security issues to those already mentioned in [RFC5101] (Claise, B.,

“Specification of the IP Flow Information Export (IPFIX) Protocol for
the Exchange of IP Traffic Flow Information,” January 2008.).

Appendix A. Acknowledgements TOC

The authors thank Michael Tuexen and Robin Seggelmann for their
contribution on the standardization and implementation of DTLS for SCTP
as well as for their valuable advice regarding the implementation of
IPFIX over DTLS.

T0C



1.

.2.

References

Normative References

[RFC5101] Claise,

TOC
B., “Specification of the IP Flow Information

Export (IPFIX) Protocol for the Exchange of IP Traffic

Flow Information,” RFC 5101, January 2008 (TXT).

Informative References

[RFC5153]

[RFC3758]

[RFC4960]
[RFC4347]
[OpenSSL]
[I-D.seggelmann-

tls-dtls-
heartbeat]

[RFC4895]

[I-D.ietf-tsvwg-
dtls-for-sctp]

[I-D.ietf-tsvwg-
sctpsocket]

_T0C
Boschi, E., Mark, L., Quittek, J., Stiemerling,
M., and P. Aitken, “IP Flow Information Export
(IPFIX) Implementation Guidelines,” RFC 5153,
April 2008 (TXT).
Stewart, R., Ramalho, M., Xie, Q., Tuexen, M.,
and P. Conrad, “Stream Control Transmission
Protocol (SCTP) Partial Reliability Extension,”
RFC 3758, May 2004 (TXT).
Stewart, R., “Stream Control Transmission
Protocol,” RFC 4960, September 2007 (TXT).
Rescorla, E. and N. Modadugu, “Datagram Transport

Layer Security,” RFC 4347, April 2006 (TXT).
“0OpenSSL Cryptography and SSL/TLS Toolkit,”
Homepage http://www.openssl.org/, 2009.
Seggelmann, R., Tuexen, M., and M. Williams,
“Datagram Transport Layer Security Heartbeat
Extension,” draft-seggelmann-tls-dtls-
heartbeat-00 (work in progress), July 2009
(HTML) .

Tuexen, M., Stewart, R., Lei, P., and E.
Rescorla, “Authenticated Chunks for the Stream
Control Transmission Protocol (SCTP),” RFC 4895,
August 2007 (TXT).

Tuexen, M., Seggelmann, R., and E. Rescorla,
“Datagram Transport Layer Security for Stream
Control Transmission Protocol,” draft-seggelmann-
tls-dtls-heartbeat-00 (work in progress),
October 2008 (HTML).

Stewart, R., Poon, K., Tuexen, M., Yasevich, V.,
and P. Lei, “Sockets API Extensions for Stream
Control Transmission Protocol (SCTP),” draft-
ietf-tsvwg-sctpsocket-22 (work in progress),
March 2010 (TXT).



http://tools.ietf.org/html/rfc5101
http://tools.ietf.org/html/rfc5101
http://tools.ietf.org/html/rfc5101
http://www.rfc-editor.org/rfc/rfc5101.txt
http://tools.ietf.org/html/rfc5153
http://tools.ietf.org/html/rfc5153
http://www.rfc-editor.org/rfc/rfc5153.txt
http://tools.ietf.org/html/rfc3758
http://tools.ietf.org/html/rfc3758
http://www.rfc-editor.org/rfc/rfc3758.txt
http://tools.ietf.org/html/rfc4960
http://tools.ietf.org/html/rfc4960
http://www.rfc-editor.org/rfc/rfc4960.txt
http://tools.ietf.org/html/rfc4347
http://tools.ietf.org/html/rfc4347
http://www.rfc-editor.org/rfc/rfc4347.txt
http://www.openssl.org/
http://www.ietf.org/internet-drafts/draft-seggelmann-tls-dtls-heartbeat-00.txt
http://www.ietf.org/internet-drafts/draft-seggelmann-tls-dtls-heartbeat-00.txt
http://tools.ietf.org/html/draft-seggelmann-tls-dtls-heartbeat-00
http://tools.ietf.org/html/rfc4895
http://tools.ietf.org/html/rfc4895
http://www.rfc-editor.org/rfc/rfc4895.txt
http://www.ietf.org/internet-drafts/draft-seggelmann-tls-dtls-heartbeat-00.txt
http://www.ietf.org/internet-drafts/draft-seggelmann-tls-dtls-heartbeat-00.txt
http://tools.ietf.org/html/draft-seggelmann-tls-dtls-heartbeat-00
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-sctpsocket-22.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-sctpsocket-22.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-sctpsocket-22.txt

Authors' Addresses
TOC

Daniel Mentz
Technische Universitaet Muenchen
Department of Informatics
Chair for Network Architectures and Services (I8)
Boltzmannstr. 3
Garching D-85748
DE
Email: mentz@in.tum.de

Gerhard Muenz
Technische Universitaet Muenchen
Department of Informatics
Chair for Network Architectures and Services (I8)
Boltzmannstr. 3
Garching D-85748
DE

Phone: +49 89 289-18008

Email: muenz@net.in.tum.de

URI: http://www.net.in.tum.de/~muenz

Lothar Braun
Technische Universitaet Muenchen
Department of Informatics
Chair for Network Architectures and Services (I8)
Boltzmannstr. 3
Garching D-85748
DE

Phone: +49 89 289-18010

Email: braun@net.in.tum.de

URI: http://www.net.in.tum.de/~braun



mailto:mentz@in.tum.de
mailto:muenz@net.in.tum.de
http://www.net.in.tum.de/~muenz
mailto:braun@net.in.tum.de
http://www.net.in.tum.de/~braun

	Recommendations for Implementing IPFIX over DTLS<draft-mentz-ipfix-dtls-recommendations-00>
	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1.  Introduction
	2.  Terminology
	3.  Issues and Recommendations Regarding IPFIX over DTLS/UDP
	3.1.  Undetected Collector Crashes
	3.2.  Possible Solutions
	4.  Issues and Recommendations Regarding IPFIX over DTLS/SCTP
	4.1.  Renegotiation for DTLS and SCTP-AUTH
	4.2.  Possible Solutions
	5.  Security Considerations
	Appendix A.  Acknowledgements
	6.  References
	6.1. Normative References
	6.2. Informative References
	Authors' Addresses


