
Workgroup: LURK

Internet-Draft: draft-mglt-lurk-tls12-05

Published: 26 July 2021

Intended Status: Standards Track

Expires: 27 January 2022

Authors: D. Migault

Ericsson

I. Boureanu

University of Surrey

LURK Extension version 1 for (D)TLS 1.2 Authentication

Abstract

This document describes the LURK Extension 'tls12' which enables

interactions between a LURK Client and a LURK Server in a context of

authentication with (D)TLS 1.2.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 January 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Terminology and Acronyms

3. LURK Header

4. rsa_master, rsa_master_with_poh

4.1. Request Payload

4.1.1. Perfect Forward Secrecy

4.2. Response Payload

4.3. LURK Client Behavior

4.4. LURK Server Behavior

5. rsa_extended_master, rss_extended_master_with_poh

5.1. Request Payload

5.2. Response Payload

5.3. LURK Client Behavior

5.4. LURK Server Behavior

6. ecdhe"

6.1. Request Payload

6.2. Response Payload

6.3. LURK Client Behavior

6.4. LURK Server Behavior

7. capabilities

7.1. Request Payload

7.2. Response Payload

7.3. LURK Client Behavior

7.4. LURK Server Behavior"

8. ping

8.1. Request Payload

8.2. Response Payload

8.3. LURK Client Behavior

8.4. LURK Server Behavior

9. Security Considerations

9.1. RSA

9.2. ECDHE

9.3. Perfect Foward Secrecy

10. IANA Considerations

11. Acknowledgments

12. Apendix

12.1. LURK Exchange for TLS RSA Master Secret with Proof of

Handshake

12.2. LURK Exchange for TLS RSA Extended Master Secret

12.3. LURK Exchange for TLS RSA Extended Master Secret with proof

of handshake

12.4. LURK Exchange for TLS ECDHE Signature

13. References

13.1. Normative References

13.2. Informative References

Authors' Addresses

1. Introduction

This document describes the LURK Extension for TLS 1.2 so the LURK

Server can implement a Cryptographic Service in a TLS 1.2 [RFC5246]

and DTLS 1.2 [RFC6347] context.

More specifically, the LURK Server will be in charge of performing

the cryptographic operations associated to the private key of the

TLS Server, while other aspects of the termination of the TLS

session is handled by other services in the same administrative

domain or in a different administrative domain. Most Cryptographic

Operations are related to the TLS authentication and the current

document limits the Cryptographic Operations to the following

authentication methods: RSA and ECDHE_RSA defined in [RFC5246],

[RFC6347] as well as ECDHE_ECDSA defined in [RFC8422].

A more detailed description of some use cases foreseen in a TLS

context can be found in [I-D.mglt-lurk-tls-use-cases].

HTTPS delegation has been the main concern of the Content Delivery

Networks Interconnection (cdni) Working Group and several mechanisms

have been designed to delegate the load from an upstream entity to a

downstream entity. Entities can be of different nature and may

designated differently according to the context. Typically

designations includes Content Owner, CDN Provider, Domain Name Owner

for example. [I-D.fieau-cdni-https-delegation] provides a details

comparison of the various mechanisms applies to the CDN

Interconnection, and the remaining of this section positions these

mechanisms at a very high level view.

STAR [I-D.ietf-acme-star], [I-D.sheffer-acme-star-request] describes

a methods where the domain name owner or the content owner

orchestrates the refreshing process between a CA and the CDN

(terminating the TLS session). The CDN refreshes regularly and

automatically its certificates using [I-D.ietf-acme-acme], which

allows the use of short term certificates.

Delegated credentials [I-D.rescorla-tls-subcerts] consists having a

certificate that enables the servers to generates some "delegated

credentials".

STAR and "delegated credentials" both require some changes performed

by the CA - new certificate type for the delegated credentials and

new interfaces for the delegated and delegating entity for STAR. In

both case the TLS Client authenticates the delegated entity. While

STAR does not require changes on the TLS Client, the "delegated

credential" solution does. In both cases, the delegation is

controlled by limiting in time (7 days), which is also the limit of

use of a stolen key or a rogue server. Such delegation provides a

¶

¶

¶

¶

¶

¶

high scalability of the architecture and prevents additional delays

when a TLS session is established.

The LURK Architecture [I-D.mglt-lurk-lurk] and the LURK Extension

'tls12' do not proceed to the delegation of the HTTPS delegation by

delegating the entire TLS termination. Instead, the TLS termination

is split into sub services, for example one associated to the

networking part and one associated to the cryptographic operation.

While micro services associated to the networking part are

delegated, the micro service associated to the cryptographic

operation may not be delegated. As a result, LURK Architecture is

focused on the protection of the Cryptographic Material and prevents

leakage of the Cryptographic Material for example by avoiding node

exposed to the Internet to host the Cryptographic Material. In

addition, LURK provides means to instantaneously suspend the

delegation with a suspicious node. On the other hand the LURK

Extension 'tls12' introduces some latency, and is not as scalable as

STAR or delegated credential solutions.

The LURK Extension 'tls12' is seen as a complementary to the STAR

and "delegated credentials". The LURK Extension 'tls12' is a backend

solution that does not require any modifications from TLS Client or

the CA. It is also aimed at protecting the Cryptographic Material.

LURK may also be deployed within an administrative domain in order

to to provide a more controlled deployment of TLS Servers.

2. Terminology and Acronyms

This document re-uses the terminology defined in [I-D.mglt-lurk-

lurk].

3. LURK Header

LURK / TLS 1.2 is a LURK Extension that introduces a new designation

"tls12". This document assumes that Extension is defined with

designation set to "tls12" and version set to 1. The LURK Extension

extends the LURKHeader structure defined in [I-D.mglt-lurk-lurk] as

follows:

¶

¶

¶

¶

¶

¶

enum {

 tls12 (1), (255)

} Designation;

enum {

 capabilities (0), ping (1), rsa_master (2),

 rsa_master_with_poh (3), rsa_extended_master (4),

 rsa_extended_master_with_poh (5), ecdhe (6), (255)

}TLS12Type;

enum {

 // generic values reserved or aligned with the

 // LURK Protocol

 request (0), success (1), undefined_error (2),

 invalid_payload_format (3),

 // code points for rsa authentication

 invalid_key_id_type (4), invalid_key_id (5),

 invalid_tls_random (6), invalid_freshness_funct (7),

 invalid_encrypted_premaster (8), invalid_finished (9)

 //code points for ecdhe authentication

 invalid_ec_type (10), invalid_ec_curve (11),

 invalid_poo_prf (12), invalid_poo (13), (255)

}TLS12Status

struct {

 Designation designation = "tls12";

 int8 version = 1;

} Extension;

struct {

 Extension extension;

 select(Extension){

 case ("tls12", 1):

 TLS12Type;

 } type;

 select(Extension){

 case ("tls12", 1):

 TLS12Status;

 } status;

 uint64 id;

 unint32 length;

} LURKHeader;

¶

4. rsa_master, rsa_master_with_poh

An exchange of type "rsa_master" or "rsa_master_with_poh" enables

the LURK Client to delegate the RSA Key Exchange and authentication

as defined in [RFC5246]. The LURK Server returns the master secret.

"rsa_master" provides the necessary parameters and details to

generate the master secret, as well as to hinder replaying of old

handshake messages by a corrupt LURK Client. I.e., some attestation

of message-freshness is acquired by the LURK Server.

In addition, the"rsa_master_with_poh" provides a proof of handshake

(PoH). The proof of handshake consists in providing the Finished

message of the TLS Client to the LURK Server, so that latter can

perform more checks that in the "rsa_master" mode. Notably, herein,

the LURK Server also checks that the LURK request is performed in a

context of a TLS handshake.

While "rsa_master" and "rsa_master_with_poh" exchange have

respectively different requests, the response is the same. The

motivation for having different type is that the parameters provided

to the LURK Server are provided using different format. "rsa_master"

provides them explicitly, while "rsa_master_with_poh" provides them

via handshake messages.

4.1. Request Payload

A rsa_master request payload has the following structure:

¶

¶

¶

¶

¶

key_id

freshness_funct

prf_hash

client_random

The identifier of the public key. This document defines

sha256_32 format which takes the 32 first bits of the hash of the

binary ASN.1 DER representation of the public key using sha256.

The binary representation of RSA keys is described in [RFC8017].

The binary representation of ECC keys is the subjectPublicKeyInfo

structure defined in [RFC5480].

the one-way hash function (OWHF) used by LURK to

implement Perfect Forward Secrecy.

the one way hash function used by the Pseudo Random

Function (PRF) to generate the master secret. PRF and hash

function are defined in {!RFC5246}} Section 5.

the random value associated to the TLS Client as

defined in [RFC5246] Section 7.4.1.2.

server_random: the random value associated to the TLS Server as

defined in [RFC5246] Section 7.4.1.2.

enum {

 sha256_32 (0), (255)

}KeyPairIdType;

struct {

 KeyPairIdType type;

 opaque data; // length defined by the type

} KeyPairID;

enum{

 sha256 (0), (255)

} FreshnessFunct

enum{

 sha256 (0), sha384(1), sha512(2), (255)

} PRFHash

struct {

 KeyPairID key_id;

 FreshnessFunct freshness_funct;

 PRFHash prf_hash;

 Random client_random; // see RFC5246 section 7.4.1.2

 Random server_random;

 EncryptedPreMasterSecret pre_master;

 // see RFC5246 section 7.4.7.1

 // Length depends on the key.

 }

} TLS12RSAMasterRequestPayload;

¶

¶

¶

¶

¶

¶

handshake_messages

finished

EncryptedPreMasterSecret : The encrypted master secret as defined in

[RFC5246] Section 7.4.7.1.

A rsa_master_with_poh request payload has the following structure:

key_id, freshness_funct are defined above

provides the necessary handshake messages to

compute the Finished message of the TLS Client as defined in

[RFC5246] section 7.4.9.

the TLS Client Finished message as defined by [RFC5246]

section 7.4.9.

4.1.1. Perfect Forward Secrecy

This document defines a mechanism which uses a function called

freshness_funct, to prevent an attacker to send a request to the

LURK Server in such a way that the said attacker can obtain back the

mastersecret for an old handshake. In other words, the use of this

function helps prevent a forward-secrecy attack on an old TLS

session, where the attack would make use that session's handshake-

data observed by the adversary.

This design achieves PFS with freshness_funct being a collision-

resistant hash function (CHRF). By CRHF, we mean a one-way hash

function (OWHF) which also has collision resistance; the latter

means that it is computationally infeasible to find any two inputs

x1 and x2 such that freshness_funct(x1) = freshness_funct(x2). By

one-way hash function (OWHF) we mean, as standard, a hash function

freshness_funct that satisfies preimage resistance and 2nd-preimage

resistance. That is, given a hash value y, it is computationally

infeasible to find an x such that freshness_funct(x) = y, and

respectively-- given a value x1 and its hash freshness_funct(x1), it

is computationally infeasible to find another x2 such that

freshness_funct(x2) = freshness_funct(x1).

For the concrete use of our freshness_funct funtions, let S be a

fresh, randomly picked value generated by the LURK Client. The value

of server_random in the TLS exchange is then equal to

freshness_funct(S), i.e., server_random=freshness_funct(S). Between

the TLS Client and the LURK Server only server-random is exchanged.

¶

¶

struct {

 KeyPairID key_id;

 FreshnessFunct freshness_funct;

 opaque handshake_messages<2...2^16-2>

 // see RFC5246 section 7.4.9

 Finished finished

} TLS12RSAMasterWithPoHRequestPayload;

¶

¶

¶

¶

¶

¶

The LURK Client sends S to the Key Server, in the query. Note that

the latter SHOULD happen over a secure channel.

A man-in-the-middle attacker observing the (plaintext) TLS handshake

between a TLS Client and the LURK Client does not see S, but only

server_random. The preimage resistance guaranted by the

freshness_funct makes it such that this man-in-the-middle cannot

retrieve S out of the observed server-random. As such, this man-in-

the-middle attacker cannot query the S corresponding to an (old)

observed handshake to the Key Server. Moreover, the collision

resistance guaranteed by the freshness_funct makes it such that if

the aforementioned man-in-the-middle cannot find S' such that

freshness_funct(S)=freshness_funct(S').

As discussed in Section 9, PFS may be achieved in other ways (i.e.,

not using a CRHF and the aforementioned exchanges but other

cryptographic primitives and other exchanges). These may offer

better computational efficiency. These may be standardized in future

versions of the LURK extension "tls12.

The server_random MUST follow the structure of [RFC5246] section

7.4.1.2, which carries the gmt_unix_time in the first four bytes.

So, the ServerHello.random of the TLS exchange is derived from the

server_random of the LURK exchange as defined below:

The operation MUST be performed by the LURK Server as well as the

TLS Server, upon receiving the master secret or the signature of the

ecdhe_params from the LURK Client.

4.2. Response Payload

The "rsa_master" response payload contains the master secret and has

the following structure:

4.3. LURK Client Behavior

A LURK Client initiates an rsa_master or an rsa_master_with_poh

exchange in order to retrieve the master secret. The LURK exchange

happens on the TLS Server side (Edge Server). Upon receipt of the

master_secret the Edge Server generates the session keys and finish

the TLS key exchange protocol.

¶

¶

¶

¶

gmt_unix_time = server_random[0..3];

ServerHello.random = freshness_funct(server_random + "tls12 pfs");

ServerHello.random[0..3] = gmt_unix_time;

¶

¶

¶

struct {

 opaque master[0..47];

} TLS12RSAMasterResponsePayload;

¶

¶

A LURK Client MAY use the rsa_master_with_poh to provide the LURK

Server evidences that the LURK exchange is performed in the context

of a TLS handshake. The Proof of TLS Hanshake (POH) helps the LURK

Server to audit the context associated to the query.

The LURK Client MUST ensure that the transmitted values for

server_random is S such as server_random = freshness_funct(S).

4.4. LURK Server Behavior

Upon receipt of a rsa_master or a rsa_master_with_poh request, the

LURK Server proceeds according to the following steps:

The LURK Server checks the RSA key pair is available (key_id).

If the format of the key pair identifier is not understood, an

"invalid_key_id_type" error is returned. If the designated key

pair is not available an "invalid_key_id" error is returned.

The LURK Server checks the freshness_funct. If it does not

support the FreshnessFunct, an "invalid_freshness_funct" error

is returned.

The LURK Server collects the client_random, server_random and

pre_master parameters either provided explicitly (rsa_master)

or within the handshake (rsa_master_with_poh).

The LURK Server MUST check the format of the server_random and

more specifically checks the gmt_unix_time associated to the

random is acceptable. Otherwise it SHOULD return an

"invalid_tls_random" error. The value of the time window is

implementation dependent and SHOULD be a configurable

parameters. The LURK Server MAY also check the client_random.

This should be considered cautiously as such check may prevent

TLS Clients to set a TLS session. client_random is generated by

the TLS Client whose clock might not be synchronized with the

one of the LURK Server or that might have a TLS implementations

that does not generate random based on gmt_unix_time.

The LURK Server computes the necessary ServerHello.random from

the server_random when applicable as described in Section

4.1.1. When option is set to "finished" the ServerHello.random

in the handshake is replaced by its new value.

The LURK Server checks the length of the encrypted premaster

secret and returns an "invalid_payload_format" error if the

length differs from the length of binary representation of the

RSA modulus.

The LURK Server decrypts the encrypted premaster secret as

described in [RFC5246] section 7.4.7.1. When a PKCS1.5 format

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

7.

error is detected, or a mismatch between the TLS versions

provided as input and the one indicated in the encrypted

premaster secret, the Key Server returns a randomly generated

master secret.

The LURK Server generates the master secret as described in

[RFC5246] section 8.1 using the client_random, and the

server_random provided by the LURK Client.

With a rsa_master_with_poh, the LURK Server checks the Finished

message is checked as defined in [RFC5246] section 7.4.9. In

case of mismatch returns an "invalid_finished" error.

The LURK Server returns a master secret in a

TLS12RSAMasterResponsePayload.

Error are expected to provide the LURK Client an indication of

the cause that resulted in the error. When an error occurs the

LURK Server MAY ignore the request, or provide more generic

error codes such as "undefined_error" or "invalid_format".

5. rsa_extended_master, rss_extended_master_with_poh

A exchange of type "rsa_extended_master" enables the LURK Client to

delegate the RSA Key Exchange and authentication. The LURK Server

returns the extended master secret as defined in [RFC7627].

5.1. Request Payload

The "rsa_extended_master" request has the following structure:

The "rsa_extended_master_with_poh" request has the following

structure:

¶

8.

¶

9.

¶

10.

¶

11.

¶

¶

¶

enum { sha256 (0), (255) } FreshnessFunct

enum { null(0), sha256_128(1), sha256_256(2),

(255) }POOPRF

struct {

 KeyPairID key_id

 FreshnessFunct freshness_funct // see RFC5246 section 6.1

 opaque handshake_messages<2...2^16-2> // see RFC7627 section 4

}TLS12ExtendedMasterRSARequestPayload;

¶

¶

key_id, freshness_funct, option, handshake, finished

handshake_messages

are defined in

Section 4.1.

With a the handshake message includes are those

necessary to generate a extended master secret as defined in

[RFC7627] section 4.

5.2. Response Payload

rsa_extended_master response payload has a similar structure as the

rsa_master response payload Section 4.2.

5.3. LURK Client Behavior

The LURK Client proceeds as described in Section 4.3. The main

difference is that the necessary element to generate the master

secret are included in the handshake and or not provided separately.

5.4. LURK Server Behavior

The LURK Server proceeds as described in Section 4.4 except that the

generation of the extended master is processed as described in

[RFC7627].

6. ecdhe"

A exchange of type "ecdhe" enables the LURK Client to delegate the

ECDHE_RSA [RFC5246] or the ECDHE_ECDSA [RFC8422] authentication.

6.1. Request Payload

The "ecdhe" request payload has the following structure:

struct {

 KeyPairID key_id

 FreshnessFunct freshness_funct // see RFC5246 section 6.1

 opaque handshake_messages<2...2^16-2>

 // see RFC5246 section 7.4.9

 Finished finished

 }

}TLS12ExtendedMasterRSAWithPoHRequestPayload;

¶

¶

¶

¶

¶

¶

¶

¶

key_id, freshness_funct, client_random, server_random

ecdhe_params

poo_params

poo_prf

vG

r

is defined in

Section 4.1.

contains as defined in [RFC8422] section 5.4, the

elliptic curve domain parameters associated with the ECDH public

key (defined by the ECParameters structure) and the ephemeral

ECDH public key (defined by the ECPoint structure). The public

key is also noted in this document bG with b is a random secret

generated by the LURK Client and G the base point of the curve.

defines the necessary parameters to provide a proof of

ownership of the ECDHE private key. This option is intended to

prevent the LURK Server to sign bytes that do not correspond to a

ECDHE public key.

pseudo random function used to generate the necessary

randoms to proof ownership of the private key. This document

defines sha256_128 and sha256_256 which apply the sha256 hash

function and respectively return the 128 or 256 first bits of the

resulting hash.

are the necessary points to generate the proof of ownership.

necessary value to create the proof of ownership.

enum { null(0), sha256_128(1), sha256_256(2),

(255) }POOPRF

struct {

 POOPRF poo_prf;

 select(poo_prf) {

 case ("null"):

 case ("sha256_128")

 ECPoint vG; //RFC8422 section 5.4

 opaque R[16] r;

 case ("sha256_256"):

 ECPoint vG; //RFC8422 section 5.4

 opaque R[32] r;

 }

} TLS12POOParams;

struct {

 KeyPairID key_id;

 FreshnessFunct freshness_funct;

 Random client_random; // see RFC5246 section 7.4.1.2

 Random server_random;

 SignatureAndHashAlgorithm sig_and_hash //RFC 5246 section 4.7

 ServerECDHParams ecdhe_params; // RFC8422 section 5.4

 POOParams poo_params;

} TLS12ECDHERequestPayload;

¶

¶

¶

¶

¶

¶

¶

signed_params

The proof of ownership (PoO) consists in the LURK Client proving the

knowledge of the private random b, while not disclosing b. With G

the base point, bG represents the public value. The PoO is based on

the non-interactive variant of the three-pass Schnorr identification

scheme (NIZR) also designated as the Fiat-Shamir transformation

described in [RFC8235]. More specifically, the LURK Client randomly

generates v and then derive c and r = v - b*c. The LURK Client

provides bG, vG, and r to the LURK Servers. The LURK Server first

checks bG is on the curve. Then it computes c similarly to the LURK

Client as well S = rG + (bG)c. This latest value S is compared to

vG. The equality between S and vG proves the ownership of b.

v is randomly generated by the LURK Client. v MUST remain non-

predictable with a length equivalent to the expected level of

security, that is 128 bit length (resp. 256 bit length) for a 128

(resp 256) bit security level. Given b, we RECOMMEND v to be at

least half the size of b.

c is computed by the LURK Client and the LURK Server as described in

[RFC8235]. UserID is defined by the concatenation of the

client_random and the server_random. OtherInfo is defined as the

concatenation of key_id, freshness_funct, sig_and_hash,

ecdhe_params, "tls12 poo". Each concatenated item is prefixed with a

4-byte integer that represents the byte length of the item.

The LURK Client provides bG in ecdhe_params and vG as well as r in

poo_params.

With X25519 or X448, b and r MUST be clamped and vG MUST use the

Curve25519 (resp. Curve448). bG MAY also use the Curve25519 or

Curve448 representation, or the LURK Server MAY derive bG values

from the provided xlined value in ecdhe_params.

6.2. Response Payload

The "ecdhe" response payload has the following structure:

signature applied to the hash of the ecdhe_params as

well as client_random and server_random as described in

[RFC8422] section 5.4.

¶

¶

¶

UserID = client_random || server_random

OtherInfo = key_id || freshness_funct || sig_and_hash ||

 ecdhe_params || "tls12 poo"

c = poo_prf(G || vG || bG || UserID || OtherInfo)

¶

¶

¶

¶

struct {

 Signature signed_params; // RFC8422 section 5.4

} TLS12ECDHEResponsePayload;

¶

¶

¶

6.3. LURK Client Behavior

The LURK Client builds the base as described in Section 4.1 and in

Section 6.1.

Upon receiving the response payload, the LURK Client MAY check the

signature. If the signature does not match an error SHOULD be

reported.

6.4. LURK Server Behavior

Upon receiving an ecdhe request, the LURK Server proceeds as

follows:

perform steps 1 - 6 as described in Section 4.4

The LURK Server performs some format check of the ecdhe_params

before signing them. If the ecdhe_params does not follow the

expected structure. With the notations from [RFC8422], if

curve_type is not set to "named_curve", the LURK Server SHOULD

respond with an "invalid_ec_type" error. If the curve or

namedcurve is not supported the LURK Server SHOULD be able to

respond with an "invalid_ec_curve" error.

The LURK Server processes the poo_params. If the poo_prf is not

supported, the LURK Extension returns a "invalid_poo_prf"

status. If poo_prf is supported and different from "null", the

LURK Server proceeds to the proof of ownership as described in

Section 6.1. If the proof is not properly verified, the LURK

Extension returns a "invalid_poo" status.

The LURK Server processes the base structure as described in

Section 4.4

The LURK Server generates the signed_params.

Error are expected to provide the LURK Client an indication of the

cause that resulted in the error. When an error occurs the LURK

Server MAY ignore the request, or provide more generic error codes

such as "undefined_error" or "invalid_format".

7. capabilities

A exchange of type "capabilities" enables the LURK Client to be

informed of the supported operations performed by the LURK Server.

The supported parameters are provided on a per type basis.

7.1. Request Payload

A LURK "capabilities" request has no payload.

¶

¶

¶

1. ¶

2.

¶

3.

¶

4.

¶

5. ¶

¶

¶

¶

7.2. Response Payload

The "capabilities" response payload lists for each supported type,

the supported certificates, the supported signatures and hash

associated. The "capabilities" payload has the following structure:¶

struct{

 CertificateType certificate_type // RFC8442 section 4.4.2

 select (certificate_type) {

 case RawPublicKey:

 /* From RFC 7250 ASN.1_subjectPublicKeyInfo */

 opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;

 case X509:

 opaque cert_data<1..2^24-1>;

 };

} TypedCertificate;

struct {

 KeyPairID key_id_type_list<0..255>;

 TypedCertificate typed_certificate_list<0..255>

 FreshnessFunctList freshness_funct_list<0..255>

 CipherSuites cipher_suite_list<0..255>

 PRFHash prf_hash_list<0..255>

} TLS12RSACapability;

struct {

 KeyPairID key_id_type_list<0..255>;

 TypedCertificate typed_certificate_list<0..255>

 FreshnessFunctList freshness_funct_list<0..255>

 CipherSuites cipher_suite_list<0..255>

 SignatureAndHashAlgorithm sig_and_hash_list<0..255>

 NameCurve ecdsa_curves_list<0..255>;

 NameCurve ecdhe_curves_list<0..255>

 POOPRF poo_prf_list<0..255>

} TLS12ECDHECapability;

struct {

 uint32 length;

 TLS12Type type

 Select(type) {

 case rsa_master : TLS12RSACapability,

 case rsa_master_with_poh : TLS12RSACapability,

 case rsa_extended_master : TLS12RSACapability,

 case rsa_extended_master_with_poh : TLS12RSACapability,

 case ecdhe : TLS12ECDHECapability

 } capability ;

} TLS12Capability

struct {

 TLS12Capability capability_list;

 opaque state<32>;

} TLS12CapabilitiesResponsePayload;

¶

typed_certificate

key_id_type_list

freshness_funct_list

certificate_list

sig_and_hash_list

ecdsa_curves_list

ecdhe_curves_list

poo_prf_list

type_list

state

enables to contain authentication credentials of

various type, such as X09 certificate or raw public key. While

different, the structure is similar of CertificateEntry defined

in [RFC8446] section 4.4.2 as well as the Certificate structure

defined in [RFC7250].

the supported key_id_type.

designates the list of freshness_funct (see

Section 4.1).

designates the certificates associated to message

type. The format is similar but different from the

CertificateEntry defined in [RFC8446] in section 4.4.2 and

[RFC7250] section 1. The CertificateBis format enables the use of

X509 as well as Raw Public key, while the Certificate structure

defined in [RFC5246] section 7.4.2 does not.

designates supported signature algorithms as well

as PRF used for the different operations. The format is defined

in [RFC5246] section 7.4.1.4.1.

the supported signatures

the supported curves for ECHDE parameters.

the supported message type poo_prf (see Section 6.1.

to be used with the proof of ownership.

the supported message type of the LURK extension.

characterizes the configuration associated to 'tls12' on the

LURK Server..

7.3. LURK Client Behavior

The LURK Client performs a capability request in order to determine

the possible operations.

The LURK Client is expected to keep the state value to be able to

detect a change in the LURK Server configuration when an error

occurs.

7.4. LURK Server Behavior"

Upon receiving a capabilities request, the LURK Extension MUST

return the capabilities payload associated to a "success" status to

the LURK Server. These information are then forwarded by the LURK

Server to the LURK Client.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

8. ping

A exchange of type "ping" enables the LURK Client to check the

reachability in a context of the defined LURK Extension.

8.1. Request Payload

A "ping" request has no payload.

8.2. Response Payload

A "ping" response has no payload.

8.3. LURK Client Behavior

The LURK Client sends a "ping" request to test the reachability of

the LURK Server. The reachability is performed for the tls12 LURK

Extension.

8.4. LURK Server Behavior

Upon receiving a ping request, the LURK Extension MUST return the

ping response associated with a "success" status to the LURK Server.

These information are then forwarded by the LURK Server to the LURK

Client.

9. Security Considerations

The security considerations defined in [I-D.mglt-lurk-lurk] applies

to the LURK Extension "tls12" defined in this document.

Anti-replay mechanisms rely in part on the security of channel

between the LURK Client and the LURK Server. As such the channel

between the LURK Client and the LURK Server MUST be ensuring

confidentiality and integrity. More specifically, the exchanges

between the LURK Client and the LURK Server MUST be an encrypted

with authentication encryption, and the two parties had previously

mutually authenticated.

The LURK Extension "tls12" is expected to have response smaller that

the request or at least not significantly larger, which makes

"tls12" relatively robust to amplification attacks. This is

especially matters when LURK is using UDP. The use of an

authenticated channel reduces also the risk of amplification attacks

even when UDP is being used.

The LURK Client and the LURK Server use time in their way to

generate the server_random. Care MUST be taken so the LURK Client

and LURK Server remain synchronized.

¶

¶

¶

¶

¶

¶

¶

¶

¶

9.1. RSA

The rsa_master and rsa_extended_master returns the master_secret

instead of the premaster. The additional hashing operation necessary

to generate the master secret is expected to improve the protection

of the RSA private key against cryptographic analysis based on the

observation of a set of clear text and corresponding encrypted text.

The standard TLS1.2 is robust against Bleichenbacher attack as it

provides no means to detect if the error comes from a TLS version

mismatch or from the premaster format. This properties remain with

LURK, and so LURK does not present vulnerabilities toward

Bleichenbacher attack, and cannot be used as a decryption oracle.

9.2. ECDHE

A passive attacker observing the ecdhe exchange may collect a

sufficient amount of clear text and corresponding signature to

perform a cryptographic analysis or to reuse the signature for other

purposes. As a result, it remains important to encrypt the ecdhe

exchange between the LURK Client and the LURK Server. Note that this

vulnerability is present in TLS 1.2 as a TLS Client can accumulate

these data as well. The difference with LURK is by listening the

LURK Server, the accumulation is achieved for all TLS Clients.

As previously mentioned, the LURK Server may be used as signing

oracle for the specific string:

More specifically, the ECDHE_RSA and ECDHE_DSA mechanisms does not

associate the signature to a TLS1.2 context. As a result, an

attacker could re-used the signature in another context.

The attack may operate by collecting a large collection of clear

text and their corresponding signature. When the attacker want to

provide a signature, it checks in its database, a match occurs

between the two contents to be signed. The probability of a

collision increases with number of available hashes. The attack is

related the pre-image and collision resistance properties of the

hash function.

The attacker may also given a clear text to be signed, generate a

collision such that a collision occurs which provides is related to

the second pre-image and collision resistance property of the hash

function.

¶

¶

¶

¶

 SHA(ClientHello.random + ServerHello.random +

 ServerKeyExchange.params);

¶

¶

¶

¶

The surface of attack is limited by:

limiting the possibility of aggregating a collection of clear

text and their corresponding signatures. This could be achieved

by using multiple LURK Clients using an encrypted channel between

the LURK Client and the LURK Server.

increasing the checks and ensure that signature is performed in a

TLS 1.2 context. For that purpose it is RECOMMENDED the LURK

Server checks the consistency of its input parameters. This

includes the proof of ownership as well as the format of the

randoms and ecdhe_params for example.

limiting the usage of a Cryptographic material to a single usage,

in our case serving TLS 1.2.

9.3. Perfect Foward Secrecy

This document uses sha256 as the freshness_funct, in order to

achieve PFS Section 4.1.1 as described above. By construction of the

server_random, of the output of freshness_funct we will keep only

the last 28 bytes. The PFS property is in place as long as this

truncated version of freshness_funct can be considered a CRHF and

that the 28 bytes of randomness carried by the server_random are

sufficient. Otherwise, the mechanism described in this document will

not be considered as safe.

Details on the truncation will be added. Alternatively, we could use

a hash function like SHA3 (or, more explicitly SHAKE) which

considers variable output length as part of its design. The SHAKE

functions allow arbitrary output lengths and the PFS-input S can be

of arbitrary length too. However, for SHAKE128-d, if the truncated

output is of length d as low as 224 bits (28 bytes), then one only

gets 224/2=112 bits security w.r.t. collision-resistance, > 112 bits

w.r.t. preimage resistance and 112 bits security w.r.t. second

preimage resistance.

One reason why we have the hash-based solution to is to reduce

communication costs between the LURK Client and the LURK Server,

whilst still getting more than some security w.r.t. a MiM corrupting

a LURK Client and then attempting a PFS attack.

But, if we disregard the overhaed on communication costs, we can

consider other mechanisms not based on CRHF for attaining PFS

security. See I and II below.

I. For example, as freshness_funct, one can use an instance of a

pseudo random function (PRF), keyed on a key K that the LURK Server

already shares with the LURK Client. I.e.,

server_random=freshness_funct(S;K). In this case, the mechanisms to

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

achieve PFS are as follows: 1. The LURK Client and the LURK Server

run a key-establishment protocol before every LURK session to

establish such a new key K for every LURK session. Alternatively,

the export this key of the key-establishment run to secure the

channel. The time-to-live of K is one session only. 2. The LURK

Server generates the value S on its side and send the server_random

to the LURK Client. 3. The LURK Client uses this server_random with

the TLS Client 4. The LURK Server checks the correctness of the use

of the said server_random when the query for the master_secret is

made, with the messages forwarded therein;

II. In fact, since the channel between the LURK Client and the LURK

Server MUST be encrypted by default, all for 2 steps in point I

above can be combined into 1 step (without the need of a specially

executed key-establishment): a. the LURK Server sends the

server_random to the LURK Client. b. the LURK Client uses this

server_random with the TLS Client c. the LURK Server checks the

correctness of the use of the said server_random when the query for

the master_secret is made, with the messages forwarded therein;

Yet, option I and option II are more expensive on the communication

than the version achieving PFS with a hash function. I.e., in I and

II, the LURK Server needs to be involved on the first part of the

TLS handshake to produce the S or server_random for the LURK Client.

However, note that the LURK Client no longer queries S, hence the

risk of a man-in-the-middle querying an old S is eliminated by

design.

Option II above is akin to what "Content delivery over TLS: a

cryptographic analysis of keyless SSL," by K. Bhargavan, I.

Boureanu, P. A. Fouque, C. Onete and B. Richard at 2017 IEEE

European Symposium on Security and Privacy (EuroS&P), Paris, 2017,

pp. 1-16, suggested in order to amend (forward-secrecy) attacks on

Keyless SSL.

10. IANA Considerations

The requested information is defined in [I-D.mglt-lurk-lurk].

LURK Extension Designation: tls12 LURK Extension Reference: [RFD-

TBD] LURK Extension Description: RSA, ECDHE_RSA and ECDHE_ECDSA for

(D)TLS 1.2.

¶

¶

¶

¶

¶

¶

11. Acknowledgments

We would like to thank for their very useful feed backs: Yaron

Sheffer, Yoav Nir, Stephen Farrell, Eric Burger, Thomas Fossati,

Eric Rescorla, Mat Naslung, Rich Salz, Ilari Liusvaara, Scott

Fluhrer. Many ideas in this document are from [I-D.erb-lurk-rsalg].

We would also like to thank those that have supported LURK or raised

interesting discussions. This includes among others Robert Skog,

Hans Spaak, Salvatore Loreto, John Mattsson, Alexei Tumarkin,

Richard Brunner, Stephane Dault, Dan Kahn Gillmor, Joe Hildebrand,

Kelsey Cairns.

12. Apendix

LURK Exchange for TLS RSA Master Secret

LURK tls12 Extension Status

Value Description Reference

0 - 1 Reserved [RFC-TBD-LURK]

2 undefined_error [RFC-TBD]

3 invalid_payload_format [RFC-TBD]

4 invalid_key_id_type [RFC-TBD]

5 invalid_key_id [RFC-TBD]

6 invalid_tls_random [RFC-TBD]

7 invalid_freshness_funct [RFC-TBD]

8 invalid_encrypted_premaster [RFC-TBD]

9 invalid_finished [RFC-TBD]

10 invalid_ec_type [RFC-TBD]

11 invalid_ec_curve [RFC-TBD]

12 invalid_poo_prf [RFC-TBD]

13 invalid_poo [RFC-TBD]

14 invalid_cipher_or_prf_hash [RFC-TBD]

15 - 255 UNASSIGNED

LURK tls12 Extension Type

Value Description Reference

--

0 capabilities [RFC-TBD]

1 ping [RFC-TBD]

2 rsa_master [RFC-TBD]

2 rsa_master_with_poh [RFC-TBD]

3 rsa_extended_master [RFC-TBD]

3 rsa_extended_master_with_poh [RFC-TBD]

4 ecdhe [RFC-TBD]

16 - 255 UNASSIGNED

¶

¶

¶

¶

TLS Client Edge Server Key Server

ClientHello

 server_version

 client_random

 cipher_suite

 TLS_RSA_*, ...

-------->

 S = server_random

 server_random = freshness_funct(S)

 ServerHello

 tls_version

 server_random

 Cipher_suite=TLS_RSA

 Certificate

 RSA Public Key

 ServerHelloDone

 <--------

ClientKeyExchange

 EncryptedPremasterSecret

[ChangeCipherSpec]

Finished

-------->

 TLS12 Request Header

 TLS12MasterRSARequestPayload

 key_id

 freshness_funct

 prf_hash

 client_random

 S

 EncryptedPremasterSecret

 -------->

 server_random = freshness_funct(S)

 master_secret = PRF(\

 pre_master_secret + \

 "master secret" +\

 client_random +\

 server_random)[0..47];

 TLS12 Response Header

 TLS12MasterResponsePayload

 master

 <--------

 [ChangeCipherSpec]

 Finished

 <--------

Application Data <-------> Application Data

¶

12.1. LURK Exchange for TLS RSA Master Secret with Proof of Handshake

TLS Client Edge Server Key Server

ClientHello

 server_version

 client_random

 cipher_suite

 TLS_RSA_*, ...

-------->

 S = server_random

 server_random = freshness_funct(S)

 ServerHello

 tls_version

 server_random

 Cipher_suite=TLS_RSA

 Certificate

 RSA Public Key

 ServerHelloDone

 <--------

ClientKeyExchange

 EncryptedPremasterSecret

[ChangeCipherSpec]

Finished

-------->

 TLS12 Request Header

 TLS12MasterRSAWithPoHRequestPayload

 key_id

 freshness_funct

 handshake_messages

 finished

 -------->

 server_random = freshness_funct(S)

 master_secret = PRF(\

 pre_master_secret + \

 "master secret" +\

 client_random +\

 server_random)[0..47];

 TLS12 Response Header

 TLS12MasterResponsePayload

 master

 <--------

 [ChangeCipherSpec]

 Finished

 <--------

Application Data <-------> Application Data

¶

12.2. LURK Exchange for TLS RSA Extended Master Secret

TLS Client Edge Server Key Server

ClientHello

 tls_version

 cipher_suite

 TLS_RSA_*, ...

 Extension 0x0017

-------->

 ServerHello

 edge_server_version

 cipher_suite=TLS_RSA

 Extension 0x0017

 Certificate

 RSA Public Key

 ServerHelloDone

 <--------

ClientKeyExchange

 EncryptedPremasterSecret

[ChangeCipherSpec]

Finished

-------->

 TLS12 Request Header

 TLS12ExtendedMasterRSARequestPayload

 key_id

 freshness_funct

 handshake_messages

 EncryptedPreMasterSecret

 -------->

 1. Computing Master Secret

 master_secret = master_prf(

 pre_master_secret +\

 "extended master secret" +\

 session_hash)[0..47]

 TLS12 Response Header

 TLS12MasterPayload

 master

 <--------

 [ChangeCipherSpec]

 Finished

 <--------

Application Data <-------> Application Data

¶

12.3. LURK Exchange for TLS RSA Extended Master Secret with proof of

handshake

TLS Client Edge Server Key Server

ClientHello

 tls_version

 cipher_suite

 TLS_RSA_*, ...

 Extension 0x0017

-------->

 ServerHello

 edge_server_version

 cipher_suite=TLS_RSA

 Extension 0x0017

 Certificate

 RSA Public Key

 ServerHelloDone

 <--------

ClientKeyExchange

 EncryptedPremasterSecret

[ChangeCipherSpec]

Finished

-------->

 TLS12 Request Header

 TLS12ExtendedMasterWithPoHRequestPayload

 key_id

 freshness_funct

 handshake_messages

 finished

 -------->

 1. Computing Master Secret

 master_secret = master_prf(

 pre_master_secret +\

 "extended master secret" +\

 session_hash)[0..47]

 TLS12 Response Header

 TLS12MasterPayload

 master

 <--------

 [ChangeCipherSpec]

 Finished

 <--------

Application Data <-------> Application Data

¶

12.4. LURK Exchange for TLS ECDHE Signature

TLS Client Edge Server Key Server

ClientHello

 tls_version

 client_random

 cipher_suite

 TLS_ECDHE_ECDSA_*, TLS_ECDHE_RSA_*, ...

 Extension Supported EC, Supported Point Format

-------->

 S = server_random

 server_random = freshness_funct(S)

 TLS12 Request Header

 TLS12ECDHEInputPayload

 key_id

 client_random

 S

 ecdhe_params

 -------->

 server_random = freshness_funct(S)

 signature = ECDSA(client_random +\

 server_random + ecdhe_params)

 TLS12 Response Header

 TLS12DigitallySignedPayloads

 signature

 <--------

 ServerHello

 tls_version

 server_random

 Cipher_suite=TLS_ECDHE_ECDSA

 Extension Supported EC,

 Supported Point Format

 Certificate

 ECDSA Public Key

 ServerKeyExchange

 ecdhe_params

 signature

 ServerHelloDone

 <--------

ClientKeyExchange

[ChangeCipherSpec]

Finished

-------->

 [ChangeCipherSpec]

 Finished

 <--------

Application Data <-------> Application Data

¶

[RFC5246]

[RFC5480]

[RFC6347]

[RFC7250]

[RFC7627]

[RFC8017]

[RFC8422]

[RFC8446]

[I-D.erb-lurk-rsalg]

13. References

13.1. Normative References

Dierks, T. and E. Rescorla, "The Transport Layer Security

(TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

RFC5246, August 2008, <https://www.rfc-editor.org/info/

rfc5246>.

Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,

"Elliptic Curve Cryptography Subject Public Key

Information", RFC 5480, DOI 10.17487/RFC5480, March 2009,

<https://www.rfc-editor.org/info/rfc5480>.

Rescorla, E. and N. Modadugu, "Datagram Transport Layer

Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,

January 2012, <https://www.rfc-editor.org/info/rfc6347>.

Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,

Weiler, S., and T. Kivinen, "Using Raw Public Keys in

Transport Layer Security (TLS) and Datagram Transport

Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,

June 2014, <https://www.rfc-editor.org/info/rfc7250>.

Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,

Langley, A., and M. Ray, "Transport Layer Security (TLS)

Session Hash and Extended Master Secret Extension", RFC

7627, DOI 10.17487/RFC7627, September 2015, <https://

www.rfc-editor.org/info/rfc7627>.

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A.

Rusch, "PKCS #1: RSA Cryptography Specifications Version

2.2", RFC 8017, DOI 10.17487/RFC8017, November 2016,

<https://www.rfc-editor.org/info/rfc8017>.

Nir, Y., Josefsson, S., and M. Pegourie-Gonnard,

"Elliptic Curve Cryptography (ECC) Cipher Suites for

Transport Layer Security (TLS) Versions 1.2 and Earlier",

RFC 8422, DOI 10.17487/RFC8422, August 2018, <https://

www.rfc-editor.org/info/rfc8422>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

13.2. Informative References

Erb, S. and R. Salz, "A PFS-preserving protocol

for LURK", Work in Progress, Internet-Draft, draft-erb-

https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5480
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc7250
https://www.rfc-editor.org/info/rfc7627
https://www.rfc-editor.org/info/rfc7627
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8422
https://www.rfc-editor.org/info/rfc8422
https://www.rfc-editor.org/info/rfc8446

[I-D.fieau-cdni-https-delegation]

[I-D.ietf-acme-acme]

[I-D.ietf-acme-star]

[I-D.mglt-lurk-lurk]

[I-D.mglt-lurk-tls-use-cases]

[I-D.rescorla-tls-subcerts]

[I-D.sheffer-acme-star-request]

lurk-rsalg-01, 28 May 2016, <https://www.ietf.org/

archive/id/draft-erb-lurk-rsalg-01.txt>.

Fieau, F., Stephan, E., and S.

Mishra, "HTTPS delegation in CDNI", Work in Progress,

Internet-Draft, draft-fieau-cdni-https-delegation-02, 3

July 2017, <https://www.ietf.org/archive/id/draft-fieau-

cdni-https-delegation-02.txt>.

Barnes, R., Hoffman-Andrews, J., McCarney, D.,

and J. Kasten, "Automatic Certificate Management

Environment (ACME)", Work in Progress, Internet-Draft,

draft-ietf-acme-acme-18, 20 December 2018, <https://

www.ietf.org/archive/id/draft-ietf-acme-acme-18.txt>.

Sheffer, Y., Lopez, D., Dios, O. G. D.,

Perales, A. A. P., and T. Fossati, "Support for Short-

Term, Automatically Renewed (STAR) Certificates in the

Automated Certificate Management Environment (ACME)",

Work in Progress, Internet-Draft, draft-ietf-acme-

star-11, 24 October 2019, <https://www.ietf.org/archive/

id/draft-ietf-acme-star-11.txt>.

Migault, D., "LURK Protocol version 1", Work in

Progress, Internet-Draft, draft-mglt-lurk-lurk-00, 9

February 2018, <https://www.ietf.org/archive/id/draft-

mglt-lurk-lurk-00.txt>.

Migault, D., J, K. M., Salz, R.,

Mishra, S., and O. G. D. Dios, "LURK TLS/DTLS Use Cases",

Work in Progress, Internet-Draft, draft-mglt-lurk-tls-

use-cases-02, 28 June 2016, <https://www.ietf.org/

archive/id/draft-mglt-lurk-tls-use-cases-02.txt>.

Barnes, R., Iyengar, S., Sullivan, N.,

and E. Rescorla, "Delegated Credentials for TLS", Work in

Progress, Internet-Draft, draft-rescorla-tls-subcerts-02,

30 October 2017, <https://www.ietf.org/archive/id/draft-

rescorla-tls-subcerts-02.txt>.

Sheffer, Y., Lopez, D., Dios, O. G.

D., Perales, A. A. P., and T. Fossati, "Generating

Certificate Requests for Short-Term, Automatically-

Renewed (STAR) Certificates", Work in Progress, Internet-

Draft, draft-sheffer-acme-star-request-02, 29 June 2018,

https://www.ietf.org/archive/id/draft-erb-lurk-rsalg-01.txt
https://www.ietf.org/archive/id/draft-erb-lurk-rsalg-01.txt
https://www.ietf.org/archive/id/draft-fieau-cdni-https-delegation-02.txt
https://www.ietf.org/archive/id/draft-fieau-cdni-https-delegation-02.txt
https://www.ietf.org/archive/id/draft-ietf-acme-acme-18.txt
https://www.ietf.org/archive/id/draft-ietf-acme-acme-18.txt
https://www.ietf.org/archive/id/draft-ietf-acme-star-11.txt
https://www.ietf.org/archive/id/draft-ietf-acme-star-11.txt
https://www.ietf.org/archive/id/draft-mglt-lurk-lurk-00.txt
https://www.ietf.org/archive/id/draft-mglt-lurk-lurk-00.txt
https://www.ietf.org/archive/id/draft-mglt-lurk-tls-use-cases-02.txt
https://www.ietf.org/archive/id/draft-mglt-lurk-tls-use-cases-02.txt
https://www.ietf.org/archive/id/draft-rescorla-tls-subcerts-02.txt
https://www.ietf.org/archive/id/draft-rescorla-tls-subcerts-02.txt

[RFC8235]

<https://www.ietf.org/archive/id/draft-sheffer-acme-star-

request-02.txt>.

Hao, F., Ed., "Schnorr Non-interactive Zero-Knowledge

Proof", RFC 8235, DOI 10.17487/RFC8235, September 2017,

<https://www.rfc-editor.org/info/rfc8235>.

Authors' Addresses

Daniel Migault

Ericsson

8275 Trans Canada Route

Saint Laurent, QC 4S 0B6

Canada

Email: daniel.migault@ericsson.com

Ioana Boureanu

University of Surrey

Stag Hill Campus

Guildford

GU2 7XH

United Kingdom

Email: i.boureanu@surrey.ac.uk

https://www.ietf.org/archive/id/draft-sheffer-acme-star-request-02.txt
https://www.ietf.org/archive/id/draft-sheffer-acme-star-request-02.txt
https://www.rfc-editor.org/info/rfc8235
mailto:daniel.migault@ericsson.com
mailto:i.boureanu@surrey.ac.uk

	LURK Extension version 1 for (D)TLS 1.2 Authentication
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology and Acronyms
	3. LURK Header
	4. rsa_master, rsa_master_with_poh
	4.1. Request Payload
	4.1.1. Perfect Forward Secrecy

	4.2. Response Payload
	4.3. LURK Client Behavior
	4.4. LURK Server Behavior

	5. rsa_extended_master, rss_extended_master_with_poh
	5.1. Request Payload
	5.2. Response Payload
	5.3. LURK Client Behavior
	5.4. LURK Server Behavior

	6. ecdhe"
	6.1. Request Payload
	6.2. Response Payload
	6.3. LURK Client Behavior
	6.4. LURK Server Behavior

	7. capabilities
	7.1. Request Payload
	7.2. Response Payload
	7.3. LURK Client Behavior
	7.4. LURK Server Behavior"

	8. ping
	8.1. Request Payload
	8.2. Response Payload
	8.3. LURK Client Behavior
	8.4. LURK Server Behavior

	9. Security Considerations
	9.1. RSA
	9.2. ECDHE
	9.3. Perfect Foward Secrecy

	10. IANA Considerations
	11. Acknowledgments
	12. Apendix
	12.1. LURK Exchange for TLS RSA Master Secret with Proof of Handshake
	12.2. LURK Exchange for TLS RSA Extended Master Secret
	12.3. LURK Exchange for TLS RSA Extended Master Secret with proof of handshake
	12.4. LURK Exchange for TLS ECDHE Signature

	13. References
	13.1. Normative References
	13.2. Informative References

	Authors' Addresses

