
LURK D. Migault
Internet-Draft Ericsson
Intended status: Standards Track July 02, 2018
Expires: January 3, 2019

LURK Extension version 1 for (D)TLS 1.3 Authentication
draft-mglt-lurk-tls13-00

Abstract

 This document describes the LURK Extension 'tls13' which enables
 interactions between a LURK Client and a LURK Server in a context of
 authentication with (D)TLS 1.3.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 3, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Migault Expires January 3, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft LURK/TLS 1.3 July 2018

Table of Contents

1. Introduction . 2
2. LURK Header . 3
3. handshake_server_key . 4
3.1. Request Payload . 5
3.2. Response Payload . 6
3.3. LURK Client Behavior 6
3.4. LURK Server Behavior 7

4. auth . 9
4.1. Request Payload . 9
4.2. Response Payload . 10
4.3. LURK Client Behavior (TLS Server) 10
4.4. LURK Client Behavior (TLS Client) 12
4.4.1. Local Ticket . 13

4.5. LURK Server Behavior 14
5. Security Considerations 15
6. IANA Considerations . 15
7. Acknowledgments . 16
8. Normative References . 16

 Author's Address . 16

1. Introduction

 This document defines a LURK extension for TLS 1.3. This document
 assume s the reader is familiar with [I-D.mglt-lurk-lurk] that
 describes the LURK architecture as well as the LURK Protocol and the
 integration of the LURK extensions. The motivations for the LURK
 Extension TLS 1.3 are similar to those for the LURK extension of TLS
 1.2 [I-D.mglt-lurk-tls12].

 LURK defines an interface to a Cryptographic Service that stores the
 security credentials - Typically the PSKs and private keys.
 Interactions with the Cryptographic Service can be performed by the
 TLS Client as well as by the TLS Server.

 The TLS Server expects from the Cryptographic Service:

 o To retrieve the necessary keys to complete the handshake. This
 typically includes the [sender]_handshake_traffic_secret to
 generate the keys necessary to encrypt the handshake extensions
 and messages, the [sender]_application_traffic_secret_N keys to
 protect the application data or the exporter_master_secret when
 needed.

 o To generate of Handshake message or extensions that authenticate
 the TLS Server. This typically includes the CertificateVerify and
 Finished message.

Migault Expires January 3, 2019 [Page 2]

Internet-Draft LURK/TLS 1.3 July 2018

 o To retrieve NewSessionTicket to enable the TLS Client to perform
 session resumption.

 The TLS Client expetcs from the Cryptographic Service:

 o To retrieve the necessary keys to complete the handshake.

 o To "provision" resumption_master_secret, so the PSK can be used
 when the TLS Client is using session resumption using a NewSession
 ticket.

 o To generate of Handshake message or extensions that authenticate
 the TLS Client. This typically includes the CertificateVerify and
 Finished message.

 Note that the TLS Server MAY interact with a single exchange with the
 Cryptographic Service, the TLS Client is expected to retrieve the
 [sender]_handshake_traffic_secret to generate the keys encrypt the
 handshake extensions and messages to decrypt the messages/extensions
 received from the TLS Server, prior to request for the generation of
 the CertificateVerify or Finished message.

2. LURK Header

 LURK / TLS 1.3 is a LURK Extension that introduces a new designation
 "tls13". This document assumes that Extension is defined with
 designation set to "tls13" and version set to 1. The LURK Extension
 extends the LURKHeader structure defined in [I-D.mglt-lurk-lurk] as
 follows:

Migault Expires January 3, 2019 [Page 3]

Internet-Draft LURK/TLS 1.3 July 2018

 enum {
 tls13 (2), (255)
 } Designation;

 enum {
 capabilities (0), ping (1), rsa_master (2),
 rsa_extended_master (3), ecdhe (4), (255)
 }TLS13Type;

 enum {
 // generic values reserved or aligned with the
 // LURK Protocol
 request (0), success (1), undefined_error (2),
 invalid_payload_format (3),

 //code points for ecdhe authentication
 invalid_ec_type (9), invalid_ec_curve (10),
 invalid_poo_prf (11), invalid_poo (12), (255)
 }TLS13Status

 struct {
 Designation designation = "tls12";
 int8 version = 1;
 } Extension;

 struct {
 Extension extension;
 select(Extension){
 case ("tls13", 1):
 TLS12Type;
 } type;
 select(Extension){
 case ("tls13", 1):
 TLS13Status;
 } status;
 uint64 id;
 unint32 length;
 } LURKHeader;

3. handshake_server_key

 This exchange is only expected to be performed by a TLS Client. The
 server_handshake_key is necessary for the TLS Client to decrypt the
 handshake message/extensions encrypted by the TLS Server.

 Interaction with a Cryptographic Service MAY be required when the PSK
 is protected by the Cryptographic Service.

Migault Expires January 3, 2019 [Page 4]

Internet-Draft LURK/TLS 1.3 July 2018

3.1. Request Payload

enum { sha256 (0), (255) } TranscriptHash;

enum { psk_raw (0), psk_ticket (1), (255) } PSKType

struct {
 PSKType psk_type;
 select(psk_type){
 case raw_psk :
 opaque raw_psk<0..2^16-1>;
 case identity_psk :
 OfferedPsks offered_psk // {{I-D.ietf-tls-tls13}} section 4.2.11
} PSK

struct {
 select (ke_mode){ // {{I-D.ietf-tls-tls13}} section 4.2.9
 case psk_ke :
 PSK psk
 case psk_dhe_ke :
 PSK psk
 NamedGroup dh_group; // {{I-D.ietf-tls-tls13}} section 4.2.7
 opaque dhe_secret<1..2^16-1>;
 }
} KeyScheduleInputSecrets

enum {
 sha256 (0) (255)
} PFSAlgorithm

struct {
 PFSAlgorithm pfs; // {{I-D.mglt-lurk-tls12}} section 4.1
 TranscriptHash h;
 PskKeyExchangeMode ke_mode // {{I-D.ietf-tls-tls13}} section 4.2.9
 opaque handshake_context<0..2^32-1>
 KeyScheduleInputSecrets secrets
} HandshakeServerKeyRequest

 psk_type indicates how the PSK is provisioned to initiate the key
 schedule as described in [I-D.ietf-tls-tls13] section 7.1. The
 type psk_raw indicates the PSK is explicitly provided. The type
 psk_ticket indicates the PSK is generated from the ticket as
 described in [I-D.ietf-tls-tls13] section 4.6.1.

 pfs the one-way hash function (OWHF) used by LURK to implement
 Perfect Forward Secrecy.

Migault Expires January 3, 2019 [Page 5]

Internet-Draft LURK/TLS 1.3 July 2018

 h the hash function used by the Transcript-Hash [I-D.ietf-tls-tls13]
section 4.4.1.

 offered_psk reuses the OfferedPsks described in [I-D.ietf-tls-tls13]
section 4.2.11. The PSK structure only allow a single PSK, thus

 OfferedPsks MUST represent a single PSK.

 ke_mode defines pre shared key exchange defined in
 [I-D.ietf-tls-tls13] section 4.2.9. It indicates whether the key
 exchange considers a (EC)DHE key establishment or not in addition
 to the PSK.

 dh_group reuses the structure NamedGroup of [I-D.ietf-tls-tls13]
section 4.2.7 to indicate the curve or the group used in (EC)DHE

 key establishment.

 handshake_context the necessary handshake context to generate the
 key as described in [I-D.ietf-tls-tls13] section 7.1. The
 handshake_context MUST be ClientHello...ServerHello.

 secrets the necessary secret inputs (PSK, (EC)DHE) secret necessary
 for the key schedule of [I-D.ietf-tls-tls13] section 7.1.

3.2. Response Payload

 struct {
 opaque server_handshake_key<0..2^32-1>
 } HandshakeServerKeyResponse

 server_handshake_key the server_handshake_key

3.3. LURK Client Behavior

 The TLS Client establishing a TLS session with a TLS Server receives
 from the TLS Server a ServerHello message with additional encrypted
 messages such as the EncryptedExtensions, the Finished as well as the
 optional Certificate, CertificateVerify and Application Data message.
 The TLS Client needs to retrieve the server_handshake_key in order to
 decrypt these messages.

 With ServerHello as the input message, the LURK Client initiates the
 exchange as described below:

 Perfect Forward Secrecy Setting:

 o Perfect Forward Secrecy is performed as described in
 [I-D.mglt-lurk-tls12] section 4.1.1 over the client_random. There
 is no gmt_unix_time as such ServerHello.random is generated as

Migault Expires January 3, 2019 [Page 6]

Internet-Draft LURK/TLS 1.3 July 2018

 follows: ~~~ ClientHello.random = pfs(client_random + "tls13_c
 pfs"); ~~~

 Transcript Hash Setting:

 o the value for transcript hash is provided by the configuration.

 PSK Key Exchange Mode Setting:

 o if the input message does not contains any key_share extension,
 the LURK Client sets ke_mode to psk_ke.

 o if a key_share extension is present the LURK Client sets ke_mode
 to psk_dhe_ke.

 Key Schedule Input Secret Setting:

 o if the input message has no pre_shared_key extension, the LURK
 Client sets psk_type to psk_raw with a psk of length 0.

 o if the input message has a pre_shared_key extension, the LURK
 Client provides the PSK that is not a PSK of zero length, as
 follows: ..* the PSK is provided explicitly by using the psk_type
 set to psk_raw with the explicit value of the PSK. This
 alternative is NOT RECOMMENDED, as it means the PSK is not known
 by the Cryptographic Service and is known outside this service.
 It may happen when the TLS Client is configured with a PSK while
 the Cryptographic Service is not provisioned with that PSK. The
 case where the PSK is provided for a session resumption is outside
 the scope of this document as the session_resumption_secret is
 never shared outside the Cryptographic Service. ..* the PSK is
 provided via NewSessionTicket. Upon receiving a selected_identity
 in the pre_shared_key extension, the LURK Client selects the
 corresponding local_ticket previously provided by the LURK Server
 during the previous handshake. local_ticket are internal structure
 used by LURK detailled in Section 4.4.1

3.4. LURK Server Behavior

 Upon receiving a handshake_server_key request, the LURK server
 proceeds as follows:

 Perfect Forward Secrecy Check:

 o if pfs is not supported, an invalid_pfs erroro is returned.

 o ClientHello.random is generated as described in Section 3.3 and
 the value is provided in handshake_context.

Migault Expires January 3, 2019 [Page 7]

Internet-Draft LURK/TLS 1.3 July 2018

 Transcript-Hash Check:

 o if h is not a supported transcript-hash function and
 invalid_transcript_hash error is returned.

 Handshake Check:

 o if handshake does not contains a ClientHello...ServerHello an
 invalid_handshake error is returned.

 PSKExchangeMode Check:

 o if ke_mode is not supported an invalid_ke_mode error is returned.

 KeyScheduleInputSecret Check check the validity of the secrets as
 well as the coherence wit the pre shared key exchange. These
 checking operations are subdivided into (EC)DHE Check and PSK Check
 operations:

 (EC)DHE Check:

 o if ke_mode is set to psk_dhe_ke and secret does not contain a
 (EC)DHE secret an invalid_secret error is returned.

 o if the (EC)DHE secret does not match the expected length or the
 curve is not supported an invalid_ecdhe_secret error is returned.

 PSK Check:

 o if the psk type is not supported a invalid_psk_type is returned.

 o if psk_type is psk_raw and the format of the psk is unexpected an
 invalid_psk_format error is returned.

 o if the psk_type is psk_ticket:

 ..* if the number of psk or associated binder is more than 1, an
 invalid_ticket_format error is returned ..* there is no corresponding
 identity, an invalid_psk_ticket error is returned. * if the psk_type
 is identity_psk binder_key is generated as described in
 [I-D.ietf-tls-tls13] section 7.1. ..* if the binder associated to
 the psk does not match the one provided in the offered_psk and
 invalid_binder error is returned. The binder is computed as
 described in [I-D.ietf-tls-tls13] section 4.2.11.2. with the
 binder_key generated as described in [I-D.ietf-tls-tls13] section

7.1.

 Key Generation:

Migault Expires January 3, 2019 [Page 8]

Internet-Draft LURK/TLS 1.3 July 2018

 o server_handshake_key is generated as described in
 [I-D.ietf-tls-tls13] section 7.1 and returned to the LURK Client.

4. auth

 This exchange provides interactions with a Cryptographic Service both
 on the TLS Client side as well as the TLS Server side.

4.1. Request Payload

enum { server (0), client (1), post-handshake (2) } HandshakeMode;

struct {
 PFSAlgorithm pfs; // {{I-D.mglt-lurk-tls12}} section 4.1
 TranscriptHash h; // c, f
 PskKeyExchangeMode ke_mode // {{I-D.ietf-tls-tls13}} section 4.2.9
 select(ke_mode){
 case : psk_dhe_ke
 Certificate certificate // {{I-D.ietf-tls-tls13}} section
4.4.2
 SignatureScheme algorithm // {{I-D.ietf-tls-tls13}} section
4.2.3.
 }
 HandshakeMode handshake_mode // c, f
 opaque handshake_context<0..2^32-1> // c, f
 KeyScheduleInputSecrets secrets // f
 uint8 key_request
 uint8 ticket_number
} AuthRequest

c: structure used for the CertificateVerify message
f: structure used for the Finished message

 pfs, h, ke_mode, handshake_context and secrets are define in
Section 3.1

 certificate end point certificate defined in [I-D.ietf-tls-tls13]
section 4.4.2.

 algorithm signature algorithm used defined in [I-D.ietf-tls-tls13]
section 4.2.3.

 handshake_mode defines the specific Handshake Context and Base Key
 necessary to compute authentication messages as defined in
 [I-D.ietf-tls-tls13] section 4.4. The handshake_mode set to
 server indicates the LURK exchange is performed by the TLS Server
 while the handshake_mode set to client or post-handshake indicates
 the LURK exchange is performed by the TLS Client.

Migault Expires January 3, 2019 [Page 9]

Internet-Draft LURK/TLS 1.3 July 2018

 handshake_context Handshake Context has defined in
 [I-D.ietf-tls-tls13] section 4.4.

 key_request indicates optional requested keys. The bit is set to 1
 to indicate the key is being requested by the LURK Client. ..*
 bit 0 : client_handshake_traffic_secret ..* bit 1 :
 server_handshake_traffic_secret ..* bit 2 :
 client_application_traffic_secret_0 ..* bit 3 :
 server_application_traffic_secret_0 ..* bit 4 :
 exporter_master_secret ..* bit 5-7: set to 0

 ticket_number indicates the expected number of session resumption
 tickets. When requested by the TLS Client the ticket_number is
 expected to be 0 or 1. When requested by the TLS Server the
 number can be larger.

4.2. Response Payload

 struct{
 opaque key<0..2^16-1>
 } Key

 struct {
 uint8 key_index
 opaque key_list<0..2^32-1>
 } Keys

 struct {
 Keys keys
 CertificateVerify certificate_verify
 Finished finished
 NewSessionTicket ticket_list<0..2^32-1>
 } AuthResponse

 key_index follows the same syntax as key_request in Section 4.1.

 key_list :the list of keys indicated by key_index.

 ticket_list list of NewTicketSessions

4.3. LURK Client Behavior (TLS Server)

 On a TLS Server, the LURK Server initiates the LURK exchange after
 receiving the ClientHello from the TLS Client. The purpose of this
 exchange is to retrieve the CertificateVerify, Finished, and the
 necessary keys to:

Migault Expires January 3, 2019 [Page 10]

Internet-Draft LURK/TLS 1.3 July 2018

 o encrypt the EncryptedExtensions, Finished and optional
 CertificateRequest Certificate and CertificateVerify message:
 server_handshake_traffic_secret

 o encrypt the optional Application Data message:
 server__application_traffic_secret_N

 o decrypt the future Finished or optional Certificate and
 CertificateVerify message sent by the TLS Client:
 client_handshake_traffic_secret.

 o decrypt the future Application Data message with the
 client__application_traffic_secret_N

 Perfect Forward Secrecy Setting:

 o Perfect Forward Secrecy is performed as described in
 [I-D.mglt-lurk-tls12] section 4.1.1 over the server_random. There
 is no gmt_unix_time as such ServerHello.random is generated as
 follows: ~~~ ServerHello.random = pfs(server_random + "tls13_s
 pfs"); ~~~

 The LURK Client proceeds to the Transcript Hash Setting PSK Key
 Exchange Mode Setting and the Key Schedule Input Secret Setting as
 described in Section 3.3.

 Handshake Mode Setting:

 o If the LURK Client sets the handshake_mode to "server".

 Handshake Setting: The handshake is set as described in
 [I-D.ietf-tls-tls13] section 4.4.

 Key Request Setting:

 o key_request MUST have the Bit 0 and Bit 1 set to retrieve the
 [sender]_handshake_traffic_secret.

 o key_request MUST have the Bit 2 and Bit 3 set to retrieve the
 [sender]_application_traffic_secret_N

 o Key_request MAY have Bit 4 set if there is a need to use the
 extractor.

 Upon receiving the AuthResponse, the TLS Server encrypts the messages
 and pursue the TLS handshake as defined in [I-D.ietf-tls-tls13].

Migault Expires January 3, 2019 [Page 11]

Internet-Draft LURK/TLS 1.3 July 2018

4.4. LURK Client Behavior (TLS Client)

 On a TLS Client the LURK Client initiates an AuthRequest in order to
 compute the Finished and optional CertificateVerify as well as to
 retrieve the necessary keys to:

 o encrypt the Finished and optional Certificate and
 CertificateVerify message: client_handshake_traffic_secret

 o encrypt the optional Application Data message:
 server__application_traffic_secret_N

 o decrypt the future Application Data message with the
 server__application_traffic_secret_N

 The TLS Client has decrypted the encrypted handshake messages sent by
 the TLS Server by retrieving the server_handshake_traffic_secret with
 an HandshakeServerKeyRequest.

 The LURK Client proceeds to Perfect Forward Secrecy Setting,
 Transcript Hash Setting, Key Schedule Input Secret Setting as
 described in Section 3.3.

 If the TLS Client has received a CertificateRequest from the TLS
 Server, the LURK Client:

 o sets the ke_mode to psk_dhe_ke. Note that the value is not
 correlated to the value agreed psk_key_exchange_modes between the
 TLS Client and the TLS Server. Instead it indicates the necessity
 to generate a CertificateVerify.

 o provides the Certificate associated to the private key of the TLS

 Handshake Mode Setting:

 o If the LURK Client is initiating a LURK exchange on behalf of a
 TLS Client it sets the handshake_mode to: ..* "client" when the
 LURK exchange occurs during the TLS handshake. ..* "post-
 authentication" when the LURK exchange occurs outside the TLS
 handshake.

 Handshake Setting:

 o set handshake_context as defined in [I-D.ietf-tls-tls13] section
4.4.

 Key Request Setting:

Migault Expires January 3, 2019 [Page 12]

Internet-Draft LURK/TLS 1.3 July 2018

 o key_request SHOULD have the Bit 0 unset, as
 client_handshake_traffic_secret is already known by the TLS Client

 o key_request MUST have the Bit 1 set to retrieve the
 server_handshake_traffic_secret.

 o key_request MUST have the Bit 2 and Bit 3 set to retrieve the
 [sender]_application_traffic_secret_N

 o Key_request MAY have Bit 4 set if there is a need to use the
 extractor.

 Ticket Number Setting:

 o If the TLS Client want to performed further session resumption,
 ticket_number is set to 1 and 0 otherwise.

 Upon receiving the AuthResponse, the LURK Client has the necessary
 information to proceed the TLS handshake. The ticket_list is a list
 of local_ticket. The list MUST have a maximum of one local_ticket.
 The LURK Client is expected to manage the local_tickets as described
 in Section 4.4.1

4.4.1. Local Ticket

 local_ticket re-uses the NewSessionTicket structure in two different
 ways depending if the LURK exchange is initiated by a TLS Client or
 by a TLS Server.

 o ticket provided to the TLS Server (by the LURK Server) are
 new_session_ticket, expected to be forwarded to the TLS Client.

 o tickets provided to the TLS Client (by the LURK Server) are
 local_ticket. These local_tickets are only expected to be used
 between the LURK Client and the LURK Server of the TLS Client.

 During the initial handshake, the TLS Client has received a
 local_ticket from the LURK Server and a new_session_ticket from the
 TLS Server. The TLS Client updates the local_ticket as follows: the
 ticket_nonce and extensions fields of the new_session_ticket are
 copied to the local_ticket.

 When the TLS Server provides more than one new_session_ticket
 tickets, these tickets are expected to have different nonce. On the
 other hand a single local_ticket will be provided by the LURK Server.
 The TLS Client generates an associated local_ticket for each
 new_session_ticket. All of them are generated from the local_ticket
 provided by the LURK Server.

Migault Expires January 3, 2019 [Page 13]

Internet-Draft LURK/TLS 1.3 July 2018

 Though the new_Session_ticket and the local_ticket have different
 meanings, a TLS Client will not be able to perform session resumption
 without the corresponding local_ticket. More specifically, the TLS
 Client MUST:

 o remove local_tickets and new_session_tickets that have expired

 o remove local_tickets that have no associated new_session_tickets

 o remove new_session_tickets that have no associated local_tickets
 In all these cases, a new handshake will be renegotiated. Note
 that this gives the Cryptographic Service the ability to define
 the maximum time a new_session_ticket can be used.

4.5. LURK Server Behavior

 Upon receiving a handshake_server_key request, the LURK server
 proceeds as follows:

 Perfect Forward Secrecy Check is performed as Section 3.3 using the
 pfs, and client_random (resp. server_random) as described in

Section 3.3 (resp. Section 4.3).

 Transcript-Hash Check, PSKExchangeMode Check, KeyScheduleInputSecrets
 Check are performed as described in Section 3.4

 HandshakeMode Check:

 o if the mode is not supported a invalid_handshake_mode error is
 returned. This typically prevents a TLS Client to perform
 computation expected to happen on the TLS Server, or to
 distinguish and authorize client authentication performed during
 the handshake or post handshake.

 Handshake Check:

 o if the hanshake_context does not match the expected handshake
 context as defined in [I-D.ietf-tls-tls13] section 4.4. an
 invalid_handshake error is returned.

 CertificateVerify Check:

 o if ke_mode is set to psk_dhe_ke and the certificate is not
 supported an invalid_certificate error is returned

 o if ke_mode is set to psk_dhe_ke and the algorithm is not supported
 an invalid_signature_scheme error is returned

Migault Expires January 3, 2019 [Page 14]

Internet-Draft LURK/TLS 1.3 July 2018

 Keys are generated as described in [I-D.ietf-tls-tls13] section 7.1.
 This includes the Base Key use to generate the Finished messages as
 well as the resumption_master_secret.

 key_request is indicative and is used by the LURK Client to indicate
 the keys that are not necessarily needed in order to save bandwidth.
 The LURK Server SHOULD NOT responds with keys whose key_request bit
 is unset.

 The CertificateVerify message is generated as described in
 [I-D.ietf-tls-tls13] section 4.4.3.

 The Finished message is generated as described in
 [I-D.ietf-tls-tls13] section 4.4.4.

 ticket_number indicates the number of NewSessionTicket.
 ticket_session have different meaning when used by the TLS Client or
 the TLS Server. When the LURK exchange is initiated by the LURK
 Client, the ticket_sessions are local_ticket and are only expected to
 be used between the LURK Client and the LURK Server. Such
 local_ticket avoids a direct communication of the
 resumption_master_secret. local_ticket follows the definition of
 new_session_tickets described in [I-D.ietf-tls-tls13] section 4.6.1.
 The LURK Server MUST have a zero length ticket_nonce and zero length
 extensions

 When the LURK exchange is initiated by the TLS Server the tickets are
 new_session_tickets as described in [I-D.ietf-tls-tls13] section

4.6.1. As a result:

 o if handshake_mode is set to server, the LURK Server SHOULD respond
 with a list of new_session_tickets that is not greater than the
 number indicated by ticket_number. The number of ticket MAY be
 defined by the LURK Server policies.

 o if handshake_mode is set to client or post-handshake the LURK
 Server SHOULD respond with a list of local_ticket that is not
 greater than the number indicated by ticket_number. The list MUST
 NOT exceed one local_ticket.

5. Security Considerations

6. IANA Considerations

Migault Expires January 3, 2019 [Page 15]

Internet-Draft LURK/TLS 1.3 July 2018

7. Acknowledgments

8. Normative References

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-28 (work in progress),
 March 2018.

 [I-D.mglt-lurk-lurk]
 Migault, D., "LURK Protocol version 1", draft-mglt-lurk-

lurk-00 (work in progress), February 2018.

 [I-D.mglt-lurk-tls12]
 Migault, D., "LURK Extension version 1 for (D)TLS 1.2 and
 (D)TLS 1.1 Authentication", draft-mglt-lurk-tls12-00 (work
 in progress), February 2018.

Author's Address

 Daniel Migault
 Ericsson
 8275 Trans Canada Route
 Saint Laurent, QC 4S 0B6
 Canada

 EMail: daniel.migault@ericsson.com

https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-28
https://datatracker.ietf.org/doc/html/draft-mglt-lurk-lurk-00
https://datatracker.ietf.org/doc/html/draft-mglt-lurk-lurk-00
https://datatracker.ietf.org/doc/html/draft-mglt-lurk-tls12-00

Migault Expires January 3, 2019 [Page 16]

