
Workgroup: LURK

Internet-Draft: draft-mglt-lurk-tls13-05

Published: 26 July 2021

Intended Status: Standards Track

Expires: 27 January 2022

Authors: D. Migault

Ericsson

LURK Extension version 1 for (D)TLS 1.3 Authentication

Abstract

This document describes the LURK Extension 'tls13' which enables

interactions between a LURK client and a LURK server in a context of

authentication with (D)TLS 1.3.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 January 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. TODO

2. Introduction

3. Terminology

4. LURK Header

5. Structures

5.1. secret_request

5.2. handshake

5.3. session_id

5.4. freshness

5.5. ephemeral

5.5.1. shared_secret_provided:

5.5.2. secret_generated:

5.5.3. no_secret

5.6. selected_identity

5.7. certificate

5.8. tag

5.9. secret

5.10. signature

6. LURK exchange on the TLS server

6.1. s_init_cert_verify

6.2. s_new_tickets

6.3. s_init_early_secret

6.4. s_hand_and_app_secret

7. LURK exchange on the TLS client

7.1. c_init_post_hand_auth

7.2. c_post_hand_auth

7.3. c_init_cert_verify

7.4. c_init_client_hello

7.5. c_client_hello

7.6. c_hand_and_app_secret

7.7. c_register_tickets

8. Security Considerations

9. IANA Considerations

10. Acknowledgments

11. References

11.1. Normative References

11.2. Informative References

Appendix A. Annex

A.1. TLS server ECDHE (no session resumption)

A.1.1. ecdhe generated on the CS

A.1.2. ecdhe generated by the TLS server

A.2. TLS server ECDHE (with session resumption)

A.3. TLS server PSK / PSK-ECDHE

A.4. TLS client unauthenticated ECDHE

A.5. TLS client unauthenticated PSK / PSK-ECDHE

A.6. TLS client authenticated ECDHE

A.6.1. (EC)DHE or Proposed PSK protected by the CS

A.6.2. (EC)DHE provided by the TLS client

A.7. TLS client authenticated - post handshake authentication

A.7.1. Initial Post Handshake Authentication

A.7.2. Post Handshake Authentication

Author's Address

1. TODO

check the terminology is used. PSK agreed....

move the handshake description to the s_exchange description

description

state diagram for the server.

2. Introduction

This document defines a LURK extension for TLS 1.3 [RFC8446].

This document assumes the reader is familiar with TLS 1.3 the LURK

architecture [I-D.mglt-lurk-lurk].

Interactions with the Cryptographic Service (CS) can be performed by

the TLS client as well as by the TLS server.

LURK defines an interface to a CS that stores the security

credentials which include the PSK involved in a PSK or PSK-ECDHE

authentication or the key used for signing in an ECDHE

authentication. In the case of session resumption the PSK is derived

from the resumption_master_secret during the key schedule [RFC8446]

section 7.1, this secret MAY require similar protection or MAY be

delegated as in the LURK extension of TLS 1.2 [I-D.mglt-lurk-tls12].

The current document extends the scope of the LURK extension for TLS

1.2 in that it defines the CS on the TLS server as well as on the

TLS client and the CS can operate in non delegating scenarios.

This document defines the role to specify whether the CS runs on a

TLS client or a TLS service. The CS MUST be associated a single

role.

From a LURK client perspective, the purpose of the LURK exchange is

to request secrets, a signing operations, or ticket

(NewSessionTicket) as summed up in Table Figure 1.

1. ¶

2.

¶

3. ¶

¶

¶

¶

¶

¶

¶

¶

ECHDE

Figure 1: Operation associated to LURK exchange

The number of operations are limited, but the generation of secrets,

tickets as well as signing heavily rely on the knowledge of the TLS

handshake messages and in turn impacts these TLS handshake messages.

As a result, these operations are highly inter-dependent. This is

one reason multiple sequential exchanges are needed between the LURK

client and the CS as opposed to independent requests for secrets,

signing or tickets. This especially requires the necessity to create

a session between the LURK client and the CS. In addition, the LURK

client and the CS need to synchronize the TLS handshake. First it is

a necessary component for the CS to generate the secrets, signature

and tickets. Second, elements are respectively generated by the LURK

client and by the CS.

While all these messages do share a lot of structures, they also

require different structure that make them unique.

3. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses the terms defined [RFC8446] and [I-D.mglt-lurk-

tls12].

designates the ECDHE authentication defined in [RFC8446].

(EC)DHE

designates the shared secret agreed by the key_share extension

(section 4.2.8 of [RFC8446]) during a TLS handshake.

+--------+-----------------------+------------------------+

| Role | LURK exchange | secret | sign | ticket |

+--------+-----------------------+--------+------+--------+

| server | s_init_early_secret | yes | - | - |

| server | s_init_cert_verify | yes | yes | - |

| server | s_hand_and_app_secret | yes | - | - |

| server | s_new_ticket | yes | - | yes |

| client | c_init_post_hand_auth | - | yes | - |

| client | c_post_hand_auth | - | yes | - |

| client | c_init_cert_verify | yes | yes | - |

| client | c_init_early_secret | yes | - | - |

| client | c_init_hand_secret | yes | - | - |

| client | c_hand_and_app_secret | yes | - | - |

| client | c_register_tickets | yes | - | yes |

+--------+-----------------------+--------+------+--------+

¶

¶

¶

¶

¶

¶

PSK Proposed

PSK Agreed

ECDHE Agreed

Key Share Proposed

Key Share Agreed

Early Data Enabled

Post Handshake Enabled:

A TLS handshake between a TLS client and a TLS server

is said to be "PSK proposed" when the latest ClientHello contains

a psk_key_exchange_modes (section 4.2.9 of [RFC8446]) and a

pre_shared_key (section 4.2.11 of [RFC8446]) extension. A TLS

client is said to "propose PSK" when its TLS handshake is PSK

proposed.

A TLS handshake between a TLS client and a TLS server is

said to be "PSK agreed" when the TLS handshake is PSK proposed

and the ServerHello contains a psk_key_exchange_modes and a

pre_shared_key extension. A TLS client and a TLS server are said

to have "agreed on PSK" when its TLS handshake is PSK agreed.

A TLS handshake between a TLS client and a TLS server

is said to be "ECDHE agreed" when the ServerHello contains

neither a psk_key_exchange_modes or a pre_shared_key extension.

As currently TLS proposes only ECDHE and PSK based

authentication, when PSK agreed is false, ECDHE agreed is true. A

TLS client and a TLS server are said to have "agreed on ECDHE"

when its TLS handshake is PSK agreed.

A TLS handshake between a TLS client and a TLS

server is said to be "key shared proposed" or "(EC)DHE proposed"

when the latest ClientHello contains a key_share extension

(section 4.2.8 of [RFC8446]). A TLS client is said to "propose

PSK" when its TLS handshake is PSK proposed.

A TLS handshake between a TLS client and a TLS

server is said to be "key shared agreed" or "(EC)DHE agreed" when

the TLS handshake is key shared proposed and the ServerHello

contains neither a key_share extension. A TLS client and a TLS

server are said to have "agreed on (EC)DHE" when its TLS

handshake is key share agreed.

A TLS client is said to "support early data" or

"enable early data" when its latest ClientHello contains a

early_data extension (section 4.2.10 of [RFC8446].

A TLS client is said to "support early

data" or "enable early data" when its latest ClientHello contains

a post_handshake_auth extension.

4. LURK Header

LURK / TLS 1.3 is a LURK Extension that introduces a new designation

"tls13". This document assumes that Extension is defined with

designation set to "tls13" and version set to 1. The LURK Extension

extends the LURKHeader structure defined in [I-D.mglt-lurk-lurk] as

follows:

¶

¶

¶

¶

¶

¶

¶

¶

enum {

 tls13 (2), (255)

} Designation;

enum {

 capabilities(0),

 ping(1),

 s_init_cert_verify(2),

 s_new_ticket(3),

 s_init_early_secret(4),

 s_hand_and_app_secret(5),

 c_binder_key(6),

 c_init_early_secret(7),

 c_init_hand_secret(8),

 c_hand_secret(9),

 c_app_secret(10),

 c_cert_verify(11),

 c_register_tickets(12),

 c_post_hand(13), (255)

}TLS13Type;

enum {

 // generic values reserved or aligned with the

 // LURK Protocol

 request (0), success (1), undefined_error (2),

 invalid_payload_format (3),

 invalid_psk

 invalid_freshness

 invalid_request

 invalid_key_id_type

 invalid_key_id

 invalid_signature_scheme

 invalid_certificate_type

 invalid_certificate

 invalid_certificate_verify

 invalid_secret_request

 invalid_handshake

 invalid_extension

 invalid_ephemeral

 invalid_identity

 too_many_identities

}TLS13Status

struct {

 Designation designation = "tls13";

 int8 version = 1;

} Extension;

struct {

 Extension extension;

 select(Extension){

 case ("tls13", 1):

 TLS13Type;

 } type;

 select(Extension){

 case ("tls13", 1):

 TLS13Status;

 } status;

 uint64 id;

 unint32 length;

} LURKHeader;

¶

5. Structures

This section describes structures that are widely re-used across the

multiple LURK exchanges.

5.1. secret_request

secret_request is a 16 bit structure described in Table Figure 2

that indicates the requested key or secrets by the LURK client. The

secret_request structure is present in the request of any exchange

except for a c_post_hand exchange. The same structure is used across

all LURK exchanges, but each LURK exchange only permit a subset of

values described in Table Figure 3.

A LURK client MUST NOT set secret_request to key or secrets that are

not permitted. The CS MUST check the secret_request has only

permitted values and has all mandatory keys or secrets set. If these

two criteria are not met the CS MUST NOT perform the LURK exchange

and SHOULD return a invalid_secret_request error. If the CS is not

able to compute an optional key or secret, the CS MUST proceed the

LURK exchange and ignore the optional key or secret.

Figure 2: secret_request structure

¶

¶

¶

+------+---+

| Bit | key or secret (designation) |

+------+---+

| 0 | binder_key (b) |

| 1 | client_early_traffic_secret (e_c) |

| 2 | early_exporter_master_secret (e_x) |

| 3 | client_handshake_traffic_secret (h_c) |

| 4 | server_handshake_traffic_secret (h_s) |

| 5 | client_application_traffic_secret_0 (a_c) |

| 6 | server_application_traffic_secret_0 (a_s) |

| 7 | exporter_master_secret (x) |

| 8 | resumption_master_secret (r) |

| 9-15 | reserved and set to zero |

+------+---+

Figure 3: secret_request permitted values per LURK exchange

5.2. handshake

The derivation of the secrets, signing operation and tickets

requires the TLS handshake. The TLS handshake is described in

[RFC8446] section 4 and maintained by the TLS server and the TLS

client to derive the same secrets. As the CS is in charge is

deriving the secrets as well to perform some signature verification,

the CS must be be aware of the TLS handshake. The TLS handshake is

not necessarily being provided by the LURK client to the CS, but

instead is derived some structures provided by the LURK client as

well as other structures generated or modified by the CS.

When an unexpected handshake context is received, the CS SHOULD

return an invalid_handshake error.

The value of the TLS hanshake is defined in [RFC8446] section 4 and

remainded in Table Figure 4 reminds the TLS handshake values after

each LURK exchange and describes operations performed by the CS in

order to build it.

On the TLS server:

(a) ServerHello.random value provided by the LURK client requires

specific treatment as described in Section 5.4 before being

inserted in the TLS handshake variable.

(b) When the shared secret (and so the private ECDHE) is

generated by the CS, the KeyShareServerHello structure cannot be

provided to the CS by the LURK client in a ServerHello and is

instead completed by the CS as described in Section 5.5.

+-----------------------+-----------------------------+

| LURK exchange | Permitted secrets |

+-----------------------+-----------------------------+

| s_init_cert_verify | h_c*, h_s*, a_c*, a_s*, x* |

| s_new_ticket | r* |

| s_init_early_secret | b,e_c*, e_x* |

| s_hand_and_app_secret | h_c, h_s, a_c*, a_s*, x* |

| c_init_post_hand_auth | - |

| c_post_hand_auth | - |

| c_init_cert_verify | a_c*, a_s*, x* |

| c_init_client_hello | b*, e_c*, e_x* |

| c_client_hello | b*, e_c*, e_x* |

| c_hand_and_app_secret | h_c, h_s, a_c*, a_s*, x*, r*|

| c_register_tickets | - |

+-----------------------+-----------------------------+

* indicates the secret MAY be requested

- indicates no secrets van be requested

¶

¶

¶

¶

*

¶

*

¶

(c) The TLS Certificate structure MUST not be provided by the

LURK client as part of the handshake structure. Instead, the CS

generates the Certificate message from the certificate structure

described in Section 5.7. The handshake MUST NOT contain a TLS

Certificate message and CS SHOULD raise an

invalid_handshake_error if such message is found in the TLS

handshake. When a client Certificate is provided, the CS SHOULD

raise an invalid_handshake error in the absence of a

CertificateRequest message.

(d) The Certificate and Finished messages are not provided in a

handshake structure by the LURK client but are instead generated

by the CS as described in Section 5.10.

(e) Some authentication PSK_ECHDE or ECDHE requires the agreement

of a shared ECDHE secret. This is indicated by the presence of

key_share extension in both ClientHello and ServerHello. When

these extensions are not found, the CS SHOULD raise an error.

Note that in the case of PSK / PSK-ECDHE, the presence or absence

of key_share extension MAY be used to distinguish between the two

authentication methods.

(f) ECDHE authentication does not involve the agreement of a PSK.

This is indicated by the presence of a key_share extension in

both ClientHello and ServerHello. When these extensions are

found, the CS SHOULD raise an error.

(g) PSK and PSK_ECDHE requires the agreement of a PSK, so a psk

is expected in the ClientHello as well as - when present in the

ServerHello. When this extension are not found, the CS SHOULD

raise an error.

*

¶

*

¶

*

¶

*

¶

*

¶

Figure 4: handshake values per LURK exchange

5.3. session_id

The session_id is a 32 bit identifier that identifies a LURK session

between a LURK client and a CS. Unless the exchange is sessionless,

the session_id is negotiated at the initiation of the LURK session

where the LURK client (resp. the CS) indicates the value to be used

for inbound session_id in the following LURK exchanges. For other

LURK exchanges, the session_id is set by the sender to the inbound

value provided by the receiving party. When the CS receives an

unexpected session_id the CS SHOULD return an invalid_session_id

error.

Table Figure 5 indicates the presence of the session_id.

+-----------------------+------------------------------------+---------------+

| LURK exchange | TLS handshake | CS operations |

+-----------------------+------------------------------------+---------------+

| s_init_cert_verify | ClientHello ... later of | a,b,c,d,e,f |

| | server EncryptedExtensions / | |

| | CertificateRequest | |

| s_new_ticket | earlier of client Certificate / | c |

| | client CertificateVerify / | |

| | Finished ... Finished | |

| s_init_early_secret | ClientHello | a, g |

| s_hand_and_app_secret | ServerHello ... later of | b, g |

| | server EncryptedExtensions / | |

| | CertificateRequest | |

| c_init_post_hand_auth | ClientHello ... ServerHello | e |

| | CertificateRequest | |

| c_post_hand_auth | CertificateRequest | |

| c_init_cert_verify | ClientHello...server Finished | e,f |

| c_init_client_hello | (Partial) ClientHello or | |

| | ClientHello, HelloRetryRequest, | |

| | (Partial) ClientHello | |

| c_client_hello | HelloRetryRequest, (Partial) ClientHello |

| c_hand_and_app_secret | ServerHello, {EncryptedExtensions} | |

| | ... later of { server Finished } / | |

| | EndOfEarlyData | |

| c_register_tickets | - | |

+-----------------------+------------------------------------+---------------+

Handshake handshake<0..2^32> //RFC8446 section 4 (clear) clientHello...client finished CertificateRequest¶

¶

¶

Figure 5: session_id in LURK exchanges

The session_id structure is defined below: ~~~ uint32 session_id ~~~

5.4. freshness

The freshness function implements perfect forward secrecy (PFS) and

prevents replay attack. On the TLS server, the CS generates the

ServerHello.random of the TLS handshake that is used latter to

derive the secrets. The ServerHello.random value is generated by the

CS using the freshness function and the ServerHello.random provided

by the LURK client in the handshake structure. The CS operates

similarly on the TLS client and generates the ClientHello.random of

the TLS handshake using the freshness function as well as the

ClientHello.random value provided by the LURK client in the

handshake structure.

If the CS does not support the freshness, the CS SHOULD return an

invalid_freshness error. In this document the freshness function is

implemented by applying sha256.

Table {table:freshness} details the exchanges that contains the

freshness structure.

+-----------------------+------------+

| LURK exchange | session_id |

+-----------------------+------------+

| s_init_cert_verify | * |

| s_new_ticket | y |

| s_init_early_secret | y |

| s_hand_and_app_secret | y |

| c_init_post_hand_auth | * |

| c_post_hand_auth | y |

| c_init_cert_verify | * |

| c_init_client_hello | y |

| c_client_hello | y |

| c_hand_and_app_secret | y |

| c_register_tickets | y |

+-----------------------+------------+

y indicates the session_id is present

- indicates session_id may be absent

* indicates session_id may be present (depending on the tag.last_message)

¶

¶

¶

¶

Figure 6: freshness in LURK exchange

The extension data is defined as follows:

When the CS is running on the TLS server, the ServerHello.random is

generated as follows:

When the CS is running on the TLS client, the ClientHello.random is

generated as follows:

The server_random (resp client_random) MUST be deleted once it has

been received by the CS. In some cases, especially when the TLS

client enables post handshake authentication and interacts with the

CS via a (c_init_post_hand_auth) exchange, there might be some delay

between the ClientHello is sent to the server and the Handshake

context is shared with the CS. The client_random MUST be kept until

the post-handshake authentication is performed as the full handshake

is provided during this exchange.

5.5. ephemeral

The Ephemeral structure carries the necessary information to

generate the (EC)DHE shared secret used to derive the secrets. This

+-----------------------+-----------+

| LURK exchange | freshness |

+-----------------------+-----------+

| s_init_cert_verify | y |

| s_new_ticket | - |

| s_init_early_secret | - |

| s_hand_and_app_secret | y |

| c_init_post_hand_auth | y |

| c_post_hand_auth | - |

| c_init_cert_verify | y |

| c_init_client_hello | y |

| c_client_hello | - |

| c_hand_and_app_secret | - |

| c_register_tickets | - |

+-----------------------+-----------+

y indicates freshness is present

- indicates freshness is absent

¶

enum { sha256(0) ... (255) } Freshness;¶

¶

server_random = ServerHello.random

ServerHello.random = freshness(server_random + "tls13 pfs srv");

¶

¶

client_random = ClientHello.random

ClientHello.random = freshness(client_random + "tls13 pfs clt");

¶

¶

document defines the following ephemeral methods to generate the

(EC)DHE shared secret:

secret_provided: Where (EC)DHE keys and shared secret are

generated by the TLS server and provided to the CS

secret_generated: Where the (EC)DH keys and shared secret are

generated by the CS.

no_secret: where no (EC)DHE is involved, and PSK authentication

is performed.

5.5.1. shared_secret_provided:

When ECDHE shared secret are generated by the TLS server, the LURK

client provides the shared secret value to the CS. The shared secret

is transmitted via the SharedSecret structure, which is similar to

the key_exchange parameter of the KeyShareEntry described in The CS

MUST NOT return any data.[RFC8446] section 4.2.8.

Where coordinate_length depends on the chosen group. For secp256r1,

secp384r1, secp521r1, x25519, x448, the coordinate_length is

respectively 32 bytes, 48 bytes, 66 bytes, 32 bytes and 56 bytes.

Upon receiving the shared_secret, the CS MUST check group is

proposed in the KeyShareClientHello and agreed in the

KeyShareServerHello.

5.5.2. secret_generated:

When the ECDHE public/private keys are generated by the CS, the LURK

client requests the CS the associated public value. Note that in

such cases the CS would receive an incomplete Handshake Context from

the LURK client with the public part of the ECDHE missing. Typically

the ServerHello message would present a KeyShareServerHello that

consists of a KeyShareEntry with an empty key_exchange field, but

the field group is present.

The CS MUST check the group field in the KeyShareServerHello, and

get the public value of the TLS client from the KeyShareClientHello.

The CS performs the same checks as described in [RFC8446] section

4.2.8. The CS generates the private and public (EC)DH keys, computes

the shared key and return the KeyShareEntry server_share structure

defined in [RFC8446] section section 4.2.8 to the LURK client.

¶

*

¶

*

¶

*

¶

¶

struct {

 NamedGroup group;

 opaque shared_secret[coordinate_length];

} SharedSecret;

¶

¶

¶

¶

5.5.3. no_secret

With PSK authentication, (EC)DHE keys and shared secrets are not

needed. The CS SHOULD check the PSK authentication has been agreed,

that is pre_shared_key and psk_key_exchamge_modes extensions are

noth present in the ClientHello and in the ServerHello

When the ephemeral method or the group is not supported, the CS

SHOULD return an invalid_ephemeral error.

Figure 7: Ephemeral field in LURK exchange

The extension data is defined as follows:

¶

¶

+-----------------------+-----------+---------------------------+

| | | ephemeral_method= secret |

| LURK exchange | ephemeral | no | provided | generated |

+-----------------------+-----------+----+----------+-----------+

| s_init_cert_verify | y+ | - | y | y |

| s_new_ticket | - | - | - | - |

| s_init_early_secret | - | - | - | - |

| s_hand_and_app_secret | y | y | y | y |

| c_init_post_hand | y | - | y | - |

| c_post_hand | y | - | y | y |

| c_init_cert_verify | y | - | y | y |

| c_init_client_hello | y | y | - | y |

| c_client_hello | y | y | - | y |

| c_hand_and_app_secret | y | y | y | - |

| c_register_tickets | - | - | - | - |

+-----------------------+-----------+----+----------+-----------+

y indicates presence of ephemeral or possible value for ephemeral_method

- indicates absent or ephemeral or incompatible value for ephemeral_method

¶

5.6. selected_identity

The selected_identity indicates the identity of the PSK used in the

key schedule. The selected_identity is expressed as a (0-based)

index into the identities in the client's list. The client's list is

provided in the pre_shared_key extension as expressed in [RFC8446]

section 4.2.11.

The LURK client MUST provide the selected_identity only when PSK or

PSK-authentication is envisioned and when the PSK has not been

provided earlier. These exchanges are s_init_early_secret on the TLS

server and c_init_early_secret and c_init_hand_secret on the TLS

client side.

enum { no_secret (0), secret_provided(1), secret_generated(2) (255)} EphemeralMethod;

EphemeralRequest {

 EphemeralMethod method;

 select(method) {

 case secret_provided:

 SharedSecret shared_secret<0..2^16>;

 }

}

EphemeralResponse {

 select(method) {

 case secret_generated:

 KeyShareEntry server_share

 }

}

¶

¶

¶

+-----------------------+-----+

| LURK exchange | req |

+-----------------------+-----+

| s_init_cert_verify | - |

| s_new_ticket | - |

| s_init_early_secret | y |

| s_hand_and_app_secret | - |

| c_init_post_hand_auth | - |

| c_post_hand_auth | - |

| c_init_cert_verify | - |

| c_init_client_hello | - |

| c_client_hello | - |

| c_hand_and_app_secret | - |

| c_register_tickets | - |

+-----------------------+-----+

y indicates the selected_identity is present

- indicates the selected_identity is absent

Figure 8: psk_id in LURK exchange

The extension data is defined as follows:

The CS retrieve the PSK identity from the ClientHello and SHOULD

send an invalid_psk error if an error occurs. If the PSK is not

provided, a default PSK is generated as described in [RFC8446]

section 7.1. If the default PSK is not allowed then an invalid_psk

is returned.

5.7. certificate

The certificate structure indicates the presence and associated

value of the Certificate message in the TLS handshake.

Upon receiving a certificate field, the CS MUST: 1. ensure coherent

with the handshake messages - typically authentication method is

ECDHE and not PSK or PSK-ECDHE. 2. ensure the provided value

corresponds to an acceptable provisioned value. 3. generate the

appropriated corresponding message.

If the CS is not able to understand the lurk_tls13_certificate

field, it SHOULD return an invalid_certificate error.

Table Figure 9 indicates the presence of that field in the LURK

exchanges.

¶

uint16 selected_identity; //RFC8446 section 4.2.11¶

¶

¶

¶

¶

¶

+-----------------------+-------------+--------------------+

| LURK exchange | certificate | certificate type |

+-----------------------+-------------+--------------------+

| s_init_cert_verify | y | server certificate |

| s_new_ticket | * | client certificate |

| s_init_early_secret | - | |

| s_hand_and_app_secret | - | |

| c_init_post_hand_auth | y | client_certificate |

| c_post_hand_auth | y | client_certificate |

| c_init_cert_verify | y | client certificate |

| c_init_client_hello | - | |

| c_client_hello | - | |

| c_hand_and_app_secret | y | client_certificate |

| c_register_tickets | - | |

+-----------------------+-------------+--------------------+

* indicates certificate type MAY be set to emtpy.

y indicates certificate type MUST NOT be set to empty

- indicates the certificate structure is absent

empty

fingerprint

Figure 9: certificate per LURK exchange

There are different ways the LURK client can provide the certificate

message:

indicates there is no certificates provided by this field.

a 4 bytes finger print length that represents the

fingerprinting of the TLS Certificate message. Fingerprinting is

described in [RFC7924] and takes as input the full handshake

message - that is a message of message type certificate with that

contain the Certificate as its message_data. In this document

only the 4 most left bytes of the output are considered.

uncompressed

indicates the Certificate message as defined in [RFC8446] is

provided.

5.8. tag

This field provides extra information. Currently, the tag structure

defines tag.last_message and tag.cert_request.

The LURK client or the CS sets the tag.last_message to terminate the

LURK session. The tag.cert_request is only used by the CS in a

c_hand_and_app_secret exchange. The tag.cert_request by the CS when

a CertificateRequest has been found in the handshake and that the CS

includes in its response the necessary information to the TLS client

to build a CertificateVerify message (see Section 7.6).

In this document, we use setting, setting to True to indicate the

bit is set to 1. Respectively, we say unsetting, setting to False to

indicate the bit is set to 0.

¶

enum { empty(0), finger_print(1), uncompressed(2), (255)

}; LURKTLS13CertificateType

struct {

 LURKTLS13CertificateType certificate_type;

 select (certificate_type) {

 case empty:

 // no payload

 case finger_print

 uint32 hash_cert;

 case uncompressed:

 Certificate certificate; // RFC8446 section 4.4.2

 };

} LURKTLS13Certificate;

¶

¶

¶

¶

¶

¶

¶

Table Figure 10 indicates the different values carried by the tag as

well as the exchange these tags are considered. The bits values MUST

be ignored outside their exchange context and bits Bits that are not

specified within a given exchange MUST be set to zero by the sender

and MUST be ignored by the receiver.

Figure 10: tag description

Figure 11: tag per LURK exchange

5.9. secret

The Secret structure is used by the CS to send the various secrets

derived by the key schedule described in [RFC8446] section 7.

¶

+------+----------------+

| Bit | description |

+------+----------------+

| 0 | last_exchange |

| 1 | cert_request |

| 2-7 | RESERVED |

+------+----------------+

+-----------------------+--------------+--------------+

| LURK exchange | last_message | cert_request |

+-----------------------+--------------+--------------+

| s_init_cert_verify | y | - |

| s_new_ticket | y | - |

| s_init_early_secret | - | - |

| s_hand_and_app_secret | y | - |

| c_init_post_hand_auth | y | - |

| c_post_hand_auth | y | - |

| c_init_cert_verify | y | - |

| c_init_client_hello | - | - |

| c_client_hello | - | _ |

| c_hand_and_app_secret | y | y (response) |

| c_register_tickets | y | - |

+-----------------------+--------------+--------------+

y indicates tag is present

- indicates tag is absent

¶

secret_type: The type of the secret or key

secret_data: The value of the secret.

5.10. signature

The signature requires the signature scheme, a private key and the

appropriated context. The signature scheme is provided using the

SignatureScheme structure defined in [RFC8446] section 4.2.3, the

private key is derived from the lurk_tls13_certificate Section 5.7

and the context is derived from the handshake Section 5.2 and

lurk_tls13_certificate Section 5.7.

Signing operations are described in [RFC8446] section 4.4.3. The

context string is derived from the role and the type of the LURK

exchange as described below. The Handshake Context is taken from the

key schedule context.

enum {

 binder_key (0),

 client_early_traffic_secret(1),

 early_exporter_master_secret(2),

 client_handshake_traffic_secret(3),

 server_handshake_traffic_secret(4),

 client_application_traffic_secret_0(5),

 server_application_traffic_secret_0(6),

 exporter_master_secret(7),

 esumption_master_secret(8),

 (255)

} SecretType;

struct {

 SecretType secret_type;

 opaque secret_data<0..2^8-1>;

} Secret;

¶

¶

¶

¶

¶

+--------------------+-------------------------------------+

| type | context |

+--------------------+-------------------------------------+

| s_init_cert_verify | "TLS 1.3, server CertificateVerify" |

| c_cert_verify | "TLS 1.3, client CertificateVerify" |

+--------------------+-------------------------------------+

¶

struct {

 opaque signature<0..2^16-1>; //RFC8446 section 4.4.3.

} Signature;

¶

sig_algo

6. LURK exchange on the TLS server

This section describes the LURK exchanges that are performed on the

TLS server. Unless specified used structures are described in

Section 5

6.1. s_init_cert_verify

s_init_cert_verify initiates a LURK session when the server is

authenticated with ECDHE. The ClientHello received by the TLS

server, and the ServerHello and optionally the HelloRetryRequest

MUST carry a key_share extension.

If the LURK client is configured to not proceed to further exchange,

it sets the last_exchange bit of the tag. When this bit is set, the

session_id is ignored. The CS sets the last_exchange bit if the

last_exchange bit has been set by the LURK client or when it has

been configured to not accept further LURK exchanges, such as

s_new_ticket.

SignatureScheme is defined in [RFC8446] section 4.2.3.

¶

¶

¶

struct{

 uint8 tag;

 select (tag.last_exchange){

 case False:

 uint32 session_id;

 }

 FreshnessFunct freshness;

 Ephemeral ephemeral;

 Handshake handshake<0..2^32>; //RFC8446 section 4

 LURKTLS13Certificate certificate;

 uint16 secret_request;

 SignatureScheme sig_algo; //RFC8446 section 4.2.3.

}SInitCertVerifyRequest

struct{

 uint8 tag;

 select (tag.last_exchange){

 case False:

 uint32 session_id;

 }

 Ephemeral ephemeral;

 Secret secret_list<0..2^16-1>;

 Signature signature;

}SInitCertVerifyResponse

¶

¶

6.2. s_new_tickets

new_session ticket handles session resumption. It enables to

retrieve NewSessionTickets that will be forwarded to the TLS client

by the TLS server to be used later when session resumption is used.

It also provides the ability to delegate the session resumption

authentication from the CS to the TLS server. In fact, if the LURK

client requests and receives the resumption_master_secret it is able

to emit on its own NewSessionTicket. As a result s_new_ticket LURK

exchanges are only initiated if the TLS server expects to perform

session resumption and the CS responds only if if session_resumption

is enabled.

The CS MAY responds with a resumption_master_secret based on its

policies.

The LURK client MAY perform multiple s_new_ticket exchanges. The

LURK client and CS are expected to advertise by setting the

last_exchange bit in the tag field.

ticket_nbr: designates the requested number of NewSessionTicket. In

the case of delegation this number MAY be set to zero. The CS MAY

responds with less tickets when the value is too high.

6.3. s_init_early_secret

s_init_early_secret initiates a LURK session when the server is

authenticated by the PSK or PSK-ECDHE methods. This means the

ClientHello received by the TLS server and ServerHello responded by

the TLS server MUST carry the pre_shared_key and

psk_key_exchange_modes extensions.

selected_identity indicates the selected PSK

¶

¶

¶

struct {

 uint8 tag

 uint32 session_id

 Handshake handshake<0..2^32> //RFC8446 section 4.

 LURKTLS13Certificate certificate;

 uint8 ticket_nbr;

 uint16 secret_request;

} SNewTicketRequest;

struct {

 uint8 tag

 uint32 session_id

 Secret secret_list<0..2^16-1>;

 NewSessionTicket ticket_list<0..2^16-1>; //RFC8446 section 4.6.1.

} SNewTicketResponse;

¶

¶

¶

¶

The binder_key MUST be requested, since it is used to validate the

PSK. The TLS client MAY indicate support for early application data

via the early_data extension. Depending on the TLS server policies,

it MAY accept early data and request the

client_early_traffic_secret. The TLS server MAY have specific

policies and request early_exporter_master_secret.

The CS MUST check pre_shared_key and psk_key_exchange_modes

extensions are present in the ClientHello message. If these

extensions are not present, a invalid_handshake error SHOULD be

returned. The CS MUST ignore the client_early_traffic_secret if

early_data extension is not found in the ClientHello. The

Cryptographic Service MAY ignore the request for

client_early_traffic_secret or early_exporter_master_secret

depending on configuration parameters.

6.4. s_hand_and_app_secret

The s_hand_and_app_secret is necessary to complete the ServerHello

and always follows an s_init_early_secret LURK exchange. Such

sequence is guaranteed by the session_id. In case of unknown

session_id or an invalid_request error SHOULD be returned.

The LURK client MUST ensure that PSK or PSK-ECDHE authentication has

been selected via the presence of the pre_shared_key extension in

the ServerHello. In addition, the selected identity MUST be the one

provided in the pre_shared_key extension of the previous

s_init_early_secret exchange. The CS MUST also check the selected

cipher in the ServerHello match the one associated to the PSK. The

CS generates the Finished message as described in [RFC8446] section

4.4.4. Which involves the h_s secret. The LURK client MAY request

the exporter_master_secret depending on its policies. The CS MAY

ignore the request based on its policies.

If the LURK client is configured to not proceed to further exchange,

it sets the last_exchange bit of the tag. The CS sets the

struct{

 uint32 session_id

 FreshnessFunct freshness

 uint16 selected_identity

 Handshake handshake<0..2^32> //RFC8446 section 4

 uint16 secret_request;

}SInitEarlySecretRequest

struct{

 uint32 session_id

 Secret secret_list<0..2^16-1>;

}SInitEarlySecretResponse

¶

¶

¶

¶

¶

last_exchange bit if the last_exchange bit has been set by the LURK

client or when it has been configured to not accept further LURK

exchange.

7. LURK exchange on the TLS client

The CS described in this document considers the case where PSK and

(EC)DHE private part MAY be protected by the CS. This document does

not consider the case where a TLS client may propose a combination

of protected and unprotected PSKs. Either all proposed PSK are

unprotected by the CS or all PSK are protected by the CS. Similarly,

this document does not consider the case where a TLS client may

propose a combination of protected and unprotected (EC)DHE. Either

all (EC)DHE are generated by the CS or all (EC)DHE are generated by

the TLS client.

Figure Figure 12 summarizes the different possible LURK session as

well as the different messages that are involved in the session.

¶

struct{

 uint8 tag

 uint32 session_id

 Ephemeral ephemeral

 Handshake handshake<0..2^32> //RFC8446 section 4

 uint16 secret_request;

} SHandAndAppSecretRequest

struct{

 uint8 tag

 uint32 session_id

 Ephemeral ephemeral

 Secret secret_list<0..2^16-1>;

} SHandAndAppSecretResponse

¶

¶

¶

Figure 12: LURK client State Diagram

The TLS client needs to interact with the CS when either the TLS

client proposes PKSs and the CS hosts the PSKs or when the TLS

client requests the CS to generate the (EC)DHE private key. The TLS

client requests with a c_init_client_hello exchange the CS the

binder_keys, the (EC)DHE public part as well as early secrets and is

thus able to start the TLS handshake, that is sending a ClientHello

with potential early data. In case a HeloRetryRequest is received,

the TLS client pursue with a c_client_hello exchange to complete the

 ^ | no

 | (EC)DHE in CS or ------------+

 ClientHello | PSK in CS Proposed |

 Derivation | yes | |

 | c_init_client_hello |

 | | no |

 | Hello Retry Request --+ |

 | yes | | |

 ClientHello | c_client_hello | |

 sent -->v |<------------+ |

 ServerHello-->^ | | no

 received | | ECDHE Agreed --+

 | | yes | |

 ServerHello | c_hand_and_app_secret c_init_cert_verify|

 Treatment | | | |

 clientFinished| +-------+------------+ | no

 sent -->v | Post Auth Enabled --+

 ^ | + |

 | | CertificateRequest |

 | | | |

 | | c_init_post_hand_auth|

 | | | |

 |+----------------->|<--------------------+ |

 Posthandshake || +---------+-------+ |

 Treatment || | | |

 ||Post Auth Enabled (EC)DHE in CS or |

 || + Agreed PSK in CS |

 ||CertificateRequest + |

 || | NewSessionTicket |

 || | | |

 ||c_post_hand_auth c_register_tickets |

 || | | |

 || +-------+---------+ |

 || | |

 v+----------------+ +-----+

 | |

 LURK session LURK session

 closed not initiated

second ClientHello. Upon receiving a ServerHello as well as other

messages by the TLS server, the TLS client requests via a

c_hand_and_App_secret exchange the necessary information (signature,

secrets) to complete the TLS handshake.

When the TLS client does not propose PSKs that are protected by the

CS nor does request the CS to generate the private part of the

(EC)DHE shared secret, the TLS client does not need to interact wit

the CS to send its ClientHello. However, the TLS client may interact

with the CS to authenticate itself to the TLS server via the

generation of a signature contained in a CertificateVerify message.

Such authentication can be performed during the TLS handshake when

ECDHE is agreed and when the TLS client enables post handshake

authentication, in which case the signature is requested via a

c_init_cert_verify exchange.

Once the TLS handshake is completed, and the TLS client has enabled

post handshake authentication, the TLS server may request by sending

a CertificateRequest the TLS client to authenticate itself with a

signature. If the TLS client has already started a LURK session

associated to the TLS handshake the signature is requested via a

c_post_hand_auth exchange. Otherwise, the signature is requested via

a c_init_post_hand_auth exchange. Multiple post hand shake

authentication may be performed in both cases and additional

signature generation are requested via c_post_hand_auth exchange.

Similarly, once the TLS handshake is completed, the TLS client may

receive NewSessionTickets from the TLS server to perform session

resumption. If the TLS client has its (EC)DHE or the PSK in use

protected by the CS - the NewSessionTicket is registered via a

c_register_ticket. Multiple NewSessionTickets may be registered.

When no protected PSK have been agreed and (EC)DHE are not generated

by the CS, the TLS client may generate the PSK session resumption.

As a result, it cannot be registered in the CS as to prevent

providing a false sense of security.

7.1. c_init_post_hand_auth

The c_init_post_hand_auth occurs when the TLS client performs post

handshake authentication while no previous interactions occurred

between the TLS client and the CS. More specifically, the (EC)DHE

shared secrets have been generated by the TLS client, and the

proposed keys, if proposed previously by the TLS client, are not

protected by the CS.

The CS completes and returns the signature as described in Section

5.10.

¶

¶

¶

¶

¶

¶

tag

ephemeral

handshake

cert

Since session resumption secrets are not protected by the CS, the

registration of NewSessioinTickets is not expected, and the only

exchanges that MAY follow are additional post handshake

authentications described in Section 7.2.

is defined in Section 5.8. The TLS client sets tag.last_message

if further post handshake authentications are expected. Similarly

the CS sets the tag.last_message if further post handshake

authentications are permitted. Note that it is out of scope of

this specification to specify the reasons, but it is RECOMMENEDED

the CS sets life time to LURK session as well as limits the

maximum number of post handshake authentications.

is defined in Section 5.5 and ephemeral_method MUST be

set to 'secret_provided' when the TLS handshake agreed an ECDHE

or a PSK-ECDHE authentication. The ephemeral_method MUST be set

to 'no_secret' when PSK the TLS handshake agreed on PSK

authentication.

is defined in Section 5.2 and post handshake

authentication MUST be enabled by the TLS client.

is defined in Section 5.7 and is used by the TLS client to

indicate the expected certificate to be used to compute the

signature as well as the certificate that is expected to be send

further to the TLS server.

¶

struct{

 uint8 tag;

 select (tag.last_exchange){

 case False:

 uint32 session_id;

 }

 FreshnessFunct freshness;

 Ephemeral = ephemeral ## ephemeral_method = secret_provided

 Handshake handshake<0..2^32> //RFC8446 section 4

 LURKTLS13Certificate cert;

 SignatureScheme sig_algo;

}CInitPostHandAuthRequest

struct{

 unit8 tag

 select (tag.last_exchange){

 case False:

 uint32 session_id;

 }

 Signature signature

}CInitPostHandAuth

¶

¶

¶

¶

¶

sig_algo

signature

handshake

is defined in Section 5.10 and indicates the selected

algorithm.

is defined in Section 5.10.

7.2. c_post_hand_auth

The c_post_hand_auth exchange enables a TLS client to perform post

handshake authentication.

This exchange is followed by a c_register_ticket or a

c_post_hand_and_app exchange.

tag, sig_algo, cert, signature are described in Section 7.1

is defined in Section 5.2 and is only composed of a

CertificateRequest. However, post handshake authentication MUST

be enabled by the TLS client.

7.3. c_init_cert_verify

The c_init_cert_verify exchange occurs when the TLS client is being

requested to authenticate during the TLS handshake. According to

[RFC8446] client authentication during the TLS handshake is not

valid with a PSK or PSK based authentication. As a result, ECHDE

needs to be agreed. In addition, as c_init_cert_verify initiates a

LURK session, the ECDHE shared secrets have been generated by the

TLS client as opposed to the CS.

The CS completes and returns the signature as described in Section

5.10. When further LURK exchanges are expected, the CS generates

also the Finished message in order to be able to complete the latter

requests for post authentication.

¶

¶

¶

¶

struct{

 Tag tag

 uint32 session_id

 Ephemeral = ephemeral ## ephemeral_method = secret_provided

 Handshake handshake<0..2^32> // CertificateRequest

 LURKTLS13Certificate cert;

 SignatureScheme sig_algo;

}CPostHandAuthRequest

struct{

 Tag tag

 uint32 session_id

 Signature signature

}CPostHandAuth

¶

¶

¶

¶

¶

tag

ephemeral

handshake

This exchange is followed by a c_post_hand_auth exchange.

freshness, session_id are respectively defined in Section 5.4 and

Section 5.3.

is defined in Section 5.8. The TLS client that does not expect

an additional post handshake authentication MUST set it

tag.last_message. A consequence is that a TLS client that does

not enable post authentication MUST set the tag.last_message.

The CS MUST set the tag.last_message when the TLS client does not

enabled post handshake authentication or when no further post

handshake authentication is expected.

is defined in Section 5.5. The TLS client MUST set the

ephemeral_method to 'secret_provided'.

is defined in Section 5.2 and must be set to ECDHE

agreed. Note that PSK may be proposed if these PSKs are not

provisioned in the CS. The handshake messages are also in clear.

7.4. c_init_client_hello

The c_init_ephemeral_binder exchange occurs when the TLS client

needs to generate the ClientHello as well as the early secrets. In

fact the generation of the ClientHello may require the CS to

generates the (EC)DHE private key and returns the public part as

¶

struct{

 uint8 tag;

 select (tag.last_exchange){

 case False:

 uint32 session_id;

 }

 FreshnessFunct freshness;

 Ephemeral ephemeral;

 Handshake handshake<0..2^32>; //RFC8446 section 4

 LURKTLS13Certificate certificate;

 SignatureScheme sig_algo; //RFC8446 section 4.2.3.

}CInitCertVerifyRequest

struct{

 uint8 tag;

 select (tag.last_exchange){

 case False:

 uint32 session_id;

 }

 Ephemeral ephemeral;

 Signature signature;

}CInitCertVerifyResponse

¶

¶

¶

¶

¶

¶

well as the binder_key to generate the binders. On the other hand,

the generation of the early secrets requires the ClientHello to be

completed. As a result, the CS will be expected to complete the

ClientHello from a potential partial ClientHello. More specifically,

when binders are needed, the partial Client Hello does not contains

the OfferedPsks structure, that is the PreSharedKeyExtension. The

latter structure is simply stripped from the ClientHello, without

any further changes, such as changing the lengths for example. It is

entirely built by the CS and append as the last extension as

described in section 4.2.11 of The reason for having CPskID as

opposed to the identity structure is that nothing prevent identities

of two different NewSessionTickets to be collide. CPskID are managed

by the CS of the TLS client to prevent such collisions and are

provided during the registration of the NewSessionTickets

c_register_tickets (see [RFC8446]. Note that extension_type as well

as the 16 bit length of the OfferedPsks remain present. The

PreSharedKeyExtension structure of the ClientHello is built from a

list of CPskIDs where each CPskID designates a PSK with an

identifier managed by the CS of the TLS client. The PSK can be

associated to a NewSessionTicket in which case the CPskID will be

used to designate the NewSessionTicket and its associate identity

structure.Section 7.7). When the PSK is provisioned, the TLS client

needs to be configured with it. When the CS is not able to generate

the PreSharedKeyExtension an invalid_identity error SHOULD be

raised.

Note that when PSK is not proposed or when PSK are not registered in

the CS, the ClientHello is fully provided - without the

PreSharedKeyExtension or with a completed PreSharedKeyExtension

extension. The CS is expected to be able to distinguish between the

two by for example, comparing the length of the handshake provided

in c_init_client_hello and the length indicated in the ClientHello.

Note that (EC)DHE may be generated when ECDHE or PSK-ECDHE

authentication is proposed by the TLS client, while early secrets

and binder_key can only be requested when PSK is proposed. When the

TLS client requests the generation of a (EC)DHE private key, the

KeyShareClietHello MAY contain a list of KeyShareEntry (defined in

section 4.2.8 When an error is found regarding the

KeyShareClientHello, the CS SHOULD raise an invalid_ephemeral error.

Note that according to [RFC8446]). When provided, these structures

contains the group but are being stripped the key_exchange_value,

while all other fields - including the lengths - are left

unchanged.Section 5.5 when the ephemeral_method is set to

'no_secret', the resulting list is empty.

This exchange is followed by a c_client_hello or a

c_hand_and_app_secret.

¶

¶

¶

¶

ephemeral

handshake

c_psk_id

session_id, freshness and ephemeral, secret_request and secret_list

are respectively defined in Section 5.3, Section 5.4, Section 5.5,

Section 5.1 and Section 5.9.

is defined in Section 5.5. With a single ClientHello or

partial ClientHello, ephemeral_method is set to secret_generate

when ECDHE and PSK-ECDHE authentication are being proposed or

no_secret when only PSK is proposed or when the ECDHE is

generated by the TLS client.

Note that even though the CLientHello requests multiple

KeyShareENtries, a single ephemeral method is provided.

is defined in Section 5.2. When a partial ClientHello is

provided, PSK or PSK-ECDHE MUST be enabled. When a ClientHello is

provided, PSK or PSK-ECDHE may be proposed but with unprotected

keys. ClientHello, HelloRetryRequest, ClientHello or ClientHello,

HelloRetryRequest, partial ClientHello MAY be provided. However,

there are cases this is not possible, typically when the

HellRequestRetry does not contain a key_share extension, the

(EC)DHE shared secret is generated with the (EC)DHE generated

associated to the first ClientHello. When the (EC)DHE private key

has been generated by the CS, the TLS client MUST use a

c_early_secret LURK exchange as defined in Section 7.5 in order

to ensure the CS is aware of the (EC)DHE shared secret to

generate the further secrets.

designate an 32 bit identifier for a PSK. This identifier

is provided and managed by the CS of the TLS client to avoid

collision of different PSK provided by different TLS servers.

struct{

 uint32 c_psk_id

}CPskID

struct{

 uint32 session_id

 Freshness freshness

 Ephemeral ephemeral ephemeral_method=secret_generate or no_secret

 Handshake handshake<0..2^32> //RFC8446 section 4

 CPskID c_psk_id_list<0..2^8-1>

 uint16 secret_request;

}CInitClientHello

struct{

 uint32 session_id

 Ephemeral ephemeral_list<0..2^16-1>

 Secret secret_list<0..2^16-1>;

}CInitClientHello

¶

¶

¶

¶

¶

¶

c_psk_id_list

ephemeral_list

handshake

designates the list of CPskIDs. The list is used by

the CS to build the OfferedPsks structure - including the

PSKIdentity structure. The list of identities in the OfferedPsks

MUST be the same as the one of the c_psk_id_list.

When contains the different values of (EC)DHE public

parts - i.e. the KeyShareEntries when the ephemeral_method is set

to secret_generated. When the ephemeral_method is set to

no_secret, the list is an empty list by construction of the

ephemeral structure (see Section 5.5).

7.5. c_client_hello

The c_client_hello exchange occurs after a TLS server responds to a

ClientHello generated using a c_init_client_hello defined in Section

7.4 is being responded a HelloRetryRequest by the TLS server. While

in some cases, re-initiating a LURK exchange with a

_init_client_hello MAY be considered, this document RECOMMENDS to

proceed as follows when a HelloRetryRequest is received:

If the first ClientHello has been generated via a

c_init_client_hello, use c_client_hello to generate the second

ClientHello

If the first ClientHello has not been generated via a

c_init_client_hello, consider generating the second ClientHello

via c_init_client_hello.

This exchange is followed by a c_hand_and_app_secret.

session_id, ephemeral, secret_request and secret_list are

respectively defined in Section 5.3, Section 5.5, Section 5.1 and

Section 5.9.

¶

¶

¶

*

¶

*

¶

¶

struct{

 uint32 session_id

 Freshness freshness

 Ephemeral ephemeral ephemeral_method=secret_generate or no_secret

 Handshake handshake<0..2^32> //RFC8446 section 4

 uint16 secret_request;

}CClientHello

struct{

 uint32 session_id

 Ephemeral ephemeral

 Secret secret_list<0..2^16-1>;

}CClientHello

¶

¶

is defined in Section 5.2. The handshake MUST contain a

HelloRetryRequest and a ClientHello or partial ClientHello. The

same restrictions as defined in Section 7.4 apply to the

ClientHello

7.6. c_hand_and_app_secret

The c_hand_and_app_secret exchange occurs after a ServerHello is

received and the TLS client request handshake secrets to decrypt

(resp. encrypt) handshake messages sent by (resp. to) the server.

Similarly the TLS client requests application secrets used to

protect the TLS session as well as other secrets such as exporter

secrets.

Upon receiption of the handshake the CS derives the handshake

secrets and the server_handshake_traffic_secret as described in

[RFC8446] section 7.3 to decrypt the encrypted messages. The

presence of a CertificateRequest indicates the TLS server expects

the TLS client to authenticate via a CertificateVerify message. If

the CS protects a private key associated to the TLS client, the CS

MUST provides the necessary information to the TLS client client.

Otherwise, the CertificateRequest is ignored by the CS.

When the CS generates the signature, the presence of the

certificate, the signature and sig_algo is indicated by setting

tag.cert_request. Unlike on the TLS server, where the TLS server

indicates the certificate to chose as well as the signature scheme

to select, on the TLS client, such decision is left to the CS. The

choice of the signature algorithm and certificate is performed by

the CS as described in When resumption_master_secret is requested by

the TLS client, or when further exchanges between teh TLS client and

the CS are expected, the CS generates the CertificateVerify and

Finished message to synchronize the TLS handshake context. The

Certificate, respectively CertificateVerify and Finished message are

generated as described in [RFC8446] section 4.4.2.3. [RFC8446]

section 4.4.2, section 4.4.3, and section 4.4.4.

This exchange is followed by a c_post_hand_auth, c_register_ticket

exchange.

¶

¶

¶

¶

¶

tag

ephemeral

handshake

sig_algo

session_id, secret_request certificate signature, and secret_list

are respectively described in Section 5.3, Section 5.1, Section 5.7,

Section 5.10 and Section 5.9

is defined in Section 5.8 and indicates whether the further

exchanges are expected or not. If the TLS client or the TLS

server do not expect to perform session resumption or have not

enabled post handshake authentication the tag.last_message SHOULD

be set.

is defined in Section 5.5. Since ClientHello as already

been sent, the purpose of the ephemeral is to provid ethe (EC)DHE

shared secret to perform the key schedule and ephemeral_method

MUST NOT be set to secret_generated.

is defined in Section 5.2 and includes the ServerHello up

to the server Finished. These messages are passed to the CS

encrypted.

is defined in Section 5.10 and defines the algorithm

chosen by the CS.

7.7. c_register_tickets

The c_register_ticket is only used when the TLS client intend to

perform session resumption. The LURK client MAY provide one or

multiple NewSessionTickets. These tickets will be helpful for the

session resumption to bind the PSK value to some identities. As teh

NewSessionTicket's identities may collide when being provided by

struct{

 uint8 tag;

 uint32 session_id;

 Ephemeral ephemeral;

 Handshake handshake<0..2^32>; //RFC8446 section 4

 uint16 secret_request;

}CHandAndAppSecretRequest

struct{

 uint8 tag;

 uint32 session_id;

 Secret secret_list<0..2^16-1>;

 select(tag.cert_request){

 case true:

 LURKTLS13Certificate certificate;

 SignatureScheme sig_algo;

 Signature signature;

 }

}CHandAndAppSecretRequest

¶

¶

¶

¶

¶

¶

multiple TLS servers, the CS provides identities it manages to

prevent such collisions (CPskID). One such CPskID is assigned to

each ticket and is later used to designate that ticket (see Section

7.4). When too many tickets are provided, the CS SHOULD raise a

too_many_identities error.

8. Security Considerations

Security credentials as per say are the private key used to sign the

CertificateVerify when ECDHE authentication is performed as well as

the PSK when PSK or PSK-ECDHE authentication is used.

The protection of these credentials means that someone gaining

access to the CS MUST NOT be able to use that access from anything

else than the authentication of an TLS being established. In other

way, it MUST NOT leverage this for: * any operations outside the

scope of TLS session establishment. * any operations on past

established TLS sessions * any operations on future TLS sessions *

any operations on establishing TLS sessions by another LURK client.

The CS outputs are limited to secrets as well as NewSessionTickets.

The design of TLS 1.3 make these output of limited use outside the

scope of TLS 1.3. Signature are signing data specific to TLS 1.3

that makes the signature facility of limited interest outside the

scope of TLS 1.3. NewSessionTicket are only useful in a context of

TLS 1.3 authentication.

ECDHE and PSK-ECDHE provides perfect forward secrecy which prevents

past session to be decrypted as long as the secret keys that

generated teh ECDHE share secret are deleted after every TLS

handshake. PSK authentication does not provide perfect forward

secrecy and authentication relies on the PSK remaining sercet. The

Cryptographic Service does not reveal the PSK and instead limits its

disclosure to secrets that are generated from the PSK and hard to be

reversed.

¶

struct {

 uint8 tag

 uint32 session_id

 NewSessionTicket ticket_list<0..2^16-1>; //RFC8446 section 4.6.1.

} RegisterTicketsRequest;

struct {

 uint8 tag

 uint32 session_id

 CPskID c_spk_id_list<0..2^8-1>

} RegisterTicketsResponse;

¶

¶

¶

¶

¶

[RFC2119]

Future session may be impacted if an attacker is able to

authenticate a future session based on what it learns from a current

session. ECDHE authentication relies on cryptographic signature and

an ongoing TLS handshake. The robustness of the signature depends on

the signature scheme and the unpredictability of the TLS Handshake.

PSK authentication relies on not revealing the PSK. The CS does not

reveal the PSK. TLS 1.3 has been designed so secrets generated do

not disclose the PSK as a result, secrets provided by the

Cryptographic do not reveal the PSK. NewSessionTicket reveals the

identity (ticket) of a PSK. NewSessionTickets.ticket are expected to

be public data. It value is bound to the knowledge of the PSK. The

Cryptographic does not output any material that could help generate

a PSK - the PSK itself or the resumption_master_secret. In addition,

the Cryptographic only generates NewSessionTickets for the LURK

client that initiates the key schedule with CS with a specific way

to generate ctx_id. This prevents the leak of NewSessionTickets to

an attacker gaining access to a given CS.

If an the attacker get the NewSessionTicket, as well as access to

the CS of the TLS client it will be possible to proceed to the

establishment of a TLS session based on the PSK. In this case, the

CS cannot make the distinction between the legitimate TLS client and

teh attacker. This corresponds to the case where the TLS client is

corrupted.

Note that when access to the CS on the TLS server side, a similar

attack may be performed. However the limitation to a single re-use

of the NewSessionTicket prevents the TLS server to proceed to the

authentication.

Attacks related to other TLS sessions are hard by design of TLS 1.3

that ensure a close binding between the TLS Handshake and the

generated secrets. In addition communications between the LURK

client and the CS cannot be derived from an observed TLS handshake

(freshness function). This makes attacks on other TLS sessions

unlikely.

9. IANA Considerations

10. Acknowledgments

11. References

11.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC7924]

[RFC8174]

[RFC8446]

[I-D.mglt-lurk-lurk]

[I-D.mglt-lurk-tls12]

Santesson, S. and H. Tschofenig, "Transport Layer

Security (TLS) Cached Information Extension", RFC 7924,

DOI 10.17487/RFC7924, July 2016, <https://www.rfc-

editor.org/info/rfc7924>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

11.2. Informative References

Migault, D., "LURK Protocol version 1", Work in

Progress, Internet-Draft, draft-mglt-lurk-lurk-00, 9

February 2018, <https://www.ietf.org/archive/id/draft-

mglt-lurk-lurk-00.txt>.

Migault, D. and I. Boureanu, "LURK Extension

version 1 for (D)TLS 1.2 Authentication", Work in

Progress, Internet-Draft, draft-mglt-lurk-tls12-04, 25

January 2021, <https://www.ietf.org/internet-drafts/

draft-mglt-lurk-tls12-04.txt>.

Appendix A. Annex

A.1. TLS server ECDHE (no session resumption)

This section illustrates the most common exchange of a TLS client

authenticates a TLS server with it certificate (ECDHE) without

session resumption.

The TLS handshake is depicted below from {!RFC8446}}. For clarity as

ECDHE authentication is performed, PSK related extensions (

psk_key_exchange_modes, pre_shared_key) have been omitted. In

addition, as the TLS client is not authenticated, CertificateRequest

sent by the TLS server as well as Certificate and CertificateVerify

sent by the TLS client have been removed.

¶

¶

https://www.rfc-editor.org/info/rfc7924
https://www.rfc-editor.org/info/rfc7924
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://www.ietf.org/archive/id/draft-mglt-lurk-lurk-00.txt
https://www.ietf.org/archive/id/draft-mglt-lurk-lurk-00.txt
https://www.ietf.org/internet-drafts/draft-mglt-lurk-tls12-04.txt
https://www.ietf.org/internet-drafts/draft-mglt-lurk-tls12-04.txt

The TLS server interacts with the CS with a s_init_cert_verify

exchange in order to respond to the ClientHello.

Since there is no session resumption, the request indicates with the

tag set to last_exchange that no subsequent messages are expected.

As a result, no session_id is provided. The freshness function is

set to sha256, the handshake is constituted with the appropriated

messages with a modified server_random to provide PFS. The

Certificate message is also omitted from the handshake and is

instead provided in the certificate structure using a finger_print.

The requested secrets are handshake and application secrets, that is

h_s, h_c, a_s, and a_c. The signature scheme is ed25519. With

authentication based on certificates, there are two ways to generate

the shared secrets that is used as an input to the derive the

secrets. The ECDHE private key and shared secret may be generated by

the CS as described in {sec:ex:srv:cs_generated}. On the other hand

the ECDHE private key and shared secret may be generated by the TLS

server as described in {tls_server_generated}

A.1.1. ecdhe generated on the CS

When the (EC)DHE private key and shared secrets are generated by the

CS, the LURK client set the ephemeral_method to secret_generated.

The (EC)DHE group x25519 is specified in the handshake in the

key_share extension. In return the CS provides the LURK client the

public key so the TLS server can send the ServerHello to the TLS

client.

In this scenario, the CS is the only entity that knows the private

ECDHE key and the shared secret, and only the CS is able to compute

the secrets. The CS indicates the exchange is final by setting the

tag to last_message, returns the x25519 public key that will be

included in the ServerHello key_share extension, the signature sig

TLS client TLS Server

 Key ^ ClientHello

 Exch | + key_share

 v + signature_algorithms --------->

 ServerHello ^ Key

 + key_share v Exch

 {EncryptedExtensions} Server Params

 {Certificate} ^

 {CertificateVerify} | Auth

 {Finished} v

 <-------- [Application Data*]

 {Finished} -------->

 [Application Data] <-------> [Application Data]

¶

¶

¶

¶

that will be returned in the CertificateVerify message as well as

the secrets that will be used to derive the appropriated keys.

A.1.2. ecdhe generated by the TLS server

When the (EC)DHE private keys and the shared secrets are generated

by the TLS server, the LURK client provides the shared secret to the

CS as only the shared secret is necessary to generated the

signature. This is indicated by the ephemeral_method set to

secret_provided. No (EC)DHE values are returned by the CS as these

have already been generated by the TLS server. However, the TLS

server has all the necessary material to generate the secrets and

the only information that the CS owns and that is not known to et

TLS server is the private key (associated to the certificate) used

to generate the signature. This means that is session resumption

were allowed, since it is based on PSK authentication derived from

the resumption secret, these sessions could be authenticated by the

TLS server without any implication from the CS.

In this scenario, the CS is the only entity that knows the private

ECDHE key. Only the CS is able to generate the signature. Both the

CS and the TLS server are able to compute all secrets. The CS

indicates the exchange is final by setting the tag to last_message,

returns the signature sig that will be returned in the

CertificateVerify message as well as - when requested - the secrets

that will be used to derive the appropriated keys.

¶

TLS server

LURK client Cryptographic Service

 SInitCertVerifyRequest

 tag=last_exchange -------->

 freshness = sha256

 ephemeral

 ephemeral_method = secret_generated

 handshake = handshake (x25519)

 certificate = finger_print

 secret_request = h_s, h_c, a_s, and a_c

 sig_algo = ed25519

 SInitCertVerifyResponse

 tag=last_exchange

 ephemeral

 key

 group = x25519,

 key_exchange = public_key

 secret_list

 signature = sig

 <---------

¶

¶

¶

A.2. TLS server ECDHE (with session resumption)

When the TLS client is enabling session resumption, the TLS server

is expected to generate some tickets that will be later used for

later sessions. The generation of the tickets is based on the

resumption_master_secret. To ensure protection of the authentication

credential used for the session resumption, the CS necessarily must

have generated the (EC)DHE keys and must not have provided the

resumption_master_secret. In either other cases, the TLS client is

able to compute the resumption_master_secret and so session

resumption is out of control of the CS. As a result, the CS sort of

achieves a delegation to the TLS server.

In the remaining of this section, we consider the session resumption

is performed by the CS.

ECDHE authentication is performed with the CS generating the private

part of the (EC)DHE as described in {sec:ex:srv:cs_generated}.

However, additional s_new_ticket exchanges are needed so the TLS

server provides sufficient material to generate the tickets by the

CS and retrieves the generated tickets by the CS. As result, the

main difference with the scenario described in

{sec:ex:srv:cs_generated} is that tag carries a session_id to

identify the session between the TLS server and the CS.

TLS server

LURK client Cryptographic Service

 SInitCertVerifyRequest

 tag.last_exchange=True -------->

 freshness = sha256

 ephemeral

 ephemeral_method = secret_provided

 key

 group = x25519

 shared_secret = shared_secret

 handshake = handshake

 certificate = finger_print

 secret_request = h_s, h_c, a_s, and a_c

 sig_algo = ed25519

 SInitCertVerifyResponse

 tag.last_exchange=True

 secret_list

 signature = sig

 <---------

¶

¶

¶

¶

To enable session resumption, the TLS server needs to send

NewSessionTickets to the TLS client. This exchange is taken from

[RFC8446] and represented below: ~~~ TLS client TLS Server <-----

[NewSessionTicket] ~~~

The TLS server requests NewSessionTicket to the CS by sending a

SNewTicketRequest. The tag.last_exchange set to False indicates to

the CS the TLS server is willing to request NewSessionTickets

multiple times. The session_id is set to the value provided

previously by the CS. This session_id will be used to associate the

SNewTicketRequest to the specific context of teh TLS handshake.

handshake is the remaining handshake necessary to generate the

secrets. In some cases, when the TLS client is authenticated, the

TLS handshake contains a Certificate message that is carried in the

certificate structure as opposed as to the handshake structure. In

our current case, the TLS client is not authenticated, so the

certificate_type is set to 'empty'. ticket_nbr is an indication of

the number of requested NewSessionTicket, and secret_list indicates

the requested secrets. In our case the resumption_master_secret (r)

will remain in the CS and will be anyway ignored by the CS, so the

secret_request has its r bit unset.

As depicted below, the CS provides a list of tickets that could be

later used in order to authenticate the TLS server using PSK or PSK-

ECDHE authentication as describe din {sec:ex:srv:server-psk}.

TLS server

LURK client Cryptographic Service

 SInitCertVerifyRequest

 tag.last_exchange=False

 session_id = session_id_tls_server -------->

 freshness = sha256

 ephemeral

 ephemeral_method = secret_generated

 handshake = handshake (x25519)

 certificate = finger_print

 secret_request = h_s, h_c, a_s, a_c

 sig_algo = ed25519

 SInitCertVerifyResponse

 tag.last_exchange=False

 session_id = session_id_cs

 ephemeral

 key

 group = x25519,

 key_exchange = public_key

 secret_list

 signature = sig

 <---------

¶

¶

¶

¶

A.3. TLS server PSK / PSK-ECDHE

PSK/PSK-ECDHE authentication is the method used for session

resumption but can also be used outside the scope of session

resumption. In both cases, the PSK is hosted by the CS.

The PSK authentication can be illustrated by the exchange below:

The TLS client may propose to the TLS server multiple PSKs.

Each of these PSKs is associated a PskBindersEntry defined in

[RFC8446] section 4.2.11.2. PskBindersEntry is computed similarly to

the Finished message using the binder_key and the partial

ClientHello. The TLS server is expected to pick a single PSK and

validate the binder. In case the binder does not validate the TLS

Handshake is aborted. As a result, only one binder_key is expected

to be requested by the TLS server as opposed to the TLS client. In

this example we assume the psk_key_exchange_mode indicated by the

TLS client supports PSK-ECDHE as well as PSK authentication. The

presence of a pre_shared_key and a key_share extension in the

ServerHello indicates that PSK-ECDHE has been selected.

TLS server

LURK client Cryptographic Service

 SNewTicketRequest

 tag.last_exchange=False

 session_id = session_id_cs

 handshake = client Finished

 certificate

 certificate_type = empty

 ticket_nbr

 secret_request -------->

 SNewTicketResponse

 tag.last_exchange=False

 session_id = session_id_tls_server

 secret_list

 <--------- ticket_list

¶

¶

¶

TLS client TLS Server

 ClientHello

 + key_share

 + psk_key_exchange_mode

 + pre_shared_key -------->

 ServerHello

 + pre_shared_key

 + key_share

 {EncryptedExtensions}

 {Finished}

 <-------- [Application Data*]

¶

¶

¶

While the TLS handshake is performed in one round trip, the TLS

server and the CS have 2 LURK exchanges. These exchanges are

consecutive and performed in the scope of a LURK session. A first

exchange (s_init_early_secret) validates the ClientHello receives by

the TLS server and existence of the selected PSK (by the TLS server)

is actually hosted by the CS. Once the s_init_early_secret exchange

succeeds, the TLS server starts building the ServerHello and

requests the necessary parameters derived by the CS to complete the

ServerHello with a second exchange (s_init_hand_and_apps).

The TLS server is expected to select a PSK, check the associated

binder and proceed further. If the binder fails, it is not expected

to proceed to another PSK, as a result, the TLS server is expected

to initiates a single LURK session.

The SInitEarlySecretRequest structure provides the session_id that

will be used later by the TLS server to identify the session with

future inbound responses from the CS (session_id_server). The

freshness function (sha256) is used to implement PFS together with

the ClientHello.random. selected_identity indicates the PSK chosen

by the TLS server among those proposed by the TLS client in its

ClientHello. The secrets requested by the TLS server are indicated

in secret_request. This example shows only the binder_key, but other

early secrets may be requests as well.

The CS responds with a SInitEarlySecretResponse that contains the

session_id_cs used later to identify the incoming packets associated

to the LURK session and the binder_key.

To complete to the ServerHello exchange, the TLS server needs the

handshake and application secrets. These secrets are requested via

an s_hand_and_app_secret LURK exchange.

The SHandAndAppSecretRequest structure carries a tag with its

last_exchange set to False to indicate the willingness of the TLS

server to keep the session open and proceed to further LURK

exchanges. In our case, this could mean the TLS server expects to

¶

¶

¶

¶

TLS server

LURK client Cryptographic Service

 SInitEarlySecretRequest ---------->

 session_id = session_id_tls_server

 freshness = sha256

 selected_identity = 0

 handshake = ClientHello

 secret_request = b

 SInitEarlySecretResponse

 session_id = session_id_cs

 <--------- secret_list = binder_key

¶

¶

request additional tickets. The session_id is set to session_id_cs,

the value provided by the CS. ephemeral is in our case set the

ephemeral_method to secret_generated as described in Appendix A.1.

The method (x25519) to generate the (EC)DHE is indicated in the

handshake. The necessary handshake to derive the handshake and

application secrets, as well the requested secrets are indicated in

the secret_request structure.

The CS sets its tag.last_exchange to True to indicate the session

will be closed after this exchange. This also means that no ticket

will be provided by the CS. The CS returns the (EC)DHE public key as

well as requested secrets in a SHandAndAppResponse structure

similarly to what is being described in {sec:ex:srv:ecdhe}.

A.4. TLS client unauthenticated ECDHE

This section details the case where a TLS client establishes a TLS

session authenticating the TLS server using ECDHE. The TLS client

interacts with the CS in order to generate the (EC)DHE private part.

While this section does not illustrates session resumption, the TLS

client is configured to proceed to session resumption which will be

described with further details in Appendix A.5.

The TLS handshake described in [RFC8446] is depicted below. In this

example, the TLS client proposes a key_share extension to agree on a

(EC)DHE shared secret, but does not propose any PSK.

¶

¶

TLS server

LURK client Cryptographic Service

 SHandshakeAndAppRequest

 tag.last_exchange = False

 session_id = session_id_cs

 ephemeral

 ephemeral_method = secret_generated

 handshake = ServerHello(x25519) ... EncryptedExtensions

 secret_request = h_c, h_s, a_c, a_s ------->

 SHandAndAppResponse

 tag.last_exchange = True

 session_id = session_id_tls_server

 ephemeral

 key

 group = x25519,

 key_exchange = public_key

 <--------- secret_list

¶

¶

¶

If the TLS client generates the (EC)DHE private key, no interaction

with the CS is needed as it will have the default PSK value as well

as the (EC)DHE shared secrets necessary to proceed to the key

schedule described in section 7.1 of [RFC8446].

In this example, the TLS client requests the CS via a

c_init_client_hello to generate the (EC)DHE private key and provide

back the public part that will be placed into the key_share

extension before being sent to the TLS server.

Like in any init methods, the TLS client indicates with

session_id_tls_client the idnetifier of the session that is being

assigned by the TLS client for future inbound LURK message responses

sent by the CS. Similarly, the CS advertises its session_id_cs.

freshness is set to sha256, and the ClientHello.random is generated

as described in Section 5.4. handshake contains the ClientHello

message to which the key_exchange of the KeyShareentries has been

stripped off without changing the other fields. As PSK are not

involved, no early secrets are involved and c_psk_list and

secret_request are empty.

The CS provides the KeyShareEntries. The TLS client is able to build

the ClientHello to the TLS server with ClientHello.random and by

placing the KeyShareEntries.

TLS client TLS Server

 Key ^ ClientHello

 Exch | + key_share

 v + signature_algorithms --------->

 ServerHello ^ Key

 + key_share v Exch

 {EncryptedExtensions} Server Params

 {Certificate} ^

 {CertificateVerify} | Auth

 {Finished} v

 <-------- [Application Data*]

 {Finished} -------->

 [Application Data] <-------> [Application Data]

¶

¶

¶

¶

¶

Upon receiving the response from the TLS server, responds with a

ServerHello followed by additional encrypted messages.

The TLS client needs the handshake secrets to decrypt these

encrypted messages and send back the client Finished message. In

addition, the TLS client requests the application secrets to encrypt

and decrypt the TLS session. The secrets are requested via a

c_hand_and_app_secret.

We assume the TLS client supports session resumption so, the

tag.last_message is unset. The session_id takes the value advertises

by each party during the previous c_init_client_hello exchange.

Since the CS already has the (EC)DHE private keys, it will be able

to derive the (EC)DHE shared secret and no information needs to be

provided by the TLS client. As a result, ephemeral_method is set to

no_secret. The handshake is composed of the messages sent by the TLS

server. As the TLS client does not have yet the messages are not

decrypted, and are provided encrypted. The requested secrets are the

handshake and application secrets.

The CS generates the handshake secrets and the associated key to

decrypt the encrypted messages. As no CertificateRequest has been

found, the CS does not compute the signature that would authenticate

the TLS client. In this section, we assume the CS is ready to accept

further exchanges, and in our case the c_register_tickets exchange

to enable session resumption. Since session resumption is enabled,

TLS client

LURK client Cryptographic Service

 CInitClientHello

 session_id = session_id_tls_client

 freshness = sha256

 ephemeral

 ephemeral_method = secret_generated

 handshake = ClientHello(x25519, x488, ...)

 c_psk_id_list = []

 secret_request = [] ------>

 CInitClientHello

 session_id=session_id_cs

 ephemeral_list

 key

 group = x25519,

 key_exchange = public_key

 ephemeral_method = secret_generated

 key

 group = x488,

 key_exchange = public_key

 secret_list=[]

¶

¶

¶

¶

the CS computes the Finished message to generate the

resumption_master_secret.

The CS returns the response by unsetting the tag.last_message and

cert_request. The ephemeral is an empty list and secret_request

returns the requested secrets.

Upon reception of the response, the TLS client generates the

necessary keys to decrypt and encrypt the handshake message and

terminates the TLS handshake. The TLS client is also able to decrypt

and encrypt application traffic.

In this section, we assume that after some time, the TLS client

receives a NewSessionTicket from the TLS server. The TLS client will

then transmit the NewSessionTicket to the CS so that it can generate

the associated PSK that will be used for the authentication.

As multiple NewSessionTickets may be sent, in this example, both TLS

client and CS enable further additional registrations by unsetting

tag.last_message. For each registered NewSessionTicket, the CS

returns c_spk_id that will use for further references. The c_spk_ids

are managed by the CS which can ensure the uniqueness of these

references as opposed to using the ticket field that is assigned by

the TLS server.

Appendix A.5 illustrates how session resumption is performed using

PSK / PSK-ECDHE authentication.

¶

¶

TLS client

LURK client Cryptographic Service

 CHandAndAppSecretRequest

 tag.last_message=False

 session_id=session_id_cs

 ephemeral

 ephemeral_method = no_secret

 handshake = ServerHello, {EncryptedExtensions}...,{Finished}.

 secret_request = h_c, h_s, a_c, a_s ------->

 CHandAndAppSecretResponse

 tag

 last_message=False

 cert_request=False

 session_id=session_id_tls_clt

 ephemeral_list = []

 secret_request = h_s, h_c, a_s, and a_c

¶

¶

¶

¶

¶

A.5. TLS client unauthenticated PSK / PSK-ECDHE

This section describes the intercation between a TLS client and a CS

for a PSK-ECDHE TLS handshake. Appendix A.4 shows how the PSK may be

provisioned during a ECDHE TLS handshake. The scenario described in

this section presents a number of similarities to the one described

in Appendix A.4. As such, we expect the reader to be familiar with

Appendix A.4 and will highlight the differences with Appendix A.4 to

avoid to repeat the description.

In this section, the PSK is protected by the CS, but the (EC)DHE

private keys are generated by the TLS client and as such are

considered as unprotected. As the (EC)DHE secret are generated by

the TLS client, the ephemeral_method is set to no_secret, and the

key_share extension is fully provided in the ClientHello. However,

the ClientHello do not carry the PreSharedKeyExtension. Instead,

this extension is built from the NewSessionTicket identifier nst_id

provided in our case from a previous c_register_ticktes exchange

(see Appendix A.4 }. The TLS client requests the binder_key

associated to nst_id in order to be able to complete the binders.

Upon receiving the message, the CS, computes the binder_keys,

complete the ClientHello in order to synchronize its TLS handshake

with the TLS client (and the TLS server). As the CS does not

generate any (EC)DHE, the ephemeral_list is empty.

TLS client

LURK client Cryptographic Service

 RegisterTicketsRequest

 tag.last_message=False

 session_id=session_id_cs

 ticket_list = [NewSessionTicket]

 ---------------->

 RegisterTicketsResponse

 last_message=False

 session_id=session_id_tls_clt

 <-------- c_spk_id_list = [nst_id]

¶

¶

¶

¶

When the TLS client receives the responses from the TLS server, the

handshake and application secrets are requested with a

c_hand_and_app similarly to Appendix A.4. The only difference here

is that (EC)DHE have been generated by the TLS client and the shared

secret needs to be provided to the CS as described below:

Upon receiving the response, the TLS client proceeds similarly to

the TLS client described in Appendix A.4.

A.6. TLS client authenticated ECDHE

This section provides scenarios when the TLS client is authenticated

during the TLS handshake. Post handshake authentication is detailed

in Appendix A.7

TLS client

LURK client Cryptographic Service

 CInitClientHello

 session_id = session_id_tls_client

 freshness = sha256

 ephemeral

 ephemeral_method = no_secret

 handshake = ClientHello without PreSharedKeyExtension

 c_psk_id_list = [nst_id]

 secret_request = [b] ------>

 CInitClientHello

 session_id=session_id_cs

 ephemeral_list = []

 secret_list=[binder_key]

¶

¶

TLS client

LURK client Cryptographic Service

 CHandAndAppSecretRequest

 tag.last_message=False

 session_id=session_id_cs

 ephemeral

 ephemeral_method = secret_provided

 shared_secret

 handshake = ServerHello, {EncryptedExtensions}...,{Finished}.

 secret_request = h_c, h_s, a_c, a_s ------->

 CHandAndAppSecretResponse

 tag

 last_message=False

 cert_request=False

 session_id=session_id_tls_clt

 ephemeral_list = []

 secret_request = h_s, h_c, a_s, and a_c

¶

¶

¶

A.6.1. (EC)DHE or Proposed PSK protected by the CS

When the (EC)DHE part have been generated by the CS, or the proposed

PSK are protected by the CS, the TLS client sends a ClientHello

after a c_client_hello exchange with the CS (see Appendix A.5 or

Appendix A.4). The request for TLS client authentication is

indicated by a encrypted CertificateRequest sent by the TLS server

as indicated below:

The TLS client is unaware of the presence of the CertifcateRequest

until it has decrypted the message with a key derived from the

handshake secrets. As a result, the TLS client initiates a

c_hand_an_app_secret exchange as described in Appendix A.5 or

Appendix A.4.

The CS proceeds as described in Appendix A.5 or Appendix A.4.

However, after the messages have been decrypted, the CS proceeds to

the generation of the signature and returns the necessary

information to build the CertificateVerify. The CS indicates their

presence by setting tag.cert_request and returns the certificate,

the sig_algo and sig as described below:

¶

TLS client TLS Server

 Key ^ ClientHello

 Exch | + key_share

 v + signature_algorithms --------->

 ServerHello ^ Key

 + key_share v Exch

 {EncryptedExtensions} ^ Server Params

 {CertificateRequest} v

 {Certificate} ^

 {CertificateVerify} | Auth

 {Finished} v

 <-------- [Application Data*]

 ^ {Certificate}

 Auth | {CertificateVErify}

 v {Finished} -------->

 [Application Data] <-------> [Application Data]

¶

¶

¶

Note that in the example above, (EC)DHE have not been generated by

the CS, but the c_client_hello was motivated to propose a protected

PSK. As the PSK has not been agreed for authentication by the TLS

server, the TLS session does not provide PFS and the protection is

similar as the one described in {sec:ex:clt:auth:ecdhe-certverify},

where the TLS client would have proposed directly ECDHE with (EC)DHE

generated by the TLS client.

A.6.2. (EC)DHE provided by the TLS client

This section considers a TLS client that proposes to authenticate

the TLS server using ECDHE with (EC)DHE private parts being

generated by the TLS client.

The TLS client does not need to interact with CS to build its

ClientHello. Similarly, as the (EC)DHE private part have been

generated by the TLS client, the TLS client is able to perform the

key schedule and derive the necessary keys to decrypt the encrypted

response from the TLS server. Upon receiving a CertificateRequest,

the TLS client requests the CS to generate the signature needed to

send the CertificateVerify. The exchange is very similar as the one

s_init_cert_verify (see Appendix A.1.2). As the (EC)DHE shared

secret is generated by the TLS client, the ephemeral_method is

necessarily set to secret_provided. The handshake is set to the

ClientHello ... server Finished, and the certificate carries the

reference to the TLS client certificate, so the CS picks the

TLS client

LURK client Cryptographic Service

 CHandAndAppSecretRequest

 tag.last_message=False

 session_id=session_id_cs

 ephemeral

 ephemeral_method = secret_provided

 shared_secret

 handshake = ServerHello, {EncryptedExtensions}...,{Finished}.

 secret_request = h_c, h_s, a_c, a_s ------->

 CHandAndAppSecretResponse

 tag

 last_message=False

 cert_request=True

 session_id=session_id_tls_clt

 ephemeral_list = []

 secret_request = h_s, h_c, a_s, and a_c

 certificate

 certificate_type = finger_print

 sig_algo = ed25519

 sig

¶

¶

¶

appropriated private key. sig_algo designates the signature

algorithm.

A.7. TLS client authenticated - post handshake authentication

Post handshake authentication may be requested at any time after the

TLS handshake is completed as long as the TLS client has indicated

its support with a post_handshake_authentication extension.

If the establishment of the TLS session did not required any

interactions with the CS, post handshake authentication is performed

with a c_init_post_hand_auth exchange as described in Appendix A.

7.1. When the TLS handshake already required some interactions with

the CS the post handshake authentication is performed using a

c_post_hand_auth described in {sec:ex:clt:auth:post_continued}.

In some cases, both c_init_post_hand_auth and c_post_hand_auth can

be used. When this is possible, c_post_hand_auth is preferred as the

handshake context is already being provisioned in the CS. On the

other hand, when the shared secret is only known to the CS,

c_init_post_hand_auth cannot be used instead.

A.7.1. Initial Post Handshake Authentication

This situation describes the case where the TLS client has performed

the TLS handshake without interacting with the CS. As a result, if

involved PSK, (EC)DHE shared secrets are unprotected and hosted by

the TLS client. Upon receiving a CertificateRequest, the TLS client

sends session_id and freshness to initiate the LURK session.

tag.last_message is set in order to accept future post handshake

¶

TLS server

LURK client Cryptographic Service

 CInitCertVerifyRequest

 tag.last_exchange=True -------->

 freshness = sha256

 ephemeral

 ephemeral_method = secret_provided

 key

 group = x25519

 shared_secret = shared_secret

 handshake = hanshake

 certificate

 certificate_type = finger_print

 sig_algo = ed25519

 CInitCertVerifyResponse

 tag.last_exchange=True

 signature = sig

 <---------

¶

¶

¶

¶

authentication request. ephemeral_method is set to secret_provide as

the CS is unable to generate the (EC)DHE shared secret. handshake is

set to the full handshake including the just received

CertificateRequest message. The certificate represents the TLS

client certificate to determine the private key involved in

computing the signature. sig_algo specifies the signature algorithm.

A.7.2. Post Handshake Authentication

In this scenario, the post authentication is performed while a LURK

session has already been set. Upon receiving the CertificateRequest,

the TLS client proceeds similarly to the initial post handshake

authentication as described in As a result, the exchange is

illustrated below:Appendix A.7.1 except that the LURK session does

not need to be initiated, the shared secret is already known to the

CS and the handshake is only constituted of the remaining

CertificateRequest message.

¶

TLS server

LURK client Cryptographic Service

 CInitPostHandAuthRequest

 tag.last_message = False

 session_id = session_id_tls_client

 freshness = sha256

 ephemeral

 ephemeral_method = secret_provided

 handshake = ClientHello ... client Finished CertificateRequest

 certificate

 certificate_type = finger_print

 sig_algo ---------------->

 CInitPostHandAuthResponse

 tag.last_message = False

 session_id = session_id_cs

 <-------------- signature = sig

¶

¶

Author's Address

Daniel Migault

Ericsson

8275 Trans Canada Route

Saint Laurent, QC 4S 0B6

Canada

Email: daniel.migault@ericsson.com

TLS server

LURK client Cryptographic Service

 CInitPostHandAuthRequest

 tag.last_message = False

 session_id = session_id_tls_client

 handshake = CertificateRequest

 certificate

 certificate_type = finger_print

 sig_algo ---------------->

 CInitPostHandAuthResponse

 tag.last_message = False

 session_id = session_id_cs

 <-------------- signature = sig

¶

mailto:daniel.migault@ericsson.com

	LURK Extension version 1 for (D)TLS 1.3 Authentication
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. TODO
	2. Introduction
	3. Terminology
	4. LURK Header
	5. Structures
	5.1. secret_request
	5.2. handshake
	5.3. session_id
	5.4. freshness
	5.5. ephemeral
	5.5.1. shared_secret_provided:
	5.5.2. secret_generated:
	5.5.3. no_secret

	5.6. selected_identity
	5.7. certificate
	5.8. tag
	5.9. secret
	5.10. signature

	6. LURK exchange on the TLS server
	6.1. s_init_cert_verify
	6.2. s_new_tickets
	6.3. s_init_early_secret
	6.4. s_hand_and_app_secret

	7. LURK exchange on the TLS client
	7.1. c_init_post_hand_auth
	7.2. c_post_hand_auth
	7.3. c_init_cert_verify
	7.4. c_init_client_hello
	7.5. c_client_hello
	7.6. c_hand_and_app_secret
	7.7. c_register_tickets

	8. Security Considerations
	9. IANA Considerations
	10. Acknowledgments
	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. Annex
	A.1. TLS server ECDHE (no session resumption)
	A.1.1. ecdhe generated on the CS
	A.1.2. ecdhe generated by the TLS server

	A.2. TLS server ECDHE (with session resumption)
	A.3. TLS server PSK / PSK-ECDHE
	A.4. TLS client unauthenticated ECDHE
	A.5. TLS client unauthenticated PSK / PSK-ECDHE
	A.6. TLS client authenticated ECDHE
	A.6.1. (EC)DHE or Proposed PSK protected by the CS
	A.6.2. (EC)DHE provided by the TLS client

	A.7. TLS client authenticated - post handshake authentication
	A.7.1. Initial Post Handshake Authentication
	A.7.2. Post Handshake Authentication

	Author's Address

