
LURK D. Migault
Internet-Draft Ericsson
Intended status: Standards Track January 25, 2021
Expires: July 29, 2021

LURK Extension version 1 for (D)TLS 1.3 Authentication
draft-mglt-lurk-tls13-04

Abstract

 This document describes the LURK Extension 'tls13' which enables
 interactions between a LURK Client and a LURK Server in a context of
 authentication with (D)TLS 1.3.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 29, 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Migault Expires July 29, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft LURK/TLS 1.3 January 2021

Table of Contents

1. TODO . 3
2. Introduction . 3
3. Terminology . 4
4. LURK Header . 4
5. Overview . 6
6. Structures . 7
6.1. secret_request . 7
6.2. handshake . 8
6.3. session_id . 11
6.4. freshness . 11
6.5. ephemeral . 13
6.5.1. shared_secret_provided: 13
6.5.2. secret_generated: 14
6.5.3. no_secret . 14

6.6. selected_identity . 15
6.7. certificate . 16
6.7.1. presence or absence of certificate message 18
6.7.2. certificate field validation 18
6.7.3. generation of the certificate message 19

6.8. tag . 19
6.9. secret . 20
6.10. signature . 21

7. LURK exchange on the TLS server 21
7.1. s_init_early_secret 21
7.2. s_init_cert_verify 22
7.3. s_hand_and_app_secret 23
7.4. s_new_tickets . 24

8. LURK exchange on the TLS client 25
8.1. c_init_cert_verify 27
8.2. c_init_post_hand_auth 28
8.3. c_post_hand_auth . 29
8.4. c_init_ephemeral . 29
8.5. c_init_early_secret 30
8.6. c_hand_and_app_secret 31
8.7. c_register_tickets 33

9. Security Considerations 33
10. IANA Considerations . 34
11. Acknowledgments . 34
12. Annex . 34
12.1. LURK state diagrams on TLS client 34
12.1.1. LURK client . 36
12.1.2. Cryptographic Service 38

12.2. LURK state diagrams on TLS server 39
12.2.1. LURK client . 39
12.2.2. Cryptographic Service 40

12.3. TLS handshakes with Cryptographic Service 41

Migault Expires July 29, 2021 [Page 2]

Internet-Draft LURK/TLS 1.3 January 2021

12.4. TLS 1.3 ECDHE Full Handshake 43
12.4.1. TLS Client: ClientHello 43
12.4.2. TLS Server: ServerHello 44
12.4.3. ecdhe generated on the CS (#cs_generated} 45
12.4.4. ecdhe generated by the TS server 46
12.4.5. TLS client: client Finished 48

12.5. TLS 1.3 Handshake with session resumption 51
12.5.1. Full Handshake 51
12.5.2. TLS server: NewSessionTicket 52
12.5.3. TLS client: NewSessionTicket 53
12.5.4. Session Resumption 54

12.6. TLS 1.3 0-RTT handshake 57
12.6.1. TLS client: ClientHello 58
12.6.2. TLS server: ServerHello 59
12.6.3. TLS client: Finished 59

12.7. TLS client authentication 59
12.8. TLS Client:Finished (CertificateRequest) 60
12.9. TLS Client Authentication (PostHandshake) 60

13. References . 61
13.1. Normative References 61
13.2. Informative References 62

 Author's Address . 62

1. TODO

 1. When information is missing in the handshake, LURK requires the
 length to be set to the appropriated format. This ease the use
 of a parser. TLS1.3 seems to consider the length as of the value
 of the expected field.

 4.2.11.2. PSK Binder
 [...]
 The length fields for the message (including
 the overall length, the length of the extensions block, and the
 length of the "pre_shared_key" extension) are all set as if binders
 of the correct lengths were present.

2. Introduction

 This document defines a LURK extension for TLS 1.3 [RFC8446].

 This document assumes the reader is familiar with TLS 1.3 the LURK
 architecture [I-D.mglt-lurk-lurk].

 Interactions with the Cryptographic Service (CS) can be performed by
 the TLS Client as well as by the TLS Server.

https://datatracker.ietf.org/doc/html/rfc8446

Migault Expires July 29, 2021 [Page 3]

Internet-Draft LURK/TLS 1.3 January 2021

 LURK defines an interface to a CS that stores the security
 credentials which include the PSK involved in a PSK or PSK-ECDHE
 authentication or the key used for signing in an ECDHE
 authentication. In the case of session resumption the PSK is derived
 from the resumption_master_secret during the key schedule [RFC8446]
 section 7.1, this secret MAY require similar protection or MAY be
 delegated as in the LURK extension of TLS 1.2 [I-D.mglt-lurk-tls12].

 The current document extends the scope of the LURK extension for TLS
 1.2 in that it defines the CS on the TLS server as well as on the TLS
 client and the CS can operate in non delegating scenarios.

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses the terms defined [RFC8446] and
 [I-D.mglt-lurk-tls12].

4. LURK Header

 LURK / TLS 1.3 is a LURK Extension that introduces a new designation
 "tls13". This document assumes that Extension is defined with
 designation set to "tls13" and version set to 1. The LURK Extension
 extends the LURKHeader structure defined in [I-D.mglt-lurk-lurk] as
 follows:

 enum {
 tls13 (2), (255)
 } Designation;

 enum {
 capabilities(0),
 ping(1),
 s_init_cert_verify(2),
 s_new_ticket(3),
 s_init_early_secret(4),
 s_hand_and_app_secret(5),
 c_binder_key(6),
 c_init_early_secret(7),
 c_init_hand_secret(8),
 c_hand_secret(9),
 c_app_secret(10),
 c_cert_verify(11),

https://datatracker.ietf.org/doc/html/rfc8446#section-7.1
https://datatracker.ietf.org/doc/html/rfc8446#section-7.1
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446

Migault Expires July 29, 2021 [Page 4]

Internet-Draft LURK/TLS 1.3 January 2021

 c_register_ticket(12),
 c_post_hand(13), (255)
 }TLS13Type;

 enum {
 // generic values reserved or aligned with the
 // LURK Protocol
 request (0), success (1), undefined_error (2),
 invalid_payload_format (3),

 invalid_psk
 invalid_freshness

 invalid_request
 invalid_key_id_type
 invalid_key_id
 invalid_signature_scheme
 invalid_certificate_type
 invalid_certificate
 invalid_certificate_verify
 invalid_secret_request
 invalid_handshake
 invalid_extension
 invalid_ephemeral
 invalid_idnetity
 too_many_identities

 }TLS13Status

 struct {
 Designation designation = "tls13";
 int8 version = 1;
 } Extension;

 struct {
 Extension extension;
 select(Extension){
 case ("tls13", 1):
 TLS13Type;
 } type;
 select(Extension){
 case ("tls13", 1):
 TLS13Status;
 } status;
 uint64 id;
 unint32 length;
 } LURKHeader;

Migault Expires July 29, 2021 [Page 5]

Internet-Draft LURK/TLS 1.3 January 2021

5. Overview

 The CS is not expected to perform any policies such as choosing the
 appropriated authentication method. These are performed by the TLS
 client or TLS server that instruct the LURK client accordingly.

 On the other hand, some CS MAY be optimized by implementing a subset
 of the specified possibilities described in this document. Typically
 some implementations MAY not implement the session resumption or the
 post handshake authentication to avoid keeping states of a given
 session once the handshake has been performed. These capabilities of
 the CS MAY also in return impact the policies of the TLS client or
 TLS server.

 These limitations are mentioned throughout the document, and even
 represented in the state diagrams, the recommendation is that the CS
 SHOULD NOT impact the policies of the TLS client or TLS server.
 Instead they SHOULD be able to optimize the CS to their policies via
 some configuration parameters presented in section Section 12.1.
 Such parameters are implementation dependent and only provided here
 as informative.

 This document defines the role to specify whether the CS runs on a
 TLS client or a TLS service. The CS MUST be associated a single
 role.

 From a LURK client perspective, the purpose of the LURK exchange is
 to request secrets, a signing operations, or ticket
 (NewSessionTicket) as summed up in Table Figure 1.

 +--------+-----------------------+------------------------+
 | Role | LURK exchange | secret | sign | ticket |
 +--------+-----------------------+------------------------+
server	s_init_early_secret	yes	-	-
server	s_init_cert_verify	yes	yes	-
server	s_hand_and_app_secret	yes	-	-
server	s_new_ticket	yes	-	yes
client	c_binder_key	yes	-	-
client	c_init_early_secret	yes	-	-
client	c_init_hand_secret	yes	-	-
client	c_hand_secret	yes	-	-
client	c_app_secret	yes	-	-
client	c_cert_verify	yes	yes	-
client	c_register_ticket	yes	-	yes
client	c_post_hand	-	yes	-
 +--------+-----------------------+------------------------+

 Figure 1: Operation associated to LURK exchange

Migault Expires July 29, 2021 [Page 6]

Internet-Draft LURK/TLS 1.3 January 2021

 The number of operations are limited, but the generation of secrets,
 tickets as well as signing heavily rely on the knowledge of the TLS
 handshake messages and in turn impacts these TLS handshake messages.
 As a result, these operations are highly inter-dependent. This is
 one reason multiple sequential exchanges are needed between the LURK
 client and the CS as opposed to independent requests for secrets,
 signing or tickets. This especially requires the necessity to create
 a session between the LURK client and the CS. In addition, the LURK
 client and the CS need to synchronize the TLS handshake. First it is
 a necessary component for the CS to generate the secrets, signature
 and tickets. Second, elements are respectively generated by the LURK
 client and by the CS.

 While all these messages do share a lot of structures, they also
 require different structure that make them unique.

6. Structures

 This section describes structures that are widely re-used across the
 multiple LURK exchanges.

6.1. secret_request

 secret_request is a 16 bit structure described in Table Figure 2 that
 indicates the requested key or secrets by the LURK client. The
 secret_request structure is present in the request of any exchange
 except for a c_post_hand exchange. The same structure is used across
 all LURK exchanges, but each LURK exchange only permit a subset of
 values described in Table Figure 3.

 A LURK client MUST NOT set secret_request to key or secrets that are
 not permitted. The CS MUST check the secret_request has only
 permitted values and has all mandatory keys or secrets set. If these
 two criteria are not met the CS MUST NOT perform the LURK exchange
 and SHOULD return a invalid_secret_request error. If the CS is not
 able to compute an optional key or secret, the CS MUST proceed the
 LURK exchange and ignore the optional key or secret.

Migault Expires July 29, 2021 [Page 7]

Internet-Draft LURK/TLS 1.3 January 2021

 +------+---+
 | Bit | key or secret (designation) |
 +------+---+
0	binder_key (b)
1	client_early_traffic_secret (e_c)
2	early_exporter_master_secret (e_x)
3	client_handshake_traffic_secret (h_c)
4	server_handshake_traffic_secret (h_s)
5	client_application_traffic_secret_0 (a_c)
6	server_application_traffic_secret_0 (a_s)
7	exporter_master_secret (x)
8	resumption_master_secret (r)
9-15	reserved and set to zero
 +------+---+

 Figure 2: secret_request structure

 +-----------------------+----------------------------+
 | LURK exchange | Permitted secrets |
 +-----------------------+----------------------------+
s_init_cert_verify	h_c*, h_s*, a_c*, a_s*, x*
s_init_early_secret	b,e_c*, e_x*
s_hand_and_app_secret	h_c, h_s, a_c*, a_s*, x*
s_new_ticket	r*
c_binder_key	b
c_init_early_secret	e_c*, e_x*
c_init_hand_secret	h_c, h_s
c_hand_secret	h_c, h_s
c_app_secret	a_c*, a_s*, x*
c_cert_verify	a_c*, a_s*, x*
c_register_ticket	r*
c_post_hand	
 +-----------------------+----------------------------+

 Figure 3: secret_request permitted values per LURK exchange

6.2. handshake

 The derivation of the secrets, signing operation and tickets requires
 the TLS handshake. The TLS handshake is described in [RFC8446]
 section 4 and maintained by the TLS server and the TLS client to
 derive the same secrets. As the CS is in charge is deriving the
 secrets as well to perform some signature verification, the CS must
 be be aware of the TLS handshake. The TLS handshake is not
 necessarily being provided by the LURK client to the CS, but instead
 is derived some structures provided by the LURK client as well as
 other structures generated or modified by the CS.

https://datatracker.ietf.org/doc/html/rfc8446#section-4
https://datatracker.ietf.org/doc/html/rfc8446#section-4

Migault Expires July 29, 2021 [Page 8]

Internet-Draft LURK/TLS 1.3 January 2021

 When an unexpected handshake context is received, the CS SHOULD
 return an invalid_handshake error.

 The value of the TLS hanshake is defined in [RFC8446] section 4 and
 remainded in Table Figure 4 reminds the TLS handshake values after
 each LURK exchange and describes operations performed by the CS in
 order to build it.

 On the TLS server:

 o (a) ServerHello.random value provided by the LURK client requires
 specific treatment as described in Section 6.4 before being
 inserted in teh TLS handshake variable.

 o (b) When the shared secret (and so the private ECDHE) is
 generated by the CS, the KeyShareServerHello structure cannot be
 provided to the CS by the LURK client in a ServerHello and is
 instead completed by the CS as described in Section 6.5.

 o (c) The TLS server Certificate structure is not provided by the
 LURK client as part of the handshake structure. Instead, the CS
 generates the Certificate message from the certificate structure
 described in Section 6.7. The handshake MUST NOT contain a TLS
 Certificate message and CS SHOULD reject a handshake that contains
 a TLS Certificate message.

 o (d) The Certificate and Finished messages are not provided in a
 handshake structure by the LURK client but are instead generated
 by the CS as described in Section 6.10.

 TO FINALIZE THE TLS CLIENT

 On the TLS client:

 For s_init_cert_verify (resp. c_init_hand_secret) see Section 6.5
 that describes how the KeyShareServerHello (resp.
 KeyShareClientHello) structure MAY be affected when the share secret
 is generated by the CS.

 (e) ClientHello.random value provided by the LURK client requires
 specific treatment as described in Section 6.4 before being inserted
 in the TLS handshake variable. (f) When the shared secret (and so
 the private ECDHE) is generated by the CS, the KeyShareClientHello
 structure cannot be provided to the CS by the LURK client in a
 ServerHello and is instead completed by the CS as described in

Section 6.5. (f)

https://datatracker.ietf.org/doc/html/rfc8446#section-4

Migault Expires July 29, 2021 [Page 9]

Internet-Draft LURK/TLS 1.3 January 2021

 Typically, shared secret MAY be generated by the CS (see Section 6.5
) in which case, the public part that is part of the TLS handshake

 is or signatures (see Section 6.10 are generated by the CS.
 structures that represent certificates (see Section 6.7) are provided
 in a separate message as to enable compression. In some cases, such
 as for s_init_cert_verify and c_cert_verify CertificateVerify and
 Finished messages are generated separately by the CS and the LURK
 client.

 In the c_hand_and_app_secret, the handshake field contains encrypted
 messages. These messages are contained in a TLSCiphertext structure,
 that contains an TLSInnerPlaintext structure. The type of the
 TLSInnerPlaintext structure MUST be set to 'handshake' otherwise an
 invalid_handshake error is returned.

 psk_proposed, psk_accepted,

+-----------------------+------------------------------------+---------------+
| LURK exchange | TLS handshake | CS operations |
+-----------------------+------------------------------------+---------------+
s_init_cert_verify	ClientHello ... later of	a,b,c,d
	server EncryptedExtensions /	
	CertificateRequest	
s_init_early_secret	ClientHello	a
s_hand_and_app_secret	ServerHello ... later of	b,
	server EncryptedExtensions /	
	CertificateRequest	
s_new_ticket	earlier of client Certificate /	
	client CertificateVerify /	
	Finished ... Finished	
c_binder_key	-	
c_init_cert_verify	ClientHello...server Finished	e,f
c_init_post_hand_auth	ClientHello ... ServerHello	e
	CertificateRequest	
c_post_hand_auth	CertificateRequest	
c_init_ephemeral	Partial ClientHello	
c_init_early_secret	Partial ClientHello	
c_hand_and_app_secret	ServerHello, {EncryptedExtensions}	
	... later of { server Finished } /	
	EndOfEarlyData	
c_register_ticket	-	
+-----------------------+------------------------------------+---------------+

 Figure 4: handshake values per LURK exchange

Migault Expires July 29, 2021 [Page 10]

Internet-Draft LURK/TLS 1.3 January 2021

6.3. session_id

 The session_id is a 32 bit identifier that identifies a LURK session
 between a LURK client and a CS. Unless the exchange is sessionless,
 the session_id is negotiated at the initiation of the LURK session
 where the LURK client (resp. the CS) indicates the value to be used
 for inbound session_id in the following LURK exchanges.
 For other LURK exchanges, the session_id is set by the sender to the
 inbound value provided by the receiving party. When the CS receives
 an unexpected session_id the CS SHOULD return an invalid_session_id
 error.

 Table Figure 5 indicates the presence of the session_id.

 +-----------------------+------------+
 | LURK exchange | session_id |
 +-----------------------+------------+
s_init_cert_verify	*
s_init_early_secret	y
s_hand_and_app_secret	y
s_new_ticket	y
c_binder_key	-
c_init_early_secret	y
c_init_hand_secret	-
c_hand_secret	y
c_app_secret	y
c_cert_verify	y
c_register_ticket	y
c_post_hand	y
 +-----------------------+------------+

 y indicates the session_id is present
 - indicates session_id may be absent
 * indicates session_id may be present

 Figure 5: session_id in LURK exchanges

 The session_id structure is defined below: ~~~ uint32 session_id ~~~

6.4. freshness

 The freshness function implements perfect forward secrecy (PFS) and
 prevents replay attack. On the TLS server, the CS generates the
 ServerHello.random of the TLS handshake that is used latter to derive
 the secrets. The ServerHello.random value is generated by the CS
 using the freshness function and the ServerHello.random provided by
 the LURK client in the handshake structure. The CS operates
 similarly on the TLS client and generates the ClientHello.random of

Migault Expires July 29, 2021 [Page 11]

Internet-Draft LURK/TLS 1.3 January 2021

 the TLS handshake using the freshness function as well as the
 ClientHello.random value provided by the LURK client in the handshake
 structure.

 If the CS does not support the freshness, the CS SHOULD return an
 invalid_freshness error. In this document the freshness function is
 implemented by applying sha256.

 Table {table:freshness} details the exchanges that contains the
 freshness structure.

 +-----------------------+-----------+
 | LURK exchange | freshness |
 +-----------------------+-----------+
s_init_cert_verify	y
s_init_early_secret	-
s_hand_and_app_secret	y
s_new_ticket	-
c_init_early_secret	y
c_init_hand_secret	y
c_hand_secret	-
c_app_secret	-
c_cert_verify	-
c_register_ticket	-
c_post_hand	-
 +-----------------------+-----------+

 y indicates freshness is present
 - indicates freshness is absent

 Figure 6: freshness in LURK exchange

 The extension data is defined as follows:

 enum { sha256(0) ... (255) } Freshness;

 When the CS is running on the TLS server, the ServerHello.random is
 generated as follows:

 server_random = ServerHello.random
 ServerHello.random = freshness(server_random + "tls13 pfs srv");

 When the CS is running on the TLS client, the ClientHello.random is
 generated as follows:

 client_random = ClientHello.random
 ClientHello.random = freshness(client_random + "tls13 pfs clt");

Migault Expires July 29, 2021 [Page 12]

Internet-Draft LURK/TLS 1.3 January 2021

 The server_random (resp client_random) MUST be deleted once it has
 been received by the CS.
 In some cases, especially when the TLS client enables post handshake
 authentication and interacts with the CS via a
 (c_init_post_hand_auth) exchange, there might be some delay between
 the ClientHello is sent to the server and the Handshake context is
 shared with the CS. The client_random MUST be kept until the post-
 handshake authentication is performed as the full handshake is
 provided during this exchange.

6.5. ephemeral

 The Ephemeral structure carries the necessary information to generate
 the (EC)DHE shared secret used to derive the secrets. This document
 defines the following ephemeral methods to generate the (EC)DHE
 shared secret:

 o secret_provided: Where (EC)DHE keys and shared secret are
 generated by the TLS server and provided to the CS

 o secret_generated: Where the (EC)DH keys and shared secret are
 generated by the CS.

 o no_secret: where no (EC)DHE is involved, and PSK authentication is
 performed.

6.5.1. shared_secret_provided:

 When ECDHE shared secret are generated by the TLS server, the LURK
 client provides the shared secret value to the CS. The shared secret
 is transmitted via the SharedSecret structure, which is similar to
 the key_exchange parameter of the KeyShareEntry described in

[RFC8446] section 4.2.8.
 The CS MUST NOT return any data.

 struct {
 NamedGroup group;
 opaque shared_secret[coordinate_length];
 } SharedSecret;

 Where coordinate_length depends on the chosen group. For secp256r1,
 secp384r1, secp521r1, x25519, x448, the coordinate_length is
 respectively 32 bytes, 48 bytes, 66 bytes, 32 bytes and 56 bytes.
 Upon receiving the shared_secret, the CS MUST check group is proposed
 in the KeyShareClientHello and agreed in the KeyShareServerHello.

https://datatracker.ietf.org/doc/html/rfc8446#section-4.2.8

Migault Expires July 29, 2021 [Page 13]

Internet-Draft LURK/TLS 1.3 January 2021

6.5.2. secret_generated:

 When the ECDHE public/private keys are generated by the CS, the LURK
 client requests the CS the associated public value. Note that in
 such cases the CS would receive an incomplete Handshake Context from
 the LURK client with the public part of the ECDHE missing. Typically
 the ServerHello message would present a KeyShareServerHello that
 consists of a KeyShareEntry with an empty key_exchange field, but the
 field group is present.

 The CS MUST check the group field in the KeyShareServerHello, and get
 the public value of the TLS client from the KeyShareClientHello. The
 CS performs the same checks as described in [RFC8446] section 4.2.8.
 The CS generates the private and public (EC)DH keys, computes the
 shared key and return the KeyShareEntry server_share structure
 defined in [RFC8446] section section 4.2.8 to the LURK client.

6.5.3. no_secret

 With PSK authentication, (EC)DHE keys and shared secrets are not
 needed. The CS SHOULD check the PSK authentication has been agreed,
 that is pre_shared_key and psk_key_exchamge_modes extensions are noth
 present in the ClientHello and in the ServerHello

 When the ephemeral method or the group is not supported, the CS
 SHOULD return an invalid_ephemeral error.

+-----------------------+-----------+
| LURK exchange | ephemeral |
+-----------------------+-----------+
s_init_early_secret	-
s_init_cert_verify	y+
s_hand_and_app_secret	y
s_new_ticket	-
c_init_early_secret	no secret_provided
secret_generated	
c_init_hand_secret	y+
c_hand_secret	y
c_app_secret	-
c_cert_verify	-
c_register_ticket	-
c_post_hand	-
+-----------------------+-----------+

y indicates ephemeral is present
y+ indicates ephemeral is present with ephemeral_method different from
no_secret.
- indicates ephemeral is absent

https://datatracker.ietf.org/doc/html/rfc8446#section-4.2.8
https://datatracker.ietf.org/doc/html/rfc8446

 Figure 7: Ephemeral field in LURK exchange

Migault Expires July 29, 2021 [Page 14]

Internet-Draft LURK/TLS 1.3 January 2021

 The extension data is defined as follows:

enum { no_secret (0), secret_provided(1), secret_generated(2) (255)}
EphemeralMethod;

EphemeralRequest {
 EphemeralMethod method;
 select(method) {
 case secret_provided:
 SharedSecret shared_secret<0..2^16>;
 }
}

EphemeralResponse {
 select(method) {
 case secret_generated:
 KeyShareEntry server_share
 }
}

6.6. selected_identity

 The selected_identity indicates the identity of the PSK used in the
 key schedule. The selected_identity is expressed as a (0-based)
 index into the identities in the client's list. The client's list is
 provided in the pre_shared_key extension as expressed in [RFC8446]
 section 4.2.11.

 The LURK client MUST provide the selected_identity only when PSK or
 PSK-authentication is envisioned and when the PSK has not been
 provided earlier. These exchanges are s_init_early_secret on the TLS
 server and c_init_early_secret and c_init_hand_secret on the TLS
 client side.

https://datatracker.ietf.org/doc/html/rfc8446#section-4.2.11
https://datatracker.ietf.org/doc/html/rfc8446#section-4.2.11

Migault Expires July 29, 2021 [Page 15]

Internet-Draft LURK/TLS 1.3 January 2021

 +-----------------------+-----+------+
 | LURK exchange | req | resp |
 +-----------------------+-----+------+
s_init_early_secret	M	-
s_init_cert_verify	-	-
s_hand_and_app_secret	-	-
s_new_ticket	-	-
c_init_early_secret	-	-
c_init_hand_secret	-	-
c_hand_secret	-	-
c_app_secret	-	-
c_cert_verify	-	-
c_register_ticket	-	-
c_post_hand	-	-
 +-----------------------+-----+------+

 M indicates the field is mandatory
 M* indicates the field is mandatory but psk may be void
 - indicates the field MUST NOT be provided

 Figure 8: psk_id in LURK exchange

 The extension data is defined as follows:

 uint16 selected_identity; //RFC8446 section 4.2.11

 The CS retrieve the PSK identity from the ClientHello and SHOULD send
 an invalid_psk error if an error occurs. If the PSK is not provided,
 a default PSK is generated as described in [RFC8446] section 7.1. If
 the default PSK is not allowed then an invalid_psk is returned.

6.7. certificate

 The certificate field is used by the LURK client to indicate the
 presence with associated value or absence of certificate in the TLS
 exchange. When necessary, the CS is expected to generate the
 appropriated message for the Handshake Context.

 Upon receiving a certificate field, the CS MUST: 1. ensure the
 presence or absence of certificate is coherent with the handshake
 messages (see Section 6.7.1). 2. when the certificate is provided
 the CS checks the value corresponds to an acceptable pre-provisionned
 value (see Section 6.7.2). 3. when the certificate is provided,
 the CS MUST generate the appropriated corresponding message (see

Section 6.7.3).

 If the CS is not able to understand the lurk_tls13_certificate field,
 it SHOULD return an invalid_certificate error.

https://datatracker.ietf.org/doc/html/rfc8446#section-7.1

Migault Expires July 29, 2021 [Page 16]

Internet-Draft LURK/TLS 1.3 January 2021

 Table Figure 9 indicates the presence of that field in the LURK
 exchanges. The

 +-----------------------+-----+------+--------------------+
 | LURK exchange | req | resp | certificate type |
 +-----------------------+-----+------+--------------------+
s_init_early_secret	-	-	
s_init_cert_verify	M	-	server certificate
s_hand_and_app_secret	-	-	
s_new_ticket	M*	-	client certificate
c_init_early_secret	-	-	
c_init_hand_secret	-	-	
c_hand_secret	-	-	
c_app_secret	M	-	server certificate
c_cert_verify	-	-	
c_register_ticket	M*	-	client certificate
c_post_hand	-	-	
 +-----------------------+-----+------+--------------------+

 (*) indicates the field MAY be emtpy.
 M indicates the field is mandatory
 - indicates the field MUST NOT be provided

 Figure 9: tag per LURK exchange

 There are different ways the LURK client can provide the certificate
 message:

 enum { empty(0), finger_print(1), uncompressed(2), (255)
 }; LURKTLS13CertificateType

 struct {
 LURKTLS13CertificateType certificate_type;
 select (certificate_type) {
 case empty:
 // no payload
 case finger_print
 uint32 hash_cert;
 case uncompressed:
 Certificate certificate; // RFC8446 section 4.4.2
 };
 } LURKTLS13Certificate;

 empty indicates there is no certificates provided by this field.

 fingerprint a 4 bytes finger print length that represents the
 fingerprinting of the TLS Certificate message. Fingerprinting is
 described in [RFC7924] and takes as input the full handshake

https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.2
https://datatracker.ietf.org/doc/html/rfc7924

Migault Expires July 29, 2021 [Page 17]

Internet-Draft LURK/TLS 1.3 January 2021

 message - that is a message of message type certificate with that
 contain the Certificate as its message_data. In this document
 only the 4 most left bytes of the output are considered.
 uncompressed

 indicates the Certificate message as defined in [RFC8446] is
 provided. compressed

 indicates the CompressedCertificate
 [I-D.ietf-tls-certificate-compression]

6.7.1. presence or absence of certificate message

 The absence of the certificate is indicated by a
 lurk_certificate_type set to 'empty'. The presence is indicated by a
 lurk_certificate_type set to 'uncompressed', 'compressed' or
 'finger_print'. The absence of a server Certificate message is only
 acceptable when PSK or PSK-ECDHE authentication are used which is
 indicated by the presence of a psk_key_exchange_modes and a
 pre_shared_key extension in the ServerHello and ClientHello message.
 If the lurk_certificate_type is set to empty and these extensions are
 not found an invalid_certificate error SHOULD be raised. If the
 lurk_certificate_type is not set to empty and these extensions are
 found a invalid_certificate error SHOULD be raised.

 The presence of a client Certificate message is only acceptable when
 a CertificateRequest message is found in the ServerHello message. If
 the lurk_certificate_type is set to empty and a CertificateRequest is
 present in the ServerHello an invalid_certificate error SHOULD be
 raised. If the lurk_certificate_type is not set to empty and a
 CertificateRequest is not present in teh ServerHello message, an
 invalid_certificate error SHOULD be raised.

6.7.2. certificate field validation

 The certificate field can be used for client certificate or for
 server certificate. That certificate is called the designated
 certificate.
 The LURK Client indicates the certificate material either by
 providing the uncompressed certificate or via a finger_print.

 The LURK client MAY provide a certificate field of type uncompressed
 to either carry the Certificate data of the designated certificate or
 the necessary data to derive the Certificate data. Typically,
 providing Certificate as defined in [RFC8446] will enable to CS to
 generate Certificate messages as defined in [RFC8446].

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446

Migault Expires July 29, 2021 [Page 18]

Internet-Draft LURK/TLS 1.3 January 2021

 The LURK client MAY provide a certificate field of type finger_print
 in conjunction of additional information shared between the LURK
 client and the CS. The finger_print is a 4 byte hint derived from
 the 4 most significant bytes of the fingerprint as defined in
 [RFC7924].

 As a result, the certificate field will be validated if one of the
 following condition applies: 1. the certificate_type is set to
 'uncompressed' or 'compressed' and the stored certificate is as
 described in [RFC8446]. 2. the certificate_type is set to
 'finger_print' and the designated certificate has been provisioned.

6.7.3. generation of the certificate message

 The TLS exchange carries the certificate information either in a
 unaltered Certificate message [RFC8446], or in a
 CompressedCertificate message [I-D.ietf-tls-certificate-compression].

 The CompressedCertificate message is decompressed and the
 uncompressed Certificate message is considered ni the TLS handshake.
 As a result, on a CS point of view the use of a CompressedCertificate
 message does not impact the handshake transcript.

6.8. tag

 This field provides extra information. Currently, this fields is
 used by the LURK client or the CS to indicate the session is ended.
 Table Figure 10 indicates the tag values and Table Figure 11 the LURK
 messages that contains the tag field.

 When the LURK client knows this will be the last LURK exchange
 performed within a given session, the LURK client sets the
 last_exchange bit. When the CS receives a last_exchange set, the CS
 answers normally but clear the session right after the response has
 been sent. Similarly, when the CS knows no further LURK exchanges
 will be accepted within a session, the CS sets the last_exchange bit
 in the response. Upon receiving the response, the LURK client does
 not proceed to additional LURK exchange.

 +------+----------------+
 | Bit | description |
 +------+----------------+
 | 0 | last_exchange |
 | 1-7 | RESERVED |
 +------+----------------+

 Figure 10: tag description

https://datatracker.ietf.org/doc/html/rfc7924
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446

Migault Expires July 29, 2021 [Page 19]

Internet-Draft LURK/TLS 1.3 January 2021

 +-----------------------+-----+------+
 | LURK exchange | req | resp |
 +-----------------------+-----+------+
s_init_early_secret	-	-
s_init_cert_verify	M	M
s_hand_and_app_secret	M	M
s_new_ticket	M	M
c_init_early_secret	M	M
c_init_hand_secret	M	M
c_hand_secret	M	M
c_app_secret	M	M
c_cert_verify	M	M
c_register_ticket	M	M
c_post_hand	M	M
 +-----------------------+-----+------+

 M indicates the field is mandatory
 - indicates the field MUST NOT be provided

 Figure 11: tag per LURK exchange

6.9. secret

 The Secret structure is used by the CS to send the various secrets
 derived by the key schedule described in [RFC8446] section 7.

 enum {
 binder_key (0),
 client_early_traffic_secret(1),
 early_exporter_master_secret(2),
 client_handshake_traffic_secret(3),
 server_handshake_traffic_secret(4),
 client_application_traffic_secret_0(5),
 server_application_traffic_secret_0(6),
 exporter_master_secret(7),
 esumption_master_secret(8),
 (255)
 } SecretType;

 struct {
 SecretType secret_type;
 opaque secret_data<0..2^8-1>;
 } Secret;

 secret_type: The type of the secret or key

 secret_data: The value of the secret.

https://datatracker.ietf.org/doc/html/rfc8446#section-7

Migault Expires July 29, 2021 [Page 20]

Internet-Draft LURK/TLS 1.3 January 2021

6.10. signature

 The signature requires the signature scheme, a private key and the
 appropriated context. The signature scheme is provided using the
 SignatureScheme structure defined in [RFC8446] section 4.2.3, the
 private key is derived from the lurk_tls13_certificate Section 6.7
 and the context is derived from the handshake Section 6.2 and
 lurk_tls13_certificate Section 6.7.

 Signing operations are described in [RFC8446] section 4.4.3. The
 context string is derived from the role and the type of the LURK
 exchange as described below. The Handshake Context is taken from the
 key schedule context.

 +--------------------+-------------------------------------+
 | type | context |
 +--------------------+-------------------------------------+
 | s_init_cert_verify | "TLS 1.3, server CertificateVerify" |
 | c_cert_verify | "TLS 1.3, client CertificateVerify" |
 +--------------------+-------------------------------------+

 struct {
 opaque signature<0..2^16-1>; //RFC8446 section 4.4.3.
 } Signature;

7. LURK exchange on the TLS server

 This section describes the LURK exchanges that are performed on the
 TLS server. Unless specified used structures are described in

Section 6 The state diagram is provided in section Section 12.2

7.1. s_init_early_secret

 s_init_early_secret initiates a LURK session when the server is
 authenticated by the PSK or PSK-ECDHE methods. This means the
 ClientHello received by the TLS server and ServerHello responded by
 the TLS server MUST carry the pre_shared_key and
 psk_key_exchange_modes extensions.

 selected_identity indicates the selected PSK

https://datatracker.ietf.org/doc/html/rfc8446#section-4.2.3
https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.3

Migault Expires July 29, 2021 [Page 21]

Internet-Draft LURK/TLS 1.3 January 2021

 struct{
 uint32 session_id
 FreshnessFunct freshness
 uint16 selected_identity
 Handshake handshake<0..2^32> //RFC8446 section 4
 uint16 secret_request;
 }SInitEarlySecretRequest

 struct{
 uint32 session_id
 Secret secret_list<0..2^16-1>;
 }SInitEarlySecretResponse

 The binder_key MUST be requested, since it is used to validate the
 PSK. The TLS client MAY indicate support for early application data
 via the early_data extension. Depending on the TLS server policies,
 it MAY accept early data and request the client_early_traffic_secret.
 The TLS server MAY have specific policies and request
 early_exporter_master_secret.

 The CS MUST check pre_shared_key and psk_key_exchange_modes
 extensions are present in the ClientHello message. If these
 extensions are not present, a invalid_handshake error SHOULD be
 returned. The CS MUST ignore the client_early_traffic_secret if
 early_data extension is not found in the ClientHello. The
 Cryptographic Service MAY ignore the request for
 client_early_traffic_secret or early_exporter_master_secret depending
 on configuration parameters.

7.2. s_init_cert_verify

 s_init_cert_verify initiates a LURK session when the server is
 authenticated with ECDHE. The ClientHello received by the TLS
 server, and the ServerHello and optionally the HelloRetryRequest MUST
 carry a key_share extension.

 If the LURK client is configured to not proceed to further exchange,
 it sets the last_exchange bit of the tag. When this bit is set, the
 session_id is ignored. The CS sets the last_exchange bit if the
 last_Exchange bit has been set by the LURK client or when it has been
 configured to not accept further LURK exchange.

Migault Expires July 29, 2021 [Page 22]

Internet-Draft LURK/TLS 1.3 January 2021

 struct{
 uint8 tag;
 select tag.last_exchange){
 case False:
 uint32 session_id;
 }
 FreshnessFunct freshness;
 Ephemeral ephemeral;
 Handshake handshake<0..2^32>; //RFC8446 section 4
 LURKTLS13Certificate certificate;
 uint16 secret_request;
 SignatureScheme sig_algo; //RFC8446 section 4.2.3.
 }SInitCertVerifyRequest

 struct{
 uint8 tag;
 select tag.last_exchange){
 case False:
 uint32 session_id;
 }
 Ephemeral ephemeral;
 Secret secret_list<0..2^16-1>;
 Signature signature;
 }SInitCertVerifyResponse

 sig_algo SignatureScheme is defined in [RFC8446] section 4.2.3.

7.3. s_hand_and_app_secret

 The s_hand_and_app_secret is necessary to complete the ServerHello
 and always follows an s_init_early_secret LURK exchange. Such
 sequence is guaranteed by the session_id. In case of unknown
 session_id or an invalid_request error SHOULD be returned.

 The LURK client MUST ensure that PSK or PSK-ECDHE authentication has
 been selected via the presence of the pre_shared_key extension in the
 ServerHello. In addition, the selected identity MUST be the one
 provided in the pre_shared_key extension of the previous
 s_init_early_secret exchange. The CS MUST also check the selected
 cipher in the ServerHello match the one associated to the PSK. The
 CS generates the Finished message as described in [RFC8446] section

4.4.4. Which involves the h_s secret. The LURK client MAY request
 the exporter_master_secret depending on its policies. The CS MAY
 ignore the request based on its policies.

 If the LURK client is configured to not proceed to further exchange,
 it sets the last_exchange bit of the tag. The CS sets the
 last_exchange bit if the last_exchange bit has been set by the LURK

https://datatracker.ietf.org/doc/html/rfc8446#section-4.2.3
https://datatracker.ietf.org/doc/html/rfc8446

Migault Expires July 29, 2021 [Page 23]

Internet-Draft LURK/TLS 1.3 January 2021

 client or when it has been configured to not accept further LURK
 exchange.

 struct{
 uint8 tag
 uint32 session_id
 Ephemeral ephemeral
 Handshake handshake<0..2^32> //RFC8446 section 4
 uint16 secret_request;
 } SHandAndAppSecretRequest

 struct{
 uint8 tag
 uint32 session_id
 Ephemeral ephemeral
 Secret secret_list<0..2^16-1>;
 } SHandAndAppSecretResponse

7.4. s_new_tickets

 new_session ticket handles session resumption. It enables to
 retrieve NewSessionTickets that will be forwarded to the TLS client
 by the TLS server to be used later when session resumption is used.
 It also provides the ability to delegate the session resumption
 authentication from the CS to the TLS server. In fact, if the LURK
 client requests and receives the resumption_master_secret it is able
 to emit on its own NewSessionTicket. As a result s_new_ticket LURK
 exchanges are only initiated if the TLS server expects to perform
 session resumption and the CS responds only if if session_resumption
 is enabled.

 The CS MAY responds with a resumption_master_secret based on its
 policies.

 The LURK client MAY perform multiple s_new_ticket exchanges. The
 LURK client and CS are expected to advertise by setting the
 last_exchange bit in the tag field.

Migault Expires July 29, 2021 [Page 24]

Internet-Draft LURK/TLS 1.3 January 2021

 struct {
 uint8 tag
 uint32 session_id
 Handshake handshake<0..2^32> //RFC8446 section 4.
 LURKTLS13Certificate certificate;
 uint8 ticket_nbr;
 uint16 secret_request;
 } SNewTicketRequest;

 struct {
 uint8 tag
 uint32 session_id
 Secret secret_list<0..2^16-1>;
 NewSessionTicket ticket_list<0..2^16-1>; //RFC8446 section 4.6.1.
 } SNewTicketResponse;

 ticket_nbr: designates the requested number of NewSessionTicket. In
 the case of delegation this number MAY be set to zero. The CS MAY
 responds with less tickets when the value is too high.

8. LURK exchange on the TLS client

 This section describes the LURK exchanges that are performed on the
 TLS server. The state diagram is provided in section Section 12.1

 The LURK exchanges on the TLS client are determined by the following
 parameters 1. the ability of the TLS client to authenticate with a
 CertificateVerify 2. the ability of the TLS client to perform post
 handshake authentication (indicated by a post_handshake_auth
 extension in the ClientHello) 3. the authentication methods chosen by
 the server (PSK, PSK-ECDHE, ECDHE) 4. the owner of the private key of
 the shared secret (TLS client, CS) 5. the owner of the session
 resumption secret (TLS client or CS)

 When the TLS client does not provide the ability to authenticate
 itself (no CertificateVerify nor post handshake authentication) , the
 CS does not hold the credentials of the TLS client (a PSK or a
 private key). In this case, the only method to authenticate the
 server is ECDHE. The owner of the private can be CS or the TLS
 client. When the owner of the private key is the TLS client, it will
 be able to generate the shared secret (with its private key) and
 derive all necessary secrets . As a result, no interaction is needed
 between the TLS client and the CS. The TLS client owns the session
 resumption secret and so further credential will not be protected,
 and thus fall outside the scope of this document. When the owner of
 the private key is the CS, the TLS client will need to retrieve the
 public key via c_init_ephemeral LURK exchange to complete its

Migault Expires July 29, 2021 [Page 25]

Internet-Draft LURK/TLS 1.3 January 2021

 ClientHello. Then additional secrets are necessarily computed by the
 CS - as the keyschedule takes the shared secret as input - and
 retrieved by the TLS client via the c_hand_and_app_secret LURK
 exchange. If the CS allows the retrieval by the TLS client of the
 session resumption secret the credentials used for the next sessions
 will not be protected by the CS and thus fall outside the scope of
 this document. On the other hand, if the CS does not allow the
 retrieval of the session secret, then session resumption requires the
 TLS client to provide the NewSessionTicket provided by the TLS server
 to the CS via the c_register LURK exchange and the credentials (PSK)
 are protected by the CS for the next sessions.

 When the TLS the TLS client provides the ability to authenticate
 itself. This can be achieved via a certificate or through a PSK.
 Note that the two authentications can be done together for example a
 post handshake authentication combined with a PSK or PSK-ECDHE.
 We assume the private key associated to the client certificate is
 protected by the CS. The ability to perform a post handshake
 authentication (c_init_post_hand or c_post_hnad) ensures that the
 owner of the private key is aware of the handshake.
 Note that it does not provides protection of PFS via the guarantee of
 ephemeral secrets - instead PFS is provided by preventing the
 exchange to be replayed.

 NOTE: REDO the ANALYSE. SECURE/UNSECURE MAY NOT BE SUFFICIENT AS
 THERE ARE: * protection of the credentials (PSK, private key) -> PSK
 is in the CS if 'r' secret is not provided. * protection associated
 to the session ** GUARANTEE OF EPHEMERAL SECRETS: makes sure the
 ephemeral secrets are deleted. Recording the ecdhe private
 information enables the key schedule to be performed for ECDHE. Adds
 additional randomness for PSK-ECDHE ** AWARENESS OF THE HANDSHAKE.
 Someone else may also use that exchange... but I do not see exactly
 how. ** ...

 +-----------+ | MiM unprotected |<---------------------------------+
 +-----------+ | | | | | | | | | NO | c_init_ephemeral ->
 c_hand_and_app_secret + (session resumption)-+<-+ | |
 enabled | | | | | YES | | | c_init_early_secret | (r not provided
)--+ | | c_init_hand_and_app_secret | | YES | | | c_register ---+ | |
 v | | +-----+ +-> (post handshake)----+ | | | c_init_post_hand
 c_post_hand | v +--------------+ | | | MiM protected
 (PSK) |<---------------------+--------+ +--------------+

 c_init_hand_and_app_secret (eph=provided) -> (c_post_hand.
 c_register_ticket) c_init_ephemeral (eph=generated)->
 c_hand_and_app_secret -> (c_post_hand. c_register_ticket)
 c_init_early_secret (prov, gen) ^

Migault Expires July 29, 2021 [Page 26]

Internet-Draft LURK/TLS 1.3 January 2021

 c_init_post_hand : unable to bind the handshake messages to the key
 used to generates the hash. SHOUDL we consider this ?

8.1. c_init_cert_verify

 The c_init_hand_and_app_secret LURK exchange used under the three
 following conditions: TLS client authenticates the TLS server using
 ECDHE, the TLS client has generated the ECDHE private key - as
 opposed to the CS -, and the TLS server requires the TLS client to
 authenticate with a CertificateVerify during the TLS key exchange.

 The last_message is set as defined in Section 6.8 but with the
 additional condition that a post handshake authentication may be
 performed. More precisely, the TLS client sets the last_exchange
 only if a post handshake authentication may be performed in the
 future. The CS sets the last_message only if post handshake is
 enabled by the CS and the post_handshake_authentication extension is
 present in the ClientHEllo.

 The freshness is handled as described in Section 6.4.

 The Ephemeral MUST be set to 'secret_provided' as the TLS client has
 generated the ECDHE private key. The CS treats the ephemeral as
 describe din Section 6.5.

 The handshake MUST NOT contain any of the pre_shared_key and
 psk_key_exchange_modes extensions in the ServerHello. If these
 extensions are found, an invalid_handshake error is returned. The
 handshake MUST contain the key_share extensions in the ClientHello
 and the ServerHello and returns an invalid handshake error otherwise.
 The handshake MUST contain a CertificateRequest and returns a
 invalid_handshake error otherwise.

 No secret are generated. The TLS client has all the necessary
 material for the key schedule and as such can proceed to session
 resumption.

 This exchange is followed by a c_post_hand_auth exchange.

 When the exchange is not terminal, i.e. the las_exchange is unset,
 the CS generates the client Finished message.

Migault Expires July 29, 2021 [Page 27]

Internet-Draft LURK/TLS 1.3 January 2021

 struct{
 uint8 tag;
 select tag.last_exchange){
 case False:
 uint32 session_id;
 }
 Freshness freshness
 Ephemeral = provided
 Handshake handshake<0..2^32> //RFC8446 section 4 (clear)
 SignatureScheme sig_algo;
 LURKTLS13Certificate cert;
 }CInitCertVerifypRequest

 struct{
 uint8 tag;
 select tag.last_exchange){
 case False:
 uint32 session_id;
 }
 FreshnessFunct freshness;
 Signature signature
 }CInitCertVerifyResponse

8.2. c_init_post_hand_auth

 The c_init_post_hand_auth happens when the TLS client is
 authenticating using a post handshake authentication and all previous
 key exchanges messages with the TLS server did not result in the
 creation of a session. As mentioned in Section 6.4 the creation of
 an earlier session with the CS will end up in the TLS client not
 knowing the value of the client_random, making this exchange
 impossible. As a result, this exchange is expected under the
 following conditions. The TLS client is authenticating the TLS
 server via ECDHE (or PSK /PSK-ECDHE with an unprotected PSK), the TLS
 client has generated the ephemerals private key and derived all
 secrets. As the TLS client may need to perform multiple
 authentications, the c_init_post_hand_auth exchange may be followed
 by additional c_post_hand_auth.

 Upon receiving the request, the CS checks the presence of the
 post_handshake_auth extension in the ClientHello. The CS also checks
 the presence of a CertificateRequest message after the client
 Finished message. If the extension or message is not found, and
 invalid_handshake error is returned.

 The ephemeral mode MUST be secret_provided or no_secret. If other
 methods are found, an invalid_ephemeral is returned.

Migault Expires July 29, 2021 [Page 28]

Internet-Draft LURK/TLS 1.3 January 2021

struct{
 Tag tag
 Freshness freshness
 Ephemeral = provided
 Handshake handshake<0..2^32> //RFC8446 section 4 (clear)
clientHello...client finished CertificateRequest
 SignatureScheme sig_algo;
 LURKTLS13Certificate cert;
}CInitPostHandAuthRequest

struct{
 Tag tag
 Signature signature
}CInitPostHandAuth

8.3. c_post_hand_auth

 The c_post_hand_auth exchange enables a TLS client to perform post
 handshake authentication. It follows a c_init_post_hand_auth,
 c_init_cert_verify a c_hand_and_app or c_register_ticket.

 struct{
 Tag tag
 Handshake handshake<0..2^32> // CertificateRequest
 SignatureScheme sig_algo;
 LURKTLS13Certificate cert;
 }CInitPostHandAuthRequest

 struct{
 Tag tag
 Signature signature
 }CInitPostHandAuth

8.4. c_init_ephemeral

 The c_init_ephemeral LURK exchange is performed when the TLS client
 authenticates the TLS server using ECDHE with an ephemeral value
 generated by the CS.

 The ephemeral method MUST be set to 'secret_generated' otherwise an
 invalid_ephemeral error is returned. The Handshake value is a
 partial ClientHello with a key_share extension that doe not contain a
 ECHDE public value. The Client Hello MUST not have pre_shared_key or
 psk_key_exchange_mode. If any of these condition is not met a
 invalid_handshake error is returned.

Migault Expires July 29, 2021 [Page 29]

Internet-Draft LURK/TLS 1.3 January 2021

 struct{
 uint32 session_id
 Freshness freshness
 Ephemeral ephemeral
 Handshake handshake<0..2^32> //RFC8446 section 4
 }CInitEphemeral

 struct{
 uint32 session_id
 Ephemeral ephemeral
 }CInitEphemeral

8.5. c_init_early_secret

 The c_init_early_secret LURK exchange initiates a LURK session when
 the TLS client proposes at least one of PSK for PSK or PSK-ECDHE
 authentication method.

 This exchange differs to the s_init_early_secret in two aspects:
 First, a partial ClientHello (as described in [RFC8446] section

4.2.11.2) with a potentially partial key_share extension (as
 described in Section 6.5. As a result, the CS needs to complete it
 to derive the full ClientHello. Second, the CS does not generate the
 secrets for a single chosen psk identity (selected_identity), but for
 all PSK identities specified in the PreSharedKeyExtension.identities.

 The shared secret of the exchange can be absent when PSK only is
 proposed in which case the ephemeral method is set to 'no_secret'.
 When PSK-ECDHE or ECDHE is proposed, the private key associated to
 the shared secret can be derived by the CS or the TLS client. When
 derived by the CS, the ephemeral_method is set to 'secret_generated'.
 When generated by the TLS client, the ephemeral method is set to
 'no_secret' as teh shared secret cannot be provided yet and will be
 provided once the ServerHello has been received by the TLS client.

 The handshake is a partial ClientHello as described in [RFC8446]
 section 4.2.11.2. The CS checks PSK or PSK-ECDHE is proposed and
 returns an invalid_handshake error otherwise. The CS computes the
 secrets associated to each identity. The secret_list_list contains
 the list of secret_lists associated to each identity in the same
 order as these identities. If an identity is unknown an
 invalid_handshake error is returned. The CS SHOULD limit the number
 of identities and if that number is exceeded, an too_many_identities
 SHOULD be returned. Secrets are generated as described in

Section 6.1.

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446#section-4.2.11.2
https://datatracker.ietf.org/doc/html/rfc8446#section-4.2.11.2

Migault Expires July 29, 2021 [Page 30]

Internet-Draft LURK/TLS 1.3 January 2021

 struct{
 uint32 session_id
 Freshness freshness
 Ephemeral ephemeral
 Handshake handshake<0..2^32> //RFC8446 section 4
 uint16 secret_request;
 }CInitEarlySecretRequest

 SecretList secret_list<0..2^16-1>;

 struct{
 uint32 session_id
 Ephemeral ephemeral
 SecretList secret_list_list<0..2^16-1>;
 }CInitEarlySecretResponse

8.6. c_hand_and_app_secret

 The c_hand_and_app LURK exchange always follows a c_init_early_secret
 or a c_init_ephemeral LURK exchange.

 The tag field may have the last_exchange bit set to indicate that no
 further exchange is expected. No further exchange means that the TLS
 client does not intend to perform session resumption nor to perform
 post handshake authentication. A TLS client SHOULD NOT set the
 last_exchange bit if a post_handshake_auth extension is present in
 its ClientHello.

 If the LURK exchange follows a c_init_ephemeral, the ECDHE private
 key was generated by the CS during the c_init_ephemeral_exchange.
 The CS checks the ephemeral_method is set to 'no_secret'.

 If the LURK exchange follows a c_init_early_secret, the
 ephemeral_method had been set to 'no_secret' or 'secret_generated'.
 If the TLS server is authenticated using PSK or if the
 ephemeral_method was previously set to 'secret_generated', the CS
 checks the ephemeral_method is set to 'no_secret'. If the TLS server
 is authenticated using PSK-ECDHE or ECDHE or if the ephemeral_method
 was previously set to 'no_secret', the CS checks the ephemeral_method
 is set to 'secret_provided'. If a mismatch is found between the
 ephemeral_method and the selected authentication method, an
 invalid_ephemeral

 The handshake field contains the ServerHello and other encrypted
 messages. Upon receiving a request the CS determines which secrets
 needs to be generated as described in Section 6.1. The generation of
 these secret requires the shared secret to be generated - including
 the default value for the PSK authentication. The derivation of the

Migault Expires July 29, 2021 [Page 31]

Internet-Draft LURK/TLS 1.3 January 2021

 handshake secrets (h_s, h_c) do not need to decrypt the encrypted
 messages.

 However, the derivation of the application secrets (a_s, a_c), export
 secret (x) or resumption secret (r) do. If these secrets are
 requested, the CS needs to generate the handshake secrets, the
 server_handshake_traffic_secret as described in [RFC8446] section 7.3
 to decrypt the encrypted messages. The CS can then generate all
 secrets except the resumption secret.

 If session resumption or post handshake is not explicitly prohibited,
 by setting the last_exchange of the tag field, the CS generates all
 missing messages until the client Finished. Otherwise, the client
 Finished message MAY not be generated.

 If a CertificateRequest is present, the Certificate and
 CertificateVerify needs to be generated. Unlike on the TLS server,
 where the TLS server indicates the certificate to chose as well as
 the signature scheme to select, on the TLS client, such decision is
 left to the CS. The choice of the signature algorithm and
 certificate is performed by the CS as described in [RFC8446] section

4.4.2.3.
 The Certificate, respectively CertificateVerify and Finished message
 are generated as described in [RFC8446] section 4.4.2, section 4.4.3,
 and section 4.4.4.

 struct{
 uint8 tag
 uint32 session_id
 Ephemeral ephemeral
 Handshake handshake<0..2^32> //RFC8446 section 4
 uint16 secret_request;
 }CHandAndAppRequest

 struct{
 uint8 tag
 uint32 session_id
 LURKTLS13Certificate certificate;
 SignatureScheme sig_algo
 Signature signature
 Secret secret_list<0..2^16-1>;
 }CHandAndAppRequest

https://datatracker.ietf.org/doc/html/rfc8446#section-7.3
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.2

Migault Expires July 29, 2021 [Page 32]

Internet-Draft LURK/TLS 1.3 January 2021

8.7. c_register_tickets

 The c_register_ticket is only used when the TLS client intend to
 perform session resumption. The LURK client MAY provide one or
 multiple NewSessionTickets. These tickets will be helpful for the
 session resumption to bind the PSK value to some identities.

 struct {
 uint8 tag
 uint32 session_id
 NewSessionTicket ticket_list<0..2^16-1>; //RFC8446 section 4.6.1.
 } RegisterTicketRequest;

 struct {
 uint8 tag
 uint32 session_id
 } RegisterTicketResponse;

9. Security Considerations

 Security credentials as per say are the private key used to sign the
 CertificateVerify when ECDHE authentication is performed as well as
 the PSK when PSK or PSK-ECDHE authentication is used.

 The protection of these credentials means that someone gaining access
 to the CS MUST NOT be able to use that access from anything else than
 the authentication of an TLS being established. In other way, it
 MUST NOT leverage this for: * any operations outside the scope of TLS
 session establishment. * any operations on past established TLS
 sessions * any operations on future TLS sessions * any operations on
 establishing TLS sessions by another LURK client.

 The CS outputs are limited to secrets as well as NewSessionTickets.
 The design of TLS 1.3 make these output of limited use outside the
 scope of TLS 1.3. Signature are signing data specific to TLS 1.3
 that makes the signature facility of limited interest outside the
 scope of TLS 1.3. NewSessionTicket are only useful in a context of
 TLS 1.3 authentication.

 ECDHE and PSK-ECDHE provides perfect forward secrecy which prevents
 past session to be decrypted as long as the secret keys that
 generated teh ECDHE share secret are deleted after every TLS
 handshake. PSK authentication does not provide perfect forward
 secrecy and authentication relies on the PSK remaining sercet. The
 Cryptographic Service does not reveal the PSK and instead limits its
 disclosure to secrets that are generated from the PSK and hard to be
 reversed.

Migault Expires July 29, 2021 [Page 33]

Internet-Draft LURK/TLS 1.3 January 2021

 Future session may be impacted if an attacker is able to authenticate
 a future session based on what it learns from a current session.
 ECDHE authentication relies on cryptographic signature and an ongoing
 TLS handshake. The robustness of the signature depends on the
 signature scheme and the unpredictability of the TLS Handshake. PSK
 authentication relies on not revealing the PSK. The CS does not
 reveal the PSK. TLS 1.3 has been designed so secrets generated do
 not disclose the PSK as a result, secrets provided by the
 Cryptographic do not reveal the PSK. NewSessionTicket reveals the
 identity (ticket) of a PSK. NewSessionTickets.ticket are expected to
 be public data. It value is bound to the knowledge of the PSK. The
 Cryptographic does not output any material that could help generate a
 PSK - the PSK itself or the resumption_master_secret. In addition,
 the Cryptographic only generates NewSessionTickets for the LURK
 client that initiates the key schedule with CS with a specific way to
 generate ctx_id. This prevents the leak of NewSessionTickets to an
 attacker gaining access to a given CS.

 If an the attacker get the NewSessionTicket, as well as access to the
 CS of the TLS client it will be possible to proceed to the
 establishment of a TLS session based on the PSK. In this case, the
 CS cannot make the distinction between the legitimate TLS client and
 teh attacker. This corresponds to the case where the TLS client is
 corrupted.

 Note that when access to the CS on the TLS server side, a similar
 attack may be performed. However the limitation to a single re-use
 of the NewSessionTicket prevents the TLS server to proceed to the
 authentication.

 Attacks related to other TLS sessions are hard by design of TLS 1.3
 that ensure a close binding between the TLS Handshake and the
 generated secrets. In addition communications between the LURK
 client and the CS cannot be derived from an observed TLS handshake
 (freshness function). This makes attacks on other TLS sessions
 unlikely.

10. IANA Considerations

11. Acknowledgments

12. Annex

12.1. LURK state diagrams on TLS client

 The state diagram sums up the LURK exchanges. The notations used are
 defined below:

Migault Expires July 29, 2021 [Page 34]

Internet-Draft LURK/TLS 1.3 January 2021

 LURK exchange indicates a LURK exchange is stated by the LURK client
 or is received by the CS ---> (resp. <---) indicates a TLS message is
 received (resp. received). These indication are informative to
 illustrates the TLS state machine.

 CAPITAL LETTER indicates potential configuration parameters or policy
 applied by the LURK client or the CS. The following have been
 considered:

 o PSK, PSK-ECDHE, ECDHE that designates the authentication method.
 This choice is made by the LURK client. The choice is expressed
 by a specific LURK exchange as well as from the TLS Handshake
 Context.

 o SESSION_RESUMPTION indicates the session resumption has been
 enabled on the LURK client or the CS. As a consequence the TLS
 client is considered performing session resumption and the TLS
 server MUST make session resumption possible.

 o POST_HANDSHAKE_AUTH indicates that post handshake authentication
 proposed by the TLS client in a post_handshake_auth extension is
 not ignored by the LURK client or on the CS.

 Note that SESSION_RESUMPTION, POST_HANDSAHKE_AUTH are mostly
 informative and the current specification does not mandate to have
 such configuration parameters. By default, these SHOULD be enabled.

 Other potential configuration could be proposed for configuring LURK
 client or CS policies. These have not been represented in the state
 diagram and the specification does not mandate to have these
 parameters implemented.

 o CLIENT_EARLY_TRAFFIC indicates that client early traffic MAY be
 sent by the TLS client and the notification by the TLS client in
 the ClientHello via the early_data extension MUST be considered.

 o EARLY_EXPORTER_MASTER_SECRET indicates whether or not
 early_exporter_master_secret MUST be requested by the LURK client
 and responded by the CS.

 o MASTER_EXPORTER indicates whether or not exporter_master_secret
 MUST be requested by the LURK client and responded by the CS.

 o SESSION_RESUMPTION_DELEGATION indicates whether or not
 session_resumption_master is requested by the LURK client and
 responded by the CS.

Migault Expires July 29, 2021 [Page 35]

Internet-Draft LURK/TLS 1.3 January 2021

 o MAX_SESSION_TICKET_NBR indicates the maximum number of tickers
 that can be requested or provided by the LURK client and provided
 by the CS. It is strongly RECOMMENDED to have such limitations
 being configurable.

 The analysis of the TLS Handshake Context enables to set some
 variables that can be used by the LURK client to determine which LURK
 exchange to proceed as well as by the CS to determine which secret
 MAY be responded. The following variables used are:

 psk_proposed: The TLS Client is proposing PSK authentication by
 including a pre_shared_key and a psk_key_exchange_mode extensions in
 the ClientHello.

 dhe_proposed: The received or to be formed ClientHello contains a
 key_share extensions.

 psk_accepted: The chosen authentication method is pSK or PSK-ECDHE
 which is indicated via the pre_shared_key extension in the
 ServerHello.

 0rtt_proposed: Indicates the TLS client supports early data which is
 indicated by the early_data extension in the ClientHello.

 post_handshake_proposed: indicates the TLS client supports post
 handshake authentication which is indicated by the presence of a
 post_handshake_auth extension in the ClientHello.

 finished: indicates that the LURK client or the CS has determined the
 session shoudl be closed an ks_ctx are deleted.

 The CS contains three databases:

 CTX_ID_DB: database that contains the valid ctx_id of type opaque.

 PSK_DB: contains the list of PSKs, with associated parameters such as
 Hash function. This database includes the session resumption
 tickets.

 Key_DB: contains the asymetric signing keys with supported signing
 algorithms.

12.1.1. LURK client

Migault Expires July 29, 2021 [Page 36]

Internet-Draft LURK/TLS 1.3 January 2021

 TLS Client Policy for authentication
 PSK, PSK-ECDHE ECDHE
 | |
 | |
 v |
 psk ---> +--------------------+ |
 | c_binder_key | |
 +--------------------+ |
 EARLY_EXPORTER, 0-RTT | |
 v | |
 /------------------------\ NO |
 \------------------------/----+ |
 YES v | |
 +---------------------+ | |
 | c_init_early_secret | | |
 +---------------------+ | |
 ClientHello | | |
 <---- +<-----------------+--------+
 ServerHello YES v
 ----> +-------------------------------------+
 | c_init_hand_secret or c_hand_secret |
 +-------------------------------------+
 |
 /--------------------\ NO
 | CertificateRequest |------+
 \--------------------/ |
 YES v v
 +-------------------+------------------+
 | c_cert_verify | c_app_secret |
 +-------------------+------------------+
 client Finished | |
 <---- +-----------+---------+
 |
 +--------------------------------------+
 | LURK client post handshake exchanges |
 +--------------------------------------+

 The LURK client post handshake diagram is represented below:

Migault Expires July 29, 2021 [Page 37]

Internet-Draft LURK/TLS 1.3 January 2021

 POST_HANDSHAKE_AUTH |
 v v
 /-------------------------\ NO
 | post_hand_auth_proposed |------+
 \-------------------------/ |
 YES v |
 +-----------------------------+ |
 | c_register_tickets | |
 | (empty NewSessionTickets) | |
 +-----------------------------+ |
 | |
 +<-----------------+
 |
 +<---+
 | |
 +------------------------------+ |
 SESSION_RESUMPTION | POST_HANDSHAKE_AUTH | |
 client Finished | | CertificateRequest | | |
 NewSessionTickets| | | v v |
 | v v | /-------------------------\NO |
 | /-------------\ NO +---> | post_hand_auth_proposed |--+ |
 +----> \-------------/---------+ \-------------------------/ | |
 YES v | YES v | |
 +-----------------------------+ | +-------------------------+ | |
 | c_register_ticket | | | c_post_hand | | |
 +-----------------------------+ | +-------------------------+ | |
 v v v | |
 +-----------------+----------+---+----------------+ |
 v |
 /--------------------\ NO |
 | finished |----------+
 \--------------------/
 YES v
 +-------------------------+
 | LURK exchanges Finished |
 +-------------------------+

12.1.2. Cryptographic Service

Migault Expires July 29, 2021 [Page 38]

Internet-Draft LURK/TLS 1.3 January 2021

 TLS13Request
 |
 /---------------------------\NO /-------------------------------\NO
 | type is c_init_early_secret|-->| type is c_init_hand_secret |-+
 \---------------------------/ \-------------------------------/ |
 | | +------------------+
 | +------------+ |
 | v |
 | /-------------------\NO /----------------\NO
 | | psk_selected |-+ | session,cookie | +-------+
 | \------------------ / | | consistent |---| ERROR |
 | YES | | \----------------/ +-------+
 +----------------+ | |
 PSK, PSK-ECDHE | | ECHDE |
 v +-------------+ |
 /-------------------\NO +-------+ | |
 | psk_key in PSK_DB |---| ERROR | | |
 \-------------------/ +-------+ | |
 +-------------------------+ |
 | |
 +-------------+ |
 | Init ks_ctx | |
 +-------------+ |
 | |
 +---------------------------+
 |
 v
 +---------------------------+
 | process the request |
 | update CTX_DB, PSK_DB |
 +---------------------------+

12.2. LURK state diagrams on TLS server

12.2.1. LURK client

Migault Expires July 29, 2021 [Page 39]

Internet-Draft LURK/TLS 1.3 January 2021

 TLS Server Policy for authentication
 received PSK, PSK-ECDHE, ECDHE
 ClientHello | |
 ----> v v
 psk ---->+----------------------+ +----------------------+
 | Init ks_ctx | | Init ks_ctx |
 +----------------------+ +----------------------+
 v |
 +---------------------+ |
 | s_init_early_secret | |
 +---------------------+ |
 | |
 to be formed YES v v
 ServerHello +--------------------------+ +-------------------------+
 ----> | s_hand_and_app_secret | | s_init_cert_verify |
 +--------------------------+ +-------------------------+
 | |
 +---------------------------+
 |
 v
 +--------------------------------------+
 | LURK client post handshake exchanges |
 +--------------------------------------+

12.2.2. Cryptographic Service

Migault Expires July 29, 2021 [Page 40]

Internet-Draft LURK/TLS 1.3 January 2021

 TLS13Request
 |
 /---------------------------\NO /---------------------------\NO
 |type is s_init_early_secret|-->| type is s_init_cert_verify |-+
 \---------------------------/ \---------------------------/ |
 PSK, | +--------------------+
 PSK-ECDHE v |
 /-------------------\NO +-------+ /----------------\NO
 | psk_key in PSK_DB |---| ERROR | | session,cookie | +-------+
 \-------------------/ +-------+ | consistent |---| ERROR |
 | \----------------/ +-------+
 v |
 +-------------+ |
 | Init ks_ctx | |
 +-------------+ |
 | |
 +-----------------------------+
 |
 v
 +---------------------------+
 | process the request |
 | update CTX_DB, PSK_DB |
 +---------------------------+

12.3. TLS handshakes with Cryptographic Service

 This section is non normative. It illustrates the use of LURK in
 various configurations.

 The TLS client may propose multiple ways to authenticate the server
 (ECDHE, PSK or PSK-ECDHE). The TLS server may chose one of those,
 and this choice is reflected by the LURK client on the TLS server.
 In other words, this decision is out of scope of the CS.

 The derivation of the secrets is detailed in {{!RFC8446)) section
7.1. Secrets are derived using Transcript-Hash and HKDF, PSK and

 ECDHE secrets as well as some Handshake Context.

 The Hash function: When PSK or PSK-ECDHE authentication is selected,
 the Hash function is a parameter associated to the PSK. When ECDHE,
 the hash function is defined by the cipher suite algorithm
 negotiated. Such algorithm is defined in the cipher_suite extension
 provided in the ServerHello which is provided by the LURK client in
 the first request when ECDHE authentication is selected.

 PSK secret: When PSK or PSK-ECDHE authentication is selected, the PSK
 is the PSK value identified by the identity. When ECDHE

https://datatracker.ietf.org/doc/html/rfc8446

Migault Expires July 29, 2021 [Page 41]

Internet-Draft LURK/TLS 1.3 January 2021

 authentication is selected, the PSK takes a default value of string
 of Hash.length bytes set to zeros.

 ECDHE secret: When PSK or PSK-ECDHE authentication is selected, the
 ECDHE secret takes the default value of a string of Hash.length bytes
 set to zeros. The Hash is always known as a parameter associated to
 the selected PSK. When ECDHE authentication is selected, the ECDHE
 secret is generated from the secret key (ephemeral_sercet) provided
 by the LURK client and the counter part public key in the key_share
 extension. When the LURK client is on the TLS client, the public key
 is provided in the ServerHello. When the LURK client is on the TLS
 Server, the public key is provided in the ClientHello. When ECDHE
 secret is needed, ClientHello...ServerHello is always provided to the
 CS.

 Handshake Context: is a subset of Handshake messages that are
 necessary to generated the requested secrets. The various Handshake
 Contexts are summarized below:

 +------------------------------------+--------------------------------+
 | Key Schedule secret or key | Handshake Context |
 +---+
binder_key	None
client_early_traffic_secret	ClientHello
early_exporter_master_secret	ClientHello
client_handshake_traffic_secret	ClientHello...ServerHello
server_handshake_traffic_secret	ClientHello...ServerHello
client_application_traffic_secret_0	ClientHello...server Finished
server_application_traffic_secret_0	ClientHello...server Finished
exporter_master_secret	ClientHello...server Finished
resumption_master_secret	ClientHello...client Finished
 +---+

 The CS has always the Hash function, the PSK and ECDHE secrets and
 the only remaining parameter is the Handshake Context. The remaining
 sections will only focus on checking the Handshake Context available
 to the CS is sufficient to perform the key schedule.

 When ECDHE authentication is selected both for the TLS server or the
 TLS client, a CertificateVerify structure is generated as described
 in [RFC8446] section 4.4.3.. CertificateVerify consists in a
 signature over a context that includes the output of Transcript-
 Hash(Handshake Context, Certificate) as well as a context string.
 Both Handshake Context and context string depends on the Mode which
 is set to server in this case via the configuration of the LURK
 server. Similarly to the key schedule, the Hash function is defined
 by the PSK or the ServerHello. The values for the Handshake Context
 are represented below:

https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.3

Migault Expires July 29, 2021 [Page 42]

Internet-Draft LURK/TLS 1.3 January 2021

 +-----------+-------------------------+-----------------------------+
 | Mode | Handshake Context | Base Key |
 +-----------+-------------------------+-----------------------------+
Server	ClientHello ... later	server_handshake_traffic_
	of EncryptedExtensions/	secret
	CertificateRequest	
Client	ClientHello ... later	client_handshake_traffic_
	of server	secret
	Finished/EndOfEarlyData	
Post-	ClientHello ... client	client_application_traffic_
Handshake	Finished +	secret_N
	CertificateRequest	
 +-----------+-------------------------+-----------------------------+

 When ECDHE authentication is selected, the CS generates a Finished
 message, which is a MAC over the value Transcript-Hash(Handshake
 Context, Certificate, CertificateVerify) using a MAC key derived from
 the Base Key. As a result, the same Base Key and Handshake Context
 are required for its computation describe din [RFC8466] section

4.4.4..

12.4. TLS 1.3 ECDHE Full Handshake

 This example illustrates the case of a TLS handshake where the TLS
 server is authenticated using ECDHE only, that is not PSK or PSK-
 ECDHE authentication is provided and so session resumption is
 provided either.

12.4.1. TLS Client: ClientHello

 The TLS client does not provides any PSK and omits the pre_shared_key
 as well as the psk_key_exchange_mode extensions. Note that omitting
 the psk_key_exchange_mode extension prevents the TLS client to
 perform further session resumption.

 The TLS client does not need any interaction with the Cryptographic
 Service to generate and send the ClientHello message to the TLS
 server.

 TLS Client TLS Server

 Key ^ ClientHello
 Exch | + key_share
 v + signature_algorithms --------->

https://datatracker.ietf.org/doc/html/rfc8466

Migault Expires July 29, 2021 [Page 43]

Internet-Draft LURK/TLS 1.3 January 2021

12.4.2. TLS Server: ServerHello

 Upon receiving the ClientHello, the TLS server determines the TLS
 client requests an ECDHE authentication. The TLS server initiates a
 LURK session to provide ECDHE authentication as represented below:

 TLS Client TLS Server

 ServerHello ^ Key
 + key_share | Exch
 {EncryptedExtensions} ^ Server
 {CertificateRequest*} v Params
 {Certificate} ^
 {CertificateVerify} | Auth
 {Finished} v
 <-------- [Application Data*]

 The LURK Client on the TLS server initiates a s_init_cert_verify to
 retrieves the necessary secrets to finish the exchange and request
 the generation of the signature (certificate_verify) carried by the
 CertificateVerify TLS structure.

 The s_init_cert_verify request uses a InitCertVerifyRequest structure
 which is composed of two substructures: A SecretRequest structure
 (OLD_secret_request) is in charge of requesting the necessary secrets
 to decrypt and encrypt the TLS handshake as well as the applications
 carried over the TLS session. Finally a SigningRequest substructure
 (signing_request) is used to request the certificate_verify payload.

 The OLD_secret_request carries the requested secrets as well as the
 necessary parameters to generate the secrets. In our case, the
 requested secrets are the handshake secrets (h_c, h_s) as well as the
 application secrets (a_c, a_s). This corresponds to the most
 expected use cases, though other use case may require different
 secrets to be requested. Theses requests are indicated in the
 secret_request. The necessary Handshake Context is provided through
 handshake which is set to ClientHello ... EncryptedExtensions. The
 ECDHE shared secret is provided in this example via the ephemeral
 extension. In our case, the secret key is provided directly thought
 other means may be used. In particularly providing the secret key
 implies the dhe parameters have been generated outside the CS. The
 freshness function is provided through the freshness extension.

 The signing_request provides the key_id that identifies the private
 key used to generate the signature, the algorithm use dto generate
 the signature (sig_algo) as well as the certificate. The certificate
 carries information to generate the Certificate structure of the

Migault Expires July 29, 2021 [Page 44]

Internet-Draft LURK/TLS 1.3 January 2021

 ServerHello, and may not be the complete certificate chain but only
 an index.

 Since there is no session resumption, the requests indicates with the
 tag set to last_exchange that no subsequent messages are expected.
 As a result, no session_id is provided. The freshness function is
 set to sha256, the handshake is constituted with the appropriated
 messages with a modified server_random to provide PFS. Th
 eCertificate message is also omitted from the handshake and is
 instead provided in the certificate structure using a finger_print.
 The requested secrets are handshake and application secrets, that is
 h_s, h_c, a_s, and a_c. The signature scheme is ed25519.
 With authentication based on certificates, there are two ways to
 generate the shared secrets that is used as an input to the derive
 the secrets. The ECDHE private key and shared secret may be
 generated by the CS as described in {cs_generated}. On the other
 hand the ECDHE private key and shared secret may be generated by the
 TLS server as described in {tls_Server_generated}

12.4.3. ecdhe generated on the CS (#cs_generated}

 When the (EC)DHE private key and shared secrets are generated by the
 CS, the LURK client set the ephemeral_method to secret_generated.
 The (EC)DHE group x25519 is specified in the handshake in the
 key_share extension. In return the CS provides the LURK client the
 public key so the TLS server can send the ServerHello to the TLS
 client.

 In this scenario, the CS is the only entity tthat knows the private
 ECDHE key and the shared secret, and only the CS is able to compute
 the secrets.

Migault Expires July 29, 2021 [Page 45]

Internet-Draft LURK/TLS 1.3 January 2021

TLS Server
Lurk Client CS
 InitCertVerifyRequest
 tag=last_exchange -------->
 freshness = sha256
 ephemeral
 ephemeral_method = secret_generated
 handshake = handshake (x25519)
 certificate = finger_print
 secret_request = h_s, h_c, a_s, and a_c
 sig_algo = ed25519
 InitCertVerifyResponse
 ephemeral
 ephemeral_method =
secret_generated
 key
 group = x25519,
 key_exchange = public_key
 secret_list
 signature = sig
 <---------

12.4.4. ecdhe generated by the TS server

 When the (EC)DHE private keys and the shared secrets are generated by
 the TLS server, the LURK client provides the shared secret to the CS
 as only the shared secret is necessary to generated the signature.
 This is indicated by the ephemeral_method set to secret_provided. No
 (EC)DHE values are returned by the CS as these have already been
 generated by the TLS server. However, the TLS server has all the
 necessary material to generate the secrets and the only information
 that the CS owns and that is not known to et TLS server is the
 private key (associated to the certificate) used to generate the
 signature. This means that is session resumption were allowed, since
 it is based on PSK authentication derived from teh resumption secret,
 these session could be authenticated by the TLS server without any
 implication from the CS.

Migault Expires July 29, 2021 [Page 46]

Internet-Draft LURK/TLS 1.3 January 2021

TLS Server
Lurk Client CS
 InitCertVerifyRequest
 tag=last_exchange -------->
 freshness = sha256
 ephemeral
 ephemeral_method = secret_provided
 key
 group = x25519
 shared_secret = shared_secret
 handshake = handshake
 certificate = finger_print
 secret_request = h_s, h_c, a_s, and a_c
 sig_algo = ed25519
 InitCertVerifyResponse
 ephemeral
 ephemeral_method = secret_provided
 secret_list
 signature = sig
 <---------

 Upon receiving the InitCertificateRequest, the CS initiates a context
 associated to the newly created LURK session.

 The secrets are generated from the TLS 1.3 key schedule describe din
 [RFC8446] and requires as input PSK, ECDHE as well as some context
 handshake.

 The CS determine that ECDHE without specific PSK is used from the
 ClientHello and associated extensions. As a result, the default PSK
 value is used. The ECDHE share secret is derived, in our case from
 the dhe_secret of the TLS server and the public dhe value provided by
 the ClientHello shared_key extension.

 The CS reads the freshness extension and generates the handshake that
 will be used further.

 The necessary Handshake Context to generate the handshake secrets is
 ClientHello...ServerHello which is provided by the handshake. The CS
 uses the freshness function provided in the freshness extension to
 derive the appropriated server.random.

 The generation of the CertificateVerify is described in [RFC8446]
 section 4.4.3. and consists in a signature over a context that
 includes the output of Transcript-Hash(Handshake Context,
 Certificate) as well as a context string. Both Handshake Context and
 context string depends on the Mode which is set to server in this
 case via the configuration of the LURK server.

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.3
https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.3

Migault Expires July 29, 2021 [Page 47]

Internet-Draft LURK/TLS 1.3 January 2021

 The necessary Handshake Context to generate the CertificateVerify is
 ClientHello ... later of EncryptedExtensions / CertificateRequest.
 In our case, this is exactly handshake, that is ClientHello ...
 EncryptedExtensions. The Certificate payload is generated from the
 information provided in the certificate extension.

 Once the certificate_verify value has been defined, the LURK server
 generates the server Finished message in order to have the necessary
 Handshake Context ClientHello...server Finished to generate the
 application secrets.

 The LURK server returns the requested keys, the certificate_verify in
 a InitCertVerifyResponse structure. This structure is composed of
 the two substructures: SecretResponse that contains the secrets and
 SigningResponse that contains the certificate_verify.

 The TLS server can complete the ServerHello response, that is proceed
 to the encryption and generates the Finished message.

 As session resumption is not provided, the LURK server goes into a
 finished state and delete the ks_ctx. The special case described in
 this session does not use LURK session and as such may be stateless.

12.4.5. TLS client: client Finished

 Upon receiving the ServerHello message, the TLS client retrieve the
 handshake and application secrets to decrypt the messages received
 from server as well as to encrypt its own messages and application
 data as represented below:

 TLS Client TLS Server

 {Finished} -------->
 [Application Data] <-------> [Application Data]

 To retrieves these secrets, the TLS client proceeds successively to
 an c_init_hand_secret LURK exchange followed by a c_app_secret LURK
 exchange.

 The c_init_hand_secret exchange is composed of one substructure:
 (OLD_secret_request) to request the secrets. Optionally, a
 SigningRequest (signing_request) when the TLS server requests the TLS
 client to authenticate itself. The indication of a request for TLS
 client authentication is performed by the TLS server by providing a
 CertificateRequest message associated to the ServerHello. We
 consider that such request has not been provided here so the
 SigingRequest structure is not present.

Migault Expires July 29, 2021 [Page 48]

Internet-Draft LURK/TLS 1.3 January 2021

 The OLD_secret_request specifies the secrets requested via the
 secret_request. In our case only the handshake secrets are requested
 (h_c, h_s). In this example the ECDHE share secret is provided via
 the ephemeral extension. In this case the ECDHE secrets have been
 generated by the TLS client, and the TLS client chooses to provide
 the ephemeral secret (dhe_secret) to the CS via the ephemeral
 extension. The TLS client also provides the freshness function via
 the freshness extension so the handshake can be appropriately be
 interpreted. The handshake context is provided via the handshake and
 is set to ClientHello ... ServerHello.

 Note that if the TLS client would have like the CS to generate the
 ECDHE public and private keys, the generation of the keys would have
 been made before the ClientHello is sent, that is in our case during
 a c_init_early_secret LURK exchange. If that had been the case a
 c_hand_secret LURK exchange would have followed and not a
 c_init_hand_secret exchange.

Migault Expires July 29, 2021 [Page 49]

Internet-Draft LURK/TLS 1.3 January 2021

 TLS Client
 Lurk Client Cryptographic Service
 InitHandshakeSecretRequest
 OLD_secret_request
 secret_request = h_c, h_s
 handshake = ClientHello ... ServerHello
 ext
 ephemeral = dhe_secret
 freshness
 session_id
 ------->

 InitHandshakeSecretResponse
 secret_response
 ext
 session_id
 <-------- keys
 TLS Client
 Lurk Client Cryptographic Service
 AppSecretRequest
 session_id
 cookie
 secret_Request
 secret_request
 handshake
 ------->

 AppSecretResponse
 session_id
 cookie
 secret_response
 <-------- keys

 Upon receiving the InitHandshakeSecretRequest, the servers initiates
 a LURK session context (ks_ctx) and initiates a key schedule. The
 key schedule requires PSK, ECDHE as well as Handshake Context to be
 complete. As no pre_shared_key and psk_key exchange_modes are found
 in the ClientHello the CS determines that ECDHE is used for the
 authentication. The PSK is set to its default value. The ECHDE
 shared secret is generated from the ephemeral extension as well as
 the public value provided in the ClientHello. The CS takes the
 freshness function and generates the appropriated handshake context.
 The necessary Handshake Context to generate handshake secrets is
 ClientHello...ServerHello which is provided by the handshake.

 The handshake secrets are returned in the secret_response to the TLS
 client. The TLS client decrypt the encrypted extensions and messages
 of the ServerHello exchange.

Migault Expires July 29, 2021 [Page 50]

Internet-Draft LURK/TLS 1.3 January 2021

 As no CertificateREquest appears, the LURK client initiates an
 app_secret LURK exchange decrypt and encrypt application data while
 finishing the TLS handshake.

 The AppSecretRequest structure uses session_id and cookies as agreed
 in the previous c_init_hand_secret exchange. The AppSecretRequest
 embeds a SecretRequest sub structure. The application secrets
 requested are indicated by the secret_request (a_s, a_s). The
 Handshake Context (handshake) is set to server EncryptedExtensions
 ... server Finished.

 Upon receiving the AppSecretRequest, the CS checks the session_id.
 The CS has now the ClientHello ... server Finished which enables it
 to compute the application secrets.

 As no session resumption is provided, the CS and the LURK client goes
 into a finished state and delete their ks_ctx.

12.5. TLS 1.3 Handshake with session resumption

 This scenario considers that the TLS server is authenticated using
 ECDHE only in the first time and that further TLS handshake use the
 session resumption mechanism. The first TLS Handshake is very
 similar as the previous one. The only difference is that
 psk_key_exchange_mode extension is added to the ClientHello.
 However, as no PSK identity is provided, the Full exchange is
 performed as described in section Section 12.4.

 The only change is that session resumption is activated, and thus
 LURK client and LURK servers do not go in a finished state and close
 the LURK session after the exchanges are completed. Instead further
 exchanges are expected. Typically, on the TLS server side
 new_Session_ticket exchanges are expected while
 registered_session_ticket are expected on the client side.

 When session resumption is performed, a new LURK session is
 initiated.

12.5.1. Full Handshake

 The Full TLS Handshake use ECDHE authentication. It is very similar
 to the logic described in section Section 12.4. The TLS handshake is
 specified below for convenience.

Migault Expires July 29, 2021 [Page 51]

Internet-Draft LURK/TLS 1.3 January 2021

 TLS Client TLS Server

 Key ^ ClientHello
 Exch | + key_share
 | + psk_key_exchange_mode
 v + signature_algorithms --------->
 ServerHello ^ Key
 + key_share | Exch
 {EncryptedExtensions} Server Param
 {Certificate} ^
 {CertificateVerify} | Auth
 {Finished} v
 <-------- [Application Data*]
 {Finished} -------->
 [Application Data] <-------> [Application Data]

12.5.2. TLS server: NewSessionTicket

 As session resumption has been activated by the
 psk_key_exchange_mode, the TLS Server is expected to provide the TLS
 client NewSessionTickets as mentioned below:

 TLS Client TLS Server
 <-------- [NewSessionTicket]

 The LURK client and LURK server on the TLS server does not go into a
 finished state. Instead, the LURK client continues the LURK session
 with a NewTicketRequest to enable the CS to generate the
 resumption_master_secret necessary to generate the PSK and generate a
 NewTicketSession. ticket_nbr indicates the number of
 NewSessionTickets and handshake is set to earlier of client
 Certificate client CertificateVerify ... client Finished. As we do
 not consider TLS client authentication, the handshake is set to
 client Finished as represented below.

 TLS Server
 Lurk Client Cryptographic Service
 NewTicketRequest
 session_id
 cookie
 ticket_nbr
 handshake=client Finished -------->
 NewTicketResponse
 session_id
 cookie
 <--------- tickets

Migault Expires July 29, 2021 [Page 52]

Internet-Draft LURK/TLS 1.3 January 2021

 The necessary Handshake Context to generate the
 resumption_master_secret is ClientHello...client Finished. From the
 InitCerificateVerify the context_handshake was set to
 ClientHello...server Finished. The additional handshake enables the
 CS to generate the NewSessionTickets.

 Note that the LURK client on the TLS server may send multiple
 NewTicketRequest. Future request have an empty handshake.

 Upon receiving the NewTicketRequest, the LURK server checks the
 session_id and cookie. It then generates the
 resumption_master_secret, NewSessionTickets. NewSessionTickets are
 stored into the PSK_DB under NewSessionTicket.ticket. Note that PSK
 is associated with the authentication mode as well as the Hash
 function negotiated for the cipher suite. The CS responds with
 NewSessionTickets that are then transmitted back to the TLS client.
 The TLS server is ready for session resumption.

12.5.3. TLS client: NewSessionTicket

 Similarly, the LURK client on the TLS client will have to provide
 sufficient information to the CS the necessary PSK can be generated
 in case of session resumption. This includes the remaining Handshake
 Context to generate the resumption_master_secret as well as
 NewSessionTickets provided by the TLS server. The LURK client uses
 the c_register_ticket exchange.

 Note that the LURK client may provide the handshake with an empty
 list of NewSessionTickets, and later provide the NewSessionTickets as
 they are provided by the TLS server. The Handshake Context only
 needs to be provided for the first RegisterTicketRequest.

 TLS Client
 Lurk Client Cryptographic Service
 NewTicketRequest
 session_id
 cookie
 handshake=client Finished
 ticket_list -------->
 NewTicketResponse
 session_id
 cookie
 <--------- tickets

 Both TLS client and TLS Servers are ready for further session
 resumption. On both side the CS stores the PSK in a database
 designated as PSK_DB. Each PSK is associated to a Hash function as
 well as authentication modes. Each PSK is designated by an identity.

Migault Expires July 29, 2021 [Page 53]

Internet-Draft LURK/TLS 1.3 January 2021

 The identity may be a label, but in our case the identity is derived
 from the NewSessionTicket.ticket.

12.5.4. Session Resumption

 Session resumption is initiated by the TLS client. Session
 resumption is based on PSK authentication and different PSK may be
 proposed by the TLS client. The TLS handshake is presented below.

 TLS Client TLS Server
 ClientHello
 + key_share
 + psk_key_exchange_mode
 + pre_shared_key -------->
 ServerHello
 + pre_shared_key
 + key_share
 {EncryptedExtensions}
 {Finished}
 <-------- [Application Data*]

 The TLS client may propose to the TLS Server multiple PSKs. Each of
 these PSKs is associated a PskBindersEntry defined in [RFC8446]
 section 4.2.11.2. PskBindersEntry is computed similarly to the
 Finished message using the binder_key and the partial ClientHello.

 The TLS server is expected to pick a single PSK and validate the
 binder. In case the binder does not validate the TLS Handshake is
 aborted. As a result, only one binder_key is expected to be
 requested by the TLS server as opposed to the TLS client.

 In this example we assume the psk_key_exchange_mode indicated by the
 TLS client supports PSK-ECDHE as well as PSK authentication. The
 presence of a pre_shared_key and a key_share extension in the
 ServerHello inidcates that PSK-ECDHE has been selected.

12.5.4.1. TLS client: ClientHello

 To compute binders, the TLS Client needs to request the binder_key
 associated to each proposed PSK. These binder_keys are retrieved to
 the CS using the BinderKeyRequest. The secret_request is set to
 binder_key, and the PSK_id extension indicates the PSK's identity
 (PSKIdentity.identity or NewSessionTicket.ticket). No Handsahke
 Context is needed and handshake is empty.

https://datatracker.ietf.org/doc/html/rfc8446#section-4.2.11.2
https://datatracker.ietf.org/doc/html/rfc8446#section-4.2.11.2

Migault Expires July 29, 2021 [Page 54]

Internet-Draft LURK/TLS 1.3 January 2021

 TLS Client
 Lurk Client Cryptographic Service
 BinderKeyRequest
 secret_request=binder_key
 handshake=""
 ext
 PSK_id
 BinderKeyResponse
 <--------- key

 Upon receiving the BinderKeyRequest, the CS checks the psk is in the
 PSK_DB and returns the binder_key.

 With the binder keys, the TLS Client is able to send it ClientHello
 message.

 We assume in this example that the ECDHE secrets is generated by the
 TLS client and not the Cryptographic service. As a result, the TLS
 client does not need an extra exchange to request the necessary
 parameters to derive the key_shared extension.

12.5.4.2. TLS server: ServerHello

 The TLS server is expected to select a PSK, check the associated
 binder and proceed further. If the binder fails, it is not expected
 to proceed to another PSK, as a result, the TLS server is expected to
 initiates a single LURK session.

 The binder_key is requested by the TLS server via and
 s_init_early_secret LURK exchange. The InitEarlySecretRequest
 structure is composed of a SecretRequest structure
 (OLD_secret_request).

 In our case, only the binder_key is requested so secret_request is
 set to binder_key only. Similarly, to the TLS client, the handshake
 is not needed to generate the binder_key. However, the EarlySecret
 exchange requires the ClientHello to be provided so early secrets may
 be computed in the same round during 0-RTT handshake. The chosen PSK
 is indicated in the PSK_id extension and the freshness function is
 indicated in the freshness extension.

Migault Expires July 29, 2021 [Page 55]

Internet-Draft LURK/TLS 1.3 January 2021

 TLS Server
 Lurk Client Cryptographic Service
 InitEarlySecretRequest
 secret_Request
 secret_request=binder_key
 handshake=ClientHello
 ext
 freshenss
 PSK_id
 session_id
 InitEarlySecretResponse
 secret_response
 <--------- key
 ext
 session_id

 To complete to the ServerHello exchange, the TLS server needs the
 handshake and application secrets. These secrets are requested via
 an s_hand_and_app_secret LURK exchange. The
 HandshakeAndAppSecretRequest is composed of SecretRequest structure.
 The secret_request is set to handshake (h_c, h_s) and application
 secrets (a_s, a_c). The Handshake Context (handshake) is set to
 ServerHello ... EncryptedExtensions as their is no authentication of
 the TLS client. Finally, the ephemeral ECDHE is provided or
 requested via the ephemeral extension. In our case, we assume the
 ephemeral secrets is generated by the tLS client is provided to the
 CS.

 The necessary Handshake Context to generate the handshake secrets is
 ClientHello ... ServerHello, so the CS can generate the handshake
 secrets. The necessary Handshake Context to generate the application
 secrets is ClientHello ... server Finished. So the CS needs to
 generate the Finished message before as in the case of the
 InitCerificateVerify exchange detailed in Section 12.5.1.

Migault Expires July 29, 2021 [Page 56]

Internet-Draft LURK/TLS 1.3 January 2021

 TLS Server
 Lurk Client Cryptographic Service
 HandshakeAndAppRequest
 session_id
 OLD_secret_request
 secret_request = h_c, h_s, a_c, a_s
 handshake = ServerHello ... EncryptedExtensions
 ext
 ephemeral = dhe_secret -------->
 HandshakeAndAppResponse
 session_id
 secret_response
 keys
 <---------

 The CS returns the necessary secret to the TLS server to complete the
 ServerHello response.

 The remaining of the TLS handshake is proceeded similarly as
 described in the Full Handshake in section Section 12.5.

12.6. TLS 1.3 0-RTT handshake

 The 0-RTT Handshake is a PSK or PSK-ECDHE authentication that enables
 the TLS client to provide application data during the first round
 trip. The main differences to the PSK PSK-ECDHE authentication
 described in the case of session resumption is that:

 o Application Data is encrypted in the ClientHello based on the
 client_early_secret

 o Generation of the client_early_secret requires the Cryptographic
 Service to be provisioned with the ClientHello which does not need
 to be re-provisioned later to generate the handshake secrets

 o An additional message EndOfEarlyData needs to be considered to
 compute the client Finished message.

Migault Expires July 29, 2021 [Page 57]

Internet-Draft LURK/TLS 1.3 January 2021

 TLS Client TLS Server

 ClientHello
 + early_data
 + key_share*
 + psk_key_exchange_modes
 + pre_shared_key
 (Application Data*) -------->
 ServerHello
 + pre_shared_key
 + key_share*
 {EncryptedExtensions}
 + early_data
 {Finished}
 <-------- [Application Data*]
 (EndOfEarlyData)
 {Finished} -------->
 [Application Data] <-------> [Application Data]

12.6.1. TLS client: ClientHello

 With 0-RTT handshake, the TLS client builds binders as in session
 resumption described in section Section 12.5.4. The binder_key is
 retrieved for each proposed PSK with a BinderKeyRequest. When early
 application data is sent it is encrypted using the
 client_early_traffic_secret. This secret is retrieved using the
 c_init_early_secret LURK exchange.

 The InitEarlySecretRequest is composed of a SecretRequest
 (OLD_secret_request) substructure. The TLS Client sets the
 secret_request to client_early_traffic_secret (e_s). The handshake
 is set to ClientHello. The PSK is indicated via the the PSK_id
 extension, the freshness function is indicated via the freshness
 extension. If the TLS client is willing to have the ECDHE keys
 generated by the CS an ephemeral extension MAY be added also.

 When multiple PSK are proposed by the TLS client, the first proposed
 PSK is used to encrypt the application data.

Migault Expires July 29, 2021 [Page 58]

Internet-Draft LURK/TLS 1.3 January 2021

 TLS Client
 Lurk Client Cryptographic Service
 InitEarlySecretRequest
 OLD_secret_request
 secret_request=e_s
 handshake=ClientHello
 ex
 PSK_id
 fresness
 session_id
 InitEarlySecretResponse
 secret_response
 <--------- keys=e_s
 ext
 session_id

 Upon receiving the InitEarlySecretRequest, the CS generates the
 client_early_traffic_secret.

 The TLS client is able to send its ClientHello with associated
 binders and application data.

12.6.2. TLS server: ServerHello

 If the TLS server accepts the early data. It proceeds as described
 in session resumption described in section Section 12.5.4. In
 addition to the binder_key, the TLS server also request the
 client_early_traffic_secret to decrypt the early data as well as to
 proceed to the ServerHello exchange.

12.6.3. TLS client: Finished

 The TLS client proceeds as described in handshake based on ECDHE, PSK
 or PSK-ECDHE authentications described in Section 12.4 and

Section 12.5. The main difference is that upon requesting handshake
 and application secrets, using an HandAndAppRequest the TLS client
 will not provide the ClientHello as part as the handshake. The
 Client as already been provided during the EarlySercret exchange.

12.7. TLS client authentication

 TLS client authentication can be performed during the Full TLS
 handshake or after the TLS handshake as a post handshake
 authentication. In both cases, the TLS client authentication is
 initiated by the TLS server sending a CertificateRequest. The
 authentication is performed via a CertificateVerify message generated
 by the TLS client but such verification does not involve the CS on
 the TLS server.

Migault Expires July 29, 2021 [Page 59]

Internet-Draft LURK/TLS 1.3 January 2021

12.8. TLS Client:Finished (CertificateRequest)

 The ServerHello MAY carry a CertificateRequest encrypted with the
 handshake sercets.

 Upon receiving the ServerHello response, the TLS client decrypts the
 ServerHello response. If a CertificateRequest message is found, the
 TLS Client requests the Cryptographic to compute the
 CertificateVerify in addition to the application secrets via a
 certificate_verify LURK exchange. The CertVerifyRequest is composed
 of a Secret Request structure and a SigningRequest structure.

 The secret_request is set to the application secrets (a_c, a_s) and
 the handshake is set to server EncryptedExtensions ... later of
 server Finished/EndOfEarlyData. As the request follows a (BinderKey,
 EarlySecret, HandshakeSecret) or HandshakeSecret the Handshake
 Context on the CS now becomes: ClientHello ... later of server
 Finished/EndOfEarlyData which is the Handshake Context required to
 generate the CertificateVerify on the TLS client side and includes
 the Handshake Context required to generate the application secrets
 (ClientHello...server Finished).

 TLS Client
 Lurk Client Cryptographic Service
 CertVerifyRequest
 session_id
 OLD_secret_request
 secret_request
 handshake = EncryptedExtensions ...
 later of server Finished/EndOfEarlyData
 signing_request
 CertVerifyResponse
 session_id
 secret_response
 keys
 signing_response
 <--------- certificate_verify

 Upon receiving the CertificateRequest, the CS checks the session_id
 and cookie.

12.9. TLS Client Authentication (PostHandshake)

 When post-handshake is enabled by the TLS client, the TLS client may
 receive at any time after the handshake a CertificateRequest message.
 When post handshake is enabled by the TLS client, as soon as the
 client Finished message has been sent, the TLS client sends a
 RegisteredNewSessionTicketRequest with an empty NewSessionTicket to

Migault Expires July 29, 2021 [Page 60]

Internet-Draft LURK/TLS 1.3 January 2021

 register the remaining Handshake Context to the CS. ctx_id is set to
 opaque, handshake is set to earlier of client Certificate client
 CertificateVerify ... client Finished.

 Upon receiving the RegisteredNewSessionTicketsRequest the
 Cryptographic is aware of the full Handshake Context. It updates
 ks_ctx.next_request to c_post_hand or c_register_ticket.

 TLS Client
 Lurk Client Cryptographic Service
 RegisteredNewSessionTicketRequest
 session_id
 handshake
 ticket_list (empty)
 <--------- RegisteredNewSessionTicketResponse
 session_id
 cookie

 When the TLS client receives a CertificateRequest message from the
 TLS server, the TLS client sends a PostHandshakeRequest to the
 Cryptographic Service to generate certificate_verify. The handshake
 is set to CertificateRequest. The index N of the
 client_application_traffic_N key is provided as well as the
 Cryptographic so it can generate the appropriated key.

 TLS Client
 Lurk Client Cryptographic Service
 PostHandshakeRequest
 session_id
 handshake=CertificateRequest
 app_n=N
 PostHandshakeResponse
 session_id
 <--------- certificate_verify

 Upon receiving the PostHandshakeRequest the CS checks session_id and
 cookie. The necessary Handshake Context to generate the
 certificate_verify is ClientHello ... client Finished +
 CertificateRequest. Once the PostHandshakeResponse. Next requests
 expected are c_post_hand or c_register_ticket.

13. References

13.1. Normative References

Migault Expires July 29, 2021 [Page 61]

Internet-Draft LURK/TLS 1.3 January 2021

 [I-D.ietf-tls-certificate-compression]
 Ghedini, A. and V. Vasiliev, "TLS Certificate
 Compression", draft-ietf-tls-certificate-compression-10
 (work in progress), January 2020.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7924] Santesson, S. and H. Tschofenig, "Transport Layer Security
 (TLS) Cached Information Extension", RFC 7924,
 DOI 10.17487/RFC7924, July 2016,
 <https://www.rfc-editor.org/info/rfc7924>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8466] Wen, B., Fioccola, G., Ed., Xie, C., and L. Jalil, "A YANG
 Data Model for Layer 2 Virtual Private Network (L2VPN)
 Service Delivery", RFC 8466, DOI 10.17487/RFC8466, October
 2018, <https://www.rfc-editor.org/info/rfc8466>.

13.2. Informative References

 [I-D.mglt-lurk-lurk]
 Migault, D., "LURK Protocol version 1", draft-mglt-lurk-

lurk-00 (work in progress), February 2018.

 [I-D.mglt-lurk-tls12]
 Migault, D. and I. Boureanu, "LURK Extension version 1 for
 (D)TLS 1.2 Authentication", draft-mglt-lurk-tls12-03 (work
 in progress), July 2020.

Author's Address

 Daniel Migault
 Ericsson
 8275 Trans Canada Route
 Saint Laurent, QC 4S 0B6
 Canada

 EMail: daniel.migault@ericsson.com

https://datatracker.ietf.org/doc/html/draft-ietf-tls-certificate-compression-10
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7924
https://www.rfc-editor.org/info/rfc7924
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/rfc8466
https://www.rfc-editor.org/info/rfc8466
https://datatracker.ietf.org/doc/html/draft-mglt-lurk-lurk-00
https://datatracker.ietf.org/doc/html/draft-mglt-lurk-lurk-00
https://datatracker.ietf.org/doc/html/draft-mglt-lurk-tls12-03

Migault Expires July 29, 2021 [Page 62]

