
LURK WG D. Migault
Internet-Draft Ericsson
Intended status: Standards Track February 9, 2018
Expires: August 13, 2018

LURK Protocol version 1
draft-mglt-lurk-lurk-00

Abstract

 This document describes the Limited Usage of Remote Key (LURK)
 Architecture, the LURK Protocol as well as the LURK Extensions that
 enables remote interactions with cryptographic material. The
 specificities of these interactions are expected to be closely tied
 to some context and thus be defined in LURK Extensions.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 13, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Migault Expires August 13, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft LURK TLS February 2018

Table of Contents

1. Requirements notation . 2
2. Introduction . 2
3. Terminology and Acronyms 3
4. Overview . 4
4.1. LURK Architecture . 4
4.2. LURK Architecture and Hardware Security Module 8
4.3. LURK Protocol and LURK extensions 9

5. LURK Header Processing 10
5.1. LURK Header . 11
5.2. LURK Client Behavior 13
5.3. LURK Server Behavior 13
5.4. Error Message . 14

6. LURK Request type . 15
6.1. capabilities . 15
6.1.1. Request Payload 15
6.1.2. Response Payload 16
6.1.3. LURK Client Behavior 16
6.1.4. LURK Server Behavior 16

6.2. ping . 16
6.2.1. Request Payload 16
6.2.2. Response Payload 16
6.2.3. LURK Client Behavior 17
6.2.4. LURK Server Behavior 17

6.3. Errors . 17
7. Security Considerations 17
8. IANA Considerations . 18
9. References . 20
9.1. Normative References 20
9.2. Informative References 20

 Author's Address . 21

1. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Introduction

 The Limited Usage of Remote Key (LURK) Architecture enables services
 to outsource the cryptographic related part of the service into a
 dedicated Cryptographic Service. Isolation of the Cryptographic
 Operations into a dedicated service is expected to enhance the
 security of the Cryptographic Material for example by limiting the
 boundaries to be controlled, by providing more control on its usage,
 by limiting wide spreading the sensitive data, or by preventing

https://datatracker.ietf.org/doc/html/rfc2119

Migault Expires August 13, 2018 [Page 2]

Internet-Draft LURK TLS February 2018

 leakage in case of a software vulnerabilities [HEART] in the service,
 or in case of cryptographic attacks.

 For example, in large TLS deployment [I-D.mglt-lurk-tls-use-cases]
 TLS servers both handle the networking operations and the
 Cryptographic Operations. This often results in a large number of
 nodes exposed to the Internet and hosting the necessary Cryptographic
 Material. The LURK Architecture is expected to split these services
 into two subservices: the networking service responsible for
 terminating the sessions and a Cryptographic Service responsible for
 Cryptographic Operations. The network service - designated as
 Service Instance in the document - communicates with the
 Cryptographic Service using the LURK Protocol and associated LURK
 Extensions. Enabling remote access to the Cryptographic Service is
 expected to prevent or reduce the distribution exposure to various
 attacks of the Cryptographic Material. In addition, this favors the
 use of hardware security enforcement as it limits the number of
 hardware security modules that should be deployed.

 This document defines the LURK Architecture as well as the LURK
 Protocol. The LURK Protocol is expected to be a placeholder for LURK
 Extensions, which are expected to specific to a given usage or
 protocol.

3. Terminology and Acronyms

 In addition to the terminology defined in
 [I-D.mglt-lurk-tls-use-cases], this document introduces the following
 terminology:

 - LURK Architecture : The architecture that consists in using a
 Cryptographic Service accessed by a Service Instance.

 - Service Instance : A service that requires interacting with a
 Cryptographic Service to perform its tasks.

 - Cryptographic Service : A service dedicated to perform
 Cryptographic Operations using a Cryptographic Material.

 - Cryptographic Material : Is the highly sensitive material that is
 used to perform the Cryptographic Operations. This is
 typically a secret key.

 - Cryptographic Operation : Operations based on the Cryptographic
 Material. This typically includes some operations such as
 encryption, decryption, signing. Note also that the
 Cryptographic Operation are not limited to such operations, but
 are expected to include additional operations performed either

Migault Expires August 13, 2018 [Page 3]

Internet-Draft LURK TLS February 2018

 on the input data or the output data. This makes such
 operation service-dependent as opposed to a generic
 cryptographic engine.

 - LURK Protocol : The protocol that enables the communication
 between a Service Instance and a Cryptographic Service. The
 LURK Protocol is expected to be generic and the specificities
 associated to the Cryptographic Service or the Service Instance
 is expected to be addressed by a specific LURK Extension.
 Exchanges between the Service Instance and the Cryptographic
 Service is expected to be made via a LURK Client and a LURK
 Server.

 - LURK Extensions : The specifications of the Cryptographic Service
 for a specific service or context.

 - LURK Client : The entity sending LURK requests to the LURK
 Server. In a TLS context, the LURK Client is expected to be
 hosted on the Edge Server.

 - LURK Server : The entity receiving LURK request from the LURK
 Client and responding to those requests. In a TLS context, the
 LURK Server is expected to be hosted on the Key Server.

4. Overview

4.1. LURK Architecture

 The LURK Architecture depicted in Figure 1 shows multiple Service
 Instances remotely accessing a Cryptographic Service. The two
 services communicate via a LURK Client and a LURK Server, using the
 LURK Protocol and an appropriated LURK Extensions. The LURK Protocol
 is a place holder for LURK Extensions that are expected to fit the
 needs associated to a specific context, a specific Service Instance
 and a specific Cryptographic Service. For example
 [I-D.mglt-lurk-tls] defines the interactions by a service terminating
 TLS 1.2 session and a Cryptographic Service that is responsible for
 the associated Cryptographic operations.

 When the Service Instance requires Cryptographic Operations to be
 performed, the LURK Client sends a request with associated inputs to
 the LURK Server of the Cryptographic Service. Upon receiving a query
 the Cryptographic Service may process the received input to format
 appropriately the material for a low level cryptographic operations
 such as signing, encrypting, decrypting. Such processing is
 designated as LURK Server Cryptographic Operations in Figure 1.
 Additional operations may be added to the low level cryptographic
 operations before responding to the LURK Client.

Migault Expires August 13, 2018 [Page 4]

Internet-Draft LURK TLS February 2018

 The LURK Architecture improves the security associated to the
 Cryptographic Material by limiting its dissemination and improving
 the control of the its usage.

 The communications between the LURK Client and the LURK Server are
 expected to be authenticated and encrypted with TLS or IPsec due to
 the expected sensitivity of the information exchanged.

 LURK Protocol +
 LURK Extensions
 <------------->
 +---------------------+ +-----------------------------+
 | Service Instance | | Cryptographic Service |
 +------------+--------+ +-------------+---------------+
Service	LURK	<------------->	LURK Server	LURK Server	
processing	Client	+------->	Interface	Cryptographic	
					Operations
 +------------+--------+ | | | |
 ... | | | Cryptographic |
 | | | Material |
 +---------------------+ | | | (private key) |
 | Service Instance | | | | |
 +------------+--------+ | +-------------+---------------+
 | | | |
 | Service | LURK |<-----+
 | processing | Client |
 | | |
 +------------+--------+

 Figure 1: LURK Architecture

 The remaining of this section intends to provide a high level
 overview of the pros and cons provided by the LURK Architecture.

 The LURK Architecture is expected to provide the following advantage:

 1. Limit exposure of the Cryptographic Material. While the Service
 Instances could be exposed, for example to the Internet, the
 Cryptographic Material remains in the core network accessed by
 authenticated Service Instances.

 2. Limit the usage of the Cryptographic Material. When a corrupted
 Service Instance hosts the Cryptographic Material, that node may
 almost have a full access to the Cryptographic Material, and thus
 limited restrictions on its usage. With the LURK Architecture, a
 corrupted Service Instance may still access the Cryptographic
 Service, but the usage of the Cryptographic Service will remain

Migault Expires August 13, 2018 [Page 5]

Internet-Draft LURK TLS February 2018

 in the scope of the legitimate usage. It is expected that LURK
 Extensions reduces the usability of the usage to reduce the
 interest for an attacker. This includes, among others, perfect
 froward secrecy mechanisms as well as obscuring the cryptographic
 output, binding the output to a specific protocol, and protocol
 version....

 3. Limit information of the Cryptographic Material leakage when
 Cryptographic Operations are performed. The LURK Extension
 defines the input and outputs exchanged between the LURK Client
 and the LURK Server. These input / output can be processed by
 the LURK Server, which can be used to obfuscate the input /
 output provided to and received by the Cryptographic Operation.
 Such obfuscation can be used to make cryptographic attacks or
 using the Cryptographic Material outside a legitimate context
 harder and are expected to be enforced by the LURK Extension.

 4. Provide Perfect Forward Secrecy when it is not naturally being
 provided by the Service Instance. The LURK Extension can be
 defined in order to prevent an observer to derive the exchanged
 between the LURK Client and the LURK Server from the input /
 output messages exchanged by the Service Instance. This
 prevents, for example, an attacker to replay the exchange from
 the LURK Client and the LURK Server and thus replay the exchange.

 5. Improve the monitoring of the Cryptographic Material usage.
 Sharing the Cryptographic Material with multiple nodes is an
 efficient way to delegate and distribute an operation. On the
 other hand, such delegation also makes harder the control of the
 usage of the Cryptographic Material. Local monitoring of a node
 is not sufficient and may not provide the appropriated indication
 to detect an ongoing attack. Aggregation and analysis of the
 logs is a difficult task and likely not to be performed in most
 environments. The LURK Architecture by design centralizes such
 monitoring making it easier and more efficient.

 6. Limit the risks of leakage of the Cryptographic Material. By
 centralizing the Cryptographic Material to one or a reduce set of
 the Cryptographic Services, the LURK Architecture prevents the
 Cryptographic Material to be disseminated within a data center
 with numerous replicate of that confidential data. In addition,
 the reduced number of instances of Cryptographic Service makes it
 economically feasible to deploy hardware security.

 7. Enable collaboration between actors by slicing the services.
 Typically, the owner of the Cryptographic Material can delegate
 the Service Instance while not sharing the Cryptographic
 Material. This ease collaboration as the Service Instance

Migault Expires August 13, 2018 [Page 6]

Internet-Draft LURK TLS February 2018

 provider is not associated with risks of leaking the
 Cryptographic Material and the owner of the Cryptographic
 Material can initiate such collaboration without compromising the
 secrecy of the Cryptographic Material.

 8. Improve the control of the ownership of the Cryptographic
 Material to a per-operation level. Shared Cryptographic Material
 has only a time limitation until the agreement expires and is
 renewed. This means that before expiration time, the owner of
 the Cryptographic Material literally gives up its control. The
 LURK Architecture, instead, enables the owner to prevent any
 Service Instance at any time to serve as or on behalf of the
 owner of the Cryptographic Material.

 On the other hand, the LURK Architecture also comes with some
 drawbacks and challenges:

 1. Latency introduced by the communication between the LURK Client
 and the LURK Server. In some cases, the latency may not be
 acceptable, which may impose the presence of a more site local
 instance of Cryptographic Service in order to reduce the latency.
 This may be problematic, to establish highly dynamic
 collaboration without a secure and trusted mechanism to provision
 the Cryptographic Service in another domain. Note that sharing
 the Cryptographic Service local remains safer than sharing the
 Cryptographic Material, and sharing a Cryptographic Service
 between different domain may be associated to a lower trust into
 the involved parties.

 2. Centralizing Cryptographic Operation may provide a bottleneck
 vulnerability, both in term of computing resource available to
 the Cryptographic Service as well as to bandwidth necessary for
 the communication between the LURK Client and the LURK Server.
 The use of authenticated Service Instances limits the risk of a
 resource exhaustion attack on the Cryptographic Service. In
 fact, the Cryptographic Service is expected to be provisioned in
 order to serve the expected demand from Service Instances. On
 the other hand, if that would happen, scaling the computing
 resource may be relatively easy regarding the limited scope of
 the Cryptographic Service. That said, maintaining an available
 channel between distinct networks may be a harder challenge that
 may require placing the Cryptographic Service at multiple
 locations. In case this is not feasible, or the associated cost
 are too high other mechanisms should be used such as the use of
 short term certificate [I-D.sheffer-acme-star-request],
 [I-D.nir-saag-star] or delegated credentials for TLS
 [I-D.rescorla-tls-subcerts].

Migault Expires August 13, 2018 [Page 7]

Internet-Draft LURK TLS February 2018

 3. Cryptographic operations are performed isolated from their
 context which prevents the distinction between a legitimate
 request performed in the scope of a Service Instance operation
 from a request that is part of an attack performed by a rogue
 Service Instance or a rogue LURK Client outside a Service
 Instance. Typically, in the case of TLS, a legitimate context
 would include the establishment of a TLS session. This issue may
 be mitigated with authenticated and trusted Service Instances, a
 limitation of the Cryptographic Material usage outside the scope
 of a legitimate use as well as avoiding leaking information
 related to the Cryptographic Material. Protection against such
 usage is expected to be provided by the design of the LURK
 Extension.

4.2. LURK Architecture and Hardware Security Module

 The primary purpose of an Hardware Security Module (HSM) is to
 prevent tampering the Cryptographic Material. In most of the cases,
 HSM provides a generic PKCS11 cryptographic interface instead of a
 interface specific to a Service Instance. In addition, PKCS11 does
 not provide remote access facilities and rely on proprietary
 protocols which does not for example favor interoperability between
 different service providers.

 The LURK Architecture is not incompatible with the use of an HSM.
 Typically the HSM can be used by the Cryptographic Service in order
 to protect the Cryptographic Material as depicted in Figure 2. Low
 level cryptographic operations are performed by the HSM, the LURK
 Server Processing is intended to perform additional operation in
 order to match the expected format defined by the LURK Protocol and
 LURK Extensions. The combination of the LURK Architecture and the
 HSM provides the following advantages:

 The HSM benefits from LURK Protocol and LURK Extensions as a
 standard way to remotely access the HSM. As a consequence, the
 LURK Architecture enables the resource of an HSM to be shared,
 which presents some significant saving costs.

 The HSM benefits from the protection provided by the LURK
 Extension that limits usage as well disclosure of the input /
 output provided to the HSM.

 The Cryptographic Service benefits from the hardware security
 provided by the HSM.

 The Cryptographic Service provides an interface dedicated and more
 intuitive to the Service Instance that the PKCS11 generic
 interface.

Migault Expires August 13, 2018 [Page 8]

Internet-Draft LURK TLS February 2018

 +---+
 | Cryptographic Service |
 +--------------+---------------+------------------+
 | | | HSM |
 | LURK Server | LURK Server PKCS11 Cryptographic |
 | Interface | processing <---> Material |
 | | | (private key) |
 | | | |
 +--------------+---------------+------------------+

 Figure 2: Cryptographic Function with HSM

4.3. LURK Protocol and LURK extensions

 The purpose of the LURK Protocol and the LURK Extensions is to
 provide an interfaces between a Service Instance and a Cryptographic
 Service. The number of Cryptographic Service is expected to evolve
 over time and these requirements are expected to be fulfilled by a
 specific LURK Extension, while the LURK Protocol is designed as a
 placeholder for these LURK Extensions.

 As a placeholder for LURK Extensions, the main functionality of the
 LURK Protocol is to steer requests from the LURK Client to the
 appropriated LURK Extension, and then steer back the response to the
 LURK Client. Such interactions define exchanges when the request
 cannot be handled by the LURK Extension as well as when the LURK
 Extension is not enabled on the LURK Server. This is expected to
 ease the development of future LURK Extensions limited to specific
 operations requested by the LURK Client.

 In addition, the LURK Protocol is also expected to enable a very
 limited and generic set of interactions between the LURK Client and
 the LURK Server. These interactions are typically defined by
 operations requested by the LURK Client, and this document defines
 two type of requests. A request of type capabilities request defined
 in Section 6.1 that enables the LURK Client to discover the supported
 LURK Extensions of the LURK Server. In addition, a request of type
 ping defined in Section 6.2 enables connectivity check. These
 interactions are considered as part of the LURK Protocol but could
 also be seen as a specific LURK Extension: the "lurk" LURK Extension.
 This document treats both the LURK Extension "lurk" as the LURK
 Protocol. The distinction is expected to be implementation
 dependent.

 Figure 3 describes how the LURK Protocol and the LURK Extensions
 interacts each others. When the LURK Client interacts with a LURK
 Server, it is expected to designates the specific Cryptographic
 Operation to be performed within the designated LURK Extension as

Migault Expires August 13, 2018 [Page 9]

Internet-Draft LURK TLS February 2018

 well as the necessary parameters for the extension to perform its
 operation. Upon performing the Cryptographic Operation, the LURK
 Extension returns the output of the operation with an return code.
 These output are handled by the LURK Protocol and returned to the
 LURK Client.

 +--+
 | LURK Server |
 +----------------+----------------+----------------+
 | | | |
 | LURK Extension | LURK Extension | LURK Extension |
 | (A) | (B) | (C) |
 | | | |
 +--+
 | |
 | LURK Protocol |
 | |
 +--+

 Figure 3: LURK Protocol and LURK Extension

 Messages exchanged between the LURK Client and the LURK Server are
 composed of a LURK Header and LURK Payload as depicted in Figure 4.
 The LURK Extensions are designed to process the LURK Payloads -
 eventually void -, while the LURK Header contains the necessary
 information for the LURK Server to steer the LURK Payload to the
 appropriated LURK Extension. In that sense, the LURK Protocol could
 be interpreted as the processing of the LURK Header while the LURK
 Extension 'lurk' is processing the (void) LURK Payloads. This
 document treats both the LURK Extension 'lurk' as the LURK Protocol.

 +----------------------------------+
 | |
 | LURK Header |
 | |
 +----------------------------------+
 | |
 | LURK Payload |
 | |
 +----------------------------------+

 Figure 4: LURK Message Description

5. LURK Header Processing

 As detailed in Section 4.3, upon receiving an request from the LURK
 Client, the LURK Protocol may:

Migault Expires August 13, 2018 [Page 10]

Internet-Draft LURK TLS February 2018

 Respond directly if the request is associated to the LURK
 Protocol.

 Proxy the request to the appropriated LURK Extension when
 supported.

 Respond to with an error.

 This section treats the two latest aspects while Section 6 describes
 the requests specific to the LURK Protocol.

5.1. LURK Header

 The LURK Header structure is as follows:

Migault Expires August 13, 2018 [Page 11]

Internet-Draft LURK TLS February 2018

 enum {
 lurk (0), (255)
 } Designation;

 enum {
 request (0), success (1), undefined_error (2),
 invalid_format (3), invalid_extension (4), invalid_type (5),
 invalid_status (6), temporary_failure (6), (255)
 } LURKStatus

 enum {
 capabilities (0), ping (1), (255)
 } LURKType;

 struct {
 Designation designation = "lurk";
 int8 version = 1;
 } Extension;

 struct {
 Extension extension;
 select(Extension){
 case ("lurk", 1):
 LURKType;
 } type;
 select(Extension){
 case ("lurk", 1):
 LURKStatus;
 } status;
 uint64 id;
 unint32 length;
 } LURKHeader;

 extension describes the LURK Protocol. In this document the
 extension is defined with designation set to "lurk" and version is
 set to 1.

 type indicates the type of the request associated to the extension.

 status defines if the message is a request or a response. When the
 message is a response, the status indicates if the request has
 been processed correctly and if not the status indicates the
 associated error.

 id identifies the exchange.

Migault Expires August 13, 2018 [Page 12]

Internet-Draft LURK TLS February 2018

 length length of the entire message, including header, in bytes.

5.2. LURK Client Behavior

 The LURK Client is only able to send requests and MUST set the status
 header field to "request". The extension (designation, version) and
 the type characterizes the request. The id is expected to be
 unpredictable and SHOULD be randomly generated. The length is
 computed once the LURK Payload has been inserted and includes the
 number of bytes of the LURK Header as well as those of the LURK
 Payload.

 Upon receiving a message, the LURK Client checks:

 1. The message id matches a request previously sent and discards the
 message otherwise.

 2. The message status indicates a response, i.e. with a status
 different from "request" and discards the message otherwise.

 1. A status set to "success" indicates, the request has been
 properly processed by the LURK Server. In this case, the
 extension, type and id field of the response MUST match those
 of the request. The LURK Client is expected to process the
 LURK Payload.

 2. A status reporting an error - i.e. that differs from
 "request" and "success" reports an error. The LURK Client
 SHOULD be able to handle such errors and SHOULD be able to
 log them for further analysis. In addition, some errors may
 trigger some specific behavior such as discovering the
 capabilities of the LURK Server.

5.3. LURK Server Behavior

 Upon receiving a message the LURK Server checks

 1. The message extension is supported. When the extension is not
 supported, the LURK Server SHOULD respond with an
 "invalid_extension" error.

 2. The message status is set to "request". When the status differs
 from "request", the LURK Server SHOULD respond with an
 "invalid_status" error.

 3. The message type is supported. The message type is associated to
 the extension. When the message type is not supported the LURK
 Server SHOULD respond with an "invalid_type" error.

Migault Expires August 13, 2018 [Page 13]

Internet-Draft LURK TLS February 2018

 Once the message header has been validated, the LURK Payload is
 extracted to be processed by the appropriated extension. If any
 error occurs before the LURK Payload can be steered to the extension,
 the LURK Server SHOULD respond with an "invalid_format" or
 "undefined_error".

 When overloaded, the LURK Server SHOULD send a "temporary_failure"
 error to indicate its inability to treat the request.

 When an error is returned before the LURK Payload is being processed,
 the LURK Server sets the extension to "lurk". When multiple versions
 are served, and match the error, the LURK Server SHOULD set the
 version to a version known to be supported by the LURK Client. When
 this information is not available, the LURK Server SHOULD chose the
 minimum supported value. The status is set to the error code, the
 type and id are copied from the request and the length is computed
 according to the ErrorPayload.

 Once the LURK header has been validated, the LURK Server is able to
 request the treatment of the LURK Payload to a specific operation to
 the appropriated LURK Extension identified by (extension, type). In
 return, the LURK Extension is expected to returns the corresponding
 response LURK Payload, and eventually an error code.

 1. When no error code is returned, the LURK Server returns a LURK
 Header copying the extension, the type and id from the request.
 The status is is set to "success" and the length is computed from
 the LURK Payload returned by the LURK Extension or the LURK
 Protocol. The LURK Payload is happened to the LURK Header before
 being sent back to the LURK Client.

 2. When an error code is returned, the LURK Server returns a LURK
 Header copying the extension, the type and the id from the
 request. The status is set to the returned error code, and the
 length is computed from the returned LURK Payload. The LURK
 Payload is happened to the LURK Header before being sent back to
 the LURK Client.

 The LURK Server SHOULD return error message when possible to inform
 the LURK Client on the reasons the exchange fails. However, in some
 cases, the LURK Server MAY discard the request without returning the
 error.

5.4. Error Message

 The error code is indicated by the status when its value differs from
 "request" or "success".

Migault Expires August 13, 2018 [Page 14]

Internet-Draft LURK TLS February 2018

 Error message MAY have no Payload. Error message MAY also carry a
 state value that indicates a change in the configuration of the LURK
 Server. The state is expected to reflect any change of the
 configuration associated to the extension. Generation of the state
 is implementation dependent and out of the scope of this document.
 It can typically be implemented as a counter that is incremented any
 time the extension configuration is updated, or as the hash function
 of the configuration file.

 Upon reception of the state, if the LURK Client has stored the
 previous value, it is expected to compare the two values. A mismatch
 indicates that extension configuration change and the LURK Client
 SHOULD perform some capability discoveries. If the two values match
 an capability discovery SHOULD NOT be performed. The absence of
 ErrorPayload is considered as a mismatch.

 struct {
 opaque lurk_state<32> ;
 }ErrorPayload;

 Error Payload Description

6. LURK Request type

 While Section 5 details how the LURK Protocol steers a request from
 the LURK Client to an appropriated LURK Extension, this section
 details the specific requests associated to the LURK Protocol that
 can be initiated by the LURK Client. As exposed in Section 4.3, this
 section could be seen as a LURK Extension 'lurk'. However this
 document does not makes such distinction and the LURK Extension
 'lurk' and the LURK Protocol are considered as the same.

 The LURK Protocol provides some basic reachability and discovery
 interactions between LURK Client and LURK Servers.

 The LURK Header is expected to have the extension's designation set
 to "lurk" and the extension's version set to 1. The type of the
 exchange is indicated by the type field.

6.1. capabilities

6.1.1. Request Payload

 A LURK "capabilities" request has no payload.

Migault Expires August 13, 2018 [Page 15]

Internet-Draft LURK TLS February 2018

6.1.2. Response Payload

 The "capabilities" response payload consists in a list of the
 supported Extensions structures.

 struct {
 LURKSupportedExtension supported_extensions_list<2..2^16-2>;
 LURKSupportedType supported_type<2..2^16-2>;
 opaque lurk_state<32>;
 }LURKCapabilitiesResponsePayload;

 LURK Capability Payload Description

 supported_extensions_list is the concatenation of all supported
 extensions by the LURK Server. The possible values for the
 extensions are defined in Section 5.1.

 supported_type_list is the concatenation of all supported type by
 the LURK Server. The possible values for the extensions are
 defined in Section 5.1.

 lurk_state This value defined in Section 5.4is returned in error
 messages as to indicate whether the configuration has been updated
 and if a new LURK capability request needs to be sent.

6.1.3. LURK Client Behavior

 The LURK Client sends a "capabilities" request in a "lurk" extension
 to discover the various extensions and versions supported by the LURK
 Server.

6.1.4. LURK Server Behavior

 The LURK Server lists the supported extensions and version the
 requester is authorized to request and sends the response.

6.2. ping

6.2.1. Request Payload

 A LURK "ping" request has no payload.

6.2.2. Response Payload

 A LURK "ping" response has no payload.

Migault Expires August 13, 2018 [Page 16]

Internet-Draft LURK TLS February 2018

6.2.3. LURK Client Behavior

 The LURK Client sends a "ping" request to test the reachability of
 the LURK Server. The reachability is performed within a LURK
 relation.

6.2.4. LURK Server Behavior

 The LURK Server sends the corresponding response.

6.3. Errors

 A LURK Server MAY raise a "invalid_payload_format" or a
 "undefined_error" if for example a unexpected payload is provided.

7. Security Considerations

 This document has provided a security analysis of the LURK
 Architecture.

 LURK message can be carried over UDP, and some responses MAY present
 significant larger response payloads than the request payloads. The
 messages responded by the LURK Protocol can be be a capabilities
 response, a ping response or an error. The ping response does not
 represent any size message increase. An error response MAY carry an
 error payload of 32 bits that represents the state. Such increase
 does not seems sufficient to motivate amplification attacks, and the
 payload MAY be omitted. The capabilities responses carry a payload
 whose size increases with the number of supported LURK Extension and
 version. Similarly, the number of LURK Extension supported by a
 Cryptographic Service is expected to remain quite low, and as such
 the additional size is not expected to represent a significant
 threat.

 While the LURK Protocol does not provide a significant packet size
 increase, the LURK Protocol may be used carry response payloads
 associated to a LURK Extension, and as such, the applicator factor
 associated to each supported LURK Extension MUST be considered.

 The LURK Protocol does not define any mechanisms to authenticate the
 LURK Client and the LURK Server nor to protect the data channel
 between the LURK Client and the LURK Server. It is RECOMMENDED to
 protect LURK exchanges by protecting the communication between the
 LURK Client and the LURK Server using for example IPsec [RFC4301],
 TLS 1.2 [RFC5246], TLS 1.3 [I-D.ietf-tls-tls13] DTLS 1.2 [RFC6347] or
 DTLS !.3 [I-D.ietf-tls-dtls13].

https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347

Migault Expires August 13, 2018 [Page 17]

Internet-Draft LURK TLS February 2018

 The information exchanged between in the scope of the LURK Protocol
 may not be considered as confidential. As such exchanges between the
 LURK Client and the LURK Server may not need to be encrypted. A ping
 exchange reveals the reachability and the potential scope of the
 exchange between the two peers. The capabilities exchange reveals
 the observer the extensions enabled by the LURK Server. This may
 provide information relative to the function of the LURK Server and
 the LURK Client.

 As the LURK Protocol is a place holder for LURK Extension, the
 confidentiality of the information depends on the LURK Extension
 enabled. By default, It is RECOMMENDED to encrypt the LURK
 exchanges.

 The LURK Server can enable multiple LURK Extensions, serve multiple
 LURK Clients as well as serve multiple Cryptographic Material. In
 order to increase the protection boundaries, it is expected to limit
 the scope of a LURK Server. It is RECOMMENDED to limit the scope of
 the LURK Server to a limited number of Cryptographic Material. As
 Cryptographic Material is expected to have a limited scope, it is
 then expected and RECOMMENDED that the LURK Server enables a limited
 number of LURK Extensions. In addition, it is also RECOMMENDED that
 the enabled LURK Extension be appropriately configured to provide
 only the necessary functionalities.

8. IANA Considerations

 The LURK Protocol and LURK Extension requires the following
 parameters to be registered by the IANA.

Migault Expires August 13, 2018 [Page 18]

Internet-Draft LURK TLS February 2018

 LURK Extension Designation

 Value Designation Reference Description

 0 lurk [RFC-TBD] LURK Protocol
 1-255 UNASSIGNED

 LURK Protocol Status

 Value Description Reference

 0 request [RFC-TBD]
 1 success [RFC-TBD]
 2 undefined_error [RFC-TBD]
 3 invalid_format [RFC-TBD]
 4 invalid_extension [RFC-TBD]
 5 invalid_type [RFC-TBD]
 6 invalid_status [RFC-TBD]
 7 temporary_failure [RFC-TBD]
 8-255 UNASSIGNED

 LURK Protocol Type

 Value Description Reference
 --
 0 capabilities [RFC-TBD]
 1 ping [RFC-TBD]
 3-255 UNASSIGNED

 When a new LURK Extension is created, the designation of the LURK
 Extension, the associated status and type MUST be provided. The
 status values 0 to 1 are reserved and cannot be assigned with
 different meanings. As a result, the template for future LURK
 extension is defined as follows:

Migault Expires August 13, 2018 [Page 19]

Internet-Draft LURK TLS February 2018

 LURK Extension Designation:
 LURK Extension Reference:
 LURK Extension Description:

 LURK Extension Status

 Value Description Reference

 0-1 RESERVED [RFC-TBD]

 LURK Extension Type

 Value Description Reference
 --

 Registration of LURK Designation for code points 0-127 requires
 Standard Track, while other code points are RFC Required [RFC8126].

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

9.2. Informative References

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
 December 2005, <https://www.rfc-editor.org/info/rfc4301>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-23 (work in progress),
 January 2018.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4301
https://www.rfc-editor.org/info/rfc4301
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-23
https://datatracker.ietf.org/doc/html/rfc6347
https://www.rfc-editor.org/info/rfc6347

Migault Expires August 13, 2018 [Page 20]

Internet-Draft LURK TLS February 2018

 [I-D.ietf-tls-dtls13]
 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", draft-ietf-tls-dtls13-22 (work in progress),
 November 2017.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [I-D.mglt-lurk-tls-use-cases]
 Migault, D., Ma, K., Salz, R., Mishra, S., and O. Dios,
 "LURK TLS/DTLS Use Cases", draft-mglt-lurk-tls-use-

cases-02 (work in progress), June 2016.

 [I-D.mglt-lurk-tls]
 Migault, D., "LURK Protocol for TLS/DTLS1.2 version 1.0",

draft-mglt-lurk-tls-01 (work in progress), March 2017.

 [I-D.rescorla-tls-subcerts]
 Barnes, R., Iyengar, S., Sullivan, N., and E. Rescorla,
 "Delegated Credentials for TLS", draft-rescorla-tls-

subcerts-02 (work in progress), October 2017.

 [I-D.nir-saag-star]
 Nir, Y., Fossati, T., and Y. Sheffer, "Considerations For
 Using Short Term Certificates", draft-nir-saag-star-00
 (work in progress), October 2017.

 [I-D.sheffer-acme-star-request]
 Sheffer, Y., Lopez, D., Dios, O., Pastor, A., and T.
 Fossati, "Generating Certificate Requests for Short-Term,
 Automatically-Renewed (STAR) Certificates", draft-sheffer-

acme-star-request-01 (work in progress), June 2017.

 [HEART] Codenomicon, "The Heartbleed Bug",
 <http://heartbleed.com/>.

Author's Address

https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-22
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://datatracker.ietf.org/doc/html/draft-mglt-lurk-tls-use-cases-02
https://datatracker.ietf.org/doc/html/draft-mglt-lurk-tls-use-cases-02
https://datatracker.ietf.org/doc/html/draft-mglt-lurk-tls-01
https://datatracker.ietf.org/doc/html/draft-rescorla-tls-subcerts-02
https://datatracker.ietf.org/doc/html/draft-rescorla-tls-subcerts-02
https://datatracker.ietf.org/doc/html/draft-nir-saag-star-00
https://datatracker.ietf.org/doc/html/draft-sheffer-acme-star-request-01
https://datatracker.ietf.org/doc/html/draft-sheffer-acme-star-request-01
http://heartbleed.com/

Migault Expires August 13, 2018 [Page 21]

Internet-Draft LURK TLS February 2018

 Daniel Migault
 Ericsson
 8400 boulevard Decarie
 Montreal, QC H4P 2N2
 Canada

 Phone: +1 514-452-2160
 Email: daniel.migault@ericsson.com

Migault Expires August 13, 2018 [Page 22]

