
LURK D. Migault
Internet-Draft Ericsson
Intended status: Standards Track April 24, 2020
Expires: October 26, 2020

LURK Extension version 1 for (D)TLS 1.3 Authentication
draft-mglt-lurk-tls13-02

Abstract

 This document describes the LURK Extension 'tls13' which enables
 interactions between a LURK Client and a LURK Server in a context of
 authentication with (D)TLS 1.3.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 26, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Migault Expires October 26, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft LURK/TLS 1.3 April 2020

Table of Contents

1. Introduction . 3
2. Terminology . 3
3. LURK Header . 4
4. Generic structures . 5
4.1. key_request . 6
4.2. secrets . 7
4.3. handshake_context . 8
4.4. Secret Sub Exchange 9
4.4.1. Ephemeral Extension 10
4.4.2. PSK_id Extension 12
4.4.3. Freshness Extension 13
4.4.4. Session ID Extension 15

4.5. Signing Sub-Exchange 17
5. LURK exchange on the TLS server 18
5.1. s_init_early_secret 19
5.2. s_init_cert_verify 20
5.3. s_hand_and_app_secret 20
5.4. s_new_tickets . 21

6. LURK exchange on the TLS client 22
6.1. c_binder_key . 22
6.2. c_init_early_secret 23
6.3. c_hand_secret . 23
6.4. c_init_hand_secret 23
6.5. c_app_secret . 24
6.6. c_cert_verify . 24
6.7. c_register_tickets 25
6.8. c_post_hand . 26

7. Security Considerations 26
8. IANA Considerations . 28
9. Acknowledgments . 28
10. Annex . 28
10.1. LURK state diagrams on TLS client 28
10.1.1. LURK client . 30
10.1.2. Cryptographic Service 32

10.2. LURK state diagrams on TLS server 33
10.2.1. LURK client . 33
10.2.2. Cryptographic Service 34

10.3. TLS handshakes with Cryptographic Service 35
10.4. TLS 1.3 ECDHE Full Handshake 37
10.4.1. TLS Client: ClientHello 37
10.4.2. TLS Server: ServerHello 38
10.4.3. TLS client: client Finished 40

10.5. TLS 1.3 Handshake with session resumption 43
10.5.1. Full Handshake 43
10.5.2. TLS server: NewSessionTicket 44
10.5.3. TLS client: NewSessionTicket 45

Migault Expires October 26, 2020 [Page 2]

Internet-Draft LURK/TLS 1.3 April 2020

10.5.4. Session Resumption 46
10.6. TLS 1.3 0-RTT handshake 49
10.6.1. TLS client: ClientHello 50
10.6.2. TLS server: ServerHello 51
10.6.3. TLS client: Finished 51

10.7. TLS client authentication 51
10.8. TLS Client:Finished (CertificateRequest) 52
10.9. TLS Client Authentication (PostHandshake) 52

11. References . 53
11.1. Normative References 53
11.2. Informative References 54

 Author's Address . 54

1. Introduction

 This document defines a LURK extension for TLS 1.3 [RFC8446].

 This document assumes the reader is familiar with TLS 1.3 the LURK
 architecture [I-D.mglt-lurk-lurk].

 The motivations for the LURK Extension TLS 1.3 are similar to those
 for the LURK use cases [I-D.mglt-lurk-tls-use-cases].

 Interactions with the Cryptographic Service (CS) can be performed by
 the TLS Client as well as by the TLS Server.

 LURK defines an interface to a CS that stores the security
 credentials which include the PSK involved in a PSK or PSK-ECDHE
 authentication or the key used for signing in an ECDHE
 authentication. In the case of session resumption the PSK is derived
 from the resumption_master_secret during the key schedule [RFC8446]
 section 7.1, this secret MAY require similar protection as well. On
 the other hand session resumption MAY also be delegated as in the
 LURK extension of TLS 1.2 [I-D.mglt-lurk-tls12].

 The current document extends the scope of the LURK extension for TLS
 1.2 in that it defines the CS on the TLS server as well as on the TLS
 client and the CS can operate in non delegating scenarios.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119][RFC8174] when, and only when, they appear in all
 capitals, as shown here.

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446#section-7.1
https://datatracker.ietf.org/doc/html/rfc8446#section-7.1
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Migault Expires October 26, 2020 [Page 3]

Internet-Draft LURK/TLS 1.3 April 2020

 This document uses the terms defined [RFC8446] and
 [I-D.mglt-lurk-tls12].

3. LURK Header

 LURK / TLS 1.3 is a LURK Extension that introduces a new designation
 "tls13". This document assumes that Extension is defined with
 designation set to "tls13" and version set to 1. The LURK Extension
 extends the LURKHeader structure defined in [I-D.mglt-lurk-lurk] as
 follows:

 enum {
 tls13 (2), (255)
 } Designation;

 enum {
 capabilities(0),
 ping(1),
 s_init_early_secret(2),
 s_init_cert_verify(3),
 s_hand_and_app_secret(4),
 s_new_ticket(5),
 c_binder_key(6),
 c_init_early_secret(7),
 c_init_hand_secret(8),
 c_hand_secret(9),
 c_app_secret(10),
 c_cert_veri913fy(11),
 c_register_ticket(12),
 c_post_hand(13), (255)
 }TLS13Type;

 enum {
 // generic values reserved or aligned with the
 // LURK Protocol
 request (0), success (1), undefined_error (2),
 invalid_payload_format (3),

 invalid_psk
 invalid_freshness_funct

 invalid_request
 invalid_key_id_type
 invalid_key_id
 invalid_signature_scheme
 invalid_certificate_type
 invalid_certificate

https://datatracker.ietf.org/doc/html/rfc8446

Migault Expires October 26, 2020 [Page 4]

Internet-Draft LURK/TLS 1.3 April 2020

 invalid_certificate_verify
 invalid_key_request
 invalid_handshake
 invalid_extension
 invalid_ephemeral
 invalid_cookie_h

 }TLS13Status

 struct {
 Designation designation = "tls13";
 int8 version = 1;
 } Extension;

 struct {
 Extension extension;
 select(Extension){
 case ("tls13", 1):
 TLS13Type;
 } type;
 select(Extension){
 case ("tls13", 1):
 TLS13Status;
 } status;
 uint64 id;
 unint32 length;
 } LURKHeader;

4. Generic structures

 The CS is not expected to perform any policies such as choosing the
 appropriated authentication method. Such choices are performed by
 the TLS client or TLS server that instruct the LURK client
 accordingly. Such enforced policies between the TLS client and the
 TLS server are those performed on a standard TLS exchange.

 On the other hand, some CS MAY be optimized by implementing a subset
 of the specified possibilities described in this document. Typically
 some implementations MAY not implement the session resumption or the
 post handshake authentication to avoid keeping states of a given
 session once the handshake has been performed. These capabilities of
 the CS MAY also in return impact the policies of the TLS client or
 TLS server.

 These limitations are mentioned throughout the document, and even
 represented in the state diagrams, the recommendation is that the CS
 SHOULD NOT impact the policies of the TLS client or TLS server.
 Instead they SHOULD be able to optimize the CS to their policies via

Migault Expires October 26, 2020 [Page 5]

Internet-Draft LURK/TLS 1.3 April 2020

 some configuration parameters presented in section Section 10.1.
 Such parameters are implementation dependent and only provided here
 as informative.

 This document defines the role to specify whether the CS runs on a
 TLS client or a TLS service. The CS MUST be associated a single
 role.

 LURK exchanges falls into three categories: 1) request of keys or
 secrets, 2) request of signing operations, and 3) requests for ticket
 (NewSessionTicket) management purposes. In some cases, these
 operations are combined into a single LURK exchange. Table Figure 1
 below summarizes the operations associated for each exchange.

 +--------+-----------------------+------------------------+
 | Role | LURK exchange | secret | sign | ticket |
 +--------+-----------------------+------------------------+
server	s_init_early_secret	yes	-	-
server	s_init_cert_verify	yes	yes	-
server	s_hand_and_app_secret	yes	-	-
server	s_new_ticket	yes	-	yes
client	c_binder_key	yes	-	-
client	c_init_early_secret	yes	-	-
client	c_init_hand_secret	yes	-	-
client	c_hand_secret	yes	-	-
client	c_app_secret	yes	-	-
client	c_cert_verify	yes	yes	-
client	c_register_ticket	yes	-	yes
client	c_post_hand	-	yes	-
 +--------+-----------------------+------------------------+

 Figure 1: Operation associated to LURK exchange

 This section describes structures that are widely re-used across the
 multiple LURK exchanges.

4.1. key_request

 key_request is a 16 bit structure described in Table Figure 2 that
 indicates the requested key or secrets by the LURK client. The same
 structure is used across all LURK exchanges, but each LURK exchange
 only permit a subset of values described in Table Figure 3.

 A LURK client MUST NOT set key_request to key or secrets that are not
 permitted. The CS MUST check the key_request has only permitted
 values and has all mandatory keys or secrets set. If these two
 criteria are not met the CS MUST NOT perform the LURK exchange and
 SHOULD return a invalid_key_request error. If the CS is not able to

Migault Expires October 26, 2020 [Page 6]

Internet-Draft LURK/TLS 1.3 April 2020

 compute an optional key or secret, the CS MUST proceed the LURK
 exchange and ignore the optional key or secret.

 +------+---+
 | Bit | key or secret (designation) |
 +------+---+
0	binder_key (b)
1	client_early_traffic_secret (e_c)
2	early_exporter_master_secret (e_x)
3	client_handshake_traffic_secret (h_c)
4	server_handshake_traffic_secret (h_s)
5	client_application_traffic_secret_0 (a_c)
6	server_application_traffic_secret_0 (a_s)
7	exporter_master_secret (x)
8	resumption_master_secret (r)
9-15	reserved and set to zero
 +------+---+

 Figure 2: key_request structure

 +-----------------------+--------------------------+
 | LURK exchange | Permitted key/secrets |
 +-----------------------+--------------------------+
s_init_early_secret	b,e_c*, e_x*
s_init_cert_verify	h_c, h_s, a_c*, a_s*, x*
s_hand_and_app_secret	h_c, h_s, a_c*, a_s*, x*
s_new_ticket	r*
c_binder_key	b
c_init_early_secret	e_c*, e_x*
c_init_hand_secret	h_c, h_s
c_hand_secret	h_c, h_s
c_app_secret	a_c*, a_s*, x*
c_cert_verify	a_c*, a_s*, x*
c_register_ticket	r*
c_post_hand	
 +-----------------------+--------------------------+

 (*) indicates an optional value, other values are mandatory

 Figure 3: key_request permitted values per LURK exchange

4.2. secrets

 The Secret structure carries a secret designated by its type and
 value.

Migault Expires October 26, 2020 [Page 7]

Internet-Draft LURK/TLS 1.3 April 2020

 enum {
 binder_key (0),
 client_early_traffic_secret(1),
 early_exporter_master_secret(2),
 client_handshake_traffic_secret(3),
 server_handshake_traffic_secret(4),
 client_application_traffic_secret_0(5),
 server_application_traffic_secret_0(6),
 exporter_master_secret(7),
 esumption_master_secret(8),
 (255)
 } SecretType;

 struct {
 SecretType secret_type;
 opaque secret_data<0..2^8-1>;
 } Secret;

 secret_type: The type of the secret or key

 secret_data: The value of the secret.

4.3. handshake_context

 Secrets derivation takes Handshake Context as input. It is the
 responsibility of the CS to maintain this variable in an internal
 variable. On the other hand, it is the responsibility of the LURK
 client to provide the necessary element so the Cryptographic Service
 got the necessary Handshake Context. The Handshake Context evolves
 during the key derivation schedule, the LURK client implements an
 incremental approach where only the missing part of the Handshake
 Context are provided. The main intention is to prevent the LURK
 client from providing multiple time the same information as well as
 to perform extensive compatibility checks between the duplicated
 information provided.

 The handshake_context variable is based on the Handshake structure
 defined in [RFC8446] section 4. The table below lists the values of
 the handshake_context associated to each LURK exchange.

https://datatracker.ietf.org/doc/html/rfc8446#section-4

Migault Expires October 26, 2020 [Page 8]

Internet-Draft LURK/TLS 1.3 April 2020

 +-----------------------+--------------------------------+
 | LURK exchange | handshake_context |
 +-----------------------+--------------------------------+
s_init_early_secret	ClientHello
s_init_cert_verify	ClientHello ... later of
	server EncryptedExtensions /
	CertificateRequest
s_hand_and_app_secret	ServerHello ... later of
	server EncryptedExtensions /
	CertificateRequest
s_new_ticket	earlier of client Certificate /
	client CertificateVerify /
	Finished ... Finished
c_binder_key	
c_init_early_secret	ClientHello
c_init_hand_secret	ClientHello ... ServerHello
c_hand_secret	ServerHello
c_app_secret	server EncryptedExtensions ...
	server Finished
c_cert_verify	server EncryptedExtensions ...
	later of server Finished/
	EndOfEarlyData
c_register_ticket	earlier of client Certificate
	client CertificateVerify ...
	client Finished
c_post_hand	CertificateRequest
 +-----------------------+--------------------------------+

 Figure 4: handshake values per LURK exchange

4.4. Secret Sub Exchange

 Secrets are derived from the key schedule of [RFC8446] section 7.

 The derivation of secrets requires an optional PSK that is provided
 in the psk_id extension described in section Section 4.4.2 as well as
 a ECDHE value which is provided by the ecdhe extension described in
 section Section 4.4.1.

 The extensions considered in this document are defined as below:

https://datatracker.ietf.org/doc/html/rfc8446#section-7

Migault Expires October 26, 2020 [Page 9]

Internet-Draft LURK/TLS 1.3 April 2020

 enum { psk_id(1), ephemeral(2), freshness(3), session_id(4) ... (255)
 } LURK13ExtensionType;

 struct {
 LURK13ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } LURK13Extension

 struct {
 uint16 key_request;
 Handshake handshake_context<0..2^32> //RFC8446 section 4.
 LURK13Extension extention_list<0...2^16>
 } SecretsRequest;

 struct {
 Secret secret_list<0..2^16-1>;
 Extension extention_list<0...2^16>
 } SecretsResponse;

 key_request: designates the requested secrets (see section
Section 4.1).

 handshake_context: designates the necessary messages so the CS is
 aware of the appropriated Handshake Context to generate the secrets
 (see section Section 4.3).

 extension_list: the list of extensions.

 secret_list: the list of requested secrets (see section Section 4.2).

4.4.1. Ephemeral Extension

 The Ephemeral structure carries the necessary information to generate
 the ECDHE input used to derive the secrets. This document describes
 two ways the shared secret can be generated: shared_secret_provided:
 When Diffie Hellman or ECDH keys and shared secret are generated by
 the TLS server and the shared secret is provided to the CS

 secret_generated: When the DH / ECDH keys and shared secret are
 generated by the CS.

4.4.1.1. shared_secret_provided:

 When ECDHE shared secret are not generated by the CS, the LURK client
 provides the shared secret value to the CS via the ephemeral
 extension. The shared secret is transmitted via the

Migault Expires October 26, 2020 [Page 10]

Internet-Draft LURK/TLS 1.3 April 2020

 EphemeralSharedSecret, constructed similarly to the key_exchange
 parameter of the KeyShareEntry described in [RFC8446] section 4.2.8.
 The CS MUST NOT return any data.

 struct {
 NamedGroup group;
 opaque shared_secret[coordinate_length];
 } EphemeralSharedSecret;

 Where coordinate_length depends on the chosen group. For secp256r1,
 secp384r1, secp521r1, x25519, x448, the coordinate_length is
 respectively 32 bytes, 48 bytes, 66 bytes, 32 bytes and 56 bytes.
 Upon receiving the shared_secret, the CS MUST check group is proposed
 in the KeyShareClientHello and agreed in the KeyShareServerHello.

4.4.1.2. secret_generated:

 When the ECDHE public/private keys are generated by the CS, the LURK
 client requests the CS the associated public value. Note that in
 such cases the CS would receive an incomplete Handshake Context from
 the LURK client with the public part of the ECDHE missing. Typically
 the ServerHello message would present a KeyShareServerHello that
 consists of a KeyShareEntry with an empty key_exchange field, but the
 field group is present.

 The CS MUST check the group field in the KeyShareServerHello, and get
 the public value of the TLS client from the KeyShareCLientHello. The
 CS performs the same checks as described in [RFC8446] section 4.2.8.
 The CS generates the private and public Diffie Hellman or ECDH keys,
 computes the shared key and return the KeyShareEntry server_share
 structure defined in [RFC8446] section section 4.2.8.

 Other methods may be defined in the future.

 This extension MUST NOT be sent outside the LURK exchanges mentioned
 below. When received outside these exchanges, the CS SHOULD return
 an invalid_extension error. When the ephemeral is not supported, an
 invalid_ephemeral error SHOULD be returned. The ephemeral extension
 MUST NOT appear more than once in a LURK session. When the
 extensions appears in more than one LURK exchange an
 invalid_ephemeral error SHOULD be returned

https://datatracker.ietf.org/doc/html/rfc8446#section-4.2.8
https://datatracker.ietf.org/doc/html/rfc8446#section-4.2.8
https://datatracker.ietf.org/doc/html/rfc8446

Migault Expires October 26, 2020 [Page 11]

Internet-Draft LURK/TLS 1.3 April 2020

 +-----------------------+----------+
 | LURK exchange | Presence |
 +-----------------------+----------+
s_init_early_secret	-
s_init_cert_verify	M
s_hand_and_app_secret	*
s_new_ticket	-
c_binder_key	*
c_init_early_secret	-
c_init_hand_secret	*
c_hand_secret	*
c_app_secret	-
c_cert_verify	-
c_register_ticket	-
c_post_hand	-
 +-----------------------+----------+
 M indicates the extension is mandatory
 - indicates the extension MUST NOT be provided
 * indicates the extension MAY be provided

 Figure 5: Ephemeral Extension presence per LURK exchange

 The extension data is defined as follows:

 enum { secret_provided(0), secret_generated(1) (255)} EphemeralMethod;

 EphemeralDataRequest {
 EphemeralMethod method;
 select(method) {
 case secret_provided:
 EphemeralSharedSecret shared_secret<0..2^16>;
 }
 }

 EphemeralDataResponse {
 select(method) {
 case secret_generated:
 KeyShareEntry server_share
 }
 }

4.4.2. PSK_id Extension

 The psk_id indicates the identity of the PSK used in the key
 schedule.

 The LURK client MUST provide this extension only when PSK or PSK-
 authentication is envisioned and when the PSK has not been provided

Migault Expires October 26, 2020 [Page 12]

Internet-Draft LURK/TLS 1.3 April 2020

 earlier. These exchanges are s_init_early_secret on the TLS server.
 On the TLS client side, these exchanges are c_binder_key,
 c_init_early_secret and c_init_hand_secret. The LURK client MUST NOT
 provide this extension outside these exchanges. When receiving the
 PSK extension outside these messages, the CS MUST NOT proceed to the
 exchange and SHOULD return a invalid_format error.

 +-----------------------+----------+
 | LURK exchange | Presence |
 +-----------------------+----------+
s_init_early_secret	M
s_init_cert_verify	-
s_hand_and_app_secret	-
s_new_ticket	-
c_binder_key	M
c_init_early_secret	M
c_init_hand_secret	*
c_hand_secret	-
c_app_secret	-
c_cert_verify	-
c_register_ticket	-
c_post_hand	-
 +-----------------------+----------+
 M indicates the extension is mandatory
 - indictaes the extension MUST NOT be provided
 * indicates the extension MAY be provided

 Figure 6: psk extension presence per LURK exchange

 The extension data is defined as follows:

 PskIdentity psk_id; //RFC8446 section 4.2.11

 When the psk extension is provided in LURK exchange that is not
 permitted an invalid_extension error SHOULD be returned.

 Upon receiving this extension in the permitted LURK exchange the CS
 checks the PSK is available. In case the PSK is not available, an
 invalid_psk error is returned. If the PSK is not provided, a default
 PSK is generated as described in [RFC8446] section 7.1. If the
 default PSK is not allowed then an invalid_psk is returned.

4.4.3. Freshness Extension

 The freshness_function provides perfect forward secrecy (PFS) and is
 used by the LURK client on the TLS client to generate the
 ClientHello.random or by the LURK client on the TLS server to

https://datatracker.ietf.org/doc/html/rfc8446#section-7.1

Migault Expires October 26, 2020 [Page 13]

Internet-Draft LURK/TLS 1.3 April 2020

 generate the ServerHello.random. When these randoms are provided to
 the CS, the freshness_function MUST be provided as well.

 Table Figure 7 lists the LURK exchange that MUST include the
 freshness function extension as well as those where the extension may
 be provided.

 +-----------------------+------------+
 | LURK exchange | Presence |
 +-----------------------+------------+
s_init_early_secret	-
s_init_cert_verify	M
s_hand_and_app_secret	M
s_new_ticket	-
c_binder_key	-
c_init_early_secret	M
c_init_hand_secret	M
c_hand_secret	-
c_app_secret	-
c_cert_verify	-
c_register_ticket	-
c_post_hand	-
 +-----------------------+------------+
 * indicates the extension MAY be provided
 M indicates the extension is mandatory
 - indictaes the extension MUST NOT be provided

 Figure 7: freshness_funct extension presence per LURK exchange

 The extension data is defined as follows:

 FreshnessFunct freshness_funct; // {{I-D.mglt-lurk-tls12}} section 4.1

 If the CS does not support the freshness_funct, an
 invalid_freshness_funct error is returned.

 Perfect forward secrecy is implemented in a similar manner as with
 the TLS 1.2 extension described in [I-D.mglt-lurk-tls12] section

4.1.1. As ServerHello.random in TLS 1.3 do not include time, it is
 not considered here. In addition, we use a specific context related
 to TLS 1.3.

 As a result, the ServerHello.random is generated as follows on the
 TLS server.

ServerHello.random = freshness_funct(server_random + "tls13 pfs srv");

Migault Expires October 26, 2020 [Page 14]

Internet-Draft LURK/TLS 1.3 April 2020

 The ClientHello.random is generated as follows on the TLS client
 side:

ClientHello.random = freshness_funct(server_random + "tls13 pfs clt");

 Perfect forward secrecy applies to the ServerHello.random on the TLS
 server and on the ClientHello.random on the TLS client. As a result,
 PFS is provided on the TLS server as long as the ServerHello is part
 of the Handshake Context. Similarly PFS is provided on the TLS
 client as long as ClientHello is part of the Handshake Context. On
 the TLS server, s_init_early_secret exchange do not have the
 ServerHello so this exchange is not protected by PFS later exchanges
 are. On the TLS client side, c_binder_key does not have any
 Handshake Context so this exchange is not protected by PFS. Later
 exchanges are.

4.4.4. Session ID Extension

 A LURK client and the CS are likely to establish a LURK session. A
 session is mandatory to be set when a given TLS session requires
 multiple interactions between the Lurk client and the CS. Stateless
 interactions MAY be possible with ECDHE authentication without
 session resumption. Other configuration MAY also use other
 configurations to determine the session, such as a TCP session for
 example, in which case multiplexing LURK sessions over a common
 transport layer is not possible.

 The LURK client indicates its willing to set a session as well as the
 session ID that should be used by the CS by inserting a Session ID
 Extension. The LURK client MAY only insert the Extension in a LURK
 message that initiates a session.

 Upon receiving the Session ID Extension in an unexpected message, the
 CS MUST return an invalid_extension error. Upon receiving the
 Session ID Extension in an expected LURK message, The CS MAY ignored
 the received extension indicating thus to the LURK client that no
 session ID are needed. The LURK client MUST NOT insert a session ID
 in the following messages. If the CS agrees on setting a LURK
 session, the CS will return the Extension back with the expected
 Session ID use for the communication between the LURK client and the
 CS. When a session ID has been agreed all remaining exchange contain
 the session ID provided by the peer.

 The CS MAY require a session ID being agreed between the LURK client
 and the CS. When the LURK client does not include the Session ID
 Extension, the CS MUST respond with an invalid_session_id error.

Migault Expires October 26, 2020 [Page 15]

Internet-Draft LURK/TLS 1.3 April 2020

 The policy to have session ID on LURK message is a policy that
 applies to the CS and LURK client cannot have different policies.
 When session ID are enabled, the CS expect every LURK message to have
 a session ID except for the initiating messages.

 +-----------------------+----------+
 | LURK exchange | Presence |
 +-----------------------+----------+
s_init_early_secret	*
s_init_cert_verify	*
s_hand_and_app_secret	-
s_new_ticket	-
c_binder_key	-
c_init_early_secret	*
c_init_hand_secret	*
c_hand_secret	
c_app_secret	-
c_cert_verify	-
c_register_ticket	-
c_post_hand	-
 +-----------------------+----------+
 * indicates the extension MAY be provided
 - indicates the extension MUST NOT be provided

 Figure 8: Presence of the Session ID Extension in the various LURK
 exchanges

 The extension data is defined as follows:

 uint32 session_id

 The session ID agreement leads to the definition of the following
 structure that will be embedded into any non initiating LURK
 exchange.

 struct{
 select(session_id_agreed){
 case True:
 unint32 session_id
 case False:
 }
 } SessionID

 session_id_agreed: indicates the LURK client and the CS have agreed
 on using session ID as well as the respective session ID value to
 use.

Migault Expires October 26, 2020 [Page 16]

Internet-Draft LURK/TLS 1.3 April 2020

 session_id can take the following values: 1. session_id_cs: the
 session ID provided by the CS to the LURK client in the Session ID
 extension. This is the value the LURK client MUST use in any
 subsequent exchange. That value will be used by the CS to associate
 its internal context to the session. 2. session_id_client: the
 session ID provided by the LURK client to the CS in the Session ID
 extension. This is the value the CS MUST use in any subsequent
 exchange. That value will be used by the LURK client to associate
 its internal context to the session.

4.5. Signing Sub-Exchange

 The signature requires the signature scheme (sig_algo), the
 designated private key (key_id), as well as sufficient context to
 generate the necessary data to be signed. In our case the necessary
 context is provided by the LURKCertificate, assuming the CS will have
 the necessary Handshake Context. The latest may be provided in a
 combination of a secret request.

 key_id is processed as described in [I-D.mglt-lurk-tls12] section
4.1. If the CS does not support the KeyPairIdType an

 invalid_key_id_type is returned. If the CS does not recognize the
 key, an invalid_key_id error is returned.

 sig_algo designates the signature algorithm scheme, and it is defined
 in {{!RFC8446} section 4.2.3. When the CS does not support the
 signature scheme an invalid_signature_scheme error is returned.

 The certificate is a public data that may repeat over multiple
 distinct TLS handshakes. To limit the load of unnecessary
 information being transmitted multiple times, the LURKCertificate
 enables to carry the index of the Certificate structure rather than
 the structure itself. When the lurk_certificate_type is set to
 sha256_32, the index of the Certificate structure is sent. The
 current specification generates the index using sha256_32, that is
 the first 32 bits of the hash of the Certificate structure using
 SHA256 as the hashing function. When lurk_certificate_type is set to
 X509 or RawPublicKey the full Certificate structure is expected.
 When the CS does not support the certificate_type, an
 invalid_certificate_type error is returned. When the Certificate
 structure does not match the private key, an invalid_certificate
 error is returned.

 Signing operations are described in [RFC8446] section 4.4.3. The
 context string is derived from the role and the type of the LURK
 exchange as described below. The Handshake Context is taken from the
 key schedule context.

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.3

Migault Expires October 26, 2020 [Page 17]

Internet-Draft LURK/TLS 1.3 April 2020

 +--------------------+-------------------------------------+
 | type | context |
 +--------------------+-------------------------------------+
 | s_init_cert_verify | "TLS 1.3, server CertificateVerify" |
 | c_cert_verify | "TLS 1.3, client CertificateVerify" |
 +--------------------+-------------------------------------+

 The CS computes the signature as described in [RFC8446] section
4.4.3. and returns signature in SigningResponse. When the CS does

 not have the necessary Handshake Context, context or is unable to
 proceeds to the signing operation, an invalid_certificate_verify
 error is returned.

 The structure is represented below:

 enum { X509(0), RawPublicKey(1),
 sha256_32(128) (255)}; LURK13CertificateType

 struct {
 LURK13CertificateType certificate_type;
 select (lurk_certificate_type) {
 case sha256_32:
 uint32 hash_cert;
 case X509, RawPublicKey:
 Certificate certificate; // RFC8446 section 4.4.2
 };
 } LURK13Certificate;

 struct {
 KeyPairId key_id; // draft-mglt-lurk-tls12 section 4.1
 SignatureScheme sig_algo; //RFC8446 section 4.2.3.
 LURKCertificate certificate;
 } SigningRequest;

 struct {
 opaque signature<0..2^16-1>; //RFC8446 section 4.4.3.
 } SigningResponse;

5. LURK exchange on the TLS server

 This section describes the LURK exchanges that are performed on the
 TLS server. The state diagram is provided in section Section 10.2

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.2
https://datatracker.ietf.org/doc/html/draft-mglt-lurk-tls12

Migault Expires October 26, 2020 [Page 18]

Internet-Draft LURK/TLS 1.3 April 2020

5.1. s_init_early_secret

 A TLS server MAY receive a ClientHello that proposes PSK or PSK-ECDHE
 authentication via the pre_shared_key and psk_key_exchange_modes
 extensions. Depending on its policies, the TLS server MAY decide to
 proceed to such authentication. It chooses a PSK identity so the
 LURK client initiates a key schedule context (ks_ctx) that will
 manage the session with the CS. This session is initiated with a
 s_init_early_secret exchange.

 The binder_key MUST be requested, since it is used to validate the
 PSK.

 The TLS client MAY indicate support for early application data via
 the early_data extension. Depending on the TLS server policies, it
 MAY accept early data and request the client_early_traffic_secret.

 The TLS server MAY have specific policies and request
 early_exporter_master_secret.

 Upon receiving an s_init_early_secret request, the CS proceeds the
 SecretRequest as described in section Section 4.4.

 The CS MUST check pre_shared_key and psk_key_exchange_modes
 extensions are present in the ClientHello. If these extensions are
 not present, a invalid_handshake error SHOULD be returned.

 The CS MUST ignore the client_early_traffic_secret if early_data
 extension is not found in the ClientHello. The Cryptographic Service
 MAY ignore the request for client_early_traffic_secret, in any case.
 The CS MAY ignored the request for early_exporter_master_secret.

 struct{
 SecretRequest secret_request
 } InitEarlySecretRequest

 struct{
 SecretResponse secret_response
 } InitEarlySecretResponse

 secret_request: The structure associated to the secret request
 defined in section Section 4.4

 secret_response: The structure associated to the secret request
 defined in section Section 4.4.

Migault Expires October 26, 2020 [Page 19]

Internet-Draft LURK/TLS 1.3 April 2020

5.2. s_init_cert_verify

 A TLS server MAY receive a ClientHello that proposes ECDHE
 authentication with a key_share extension. Depending on its
 policies, the TLS server MAY decide to proceed to such authentication
 and indicate it to the LURK client so it initiates a key schedule
 context (ks_ctx) that will manage the session with the CS. This
 session is initiated with a s_init_cert_verify exchange.

 The Cryptographic MUST ensure the ServerHello has selected the ECDHE
 authentication that is a key_share extension is present and no
 pre_shared_key extension is present. If these conditions are not
 met, a invalid_handshake error SHOULD be returned.

 In order to provide generate the client_application_traffic_secret_0
 and server_application_traffic_secret_0, the CS generates the server
 Finished. This value is computed to avoid multiple round trips.
 This value is not returned to the LURK client and needs to be
 computed again by the TLS server.

 After the exchange is completed, the TLS server is able to build and
 return the ServeHello and complete the TLS handshake.

 If the CS has been configured not to handle session resumption. The
 session is finished and ks_ctx SHOULD be deleted and some
 implementations MAY NOT create the ks_ctx.

 struct{
 SecretRequest secret_request
 SigingRequest signing_request
 }InitCertVerifyRequest

 struct{
 SecretResponse secret_response
 SigingResponse signing_response
 }InitCertVerifyResponse

 secret_request and secret_response are defined in section
Section 5.1.

5.3. s_hand_and_app_secret

 The s_hand_and_app_secret is necessary to complete the ServerHello
 and always follows an s_init_early_secret LURK exchange. Such
 sequence is guaranteed by the session_id and cookie mechanism. In
 case of unknown session_id or an unexpected cookie value, an
 invalid_request error SHOULD be returned.

Migault Expires October 26, 2020 [Page 20]

Internet-Draft LURK/TLS 1.3 April 2020

 The LURK client MUST ensure that PSK or PSK-ECDHE authentication has
 been selected via the presence of the pre_shared_key extension in the
 the ServerHello. In addition, the selected identity MUST be the one
 provided in the psk extension of the previous s_init_early_secret
 exchange.

 The LURK client MAY request the exporter_master_secret depending on
 its policies. The CS MAY ignore the request based on its policies.

 Similarly to the s_init_cert_verify, if session resumption is not
 provided by the CS, the LURK session ends after this exchange and
 ks_ctx SHOULD be removed.

 struct{
 SessionID session_id_cs
 SecretRequest secret_request
 } HandAndAppRequest

 struct{
 SessionID session_id_client
 SecretResponse secret_response
 } HandAndAppResponse

5.4. s_new_tickets

 new_session ticket handles session resumption. It enables to
 retrieve NewSessionTickets that will be forwarded to the TLS client
 by the TLS server to be used later when session resumption is used.
 It also provides the ability to delegate the session resumption
 authentication from the CS to the TLS server. In fact, if the LURK
 client requests and receives the resumption_master_secret it is able
 to emit on its own NewSessionTicket. As a result s_new_ticket LURK
 exchanges are only initiated if the TLS server expects to perform
 session resumption and the CS responds only if if session_resumption
 is enabled. If session resumption is not enabled, the Cryptographic
 MAY have ended the LURK session and the s_new_ticket will be ignored
 or responded with a invalid_request error.

 The CS MAY responds with a resumption_master_secret based on its
 policies.

 The LURK client MAY perform multiple s_new_ticket exchanges before
 the session between the LURK client and the CS is in a finished state
 with ks_ctx deleted.

Migault Expires October 26, 2020 [Page 21]

Internet-Draft LURK/TLS 1.3 April 2020

 struct {
 SessionID session_id_cs
 uint8 ticket_nbr;
 unint16 key_request;
 Handshake handshake_context<0..2^32> //RFC8446 section 4.
 } NewTicketRequest;

 struct {
 SessionID session_id_client
 Secrets secrets
 NewSessionTicket ticket_list<0..2^16-1>; //RFC8446 section 4.6.1.
 } NewTicketResponse;

 crypto_service_session_id, crypto_service_cookie,
 lurk_client_session_id, and lurk_client_cookie are defined in section

Section 5.3. key_request is defined in section Section 4.1.

 ticket_nbr: designates the requested number of NewSessionTicket. In
 the case of delegation this number MAY be set to zero. The CS MAY
 responds with less tickets when the value is too high.

6. LURK exchange on the TLS client

 This section describes the LURK exchanges that are performed on the
 TLS server. The state diagram is provided in section Section 10.1

6.1. c_binder_key

 The c_binder_key LURK exchange is initiates a LURK session when the
 TLS client is willing to propose a PSK for PSK or PSK-ECDHE
 authentication.

 The handshake_context is empty as the ClientHello is under
 construction.

 When a LURK client proposes multiple PSK, multiple binder_keys are
 requested.

 The c_binder_key is equivalent to a secret request LURK exchange and
 there is no creation of a ks_ctx.

   ``` struct{ SecretRequest secret_request } BinderKeyRequest

   struct{ SecretResponse secret_response } BinderKeyResposne ```



Migault                 Expires October 26, 2020               [Page 22]



Internet-Draft                LURK/TLS 1.3                    April 2020

6.2.  c_init_early_secret

   c_init_early_secret on the TLS client side works similarly as the
   s_init_early_secret LURK exchange on the TLS server as described in
   section Section 5.1.  One key difference is that the c_binder_key is
   not requested during that LURK exchange, as a result, this LURK
   exchange MAY be omited even when PSK or PSK-ECDHE authentication has
   been chosen by the TLS client.  The c_init_early_secret will only be
   performed in the case of 0-RTT handshake or when early exporters are
   required.

6.3.  c_hand_secret

   The c_hand_secret is performed after an c_init_early_secret LURK
   exchange.  This exchange is performed in the case of an PSK or PSK-
   ECDHE authentication and coherence with the Handshake Context MUST be
   checked by the LURK client as well as by the CS as described in

Section 6.2 and section Section 5.3.

   The structures of the c_hand_secret follow those of the
   s_hand_and_app_secret described in section Section 5.3.

6.4.  c_init_hand_secret

   Coherence between with the Handshake Context and the authentication
   ECDHE versus PSK or PSK-ECDHE) is performed as described in section

Section 6.2 and section Section 5.3.  The LURK client and the CS MUST
   ensure such coherence.  A Signing sub exchange MUST only be performed
   when ECDHE authentication has been selected which is determined by
   the presence of a key_share extension as well as the absence of a
   pre_shared_key extension in the ServerHello.

   Only the client_handshake_traffic_secret_0 and
   server_handshake_traffic_secret_0 secrets MAY be requested.



Migault                 Expires October 26, 2020               [Page 23]



Internet-Draft                LURK/TLS 1.3                    April 2020

   struct{
       SecretRequest secret_request
       select (handshake_context.ecdhe_selected){
           case :
               SigningRequest signing_request
       };
   }InitHandshakeRequest

   struct{
       SecretResponse secret_response
       select (handshake_context.ecdhe_selected){
           case :
               SigningResponse signing_response
       };
   }InitHandsahkeResponse

6.5.  c_app_secret

   The c_app_secret LURK exchange is performed when no TLS client
   authentication has been requested, i.e. CertificateRequest message is
   not provided in the flight of the ServerHello.  The LURK client and
   the CS MUST ensure no CertificateRequest is present in the Handshake
   Context.

   Only the client_application_traffic_secret_0 and
   server_application_traffic_secret_0 secrets MAY be requested.

   The structure follows the one of the c_hand_secret described in
   section Section 6.3.

   After the c_app_secret LURK exchange, unless the TLS client supports
   session resumption or post_handshake, the LURK session is finished.
   The support for post_handshake by the TLS client is indicated by the
   post_handshake_auth extension.

6.6.  c_cert_verify

   The c_cert_verify LURK exchange is performed when TLS client
   authentication has been requested by the TLS server.  When performed,
   the LURK client and the CS MUST check the presence of a
   CertificateRequest structure in the Handshake Context.  When not
   present, a invalid_handshake error SHOULD be returned.

   After the c_app_secret LURK exchange, unless the TLS client supports
   session resumption or post_handshake, the LURK session is finished.



Migault                 Expires October 26, 2020               [Page 24]



Internet-Draft                LURK/TLS 1.3                    April 2020

   The support for post_handshake by the TLS client is indicated by the
   post_handshake_auth extension.

   The CertVerifyRequest and CertVerifyResponse structures are used for
   this LURK exchange.

   struct{
       SessionID session_id_cs
       InitCertVerifyRequest cert_request
   }CertVerifyRequest

   struct{
       SessionID session_id_client
       InitCertVerifyRequest cert_response
   }CertVerifyResponse

6.7.  c_register_tickets

   The c_register_ticket is only used when the TLS client intend to
   perform session resumption.  This LURK exchange has three functions.
   First, it is used to register the handshake in order to provide the
   full TLS handshake.  Such information will be necessary to generate
   the PSK value during the future session resumptions.  Second, the
   LURK client MAY provide one or multiple NewSessionTickets.  These
   tickets will be helpful for the session resumption to bind the PSK
   value to some identities.  Third, the LURK client MAY retrieve the
   resumption_master_secret when session resumption is being delegated
   by the CS to the TLS client.

   The first c_register_ticket MUST carry the TLS handshake and future
   c_register_ticket LURK exchange MUST have a handshake_context of zero
   length.  If these conditions are not met, the CS SHOULD return a
   invalid_handshake error.

   The first c_register_ticket MAY request the
   session_resumption_master.  Next register_new_session MUST not
   request that secret.If these conditions are not met, a
   invalid_key_request error is returned.

   The ticket_list MAY have zero NewSessionTickets for the first
   register_new_Session_ticket.  Next LURK exchanges MUST have at least
   one NewSessionTickets.



Migault                 Expires October 26, 2020               [Page 25]



Internet-Draft                LURK/TLS 1.3                    April 2020

   struct {
       SessionID session_id_cs
       Handshake handshake_context<0..2^32>;     //RFC8446 section 4.
       NewSessionTicket ticket_list<0..2^16-1>; //RFC8446 section 4.6.1.
       uint16 key_request;
   } RegisterTicketRequest;

   struct {
       SessionID session_id_client
   } RegisterTicketResponse;

   crypto_service_session_id, crypto_service_cookie,
   lurk_client_session_id, and lurk_client_cookie are defined in section

Section 5.3. handshake_contex is defined in section Section 4.3.
   NewSessionTicket is defined in [RFC8466] section 4.6.1. key_request
   is defined in Section 4.1.

6.8.  c_post_hand

   The c_post_hand LURK exchange is performed in order to the client to
   authenticate after the TLS handshake has complete.  The TLS client
   MUST NOT proceed to this exchange if post handshake support has not
   been announced in the ClientHello with the post_handshake_auth
   extension.  When such extension is not found the CS MUST return a
   invalid_handshake error.

   struct {
       SessionID session_id_cs
       Handshake handshake_context<0..2^32>;     //RFC8446 section 4.
       int16 app_n;
   } PostHandRequest;

   struct {
       SessionID session_id_client
   } PostHandResponse;

   handshake_context is defined in section Section 4.3

   app_n: describes the number of iteration of the session keys.

7.  Security Considerations

   Security credentials as per say are the private key used to sign the
   CertificateVerify when ECDHE authentication is performed as well as
   the PSK when PSK or PSK-ECDHE authentication is used.

https://datatracker.ietf.org/doc/html/rfc8466#section-4.6.1


Migault                 Expires October 26, 2020               [Page 26]



Internet-Draft                LURK/TLS 1.3                    April 2020

   The protection of these credentials means that someone gaining access
   to the CS MUST NOT be able to use that access from anything else than
   the authentication of an TLS being established.  In other way, it
   MUST NOT leverage this for: * any operations outside the scope of TLS
   session establishment. * any operations on past established TLS
   sessions * any operations on future TLS sessions * any operations on
   establishing TLS sessions by another LURK client.

   The CS outputs are limited to secrets as well as NewSessionTickets.
   The design of TLS 1.3 make these output of limited use outside the
   scope of TLS 1.3.  Signature are signing data specific to TLS 1.3
   that makes the signature facility of limited interest outside the
   scope of TLS 1.3.  NewSessionTicket are only useful in a context of
   TLS 1.3 authentication.

   ECDHE and PSK-ECDHE provides perfect forward secrecy which prevents
   past session to be decrypted as long as the secret keys that
   generated teh ECDHE share secret are deleted after every TLS
   handshake.  PSK authentication does not provide perfect forward
   secrecy and authentication relies on the PSK remaining sercet.  The
   Cryptographic Service does not reveal the PSK and instead limits its
   disclosure to secrets that are generated from the PSK and hard to be
   reversed.

   Future session may be impacted if an attacker is able to authenticate
   a future session based on what it learns from a current session.
   ECDHE authentication relies on cryptographic signature and an ongoing
   TLS handshake.  The robustness of the signature depends on the
   signature scheme and the unpredictability of the TLS Handshake.  PSK
   authentication relies on not revealing the PSK.  The CS does not
   reveal the PSK.  TLS 1.3 has been designed so secrets generated do
   not disclose the PSK as a result, secrets provided by the
   Cryptographic do not reveal the PSK.  NewSessionTicket reveals the
   identity (ticket) of a PSK.  NewSessionTickets.ticket are expected to
   be public data.  It value is bound to the knowledge of the PSK.  The
   Cryptographic does not output any material that could help generate a
   PSK - the PSK itself or the resumption_master_secret.  In addition,
   the Cryptographic only generates NewSessionTickets for the LURK
   client that initiates the key schedule with CS with a specific way to
   generate ctx_id.  This prevents the leak of NewSessionTickets to an
   attacker gaining access to a given CS.

   If an the attacker get the NewSessionTicket, as well as access to the
   CS of the TLS client it will be possible to proceed to the
   establishment of a TLS session based on the PSK.  In this case, the
   CS cannot make the distinction between the legitimate TLS client and
   teh attacker.  This corresponds to the case where the TLS client is
   corrupted.



Migault                 Expires October 26, 2020               [Page 27]



Internet-Draft                LURK/TLS 1.3                    April 2020

   Note that when access to the CS on the TLS server side, a similar
   attack may be performed.  However the limitation to a single re-use
   of the NewSessionTicket prevents the TLS server to proceed to the
   authentication.

   Attacks related to other TLS sessions are hard by design of TLS 1.3
   that ensure a close binding between the TLS Handshake and the
   generated secrets.  In addition communications between the LURK
   client and the CS cannot be derived from an observed TLS handshake
   (freshness function).  This makes attacks on other TLS sessions
   unlikely.

8.  IANA Considerations

9.  Acknowledgments

10.  Annex

10.1.  LURK state diagrams on TLS client

   The state diagram sums up the LURK exchanges.  The notations used are
   defined below:

   LURK exchange indicates a LURK exchange is stated by the LURK client
   or is received by the CS ---> (resp. <---) indicates a TLS message is
   received (resp. received).  These indication are informative to
   illustrates the TLS state machine.

   CAPITAL LETTER indicates potential configuration parameters or policy
   applied by the LURK client or the CS.  The following have been
   considered:

   o  PSK, PSK-ECDHE, ECDHE that designates the authentication method.
      This choice is made by the LURK client.  The choice is expressed
      by a specific LURK exchange as well as from the TLS Handshake
      Context.

   o  SESSION_RESUMPTION indicates the session resumption has been
      enabled on the LURK client or the CS.  As a consequence the TLS
      client is considered performing session resumption and the TLS
      server MUST make session resumption possible.

   o  POST_HANDSHAKE_AUTH indicates that post handshake authentication
      proposed by the TLS client in a post_handshake_auth extension is
      not ignored by the LURK client or on the CS.



Migault                 Expires October 26, 2020               [Page 28]



Internet-Draft                LURK/TLS 1.3                    April 2020

   Note that SESSION_RESUMPTION, POST_HANDSAHKE_AUTH are mostly
   informative and the current specification does not mandate to have
   such configuration parameters.  By default, these SHOULD be enabled.

   Other potential configuration could be proposed for configuring LURK
   client or CS policies.  These have not been represented in the state
   diagram and the specification does not mandate to have these
   parameters implemented.

   o  CLIENT_EARLY_TRAFFIC indicates that client early traffic MAY be
      sent by the TLS client and the notification by the TLS client in
      the ClientHello via the early_data extension MUST be considered.

   o  EARLY_EXPORTER_MASTER_SECRET indicates whether or not
      early_exporter_master_secret MUST be requested by the LURK client
      and responded by the CS.

   o  MASTER_EXPORTER indicates whether or not exporter_master_secret
      MUST be requested by the LURK client and responded by the CS.

   o  SESSION_RESUMPTION_DELEGATION indicates whether or not
      session_resumption_master is requested by the LURK client and
      responded by the CS.

   o  MAX_SESSION_TICKET_NBR indicates the maximum number of tickers
      that can be requested or provided by the LURK client and provided
      by the CS.  It is strongly RECOMMENDED to have such limitations
      being configurable.

   The analysis of the TLS Handshake Context enables to set some
   variables that can be used by the LURK client to determine which LURK
   exchange to proceed as well as by the CS to determine which secret
   MAY be responded.  The following variables used are:

   psk_proposed: The TLS Client is proposing PSK authentication by
   including a pre_shared_key and a psk_key_exchange_mode extensions in
   the ClientHello.

   dhe_proposed: The received or to be formed ClientHello contains a
   key_share extensions.

   psk_accepted: The chosen authentication method is pSK or PSK-ECDHE
   which is indicated via the pre_shared_key extension in the
   ServerHello.

   0rtt_proposed: Indicates the TLS client supports early data which is
   indicated by the early_data extension in the ClientHello.



Migault                 Expires October 26, 2020               [Page 29]



Internet-Draft                LURK/TLS 1.3                    April 2020

   post_handshake_proposed: indicates the TLS client supports post
   handshake authentication which is indicated by the presence of a
   post_handshake_auth extension in the ClientHello.

   finished: indicates that the LURK client or the CS has determined the
   session shoudl be closed an ks_ctx are deleted.

   The CS contains three databases:

   CTX_ID_DB: database that contains the valid ctx_id of type opaque.

   PSK_DB: contains the list of PSKs, with associated parameters such as
   Hash function.  This database includes the session resumption
   tickets.

   Key_DB: contains the asymetric signing keys with supported signing
   algorithms.

10.1.1.  LURK client



Migault                 Expires October 26, 2020               [Page 30]



Internet-Draft                LURK/TLS 1.3                    April 2020

                 TLS Client Policy for authentication
                 PSK, PSK-ECDHE                    ECDHE
                          |                           |
                          |                           |
                          v                           |
     psk  ---> +--------------------+                 |
               | c_binder_key       |                 |
               +--------------------+                 |
   EARLY_EXPORTER, 0-RTT  |                           |
                   v      |                           |
               /------------------------\ NO          |
               \------------------------/----+        |
                      YES v                  |        |
               +---------------------+       |        |
               | c_init_early_secret |       |        |
               +---------------------+       |        |
   ClientHello            |                  |        |
   <----                  +<-----------------+--------+
   ServerHello        YES v
         ----> +-------------------------------------+
               | c_init_hand_secret or c_hand_secret |
               +-------------------------------------+
                          |
               /--------------------\ NO
               | CertificateRequest |------+
               \--------------------/      |
                      YES v                v
               +-------------------+------------------+
               |   c_cert_verify   |   c_app_secret   |
               +-------------------+------------------+
   client Finished     |                     |
   <----               +-----------+---------+
                                   |
                +--------------------------------------+
                | LURK client post handshake exchanges |
                +--------------------------------------+

   The LURK client post handshake diagram is represented below:



Migault                 Expires October 26, 2020               [Page 31]



Internet-Draft                LURK/TLS 1.3                    April 2020

 POST_HANDSHAKE_AUTH  |
           v          v
        /-------------------------\ NO
        | post_hand_auth_proposed |------+
        \-------------------------/      |
                  YES v                  |
      +-----------------------------+    |
      | c_register_tickets          |    |
      | (empty NewSessionTickets)   |    |
      +-----------------------------+    |
                      |                  |
                      +<-----------------+
                      |
                      +<-----------------------------------------------+
                      |                                                |
                      +------------------------------+                 |
   SESSION_RESUMPTION |          POST_HANDSHAKE_AUTH |                 |
 client Finished  |   |  CertificateRequest     |    |                 |
 NewSessionTickets|   |           |             v    v                 |
      |           v   v           |     /-------------------------\NO  |
      |      /-------------\ NO   +---> | post_hand_auth_proposed |--+ |
      +----> \-------------/---------+  \-------------------------/  | |
               YES v                 |         YES v                 | |
     +-----------------------------+ |  +-------------------------+  | |
     |     c_register_ticket       | |  |       c_post_hand       |  | |
     +-----------------------------+ |  +-------------------------+  | |
                   v                 v              v                | |
                   +-----------------+----------+---+----------------+ |
                                                v                      |
                                       /--------------------\ NO       |
                                       |      finished      |----------+
                                       \--------------------/
                                             YES v
                                    +-------------------------+
                                    | LURK exchanges Finished |
                                    +-------------------------+

10.1.2.  Cryptographic Service



Migault                 Expires October 26, 2020               [Page 32]



Internet-Draft                LURK/TLS 1.3                    April 2020

    TLS13Request
      |
   /---------------------------\NO  /-------------------------------\NO
   | type is c_init_early_secret|-->| type is c_init_hand_secret     |-+
   \---------------------------/    \-------------------------------/ |
      |                              |             +------------------+
      |                 +------------+             |
      |                 v                          |
      |      /-------------------\NO     /----------------\NO
      |      |  psk_selected     |-+     | session,cookie |   +-------+
      |      \------------------ / |     | consistent     |---| ERROR |
      |            YES |           |     \----------------/   +-------+
      +----------------+           |               |
        PSK, PSK-ECDHE |           |   ECHDE       |
                       v           +-------------+ |
              /-------------------\NO +-------+  | |
              | psk_key in PSK_DB |---| ERROR |  | |
              \-------------------/   +-------+  | |
                       +-------------------------+ |
                       |                           |
              +-------------+                      |
              | Init ks_ctx |                      |
              +-------------+                      |
                       |                           |
                       +---------------------------+
                                   |
                                   v
                      +---------------------------+
                      | process the request       |
                      | update CTX_DB, PSK_DB     |
                      +---------------------------+

10.2.  LURK state diagrams on TLS server

10.2.1.  LURK client



Migault                 Expires October 26, 2020               [Page 33]



Internet-Draft                LURK/TLS 1.3                    April 2020

                   TLS Server Policy for authentication
  received      PSK, PSK-ECDHE,                   ECDHE
  ClientHello            |                          |
        ---->            v                          v
    psk  ---->+----------------------+    +----------------------+
              | Init ks_ctx          |    | Init ks_ctx          |
              +----------------------+    +----------------------+
                         v                           |
              +---------------------+                |
              | s_init_early_secret        |                |
              +---------------------+                |
                         |                           |
  to be formed       YES v                           v
  ServerHello +--------------------------+   +-------------------------+
        ----> | s_hand_and_app_secret    |   | s_init_cert_verify      |
              +--------------------------+   +-------------------------+
                         |                           |
                         +---------------------------+
                                        |
                                        v
                      +--------------------------------------+
                      | LURK client post handshake exchanges |
                      +--------------------------------------+

10.2.2.  Cryptographic Service



Migault                 Expires October 26, 2020               [Page 34]



Internet-Draft                LURK/TLS 1.3                    April 2020

          TLS13Request
                |
   /---------------------------\NO  /---------------------------\NO
   |type is s_init_early_secret|-->| type is s_init_cert_verify |-+
   \---------------------------/    \---------------------------/ |
   PSK,        |                             +--------------------+
   PSK-ECDHE   v                             |
    /-------------------\NO +-------+ /----------------\NO
    | psk_key in PSK_DB |---| ERROR | | session,cookie |   +-------+
    \-------------------/   +-------+ | consistent     |---| ERROR |
               |                      \----------------/   +-------+
               v                             |
        +-------------+                      |
        | Init ks_ctx |                      |
        +-------------+                      |
               |                             |
               +-----------------------------+
                             |
                             v
                +---------------------------+
                | process the request       |
                | update CTX_DB, PSK_DB     |
                +---------------------------+

10.3.  TLS handshakes with Cryptographic Service

   This section is non normative.  It illustrates the use of LURK in
   various configurations.

   The TLS client may propose multiple ways to authenticate the server
   (ECDHE, PSK or PSK-ECDHE).  The TLS server may chose one of those,
   and this choice is reflected by the LURK client on the TLS server.
   In other words, this decision is out of scope of the CS.

   The derivation of the secrets is detailed in {{!RFC8446)) section
7.1.  Secrets are derived using Transcript-Hash and HKDF, PSK and

   ECDHE secrets as well as some Handshake Context.

   The Hash function: When PSK or PSK-ECDHE authentication is selected,
   the Hash function is a parameter associated to the PSK.  When ECDHE,
   the hash function is defined by the cipher suite algorithm
   negotiated.  Such algorithm is defined in the cipher_suite extension
   provided in the ServerHello which is provided by the LURK client in
   the first request when ECDHE authentication is selected.

   PSK secret: When PSK or PSK-ECDHE authentication is selected, the PSK
   is the PSK value identified by the identity.  When ECDHE

https://datatracker.ietf.org/doc/html/rfc8446


Migault                 Expires October 26, 2020               [Page 35]



Internet-Draft                LURK/TLS 1.3                    April 2020

   authentication is selected, the PSK takes a default value of string
   of Hash.length bytes set to zeros.

   ECDHE secret: When PSK or PSK-ECDHE authentication is selected, the
   ECDHE secret takes the default value of a string of Hash.length bytes
   set to zeros.  The Hash is always known as a parameter associated to
   the selected PSK.  When ECDHE authentication is selected, the ECDHE
   secret is generated from the secret key (ephemeral_sercet) provided
   by the LURK client and the counter part public key in the key_share
   extension.  When the LURK client is on the TLS client, the public key
   is provided in the ServerHello.  When the LURK client is on the TLS
   Server, the public key is provided in the ClientHello.  When ECDHE
   secret is needed, ClientHello...ServerHello is always provided to the
   CS.

   Handshake Context: is a subset of Handshake messages that are
   necessary to generated the requested secrets.  The various Handshake
   Contexts are summarized below:

 +------------------------------------+--------------------------------+
 | Key Schedule secret or key         | Handshake Context              |
 +---------------------------------------------------------------------+
 | binder_key                          | None                          |
 | client_early_traffic_secret         | ClientHello                   |
 | early_exporter_master_secret        | ClientHello                   |
 | client_handshake_traffic_secret     | ClientHello...ServerHello     |
 | server_handshake_traffic_secret     | ClientHello...ServerHello     |
 | client_application_traffic_secret_0 | ClientHello...server Finished |
 | server_application_traffic_secret_0 | ClientHello...server Finished |
 | exporter_master_secret              | ClientHello...server Finished |
 | resumption_master_secret            | ClientHello...client Finished |
 +---------------------------------------------------------------------+

   The CS has always the Hash function, the PSK and ECDHE secrets and
   the only remaining parameter is the Handshake Context.  The remaining
   sections will only focus on checking the Handshake Context available
   to the CS is sufficient to perform the key schedule.

   When ECDHE authentication is selected both for the TLS server or the
   TLS client, a CertificateVerify structure is generated as described
   in [RFC8446] section 4.4.3.. CertificateVerify consists in a
   signature over a context that includes the output of Transcript-
   Hash(Handshake Context, Certificate) as well as a context string.
   Both Handshake Context and context string depends on the Mode which
   is set to server in this case via the configuration of the LURK
   server.  Similarly to the key schedule, the Hash function is defined
   by the PSK or the ServerHello.  The values for the Handshake Context
   are represented below:

https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.3


Migault                 Expires October 26, 2020               [Page 36]



Internet-Draft                LURK/TLS 1.3                    April 2020

   +-----------+-------------------------+-----------------------------+
   | Mode      | Handshake Context       | Base Key                    |
   +-----------+-------------------------+-----------------------------+
   | Server    | ClientHello ... later   | server_handshake_traffic_   |
   |           | of EncryptedExtensions/ | secret                      |
   |           | CertificateRequest      |                             |
   |           |                         |                             |
   | Client    | ClientHello ... later   | client_handshake_traffic_   |
   |           | of server               | secret                      |
   |           | Finished/EndOfEarlyData |                             |
   |           |                         |                             |
   | Post-     | ClientHello ... client  | client_application_traffic_ |
   | Handshake | Finished +              | secret_N                    |
   |           | CertificateRequest      |                             |
   +-----------+-------------------------+-----------------------------+

   When ECDHE authentication is selected, the CS generates a Finished
   message, which is a MAC over the value Transcript-Hash(Handshake
   Context, Certificate, CertificateVerify) using a MAC key derived from
   the Base Key. As a result, the same Base Key and Handshake Context
   are required for its computation describe din [RFC8466] section

4.4.4..

10.4.  TLS 1.3 ECDHE Full Handshake

   This example illustrates the case of a TLS handshake where the TLS
   server is authenticated using ECDHE only, that is not PSK or PSK-
   ECDHE authentication is provided and so session resumption is
   provided either.

10.4.1.  TLS Client: ClientHello

   The TLS client does not provides any PSK and omits the pre_shared_key
   as well as the psk_key_exchange_mode extensions.  Note that omitting
   the psk_key_exchange_mode extension prevents the TLS client to
   perform further session resumption.

   The TLS client does not need any interaction with the Cryptographic
   Service to generate and send the ClientHello message to the TLS
   server.

   TLS Client                                   TLS Server

       Key  ^ ClientHello
       Exch | + key_share
            v + signature_algorithms --------->

https://datatracker.ietf.org/doc/html/rfc8466


Migault                 Expires October 26, 2020               [Page 37]



Internet-Draft                LURK/TLS 1.3                    April 2020

10.4.2.  TLS Server: ServerHello

   Upon receiving the ClientHello, the TLS server determines the TLS
   client requests an ECDHE authentication.  The TLS server initiates a
   LURK session to provide ECDHE authentication as represented below:

   TLS Client                                   TLS Server

                                                ServerHello  ^ Key
                                                + key_share  | Exch
                                      {EncryptedExtensions}  ^  Server
                                      {CertificateRequest*}  v  Params
                                              {Certificate}  ^
                                        {CertificateVerify}  | Auth
                                                 {Finished}  v
                             <--------  [Application Data*]

   The LURK Client on the TLS server initiates a s_init_cert_verify to
   retrieves the necessary secrets to finish the exchange and request
   the generation of the signature (certificate_verify) carried by the
   CertificateVerify TLS structure.

   The s_init_cert_verify request uses a InitCertVerifyRequest structure
   which is composed of two substructures: A SecretRequest structure
   (secret_request) is in charge of requesting the necessary secrets to
   decrypt and encrypt the TLS handshake as well as the applications
   carried over the TLS session.  Finally a SigningRequest substructure
   (signing_request) is used to request the certificate_verify payload.

   The secret_request carries the requested secrets as well as the
   necessary parameters to generate the secrets.  In our case, the
   requested secrets are the handshake secrets (h_c, h_s) as well as the
   application secrets (a_c, a_s).  This corresponds to the most
   expected use cases, though other use case may require different
   secrets to be requested.  Theses requests are indicated in the
   key_request.  The necessary Handshake Context is provided through
   handshake_context which is set to ClientHello ...
   EncryptedExtensions.  The ECDHE shared secret is provided in this
   example via the ephemeral extension.  In our case, the secret key is
   provided directly thought other means may be used.  In particularly
   providing the secret key implies the dhe parameters have been
   generated outside the CS.  The freshness function is provided through
   the freshness extension.

   The signing_request provides the key_id that identifies the private
   key used to generate the signature, the algorithm use dto generate
   the signature (sig_algo) as well as the certificate.  The certificate
   carries information to generate the Certificate structure of the



Migault                 Expires October 26, 2020               [Page 38]



Internet-Draft                LURK/TLS 1.3                    April 2020

   ServerHello, and may not be the complete certificate chain but only
   an index.

   TLS Server
   Lurk Client                              CS
           InitCertVerifyRequest
             secret_request
               key_request = h_c, h_s, a_c, a_s
               handshake_context = ClientHello ... EncryptedExtensions
               ext
                 ephemeral = dhe_secret
                 freshness
                 session_id
             signing_request
               key_id,
               sig_algo
               certificate
                                     -------->
                                            InitCertVerifyResponse
                                              secret_response
                                                keys
                                                ext
                                                  session_id
                                              signing_response
                                                certificate_verify
                                      <---------

   Upon receiving the InitCertificateRequest, the CS initiates a context
   associated to the newly created LURK session.

   The secrets are generated from the TLS 1.3 key schedule describe din
   [RFC8446] and requires as input PSK, ECDHE as well as some context
   handshake.

   The CS determine that ECDHE without specific PSK is used from the
   ClientHello and associated extensions.  As a result, the default PSK
   value is used.  The ECDHE share secret is derived, in our case from
   the dhe_secret of the TLS server and the public dhe value provided by
   the ClientHello shared_key extension.

   The CS reads the freshness extension and generates the
   handshake_context that will be used further.

   The necessary Handshake Context to generate the handshake secrets is
   ClientHello...ServerHello which is provided by the handshake_context.
   The CS uses the freshness function provided in the freshness
   extension to derive the appropriated server.random.

https://datatracker.ietf.org/doc/html/rfc8446


Migault                 Expires October 26, 2020               [Page 39]



Internet-Draft                LURK/TLS 1.3                    April 2020

   The generation of the CertificateVerify is described in [RFC8446]
   section 4.4.3. and consists in a signature over a context that
   includes the output of Transcript-Hash(Handshake Context,
   Certificate) as well as a context string.  Both Handshake Context and
   context string depends on the Mode which is set to server in this
   case via the configuration of the LURK server.

   The necessary Handshake Context to generate the CertificateVerify is
   ClientHello ... later of EncryptedExtensions / CertificateRequest.
   In our case, this is exactly handshake_context, that is ClientHello
   ... EncryptedExtensions.  The Certificate payload is generated from
   the information provided in the certificate extension.

   Once the certificate_verify value has been defined, the LURK server
   generates the server Finished message in order to have the necessary
   Handshake Context ClientHello...server Finished to generate the
   application secrets.

   The LURK server returns the requested keys, the certificate_verify in
   a InitCertVerifyResponse structure.  This structure is composed of
   the two substructures: SecretResponse that contains the secrets and
   SigningResponse that contains the certificate_verify.

   The TLS server can complete the ServerHello response, that is proceed
   to the encryption and generates the Finished message.

   As session resumption is not provided, the LURK server goes into a
   finished state and delete the ks_ctx.  The special case described in
   this session does not use LURK session and as such may be stateless.

10.4.3.  TLS client: client Finished

   Upon receiving the ServerHello message, the TLS client retrieve the
   handshake and application secrets to decrypt the messages received
   from server as well as to encrypt its own messages and application
   data as represented below:

   TLS Client                                   TLS Server

         {Finished}              -------->
         [Application Data]      <------->  [Application Data]

   To retrieves these secrets, the TLS client proceeds successively to
   an c_init_hand_secret LURK exchange followed by a c_app_secret LURK
   exchange.

   The c_init_hand_secret exchange is composed of one substructure:
   (secret_request) to request the secrets.  Optionally, a

https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.3
https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.3


Migault                 Expires October 26, 2020               [Page 40]



Internet-Draft                LURK/TLS 1.3                    April 2020

   SigningRequest (signing_request) when the TLS server requests the TLS
   client to authenticate itself.  The indication of a request for TLS
   client authentication is performed by the TLS server by providing a
   CertificateRequest message associated to the ServerHello.  We
   consider that such request has not been provided here so the
   SigingRequest structure is not present.

   The secret_request specifies the secrets requested via the
   key_request.  In our case only the handshake secrets are requested
   (h_c, h_s).  In this example the ECDHE share secret is provided via
   the ephemeral extension.  In this case the ECDHE secrets have been
   generated by the TLS client, and the TLS client chooses to provide
   the ephemeral secret (dhe_secret) to the CS via the ephemeral
   extension.  The TLS client also provides the freshness function via
   the freshness extension so the handshake_context can be appropriately
   be interpreted.  The handshake context is provided via the
   handshake_context and is set to ClientHello ... ServerHello.

   Note that if the TLS client would have like the CS to generate the
   ECDHE public and private keys, the generation of the keys would have
   been made before the ClientHello is sent, that is in our case during
   a c_init_early_secret LURK exchange.  If that had been the case a
   c_hand_secret LURK exchange would have followed and not a
   c_init_hand_secret exchange.



Migault                 Expires October 26, 2020               [Page 41]



Internet-Draft                LURK/TLS 1.3                    April 2020

   TLS Client
   Lurk Client                              Cryptographic Service
           InitHandshakeSecretRequest
             secret_request
               key_request = h_c, h_s
               handshake_context = ClientHello ... ServerHello
               ext
                 ephemeral = dhe_secret
                 freshness
                 session_id
               ------->

                                     InitHandshakeSecretResponse
                                       secret_response
                                       ext
                                           session_id
                              <--------  keys
   TLS Client
   Lurk Client                              Cryptographic Service
           AppSecretRequest
             session_id
             cookie
             secret_Request
               key_request
               handshake_context
               ------->

                                     AppSecretResponse
                                       session_id
                                       cookie
                                       secret_response
                              <--------  keys

   Upon receiving the InitHandshakeSecretRequest, the servers initiates
   a LURK session context (ks_ctx) and initiates a key schedule.  The
   key schedule requires PSK, ECDHE as well as Handshake Context to be
   complete.  As no pre_shared_key and psk_key exchange_modes are found
   in the ClientHello the CS determines that ECDHE is used for the
   authentication.  The PSK is set to its default value.  The ECHDE
   shared secret is generated from the ephemeral extension as well as
   the public value provided in the ClientHello.  The CS takes the
   freshness function and generates the appropriated handshake context.
   The necessary Handshake Context to generate handshake secrets is
   ClientHello...ServerHello which is provided by the handshake_context.

   The handshake secrets are returned in the secret_response to the TLS
   client.  The TLS client decrypt the encrypted extensions and messages
   of the ServerHello exchange.



Migault                 Expires October 26, 2020               [Page 42]



Internet-Draft                LURK/TLS 1.3                    April 2020

   As no CertificateREquest appears, the LURK client initiates an
   app_secret LURK exchange decrypt and encrypt application data while
   finishing the TLS handshake.

   The AppSecretRequest structure uses session_id and cookies as agreed
   in the previous c_init_hand_secret exchange.  The AppSecretRequest
   embeds a SecretRequest sub structure.  The application secrets
   requested are indicated by the key_request (a_s, a_s).  The Handshake
   Context (handshake_context) is set to server EncryptedExtensions ...
   server Finished.

   Upon receiving the AppSecretRequest, the CS checks the session_id.
   The CS has now the ClientHello ... server Finished which enables it
   to compute the application secrets.

   As no session resumption is provided, the CS and the LURK client goes
   into a finished state and delete their ks_ctx.

10.5.  TLS 1.3 Handshake with session resumption

   This scenario considers that the TLS server is authenticated using
   ECDHE only in the first time and that further TLS handshake use the
   session resumption mechanism.  The first TLS Handshake is very
   similar as the previous one.  The only difference is that
   psk_key_exchange_mode extension is added to the ClientHello.
   However, as no PSK identity is provided, the Full exchange is
   performed as described in section Section 10.4.

   The only change is that session resumption is activated, and thus
   LURK client and LURK servers do not go in a finished state and close
   the LURK session after the exchanges are completed.  Instead further
   exchanges are expected.  Typically, on the TLS server side
   new_Session_ticket exchanges are expected while
   registered_session_ticket are expected on the client side.

   When session resumption is performed, a new LURK session is
   initiated.

10.5.1.  Full Handshake

   The Full TLS Handshake use ECDHE authentication.  It is very similar
   to the logic described in section Section 10.4.  The TLS handshake is
   specified below for convenience.



Migault                 Expires October 26, 2020               [Page 43]



Internet-Draft                LURK/TLS 1.3                    April 2020

  TLS Client                                   TLS Server

      Key  ^ ClientHello
      Exch | + key_share
           | + psk_key_exchange_mode
           v + signature_algorithms --------->
                                               ServerHello  ^ Key
                                               + key_share  | Exch
                                     {EncryptedExtensions}  Server Param
                                             {Certificate}  ^
                                       {CertificateVerify}  | Auth
                                                {Finished}  v
                            <--------  [Application Data*]
        {Finished}              -------->
        [Application Data]      <------->  [Application Data]

10.5.2.  TLS server: NewSessionTicket

   As session resumption has been activated by the
   psk_key_exchange_mode, the TLS Server is expected to provide the TLS
   client NewSessionTickets as mentioned below:

   TLS Client                                   TLS Server
                             <--------      [NewSessionTicket]

   The LURK client and LURK server on the TLS server does not go into a
   finished state.  Instead, the LURK client continues the LURK session
   with a NewTicketRequest to enable the CS to generate the
   resumption_master_secret necessary to generate the PSK and generate a
   NewTicketSession. ticket_nbr indicates the number of
   NewSessionTickets and handshake_context is set to earlier of client
   Certificate client CertificateVerify ... client Finished.  As we do
   not consider TLS client authentication, the handshake_context is set
   to client Finished as represented below.

   TLS Server
   Lurk Client                              Cryptographic Service
           NewTicketRequest
             session_id
             cookie
             ticket_nbr
             handshake_context=client Finished  -------->
                                            NewTicketResponse
                                              session_id
                                              cookie
                                 <---------   tickets



Migault                 Expires October 26, 2020               [Page 44]



Internet-Draft                LURK/TLS 1.3                    April 2020

   The necessary Handshake Context to generate the
   resumption_master_secret is ClientHello...client Finished.  From the
   InitCerificateVerify the context_handshake was set to
   ClientHello...server Finished.  The additional handshake_context
   enables the CS to generate the NewSessionTickets.

   Note that the LURK client on the TLS server may send multiple
   NewTicketRequest.  Future request have an empty handshake_context.

   Upon receiving the NewTicketRequest, the LURK server checks the
   session_id and cookie.  It then generates the
   resumption_master_secret, NewSessionTickets.  NewSessionTickets are
   stored into the PSK_DB under NewSessionTicket.ticket.  Note that PSK
   is associated with the authentication mode as well as the Hash
   function negotiated for the cipher suite.  The CS responds with
   NewSessionTickets that are then transmitted back to the TLS client.
   The TLS server is ready for session resumption.

10.5.3.  TLS client: NewSessionTicket

   Similarly, the LURK client on the TLS client will have to provide
   sufficient information to the CS the necessary PSK can be generated
   in case of session resumption.  This includes the remaining Handshake
   Context to generate the resumption_master_secret as well as
   NewSessionTickets provided by the TLS server.  The LURK client uses
   the c_register_ticket exchange.

   Note that the LURK client may provide the handshake_context with an
   empty list of NewSessionTickets, and later provide the
   NewSessionTickets as they are provided by the TLS server.  The
   Handshake Context only needs to be provided for the first
   RegisterTicketRequest.

   TLS Client
   Lurk Client                              Cryptographic Service
           NewTicketRequest
               session_id
               cookie
               handshake_context=client Finished
               ticket_list            -------->
                                            NewTicketResponse
                                              session_id
                                              cookie
                                 <---------   tickets

   Both TLS client and TLS Servers are ready for further session
   resumption.  On both side the CS stores the PSK in a database
   designated as PSK_DB.  Each PSK is associated to a Hash function as



Migault                 Expires October 26, 2020               [Page 45]



Internet-Draft                LURK/TLS 1.3                    April 2020

   well as authentication modes.  Each PSK is designated by an identity.
   The identity may be a label, but in our case the identity is derived
   from the NewSessionTicket.ticket.

10.5.4.  Session Resumption

   Session resumption is initiated by the TLS client.  Session
   resumption is based on PSK authentication and different PSK may be
   proposed by the TLS client.  The TLS handshake is presented below.

   TLS Client                                   TLS Server
          ClientHello
          + key_share
          + psk_key_exchange_mode
          + pre_shared_key          -------->
                                                          ServerHello
                                                     + pre_shared_key
                                                         + key_share
                                                {EncryptedExtensions}
                                                           {Finished}
                                    <--------     [Application Data*]

   The TLS client may propose to the TLS Server multiple PSKs.  Each of
   these PSKs is associated a PskBindersEntry defined in [RFC8446]
   section 4.2.11.2.  PskBindersEntry is computed similarly to the
   Finished message using the binder_key and the partial ClientHello.

   The TLS server is expected to pick a single PSK and validate the
   binder.  In case the binder does not validate the TLS Handshake is
   aborted.  As a result, only one binder_key is expected to be
   requested by the TLS server as opposed to the TLS client.

   In this example we assume the psk_key_exchange_mode indicated by the
   TLS client supports PSK-ECDHE as well as PSK authentication.  The
   presence of a pre_shared_key and a key_share extension in the
   ServerHello inidcates that PSK-ECDHE has been selected.

10.5.4.1.  TLS client: ClientHello

   To compute binders, the TLS Client needs to request the binder_key
   associated to each proposed PSK.  These binder_keys are retrieved to
   the CS using the BinderKeyRequest.  The key_request is set to
   binder_key, and the PSK_id extension indicates the PSK's identity
   (PSKIdentity.identity or NewSessionTicket.ticket).  No Handsahke
   Context is needed and handshake_context is empty.

https://datatracker.ietf.org/doc/html/rfc8446#section-4.2.11.2
https://datatracker.ietf.org/doc/html/rfc8446#section-4.2.11.2


Migault                 Expires October 26, 2020               [Page 46]



Internet-Draft                LURK/TLS 1.3                    April 2020

   TLS Client
   Lurk Client                              Cryptographic Service
           BinderKeyRequest
             key_request=binder_key
             handshake_context=""
             ext
               PSK_id
                                            BinderKeyResponse
                                 <---------   key

   Upon receiving the BinderKeyRequest, the CS checks the psk is in the
   PSK_DB and returns the binder_key.

   With the binder keys, the TLS Client is able to send it ClientHello
   message.

   We assume in this example that the ECDHE secrets is generated by the
   TLS client and not the Cryptographic service.  As a result, the TLS
   client does not need an extra exchange to request the necessary
   parameters to derive the key_shared extension.

10.5.4.2.  TLS server: ServerHello

   The TLS server is expected to select a PSK, check the associated
   binder and proceed further.  If the binder fails, it is not expected
   to proceed to another PSK, as a result, the TLS server is expected to
   initiates a single LURK session.

   The binder_key is requested by the TLS server via and
   s_init_early_secret LURK exchange.  The InitEarlySecretRequest
   structure is composed of a SecretRequest structure (secret_request).

   In our case, only the binder_key is requested so key_request is set
   to binder_key only.  Similarly, to the TLS client, the
   handshake_context is not needed to generate the binder_key.  However,
   the EarlySecret exchange requires the ClientHello to be provided so
   early secrets may be computed in the same round during 0-RTT
   handshake.  The chosen PSK is indicated in the PSK_id extension and
   the freshness function is indicated in the freshness extension.



Migault                 Expires October 26, 2020               [Page 47]



Internet-Draft                LURK/TLS 1.3                    April 2020

   TLS Server
   Lurk Client                              Cryptographic Service
           InitEarlySecretRequest
             secret_Request
               key_request=binder_key
               handshake_context=ClientHello
               ext
                 freshenss
                 PSK_id
                 session_id
                                            InitEarlySecretResponse
                                              secret_response
                                   <---------   key
                                                ext
                                                  session_id

   To complete to the ServerHello exchange, the TLS server needs the
   handshake and application secrets.  These secrets are requested via
   an s_hand_and_app_secret LURK exchange.  The
   HandshakeAndAppSecretRequest is composed of SecretRequest structure.
   The key_request is set to handshake (h_c, h_s) and application
   secrets (a_s, a_c).  The Handshake Context (handshake_context) is set
   to ServerHello ... EncryptedExtensions as their is no authentication
   of the TLS client.  Finally, the ephemeral ECDHE is provided or
   requested via the ephemeral extension.  In our case, we assume the
   ephemeral secrets is generated by the tLS client is provided to the
   CS.

   The necessary Handshake Context to generate the handshake secrets is
   ClientHello ... ServerHello, so the CS can generate the handshake
   secrets.  The necessary Handshake Context to generate the application
   secrets is ClientHello ... server Finished.  So the CS needs to
   generate the Finished message before as in the case of the
   InitCerificateVerify exchange detailed in Section 10.5.1.



Migault                 Expires October 26, 2020               [Page 48]



Internet-Draft                LURK/TLS 1.3                    April 2020

   TLS Server
   Lurk Client                              Cryptographic Service
           HandshakeAndAppRequest
             session_id
             secret_request
               key_request = h_c, h_s, a_c, a_s
               handshake_context = ServerHello ... EncryptedExtensions
               ext
                 ephemeral = dhe_secret          -------->
                                            HandshakeAndAppResponse
                                              session_id
                                              secret_response
                                                keys
                                      <---------

   The CS returns the necessary secret to the TLS server to complete the
   ServerHello response.

   The remaining of the TLS handshake is proceeded similarly as
   described in the Full Handshake in section Section 10.5.

10.6.  TLS 1.3 0-RTT handshake

   The 0-RTT Handshake is a PSK or PSK-ECDHE authentication that enables
   the TLS client to provide application data during the first round
   trip.  The main differences to the PSK PSK-ECDHE authentication
   described in the case of session resumption is that:

   o  Application Data is encrypted in the ClientHello based on the
      client_early_secret

   o  Generation of the client_early_secret requires the Cryptographic
      Service to be provisioned with the ClientHello which does not need
      to be re-provisioned later to generate the handshake secrets

   o  An additional message EndOfEarlyData needs to be considered to
      compute the client Finished message.



Migault                 Expires October 26, 2020               [Page 49]



Internet-Draft                LURK/TLS 1.3                    April 2020

   TLS Client                                   TLS Server

          ClientHello
          + early_data
          + key_share*
          + psk_key_exchange_modes
          + pre_shared_key
          (Application Data*)     -------->
                                                          ServerHello
                                                     + pre_shared_key
                                                         + key_share*
                                                {EncryptedExtensions}
                                                        + early_data
                                                           {Finished}
                                  <--------       [Application Data*]
          (EndOfEarlyData)
          {Finished}              -------->
          [Application Data]      <------->        [Application Data]

10.6.1.  TLS client: ClientHello

   With 0-RTT handshake, the TLS client builds binders as in session
   resumption described in section Section 10.5.4.  The binder_key is
   retrieved for each proposed PSK with a BinderKeyRequest.  When early
   application data is sent it is encrypted using the
   client_early_traffic_secret.  This secret is retrieved using the
   c_init_early_secret LURK exchange.

   The InitEarlySecretRequest is composed of a SecretRequest
   (secret_request) substructure.  The TLS Client sets the key_request
   to client_early_traffic_secret (e_s).  The handshake is set to
   ClientHello.  The PSK is indicated via the the PSK_id extension, the
   freshness function is indicated via the freshness extension.  If the
   TLS client is willing to have the ECDHE keys generated by the CS an
   ephemeral extension MAY be added also.

   When multiple PSK are proposed by the TLS client, the first proposed
   PSK is used to encrypt the application data.



Migault                 Expires October 26, 2020               [Page 50]



Internet-Draft                LURK/TLS 1.3                    April 2020

   TLS Client
   Lurk Client                              Cryptographic Service
           InitEarlySecretRequest
             secret_request
               key_request=e_s
               handshake_context=ClientHello
               ex
                 PSK_id
                 fresness
                 session_id
                                            InitEarlySecretResponse
                                              secret_response
                                   <---------   keys=e_s
                                                ext
                                                  session_id

   Upon receiving the InitEarlySecretRequest, the CS generates the
   client_early_traffic_secret.

   The TLS client is able to send its ClientHello with associated
   binders and application data.

10.6.2.  TLS server: ServerHello

   If the TLS server accepts the early data.  It proceeds as described
   in session resumption described in section Section 10.5.4.  In
   addition to the binder_key, the TLS server also request the
   client_early_traffic_secret to decrypt the early data as well as to
   proceed to the ServerHello exchange.

10.6.3.  TLS client: Finished

   The TLS client proceeds as described in handshake based on ECDHE, PSK
   or PSK-ECDHE authentications described in Section 10.4 and

Section 10.5.  The main difference is that upon requesting handshake
   and application secrets, using an HandAndAppRequest the TLS client
   will not provide the ClientHello as part as the handshake_context.
   The Client as already been provided during the EarlySercret exchange.

10.7.  TLS client authentication

   TLS client authentication can be performed during the Full TLS
   handshake or after the TLS handshake as a post handshake
   authentication.  In both cases, the TLS client authentication is
   initiated by the TLS server sending a CertificateRequest.  The
   authentication is performed via a CertificateVerify message generated
   by the TLS client but such verification does not involve the CS on
   the TLS server.



Migault                 Expires October 26, 2020               [Page 51]



Internet-Draft                LURK/TLS 1.3                    April 2020

10.8.  TLS Client:Finished (CertificateRequest)

   The ServerHello MAY carry a CertificateRequest encrypted with the
   handshake sercets.

   Upon receiving the ServerHello response, the TLS client decrypts the
   ServerHello response.  If a CertificateRequest message is found, the
   TLS Client requests the Cryptographic to compute the
   CertificateVerify in addition to the application secrets via a
   certificate_verify LURK exchange.  The CertVerifyRequest is composed
   of a Secret Request structure and a SigningRequest structure.

   The key_request is set to the application secrets (a_c, a_s) and the
   handshake_context is set to server EncryptedExtensions ... later of
   server Finished/EndOfEarlyData.  As the request follows a (BinderKey,
   EarlySecret, HandshakeSecret) or HandshakeSecret the Handshake
   Context on the CS now becomes: ClientHello ... later of server
   Finished/EndOfEarlyData which is the Handshake Context required to
   generate the CertificateVerify on the TLS client side and includes
   the Handshake Context required to generate the application secrets
   (ClientHello...server Finished).

   TLS Client
   Lurk Client                              Cryptographic Service
           CertVerifyRequest
               session_id
               secret_request
                 key_request
                 handshake_context = EncryptedExtensions ...
                   later of server Finished/EndOfEarlyData
               signing_request
                                            CertVerifyResponse
                                              session_id
                                              secret_response
                                                keys
                                              signing_response
                                   <---------   certificate_verify

   Upon receiving the CertificateRequest, the CS checks the session_id
   and cookie.

10.9.  TLS Client Authentication (PostHandshake)

   When post-handshake is enabled by the TLS client, the TLS client may
   receive at any time after the handshake a CertificateRequest message.
   When post handshake is enabled by the TLS client, as soon as the
   client Finished message has been sent, the TLS client sends a
   RegisteredNewSessionTicketRequest with an empty NewSessionTicket to



Migault                 Expires October 26, 2020               [Page 52]



Internet-Draft                LURK/TLS 1.3                    April 2020

   register the remaining Handshake Context to the CS. ctx_id is set to
   opaque, handshake_context is set to earlier of client Certificate
   client CertificateVerify ... client Finished.

   Upon receiving the RegisteredNewSessionTicketsRequest the
   Cryptographic is aware of the full Handshake Context.  It updates
   ks_ctx.next_request to c_post_hand or c_register_ticket.

   TLS Client
   Lurk Client                              Cryptographic Service
           RegisteredNewSessionTicketRequest
               session_id
               handshake_context
               ticket_list (empty)
                     <--------- RegisteredNewSessionTicketResponse
                                  session_id
                                  cookie

   When the TLS client receives a CertificateRequest message from the
   TLS server, the TLS client sends a PostHandshakeRequest to the
   Cryptographic Service to generate certificate_verify.  The
   handshake_context is set to CertificateRequest.  The index N of the
   client_application_traffic_N key is provided as well as the
   Cryptographic so it can generate the appropriated key.

   TLS Client
   Lurk Client                              Cryptographic Service
           PostHandshakeRequest
             session_id
             handshake_context=CertificateRequest
             app_n=N
                                            PostHandshakeResponse
                                              session_id
                                 <---------   certificate_verify

   Upon receiving the PostHandshakeRequest the CS checks session_id and
   cookie.  The necessary Handshake Context to generate the
   certificate_verify is ClientHello ...  client Finished +
   CertificateRequest.  Once the PostHandshakeResponse.  Next requests
   expected are c_post_hand or c_register_ticket.

11.  References

11.1.  Normative References



Migault                 Expires October 26, 2020               [Page 53]



Internet-Draft                LURK/TLS 1.3                    April 2020

   [I-D.mglt-lurk-tls12]
              Migault, D. and I. Boureanu, "LURK Extension version 1 for
              (D)TLS 1.2 Authentication", draft-mglt-lurk-tls12-02 (work
              in progress), January 2020.

   [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.

   [RFC8466]  Wen, B., Fioccola, G., Ed., Xie, C., and L. Jalil, "A YANG
              Data Model for Layer 2 Virtual Private Network (L2VPN)
              Service Delivery", RFC 8466, DOI 10.17487/RFC8466, October
              2018, <https://www.rfc-editor.org/info/rfc8466>.

11.2.  Informative References

   [I-D.mglt-lurk-lurk]
              Migault, D., "LURK Protocol version 1", draft-mglt-lurk-

lurk-00 (work in progress), February 2018.

   [I-D.mglt-lurk-tls-use-cases]
              Migault, D., Ma, K., Salz, R., Mishra, S., and O. Dios,
              "LURK TLS/DTLS Use Cases", draft-mglt-lurk-tls-use-

cases-02 (work in progress), June 2016.

Author's Address

   Daniel Migault
   Ericsson
   8275 Trans Canada Route
   Saint Laurent, QC  4S 0B6
   Canada

   EMail: daniel.migault@ericsson.com

https://datatracker.ietf.org/doc/html/draft-mglt-lurk-tls12-02
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/rfc8466
https://www.rfc-editor.org/info/rfc8466
https://datatracker.ietf.org/doc/html/draft-mglt-lurk-lurk-00
https://datatracker.ietf.org/doc/html/draft-mglt-lurk-lurk-00
https://datatracker.ietf.org/doc/html/draft-mglt-lurk-tls-use-cases-02
https://datatracker.ietf.org/doc/html/draft-mglt-lurk-tls-use-cases-02


Migault                 Expires October 26, 2020               [Page 54]


