Network Working Group D. Meyer ToC

Universitaet Bremen
TZI

Internet-Draft

Intended status:

P. Saint-Andre
Standards Track

Expires: January 1, 2010 Cisco

June 30, 2009

XTLS: End-to-End Encryption for the Extensible Messaging and Presence
Protocol (XMPP) Using Transport Layer Security (TLS)
draft-meyer-xmpp-e2e-encryption-02

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

The 1list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 1, 2010.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (http://trustee.ietf.org/license-info).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.

Abstract

This document specifies "XTLS", a protocol for end-to-end encryption of
Extensible Messaging and Presence Protocol (XMPP) traffic. XTLS is an
application-level usage of Transport Layer Security (TLS) that is set
up using the XMPP Jingle extension for session negotiation and

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

transported using any streaming transport as the data delivery
mechanism. Thus XTLS treats the end-to-end exchange of XML stanzas as a
virtual transport and uses TLS to secure that transport, enabling XMPP
entities to communicate in a way that is designed to ensure the
confidentiality and integrity XML stanzas. The protocol can be used for
secure end-to-end messaging as well as other XMPP applications, such as
file transfer.

Table of Contents

Introduction
Approach
XTLS Protocol Flow
End-to-End Streams over XTLS Protocol Flow
Bootstrapping Trust on First Communication
5.1. Exchanging Certificates
5.2. Verification of Non-Human Parties
Session Termination
Determining Support
Security Considerations
8.1. Mandatory-to-Implement Technologies
8.2. Certificates
8.3. Denial of Service
IANA Considerations
References
10.1. Normative References
10.2. Informative References

Appendix A. XML Schema

Appendix B. Copying Conditions
8 Authors' Addresses

i R

‘H ‘@
-@.

1. Introduction TOC

End-to-end encryption of traffic sent over the Extensible Messaging and
Presence Protocol (XMPP) is a desirable goal. Requirements and a threat
analysis for XMPP encryption are provided in [E2E-REQ] (Saint-Andre,
P., “Requirements for End-to-End Encryption in the Extensible Messaging
and Presence Protocol (XMPP),” June 2009.). This document explores the
possibility of using the Transport Layer Security [TLS] (Dierks, T. and
E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,”
August 2008.) to meet those requirements.

TLS is the most widely implemented protocol for securing network
traffic. In addition to applications in the email infrastructure, the
World wide Web [HTTP-TLS] (Rescorla, E., “HTTP Over TLS,” May 2000.),

and datagram transport for multimedia session negotiation [DTLS
(Rescorla, E. and N. Modadugu, “Datagram Transport Layer Security,”
April 2006.), TLS is used in XMPP to secure TCP connections from client
to server and from server to server, as specified in [XMPP-CORE
(Saint-Andre, P., “Extensible Messaging and Presence Protocol (XMPP):
Core,” June 2009.). Therefore TLS is already familiar to XMPP
developers.

This specification, called "XTLS", defines a method whereby any XMPP
entity that supports the XMPP Jingle negotiation framework [JINGLE
(Ludwig, S., Beda, J., Saint-Andre, P., McQueen, R., Egan, S., and J.
Hildebrand, “Jingle,” June 2009.) can use TLS semantics for end-to-end
encryption, whether the application data is sent over a streaming
transport (like TCP) or a datagram transport (like UDP). The basic use
case is to tunnel XMPP stanzas between two IM users for end-to-end
secure chat using end-to-end XML streams. However, XTLS is not limited
to encryption of one-to-one text chat, since it can be used between two
XMPP clients for encryption of any XMPP payloads, between an XMPP
client and a remote XMPP service (i.e., a service with which a client
does not have a direct XML stream, such as a [MUC] (Saint-Andre, P.,
“Multi-User Chat,” July 2008.) chatroom), or between two remote XMPP
services. Furthermore, XTLS can be used for encrypted file transfer
using [JINGLE-FILE] (Saint-Andre, P., “Jingle File Transfer,”

February 2009.), for encrypted voice or video sessions using
[JINGLE-RTP] (Ludwig, S., Saint-Andre, P., Egan, S., McQueen, R., and
D. Cionoiu, “Jingle RTP Sessions,” June 2009.) and [DTLS-SRTP] (McGrew,

D. and E. Rescorla, “Datagram Transport Layer Security (DTLS) Extension
to Establish Keys for Secure Real-time Transport Protocol (SRTP),”
February 2009.), and other applications.

Note: The following capitalized keywords are to be interpreted as
described in [TERMS] (Bradner, S., “Key words for use in RFCs to
Indicate Requirement Levels,” March 1997.): "MUST", "SHALL",
"REQUIRED"; "MUST NOT", "SHALL NOT"; "SHOULD", "RECOMMENDED"; "SHOULD
NOT", "NOT RECOMMENDED"; "MAY'", "OPTIONAL".

2. Approach TOC

In broad outline, XTLS takes the following approach to end-to-end
encryption of XMPP traffic:

1. We assume that all XMPP entities will have X.509 certificates;
realistically these certificates are likely to be self-signed
and automatically generated by an XMPP client, however
certificates issued by known certification authorities are
encouraged to overcome problems with self-signed certificates.

2. We use the XMPP Jingle extensions as the negotiation framework
(see [JINGLE] (Ludwig, S., Beda, J., Saint-Andre, P., McQueen,
R., Egan, S., and J. Hildebrand, “Jingle,” June 2009.)).

3. We use the concept of Jingle security preconditions to ensure
that the negotiated transport will be encrypted before used for
sending application data.

4. When an entity wishes to encrypt its communications with a
second entity, it sends a Jingle session-initiate request that
specifies the desired application type, a possible transport,
and a TLS security precondition that includes the sender's X.
509 fingerprint and optionally hints about the sender's
supported TLS methods.

5. If both parties support XTLS, the first data sent over the
negotiated transport is TLS handshake data, not application
data. Once the TLS handshake has finished, the parties can then
send application data over the now-encrypted transport (called
an "XTLS tunnel").

6. The simplest scenario is end-to-end encryption of traditional
XMPP text chat using end-to-end XML streams as the application
and in-band bytestreams [IBB] (Karneges, J., “In-Band
Bytestreams (IBB),” March 2009.) as the transport.

7. If the parties have previously negotiated an XTLS tunnel,
during the TLS negotiation each party simply needs to verify
that the other party is presenting the same certificate as used
in previous sessions.

8. If the parties have not previously negotiated an XTLS tunnel,
they need to bootstrap trust in their certificates; to do so,
it is encouraged to use secure remote passwords rather than
leap-of-faith.

We expand on this approach in the following section.

More complex scenarios are theoretically supported (e.g., encrypted
file transfer using SOCKS5 bytestreams and encrypted voice chat using
DTLS-SRTP) but have not yet been fully defined.

XTLS theoretically can be used to establish a TLS-encrypted streaming
transport or a DTLS-encrypted datagram transport, but integration with
DTLS [DTLS] (Rescorla, E. and N. Modadugu, “Datagram Transport Layer
Security,” April 2006.) has not yet been prototyped so use with
streaming transports is the more stable scenario.

T0C

3. XTLS Protocol Flow

The basic flow for an XTLS session is as follows, where traffic
represented by single dashes (---) is sent over the XMPP signalling
channel and traffic represented by double lines (===) is sent over the
negotiated transport.

Initiator Responder

I |
| session-initiate |
| (with security info) |

R S OEERETEER P LR, >
| ack |
| <o |
| session-accept |
R RAGLLEETEEEPTEPED |
| ack |
R RRREEEEEEEEEEEEE >|

To simplify the description we assume here that the parties already
trust each other's certificates. See discussion under Section 5
(Bootstrapping Trust on First Communication) for information about
bootstrapping of certificate trust when the parties first negotiate the
use of an XTLS tunnel.

First the initiator sends a Jingle session-initiate request (here the
simple case of an end-to-end text chat session using in-band
bytestreams [IBB] (Karneges, J., “In-Band Bytestreams (IBB),”

March 2009.)). This request includes a <security/> element that
contains the fingerprint of the certificate that the initiator will use
during the TLS negotiation and a list of TLS methods the initiator
supports (here certificate-based authentication [X509] (Cooper, D.,
Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk,

“Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” May 2008.) and TLS with Secure Remote
Passwords [TLS-SRP] (Taylor, D., Wu, T., Mavrogiannopoulos, N., and T.
Perrin, “Using the Secure Remote Password (SRP) Protocol for TLS
Authentication,” November 2007.)). Note that this information is
exchanged over the insecure server-based connection. The purpose of the
exchange is to gather information about which TLS method should be used
in the TLS handshake, e.g. if a client cannot verify the fingerprint of
the peer it MAY omit the X.509 method. If both clients can verify the
fingerprint of the other, it is likely that X.509 certificate-based
authentication will succeed (unless the data is altered); if one client
cannot verify the fingerprint the client MAY prompt the user for a
password for TLS-SRP based authentication (see Section 5 (Bootstrapping
Trust on First Communication) for details).

<ig from='romeo@montague.lit/orchard'
id="'xn28s7gk'
to="'juliet@capulet.lit/balcony'
type='set'>
<jingle xmlns='urn:xmpp:jingle:1'>
action='session-initiate'
initiator='romeo@montague.lit/orchard’
sid='a73sjjvkla37jfea'>
<content creator="'initiator' name='xmlstream'>
<description xmlns='urn:xmpp:jingle:apps:xmlstream:0'/>
<transport xmlns='urn:xmpp:jingle:transports:ibb:0'
block-size="'4096"
sid='ch3d9s71'/>
<security xmlns='urn:xmpp:jingle:security:xtls:0'>
<fingerprint algo='shal'>RomeoX509CertSHA1Hash</fingerprint>
<method name='x509'/>
<method name='srp'/>
</security>
</content>
</jingle>
</iqg>

The responder immediately acknowledges receipt of the session-initiate
by sending an IQ stanza of type "result" (not shown here).

Depending on the application type, a user agent controlled by a human
user might need to wait for the user to affirm a desire to proceed with
the session before continuing. When the user agent has received such
affirmation (or if the user agent can automatically proceed for any
reason, e.g. because no human intervention is expected or because a
human user has configured the user agent to automatically accept
sessions with a given entity), it returns a Jingle session-accept
message. This message will typically contain the offered application
type, transport method, and a <security/> element that includes the

fingerprint of the responder's X.509 certificate as well as the
responder's supported TLS methods.

<iq from='juliet@capulet.com/balcony'

id="'hf64hl"'
to="'romeo@montague.net/orchard'
type='set'>

<jingle xmlns='urn:xmpp:jingle:1'>
action='session-accept'
initiator='romeo@montague.lit/orchard'’
sid='a73sjjvkla37jfea'>
<content creator="'initiator' name='xmlstream'>
<description xmlns='urn:xmpp:jingle:apps:xmlstream:0'/>
<transport xmlns='urn:xmpp:jingle:transports:ibb:0'
block-size="'4096"
sid='ch3d9s71'/>
<security xmlns='urn:xmpp:jingle:security:xtls:0'/>
<fingerprint algo='shal'>JulietX509CertSHAlHash</fingerprint>
<method name='x509'/>
<method name='srp'/>
</security>
</content>
</jingle>
</iqgq>

The following rules apply to the responder's handling of the session-
initiate message:

1. If the responder does not support XTLS it will silently ignore
the <security/> element in the offer and therefore will return
a session-accept message without a <security/> element.

2. If the responder supports XTLS it MUST return a session-accept
message that contains a <security/> element.

3. If the responder thinks it will be able to verify the
initiator's certificate, it MUST include the fingerprint for
the responder's certificate in the <security/> element of the
session-accept message. This is the "happy path" and will occur
when the parties have already verified each other's
certificates.

4, If the responder thinks it will not be able to verify the
initiator's certificate, it MAY omit the fingerprint for the
responder's certificate in the <security/> element of the
session-accept message. This indicates that certificate-based
authentication is not possible. In this case the responder
SHOULD signal that it wishes to use some other authentication

method, such as secure remote passwords (see discussion under
Section 5 (Bootstrapping Trust on First Communication)).

5. If the responding client cannot verify the initiator's
certificate, it SHOULD ask the responding user if a password
was exchanged between the parties that can be used for TLS-SRP.
If this is not the case, setting up a mutually-authenticated
link will fail and the responder MAY terminate the session.
Alternatively it could send its own fingerprint knowing it
cannot authenticate the initiator, in which case the responder
has to trust that there is no man-in-the-middle (see discussion
under Section 5 (Bootstrapping Trust on First Communication)).

When the responder sends the session-accept message, the initiator
acknowledges receipt by sending an IQ stanza of type "result" (not
shown here).

The following rules apply to the initiator's handling of the session-
accept message:

1. If the initiator receives a session-accept without a <security/
> element, setting up a secure transport layer has failed. The
initiator MAY terminate the session at this point or instead
proceed without securing the transport. The client SHOULD ask
the initiating user how to processed. This depends on the
Jingle application and the initiator's preferences: it makes no
sense to use end-to-end XML streams without encryption, but the
initiator might continue a file transfer without encryption.

2. If the initiating client cannot verify the responder's
certificate it SHOULD ask the initiating user if a password was
exchanged between the parties that can be used for TLS-SRP. If
this is not the case, setting up a mutually-authenticated link
will fail and the responder MAY terminate the session or
proceed with leap-of-faith (see discussion under Section 5
(Bootstrapping Trust on First Communication)).

The initiator can now determine if X.509 certificate-based
authentication will work or if TLS-SRP will be used. It sends an
additional security-info message to the responder to signal its choice.
This step is not really necessary because the responder will see the
initiator's choice in the first message of the TLS handshake, but it
can assist an implementation in setting up its TLS library properly.
Because in this section we assume that the parties already have
validated each other's certificates, the security method signalled here
is "x509".

<iq from='romeo@montague.lit/orchard'’

id="hf749j"'
to='juliet@capulet.lit/balcony'
type='set'>

<jingle xmlns='urn:xmpp:jingle:1'>
action='security-info'
initiator='romeo@montague.lit/orchard’
sid='a73sjjvkla37jfea'>
<content creator='initiator' name='xmlstream'>
<security xmlns='urn:xmpp:jingle:security:xtls:0'>
<method name='x509'/>
</security>
</content>
</jingle>
</iqgq>

The responder acknowledges receipt by sending an IQ stanza of type
"result" (not shown here).

Parallel to the security-info exchange, the clients negotiate a
transport for the Jingle session (here the transport is an in-band
bytestream as defined in [IBB] (Karneges, J., “In-Band Bytestreams
(IBB),” March 2009.), for which the Jingle negotiation process is
specified in [XEP-0261] (Saint-Andre, P., “Jingle In-Band Bytestreams
Transport,” February 2009.); however other transports could be used,
for example SOCKS5 bytestreams as defined in [XEP-0065] (Smith, D.,
Miller, M., and P. Saint-Andre, “SOCKS5 Bytestreams,” May 2007.) and
negotiated for Jingle as specified in [XEP-0260] (Saint-Andre, P. and
D. Meyer, “Jingle SOCKS5 Bytestreams Transport Method,”

February 2009.)). Because the parties wish to establish end-to-end
encryption, they do not send application data over the transport until
the transport has been secured. Therefore the first data that they
exchange over the transport consists of the standard four-way TLS
handshake, encoded in accordance with the negotiated transport method.

Note: Each transport MUST define a specific time when both clients
know that the transport is secured. When XTLS is not used, the
Jingle implementation would signal to the using application that the
transport is open when the session-accept is sent or received, or
when connectivity checks determine media can flow over one of the
transport candidates. When XTLS is used, the Jingle implementation
starts a TLS handshake on the transport and signals to the using
application that the transport is open only after the TLS handshake
has finished successfully.

During the TLS handshake, the responder MUST take the role of the TLS
server and the initiator MUST take the role of the TLS client. Because
the transport is an in-band bytestream, the TLS handshake data is
prepared as described in [IBB] (Karneges, J., “In-Band Bytestreams

(IBB),"” March 2009.) (i.e., Base64-encoded). First the initiator
(acting as the TLS client) constructs a TLS ClientHello, encodes it
according to IBB, and sends it to the responder.

<iqg from='romeo@montague.net/orchard'’
id='vh38s618'
to='juliet@capulet.com/balcony'
type='set'>
<data xmlns='http://jabber.org/protocol/ibb'
seq='0"
sid='vj3hs98y'>
Base64-encoded-TLS-data
</data>
</igq>

The responder (acting as the TLS server) then acknowledges receipt by
sending an IQ stanza of type "result" (not shown here).

The responder then constructs an appropriate TLS message or messages,
such as a ServerHello and a CertificateRequest.

Note: The responder MUST send a CertificateRequest to the initiator.

<ig from='juliet@capulet.com/balcony’
id="xyw516d0'
from='romeo@montague.net/orchard'’
type='set'>
<data xmlns='http://jabber.org/protocol/ibb"
seq='0"
sid='vj3hs98y'>
Base64-encoded-TLS-data
</data>
</iqgq>

(Because in-band bytestreams are bidirectional and this data is sent
from the responder to the initiator, the IBB 'seq' attribute has a
value of zero, not 1.)

The initiator then acknowledges receipt by sending an IQ stanza of type
"result" (not shown here).

After some number of TLS messages, the initiator eventually sends a TLS
Finished message to the responder.

<iq from='romeo@montague.net/orchard'’
id="'s91vd527"
to='juliet@capulet.com/balcony'
type='set'>
<data xmlns='http://jabber.org/protocol/ibb"
seq="'3"
sid='vj3hs98y'>
Base64-encoded-TLS-data
</data>
</iqgq>

The responder then acknowledges receipt by sending an IQ stanza of type
"result" (not shown here).
The responder then also sends a TLS Finished message.

<ig from='juliet@capulet.com/balcony'
id='z71gs73t"
from='romeo@montague.net/orchard'
type='set'>
<data xmlns='http://jabber.org/protocol/ibb'
seq="3"
sid="'vj3hs9o8y'>
Base64-encoded-TLS-data
</data>
</igq>

The initiator then acknowledges receipt by sending an IQ stanza of type
"result" (not shown here).

If the TLS negotiation has finished successfully, then the Jingle
implementation shall signal to the using application that the transport
has been secured and is ready to be used. The parties now have a secure
channel for the end-to-end exchange of application data using XMPP as
the virtual transport; we call such a channel an XTLS TUNNEL.

4, End-to-End Streams over XTLS Protocol Flow TOC

For end-to-end encryption of XMPP stanzas (<message/>, <presence/>, and
<iq/>), the application data is an end-to-end XML stream. After the
XTLS tunnel is established, the peers open an XML stream over the
tunnel to exchange stanzas. In this example, the tunnel is established
using a transport of IBB, but any streaming transport could be used.
First the initiator constructs an initial stream header.

<stream:stream
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'
from='romeo@montague.lit/orchard'
to="'juliet@capulet.lit/balcony'
version='1.0"'>

Note: In accordance with [XMPP-CORE] (Saint-Andre, P., “Extensible
Messaging and Presence Protocol (XMPP): Core,” June 2009.), the initial
stream header SHOULD include the 'to' and 'from' attributes, which
SHOULD specify the full JIDs of the clients. The initiator SHOULD
include the version='1.0' flag as shown in the previous example.

The initiator then transforms the stream header into TLS data, encodes
the data into IBB, and sends an IQ-set to the responder.

<ig from='romeo@montague.net/orchard'’
id="ur73n153"
to='juliet@capulet.com/balcony'
type='set'>
<data xmlns='http://jabber.org/protocol/ibb'
seq="4"
sid="'vj3hs9o8y'>
Base64-TLS-data-of-the-stream-header
</data>
</igq>

The responder then acknowledges receipt by sending an IQ stanza of type
"result" (not shown here).

The responder then constructs a response stream header back to the
initiator.

<stream:stream
xmlns="'jabber:client'
xmlns:stream="http://etherx.jabber.org/streams'
from="'juliet@capulet.lit/balcony'
id='hs91gh1836d8s717'
to='romeo@montague.lit/orchard'
version='1.0"'>

The responder then sends the response stream header over the XTLS
tunnel.

<ig from='juliet@capulet.com/balcony’
id="'pd61g397'
to='romeo@montague.net/orchard’
type='set'>
<data xmlns='http://jabber.org/protocol/ibb"
seq="'4"
sid='vj3hs98y'>
Base64-TLS-data-of-the-responce-stream-header
</data>
</iqgq>

The initiator then acknowledges receipt by sending an IQ stanza of type
"result" (not shown here).

Once the XML stream is established over the XTLS tunnel, either entity
then can send XMPP message, presence, and IQ stanzas, with or without
'to' and 'from' addresses.

For example, the initiator could construct an XMPP message.

<message from='romeo@montague.lit/orchard’
to='juliet@capulet.lit/balcony'>
<body>
M'lady, I would be pleased to make your acquaintance.
</body>
</message>

The initiator then sends the message over the XTLS tunnel.

<ig from='romeo@montague.net/orchard'
id='iq7dh294"
to="'juliet@capulet.com/balcony'
type="'set'>
<data xmlns='http://jabber.org/protocol/ibb'
seq="'5"
sid='vj3hs98y'>
Base64-TLS-data
</data>
</iqgq>

The responder then acknowledges receipt by sending an IQ stanza of type
"result" (not shown here).
The responder could then construct a reply.

<message from='juliet@capulet.lit/balcony'
to='romeo@montague.lit/orchard'>
<body>Art thou not Romeo, and a Montague?</body>
</message>

The responder then sends the reply over the XTLS tunnel.

<ig from='juliet@capulet.com/balcony’
id="hr91hd63"
to='romeo@montague.net/orchard’
type='set'>
<data xmlns='http://jabber.org/protocol/ibb"
seq="'5"
sid='vj3hs98y'>
Base64-TLS-data
</data>
</iqgq>

The initiator then acknowledges receipt by sending an IQ stanza of type
"result" (not shown here).

To close the end-to-end XML stream, either party (here the responder)
constructs a closing </stream:stream> element.

</stream:stream>
The client sends the closing element to the peer over the XTLS tunnel.

<iqg from='juliet@capulet.com/balcony'
id="kr91n475'
to='romeo@montague.net/orchard'
type='set'>
<data xmlns='http://jabber.org/protocol/ibb'
seq="6"
sid='vj3hs98y'>
Base64-TLS-data
</data>
</igq>

The peer then acknowledges receipt by sending an IQ stanza of type
"result" (not shown here).

However, even after the end-to-end XML stream is terminated, the
negotiated Jingle transport (here an in-band bytestream) continues and
could be re-used. To completely terminate the Jingle session, the
terminating party would then also send a Jingle session-terminate
message.

<iq from='juliet@capulet.lit/balcony’
id="psy617r4'
to='romeo@montague.lit/orchard’
type='set'>
<jingle xmlns='urn:xmpp:jingle:1'
action='session-terminate'
initiator='romeo@montague.lit/orchard'
sid='851ba2'/>
</igq>

The other party then acknowledges the Jingle session-terminate by
sending an IQ stanza of type "result" (not shown here).

5. Bootstrapping Trust on First Communication TOC

When two parties first attempt to use XTLS, their certificates might
not be accepted (e.g., because they are self-signed or issued by
unknown certification authorities). Therefore each party needs to
accept the other's certificate for use in future communication
sessions. There are several ways to do so:

*Leap of faith. The recipient can hope that there is no man-in-
the-middle during the first communication session. If the
certificate does not change in future sessions, the recipient at
least knows that it is talking with the same entity it talked
with during the first session. However, that entity might be a
man-in-the-middle rather than the assumed communication partner.
Therefore, leap of faith is discouraged.

*Check fingerprints. The parties could validate the certificate
fingerprints via some trusted means outside the XMPP band, such
as in person, via encrypted email, or over the phone. This is not
user-friendly because certificate fingerprints consist of long
strings of letters and numbers. As a result, few humans routinely
check certificate fingerprints in protocols such as Secure Shell
(ssh).

*One-time password. The parties can exchange a user-friendly
password known only to themselves and verify it out of band
before the TLS handshake finishes. For this purpose, it is
REQUIRED for implementations to support at least one TLS cipher
that uses Secure Remote Password (SRP) as defined in [TLS-SRP]
(Taylor, D., Wu, T., Mavrogiannopoulos, N., and T. Perrin, “Using
the Secure Remote Password (SRP) Protocol for TLS
Authentication,” November 2007.).

*Channel binding. It is possible that a future version of this
specification will describe how to use an appropriate Simple
Authentication and Security Layer (SASL) mechanism, such as
[SCRAM] (Menon-Sen, A., Melnikov, A., Newman, C., and N.
Williams, “Salted Challenge Response (SCRAM) SASL Mechanism,”

May 2009.), to authenticate the XTLS tunnel after the TLS
handshake finishes; such a method would use the concept of
channel bindings as described in [RFC5056] (Williams, N., “On the
Use of Channel Bindings to Secure Channels,” November 2007.).

If the parties use a password or SASL channel binding to bootstrap
trust, the process needs to be completed only once. After the clients
have authenticated with the shared secret, they can exchange their
certificates for future communication.

5.1. Exchanging Certificates TOC

To retrieve the certificate of the peer for future communications, a
client SHOULD request the certificate according to [XEP-0189

(Paterson, I., Saint-Andre, P., and D. Meyer, “Public Key Publishing,”
March 2009.) over the secure connection. This works only if XTLS was
used to set up an end-to-end secure XML stream; exchanging certificates
if XTLS was used for other purposes like file transfer is not possible.
A client MUST NOT request the certificate over the insecure stream-
based on the connection to the XMPP server.

<iqg from='romeo@montague.lit/orchard'
id="hf7634k4"
to='juliet@capulet.lit/balcony'

type='get'>
<pubkeys xmlns='urn:xmpp:pubkey:0'/>
</iqgq>

The peer MUST return its own client certificate. If the user has
different clients with different client certificates and one user
certificate, the user certificate SHOULD also be returned. The user
certificate allows it to verify other client certificates using public
key retrieval as described in [XEP-0189] (Paterson, I., Saint-Andre,
P., and D. Meyer, “Public Key Publishing,” March 2009.).

<ig from='juliet@capulet.com/balcony’

id="hf7634k4"

to='romeo@montague.lit/orchard’

type='result'>

<pubkeys xmlns='urn:xmpp:pubkey:0'>
<keyinfo>
<x509cert>
MIICCTCCAXKgAWIBAQIJALhUOId6XXWQMAGGCSqGSIb3DQEBBQUAMA4AXDDAKBgNV
BAMTA2ZvbzAeFwOWNZEYMjgyMDA1IMTRaFWOWODEYM]jcyMDAIMTRaMA4xDDAKBgNV
BAMTA2ZvbzCBnzANBgkqhkiGOwWOBAQEFAAOB]QAWgYKCgYEAGDPcTeJzKWLGE22p
RMINLKr+CxqozF14DgkXkLUwGzTqYR149yK6aebzZ9ssFspTTjqa2uNpwlU32748t
qUBbpACWHbcC+eZ/hm5KymXBhL3Vjfb/dWoxrtxjI9JRFgrgwWAyxnd1NZUpN2s3D
hKDfVgpPSx/Zp8d/ubbARxqZZZk CAWEAAaNVMGOWHQYDVROOBBYEF JWwFgmSRGC X
YXmQTdF+XBWkeML4MD4GA1UdIwQ3MDWAF IWWFgmMSRGCXYXmQTdF+XBWkeML40RKk
EDAOMQwwCgYDVQQDEWNmb2+CCQC4VNCHesccEDAMBgNVHRMEBTADAQH/MAOGCSQG
SIb3DQEBBQUAA4GBAIh1UeGZOdOMSNVXYWAXg21RsJt9INHIQTCJIMmoUeTtaRjyp
ffJtuopguNNBDN+MjrEp2/+zLNMahDYLXaTVmMBf6zvYOhzBOThOKNTh23Fb5]+yK
QChPXQUoGEGCaODWhfhKRNdseUozfNWOz9iTgMGw8eYNL11QRL//1iA0f0r/8
</x509cert>
</keyinfo>
</pubkeys>

</ig>

5.2. Verification of Non-Human Parties TOC

If one of the parties is a "bot" (e.g., an automated service or a
device such as a set-top box), the password exchange is a bit more
complicated. It is similar to Bluetooth peering if the user has access
to both clients at the same time. One of the following scenarios might

apply:

*The bot can be controlled via a remote control input device. The
human user can enter the same password or "PIN" on both the bot
and the XMPP client.

*If the bot has no user input but does have a small display, it
could display a random password. The human user can then enter
the provided password on the XMPP client.

*The bot might not have enough buttons for input and might not
have an output screen. In that case the password is fixed.
Similar to Bluetooth peering with simple devices such as a
headset, the password will be written in the manual or printed on
the device. For security reasons the device SHOULD NOT use
password-based authentication without any user input. Many

Bluetooth devices have at least one button to set the device into
peering mode.

*A bot may be associated with a web service and could display a
random password when the user has logged in to the web site using
HTTPS. This assumes that an attacker cannot at the same time both
control over the web server and perform a man-in-the-middle
attack on the XMPP channel. If the web service knows the GPG key
of the user it could send an encrypted email.

A user might have different X.509 certificates for each device.
[XEP-0189] (Paterson, I., Saint-Andre, P., and D. Meyer, “Public Key
Publishing,” March 2009.) can be used to manage the user's
certificates. A client SHOULD check the peer's PubSub node for
certificates. This makes it possible to use the password method only
once between two users even if one or both users switch clients. A user
can also communicate with a friend's bots: they first open a secure
link between two chat clients with a password and exchange the user
certificates. After that each device of a user can verify all devices
of the other without the need of a password.

The retrieved certificate from the PubSub node might be signed by a
certification authority that the client can verify. In that case the
client MAY skip the password authentication and rely on the X.509
certificate chain. The client SHOULD ask the user if the certificate is
acceptable or if a password exchange is desired.

6. Session Termination TOC

If either client cannot verify the certificate of the peer or receives
an invalid message on the TLS layer, it MUST terminate the Jingle
session immediately by sending a Jingle session-terminate message that
includes a Jingle reason of <security-error/>.

<iq from='romeo@montague.lit/orchard'
id="hz81vf48'
to="juliet@capulet.lit/balcony'
type='set'>
<jingle xmlns='urn:xmpp:jingle:1'
action='session-terminate'
initiator='romeo@montague.lit/orchard'
sid='a73sjjvkla3d7jfea'>
<reason><security-error/></reason>
</jingle>
</igq>

The other party then acknowledges the session-terminate by sending an
IQ stanza of type "result" (not shown here), and the Jingle session is
finished.

7. Determining Support TOC

If an entity wishes to request the use of XTLS, it SHOULD first
determine whether the intended responder supports the protocol. This
can be done directly via [XEP-0030] (Hildebrand, J., Millard, P.,
Eatmon, R., and P. Saint-Andre, “Service Discovery,” June 2008.) or
indirectly via [XEP-0115] (Hildebrand, J., Saint-Andre, P., Troncon,
R., and J. Konieczny, “Entity Capabilities,” February 2008.).

If an entity supports XTLS, it MUST report that by including a service
discovery feature of "urn:xmpp:jingle:security:xtls:1" in response to
disco#info requests.

<iqg from='romeo@montague.lit/orchard'
id="'disco1'
to='juliet@capulet.lit/chamber'
type='get'>
<query xmlns='http://jabber.org/protocol/disco#info'/>
</iqgq>

<ig from='juliet@capulet.lit/chamber'
id="'disco1'
to='romeo@montague.lit/orchard’
type='result'>
<query xmlns='http://jabber.org/protocol/disco#info'>
<feature var='urn:xmpp:jingle:security:xtls:1'/>
<feature var='urn:xmpp:jingle:apps:xmlstream:1'/>
</query>
</iqgq>

Both service discovery and entity capabilities information could be
corrupted or intercepted; for details, see under Section 8.3 (Denial of

Service).

8. Security Considerations TOC

This entire document addresses security. Particular security-related
issues are discussed in the following sections.

8.1. Mandatory-to-Implement Technologies TOC

An implementation MUST at a minimum support the "srp" and "x509"
methods. A future version of this specification will document
mandatory-to-implement TLS ciphers.

8.2. Certificates TOC

As noted, XTLS can be used between XMPP clients, between an XMPP client
and a remote XMPP service (i.e., a service with which a client does not
have a direct XML stream), or between remote XMPP services. Therefore,
a party to an XTLS bytestream will present either a client certificate
or a server certificate as appropriate. Such certificates MUST be
generated and validated in accordance with the certificate guidelines
guidelines provided in [XMPP-CORE] (Saint-Andre, P., “Extensible
Messaging and Presence Protocol (XMPP): Core,” June 2009.).

A future version of this specification might provide additional
guidelines regarding certificate validation in the context of client-
to-client encryption.

8.3. Denial of Service TOC

Currently XMPP stanzas such as Jingle negotiation messages and service
discovery exchanges are not encrypted or signed. As a result, it is
possible for an attacker to intercept these stanzas and modify thenm,
thus convincing one party that the other party does not support XTLS
and therefore denying the parties an opportunity to use XTLS.

This is a more general problem with XMPP technologies and needs to be
addressed at the core XMPP layer.

9. IANA Considerations TOC

It might be helpful to create a registry of TLS methods that can be
used in the context of XTLS (e.g., "openpgp" for use of [RFC5081]
(Mavrogiannopoulos, N., “Using OpenPGP Keys for Transport Layer
Security (TLS) Authentication,” November 2007.), "srp" for use of
[TLS-SRP] (Taylor, D., Wu, T., Mavrogiannopoulos, N., and T. Perrin,
“Using the Secure Remote Password (SRP) Protocol for TLS
Authentication,” November 2007.), and "x509" for use of [TLS] (Dierks,
T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol

Version 1.2,"” August 2008.) with certificates). The registry could be
maintained by the IANA or by the XMPP Registrar (see [XEP-0053] (Saint-
Andre, P., “XMPP Registrar Function,” October 2008.)). A future version
of this specification will provide more detailed information about the
registration requirements.

10. References TOC

10.1. Normative References

TOC

[E2E- Saint-Andre, P., “Requirements for End-to-End Encryption

REQ] in the Extensible Messaging and Presence Protocol (XMPP),”
draft-saintandre-xmpp-e2e-requirements-01 (work in
progress), June 2009 (TXT).

[TERMS] Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT,
HTML, XML).

[TLS] Dierks, T. and E. Rescorla, “The Transport Layer Security
(TLS) Protocol Version 1.2,” RFC 5246, August 2008 (TXT).

[IBB] Karneges, J., “In-Band Bytestreams (IBB),” XSF XEP 0047,
March 2009.

[JINGLE] Ludwig, S., Beda, J., Saint-Andre, P., McQueen, R., Egan,
S., and J. Hildebrand, “Jingle,” XSF XEP 0166, June 2009.

[XMPP - Saint-Andre, P., “Extensible Messaging and Presence

CORE] Protocol (XMPP): Core,” draft-ietf-xmpp-3920bis-00 (work
in progress), June 2009 (TXT).

10.2. Informative References

TOC
[DTLS] Rescorla, E. and N. Modadugu, “Datagram Transport Layer
Security,” RFC 4347, April 2006 (TXT).
[DTLS- McGrew, D. and E. Rescorla, “Datagram Transport Layer
SRTP] Security (DTLS) Extension to Establish Keys for Secure

Real-time Transport Protocol (SRTP),” draft-ietf-avt-
dtls-srtp-07 (work in progress), February 2009 (TXT).
[HTTP-TLS] Rescorla, E., “HTTP Over TLS,” RFC 2818, May 2000 (TXT).

[JINGLE- Saint-Andre, P., “Jingle File Transfer,” XSF XEP 0234,
FILE] February 2009.

[JINGLE- Ludwig, S., Saint-Andre, P., Egan, S., McQueen, R., and
RTP] D. Cionoiu, “Jingle RTP Sessions,” XSF XEP 0167,

June 2009.

http://www.ietf.org/internet-drafts/draft-saintandre-xmpp-e2e-requirements-01.txt
http://www.ietf.org/internet-drafts/draft-saintandre-xmpp-e2e-requirements-01.txt
http://www.ietf.org/internet-drafts/draft-saintandre-xmpp-e2e-requirements-01.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
ftp://ftp.isi.edu/in-notes/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
ftp://ftp.isi.edu/in-notes/rfc5246.txt
mailto:justin@affinix.com
http://www.xmpp.org/extensions/xep-0047.html
mailto:scottlu@google.com
mailto:jbeda@google.com
mailto:
mailto:robert.mcqueen@collabora.co.uk
mailto:seanegan@google.com
mailto:seanegan@google.com
mailto:jhildebrand@jabber.com
http://www.xmpp.org/extensions/xep-0166.html
http://www.ietf.org/internet-drafts/draft-ietf-xmpp-3920bis-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-xmpp-3920bis-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-xmpp-3920bis-00.txt
http://tools.ietf.org/html/rfc4347
http://tools.ietf.org/html/rfc4347
ftp://ftp.isi.edu/in-notes/rfc4347.txt
http://www.ietf.org/internet-drafts/draft-ietf-avt-dtls-srtp-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-avt-dtls-srtp-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-avt-dtls-srtp-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-avt-dtls-srtp-07.txt
http://tools.ietf.org/html/rfc2818
ftp://ftp.isi.edu/in-notes/rfc2818.txt
mailto:
http://www.xmpp.org/extensions/xep-0234.html
mailto:scottlu@google.com
mailto:
mailto:seanegan@google.com
mailto:robert.mcqueen@collabora.co.uk
mailto:diana@null.ro
http://www.xmpp.org/extensions/xep-0167.html

[MUC] Saint-Andre, P., “Multi-User Chat,” XSF XEP 0045,
July 2008.

[RFC5056] wWilliams, N., “On the Use of Channel Bindings to Secure
Channels,” RFC 5056, November 2007 (TXT).

[RFC5081] Mavrogiannopoulos, N., “Using OpenPGP Keys for Transport
Layer Security (TLS) Authentication,” RFC 5081,

November 2007 (TXT).

[TLS-SRP] Taylor, D., Wu, T., Mavrogiannopoulos, N., and T.
Perrin, “Using the Secure Remote Password (SRP) Protocol
for TLS Authentication,” RFC 5054, November 2007 (TXT).

[SCRAM] Menon-Sen, A., Melnikov, A., Newman, C., and N.
wWilliams, “Salted Challenge Response (SCRAM) SASL
Mechanism,” draft-newman-auth-scram-13 (work in
progress), May 2009 (TXT).

[X509] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation
List (CRL) Profile,” RFC 5280, May 2008 (TXT).

[XEP-0030] Hildebrand, J., Millard, P., Eatmon, R., and P. Saint-
Andre, “Service Discovery,” XSF XEP 0030, June 2008.

[XEP-0053] Saint-Andre, P., “XMPP Registrar Function,” XSF
XEP 0053, October 2008.

[XEP-0065] Smith, D., Miller, M., and P. Saint-Andre, “SOCKS5
Bytestreams,” XSF XEP 0065, May 2007.

[XEP-0115] Hildebrand, J., Saint-Andre, P., Troncon, R., and J.
Konieczny, “Entity Capabilities,” XSF XEP 0115,

February 2008.

[XEP-0189] Paterson, I., Saint-Andre, P., and D. Meyer, “Public Key
Publishing,” XSF XEP 0189, March 2009.

[XEP-0260] Saint-Andre, P. and D. Meyer, “Jingle SOCKS5 Bytestreams
Transport Method,” XSF XEP 0260, February 2009.

[XEP-0261] Saint-Andre, P., “Jingle In-Band Bytestreams Transport,”
XSF XEP 0261, February 2009.

Appendix A. XML Schema TOC

The XML schema will be provided in a later version of this document.

Appendix B. Copying Conditions TOC

Regarding this entire document or any portion of it, the authors make
no guarantees and are not responsible for any damage resulting from its
use. The authors grant irrevocable permission to anyone to use, modify,

mailto:
http://www.xmpp.org/extensions/xep-0045.html
http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5056
ftp://ftp.isi.edu/in-notes/rfc5056.txt
http://tools.ietf.org/html/rfc5081
http://tools.ietf.org/html/rfc5081
ftp://ftp.isi.edu/in-notes/rfc5081.txt
http://tools.ietf.org/html/rfc5054
http://tools.ietf.org/html/rfc5054
ftp://ftp.isi.edu/in-notes/rfc5054.txt
http://www.ietf.org/internet-drafts/draft-newman-auth-scram-13.txt
http://www.ietf.org/internet-drafts/draft-newman-auth-scram-13.txt
http://www.ietf.org/internet-drafts/draft-newman-auth-scram-13.txt
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
ftp://ftp.isi.edu/in-notes/rfc5280.txt
mailto:jhildebrand@jabber.com
mailto:
mailto:reatmon@jabber.org
mailto:
mailto:
http://www.xmpp.org/extensions/xep-0030.html
mailto:
http://www.xmpp.org/extensions/xep-0053.html
mailto:dizzyd@jabber.org
mailto:linuxwolf@outer-planes.net
mailto:
http://www.xmpp.org/extensions/xep-0065.html
http://www.xmpp.org/extensions/xep-0065.html
mailto:jhildebrand@jabber.com
mailto:
mailto:
mailto:jajcus@jajcus.net
mailto:jajcus@jajcus.net
http://www.xmpp.org/extensions/xep-0115.html
mailto:ian.paterson@clientside.co.uk
mailto:
mailto:dmeyer@tzi.de
http://www.xmpp.org/extensions/xep-0189.html
http://www.xmpp.org/extensions/xep-0189.html
mailto:
mailto:dmeyer@tzi.de
http://www.xmpp.org/extensions/xep-0260.html
http://www.xmpp.org/extensions/xep-0260.html
mailto:
http://www.xmpp.org/extensions/xep-0261.html

and distribute it in any way that does not diminish the rights of
anyone else to use, modify, and distribute it, provided that
redistributed derivative works do not contain misleading author or
version information. Derivative works need not be licensed under
similar terms.

Authors' Addresses
_T0C
Dirk Meyer
Universitaet Bremen TZI
Email: dmeyer@tzi.de

Peter Saint-Andre
Cisco
Email: psaintan@cisco.com

mailto:dmeyer@tzi.de
mailto:psaintan@cisco.com

	XTLS: End-to-End Encryption for the Extensible Messaging and Presence Protocol (XMPP) Using Transport Layer Security (TLS)draft-meyer-xmpp-e2e-encryption-02
	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1. Introduction
	2. Approach
	3. XTLS Protocol Flow
	4. End-to-End Streams over XTLS Protocol Flow
	5. Bootstrapping Trust on First Communication
	5.1. Exchanging Certificates
	5.2. Verification of Non-Human Parties
	6. Session Termination
	7. Determining Support
	8. Security Considerations
	8.1. Mandatory-to-Implement Technologies
	8.2. Certificates
	8.3. Denial of Service
	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References
	Appendix A. XML Schema
	Appendix B. Copying Conditions
	Authors' Addresses

