
Workgroup: LURK

Internet-Draft: draft-mglt-lurk-tls13-06

Published: 24 August 2022

Intended Status: Standards Track

Expires: 25 February 2023

Authors: D. Migault

Ericsson

LURK Extension version 1 for (D)TLS 1.3 Authentication

Abstract

This document defines a LURK extension for TLS 1.3 [RFC8446], with

the specification of a Cryptographic Service (CS) for both the TLS

client and the TLS server.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 25 February 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Terminology

3. LURK Header

4. Structures

4.1. secret_request

4.2. handshake

4.2.1. s_init_cert_verify

4.2.2. s_new_ticket

4.2.3. s_init_early_secret

4.2.4. s_hand_and_app_secret

4.2.5. c_init_client_finished

4.2.6. c_post_hand_auth

4.2.7. c_init_client_hello

4.2.8. c_server_hello

4.2.9. c_client_finished

4.3. session_id

4.4. freshness

4.5. ephemeral

4.5.1. TLS server side

4.5.2. no_secret

4.5.3. TLS client side

4.6. selected_identity

4.7. cert

4.8. tag

4.9. secret

4.10. signature

5. LURK exchange on the TLS server

5.1. s_init_cert_verify

5.2. s_new_tickets

5.3. s_init_early_secret

5.4. s_hand_and_app_secret

6. LURK exchange on the TLS client

6.1. c_init_client_finished

6.2. c_post_hand_auth

6.3. c_init_client_hello

6.4. c_server_hello

6.5. c_client_finished

6.6. c_register_tickets

7. Security Considerations

8. IANA Considerations

9. Acknowledgments

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Annex

A.1. TLS server ECDHE (no session resumption)

A.1.1. ecdhe generated on CS

A.1.2. ecdhe generated by the TLS server

A.2. TLS server ECDHE (with session resumption)

A.3. TLS server PSK / PSK-ECDHE

A.4. TLS client unauthenticated ECDHE

A.5. TLS client unauthenticated PSK / PSK-ECDHE

A.6. TLS client authenticated ECDHE

A.6.1. (EC)DHE or Proposed PSK protected by the CS

A.6.2. (EC)DHE provided by the TLS client

A.7. TLS client authenticated - post handshake authentication

A.7.1. Initial Post Handshake Authentication

A.7.2. Post Handshake Authentication

Author's Address

1. Introduction

This document defines the LURK extension for TLS 1.3 The document

considers the Private Key (PK) used generate signature of

CertificateVerify message is always protected by the CS.

Additionally PSK or the (EC)DHE secret key MAY also be protected by

the CS.[RFC8446] also designated as 'tls13'. This extension enables

TLS 1.3 to be securely split between TLS 1.3 into a TLS Engine (E)

and a Cryptographic Service (CS) for both the TLS client and the TLS

server.

This document assumes the reader is familiar with TLS 1.3 the LURK

architecture [I-D.mglt-lurk-lurk].

E interacts with a CS to perform three types of operations: perform

a signature with a secret private key, generate secrets from the TLS

1.3 key schedule or generate tickets for future sessions. To limit

the number of exchanges between E and CS, packs these operations

across various possible LURK exchanges as summed up in Table Figure

1. As a result, these exchanges do share many common structures,

each exchange happens in a very specific state with a specific

subset of structures that results in such exchange being uniquely

defined.

¶

¶

¶

Private Key (PK)

Figure 1: Operation associated to LURK exchange

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses the terms defined [RFC8446] and [I-D.mglt-lurk-

tls12]. However, we replaced [RFC8446] (EC)DHE authentication by

certificate based authentication to make a clear distinction between

the generation of the signature, and the generation of (EC)DHE which

may only be involved in PSK based authentication.

designates the private key associated to the

certificate. PK is used to generate the signature of the

CertificateVerify message when the TLS client or TLS server use

certificate base authentication.

3. LURK Header

The LURK Extension described in this document is designated by a

designation set to 'tls13' and a version set to 1. The LURK

Extension extends the LURKHeader structure defined in [I-D.mglt-

lurk-lurk] as follows:

+--------+-----------------------+------------------------+

| Role | LURK exchange | secret | sign | ticket |

+--------+-----------------------+--------+------+--------+

| server | s_init_early_secret | yes | - | - |

| server | s_init_cert_verify | yes | yes | - |

| server | s_hand_and_app_secret | yes | - | - |

| server | s_new_ticket | yes | - | yes |

| client | c_init_client_finished| - | yes | - |

| client | c_post_hand_auth | - | yes | - |

| client | c_init_client_hello | yes | - | - |

| client | c_server_hello | yes | - | - |

| client | c_client_finished | yes | yes | - |

| client | c_register_tickets | yes | - | yes |

+--------+-----------------------+--------+------+--------+

¶

¶

¶

¶

enum {

 tls13 (2), (255)

} Designation;

enum {

 capabilities(0), // to be removed

 ping(1),

 s_init_cert_verify(2),

 s_new_ticket(3),

 s_init_early_secret(4),

 s_hand_and_app_secret(5),

 c_binder_key(6),

 c_init_early_secret(7),

 c_init_hand_secret(8),

 c_hand_secret(9),

 c_app_secret(10),

 c_cert_verify(11),

 c_register_tickets(12),

 c_post_hand_auth(13), (255)

}TLS13Type;

enum {

 // generic values reserved or aligned with the

 // LURK Protocol

 request (0), success (1),

 invalid_extention // to be added in lurk lurk

 undefined_error (2),

 invalid_format (3),

 invalid_type // to be added in lurk_lurk

 invalid_status // to be added in lurk_lurk

 invalid_secret_request // to be removed

 invalid_session_id

 invalid_handshake

 invalid_freshness

 invalid_ephemeral

 invalid_psk

 invalid_certificate

 invalid_cert_type

 ///not in the code

 invalid_key_id_type

 invalid_signature_scheme

 invalid_certificate_type

 invalid_certificate_verify

 invalid_identity

 too_many_identities

}TLS13Status

struct {

 Designation designation = "tls13";

 int8 version = 1;

} Extension;

struct {

 Extension extension;

 select(Extension){

 case ("tls13", 1):

 TLS13Type;

 } type;

 select(Extension){

 case ("tls13", 1):

 TLS13Status;

 } status;

 uint64 id;

 unint32 length;

} LURKHeader;

¶

4. Structures

This section describes structures that are widely re-used across the

multiple LURK exchanges.

4.1. secret_request

secret_request is a 16 bit structure described in Table Figure 2

that indicates the requested key or secrets. The same structure is

used across multiple exchanges, but each exchange only permit a

subset of values described in Table Figure 3. For a given exchange,

values or secrets that are not permitted MUST NOT be requested by E

and MUST be ignored by the CS. The secret request sent by E

expresses a willingness for a given set of secrets. CS SHOULD

provide the requested secrets, its response may implement specific

policies and CS MAY omit some requested permitted secrets as well as

add some permitted secrets.

Note that for the c_init_client_hello, CS MUST provide binder_keys

the binder_key_list and MUST omit binder_key in the secret_list (see

Section 6.3).

Figure 2: secret_request structure

¶

¶

¶

+------+---+

| Bit | key or secret (designation) |

+------+---+

| 0 | binder_key (b) |

| 1 | client_early_traffic_secret (e_c) |

| 2 | early_exporter_master_secret (e_x) |

| 3 | client_handshake_traffic_secret (h_c) |

| 4 | server_handshake_traffic_secret (h_s) |

| 5 | client_application_traffic_secret_0 (a_c) |

| 6 | server_application_traffic_secret_0 (a_s) |

| 7 | exporter_master_secret (x) |

| 8 | resumption_master_secret (r) |

| 9-15 | reserved and set to zero |

+------+---+

Figure 3: secret_request permitted values per LURK exchange

4.2. handshake

The derivation of the secrets, signing operation and tickets

requires the TLS handshake context as described in [RFC8446] section

4. The necessary TLS handshake context is collected by CS in many

ways. Firstly, E provides portions of the handshake during the

multiple exchanges that is aggregated by the CS. Table Figure 4

shows the expected portion of the handshake transmitted by E to CS

for the various possible exchanges. Secondly, CS generates some

portions or update portions of the transmitted handshake provided by

E.

Note that Certificate are not carried via the handshake structure

but the cert structure as detailled in Section 4.7.

The handshake structure is defined as follows:

Handshake handshake<0..2^32> //RFC8446 section 4 (clear)

Table Figure 4 defines the content of the handshake parameter in the

various exchanges.

+------------------------+-----------------------+

| LURK exchange | Permitted secrets |

+------------------------+-----------------------+

| s_init_cert_verify | h_c, h_s, a_c, a_s, x |

| s_new_ticket | r |

| s_init_early_secret | b,e_c, e_x |

| s_hand_and_app_secret | h_c, h_s, a_c, a_s, x |

| c_init_client_finished | - |

| c_post_hand_auth | - |

| c_init_client_hello | e_c, e_x |

| c_server_hello | h_c, h_s, |

| c_client_finished | a_c, a_s, x, r |

| c_register_tickets | - |

+------------------------+-----------------------+

¶

¶

¶

¶

¶

psk_proposed

psk_agreed

certificate_agreed

ks_proposed

Figure 4: handshake values per LURK exchange

Upon receiving a handshake parameter, CS performs some checks

described below:

A TLS handshake is "psk_proposed" when the TLS client

proposes a PSK authentication. The latest ClientHello contains a

psk_key_exchange_modes (section 4.2.9 of [RFC8446]) and a

pre_shared_key (section 4.2.11 of [RFC8446]) extension.

A "psk_proposed" TLS handshake is "psk_agreed" when the

TLS server agrees and selects PSK to authenticate to be

authenticated by the TLS client. The ServerHello contains a

pre_shared_key extension as according to [RFC8448] section 4.2.9

the Server MUST NOT send a psk_key_exchange_modes extension.

As currently defined, TLS 1.3 [RFC8446] provides

only PSK or certificate authentication. In addition, when the TLS

server is authenticated with a certificate, according to

[RFC8446] section 4.2.3), the ClientHello MUST contain a

signature_algorithms extension.

A TLS handshake is "key shared proposed" when the

computation of a (EC)DHE shared secret is proposed by the TLS

+------------------------+--+

| LURK exchange | handshake content |

+------------------------+--+

| s_init_cert_verify | ClientHello ... later of |

| | server EncryptedExtensions / |

| | CertificateRequest |

| s_new_ticket | earlier of client CertificateVerify / |

| | Finished ... Finished |

| s_init_early_secret | ClientHello |

| s_hand_and_app_secret | ServerHello ... later of |

| | server EncryptedExtensions / |

| | CertificateRequest |

| c_init_client_finished | ClientHello... later of server Finished/ |

| | EndOfEarlyData |

| c_post_hand_auth | CertificateRequest |

| c_init_client_hello | PartialClientHello or ClientHello |

| | HelloRetryRequest, PartialClientHello |

| c_server_hello | ServerHello |

| c_client_finished | EncryptedExtensions ... later of |

| | server Finished, EndOfEarlyData OR |

| | ServerHello, EncryptedExtensions ... |

| | later of server Finished, EndOfEarlyData |

| c_register_tickets | - |

+------------------------+--+

¶

¶

¶

¶

ks_agreed

certificate_request

early_data_proposed

early_data_agreed

post_hand_auth_proposed:

client. The latest ClientHello contains a key_share extension

(section 4.2.8 of [RFC8446]).

A TLS handshake is key shared agreed or "ks agreed" when

the TLS server agrees and complete the generation of a (EC)DHE

shared secret. The ServerHello contains a key_shared extension.

A TLS handshake is "certificate request" when

the TLS server has requested the client to authenticate via a

certificate by sending a CertificateRequest message with a

signature algorithm extension.

A TLS handshake is "early_data_proposed" when

it has indicates the presence of early data. Its latest

ClientHello contains a early_data extension (section 4.2.10 of

[RFC8446].

A TLS handshake is "early_data_agree" when a

early_data extension is present in the Encrypted Extension.

A TLS handshake is

"post_hand_auth_proposed" when the TLS client indicates the

support of Post-Handshake Client Authentication. The ClientHello

contains a post_handshake_auth extension.

4.2.1. s_init_cert_verify

This exchange implies the authenticated mode is (EC)DHE and CS MUST

check the handshake is not 'psk_agreed' and is both 'ks_proposed'

and 'ks_agreed'. CS SHOULD raise an invalid_handshake error

otherwise.

CS applies the freshness function to the ServerHello.random as

detailed in Section 4.4. When instructed to, CS generates the

(EC)DHE and add it to its local ServerHello as detailed in Section

4.5.

The TLS server Certificate message is provided via the certificate

structure detailed CS generates the Certificate message from the

certificate structure. CS SHOULD raise an invalid_handshake_error if

the server Certificate message is in found in the handshake

structure.Section 4.7 and not directly in the handshake structure.

In fact, the server Certificate message is rather considered as a

configuration whose transmission for each handshake is loading

unnecessarily the CS.

In addition to the server Certificate message, the CertificateVerify

as described in Section 4.10 as well as the server Finished message

as detailed in [RFC8446] section 4.4.4 to avoid a potential

additional interaction between E and CS.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

4.2.2. s_new_ticket

When the TLS handshake is "certificate request" the TLS handshake is

expected to have a Certificate message provided by the certificate

structure detailed Section 4.7 and not directly in the handshake

structure.

4.2.3. s_init_early_secret

This exchange is expected to occur when a PSK has been selected and

CS MUST check the handshake is 'psk_proposed' and SHOULD raise an

invalid_handshake error otherwise.

CS applies the freshness function to ServerHello.random as detailed

in Section 4.4.

CS MUST check the presence of an early_data extension in the

ClientHello before generating the client_early_traffic_secret (e_x).

If the extension is not found CS SHOULD NOT compute the secret. Note

that the secret may be generated by CS without knowing E actually

agreed on using it.

4.2.4. s_hand_and_app_secret

This exchange is expected to occur when a PSK has been selected and

CS MUST check the handshake is 'psk_agreed' and SHOULD raise an

invalid_handshake error otherwise. CS MUST check the ticket selected

in the ServerHello is the same ticket as the one selected in the

's_init_early_secret'. To do so, CS MUST check

SInitEarlySecret.selected_identity equals selected identity of the

ServerHello pre_shared_key extension and SHOULD raise an

invalid_handshake error otherwise. Similarly, CS MUST check the

selected selected cipher suite has the same KDF hash algorithm as

that used to establish the original connection - as per {!RFC8446}

Section 4.6.1. To do so, CS MUST check the cipher suite selected by

the KDF hash algorithm associated to the ServerHello message

corresponds to the one provided by the ticket and SHOULD raise an

invalid_handshake error otherwise.

When instructed to, CS generates the (EC)DHE and add it to its local

ServerHello as detailed in Section 4.5. CS also generates the server

finished message as detailed in [RFC8446] section 4.4.4.

4.2.5. c_init_client_finished

This exchange occurs when the TLS client has proposed client post

handshake authentication or when the TLS server is requesting client

authentication during the TLS handshake. As a result, CS MUST check

the handshake is post_hand_auth_proposed or certificate_request and

raise an 'invalid_handshake' error otherwise.

¶

¶

¶

¶

¶

¶

¶

Note that the Handshake context MAY but not necessarily carry a

server Certificate message or a client Certificate message. These

message are not part of the handshake and carried in Cert structures

as defined in Section 4.7.

4.2.6. c_post_hand_auth

This exchange occurs when the TLS client is authenticated via its

certificate after the main handshake.

The CS MUST check E has indicated support of the post handshake

client authentication. This is enforced by checking the TLS

handshake is post_hand_auth_proposed. c_post_hand_auth handshake is

composed of the CertificateRequest message.

4.2.7. c_init_client_hello

The c_init_client_hello message carries a partial client hello that

corresponds to a ClientHello message to which the pre_shared_key and

key_share extensions have been modified.

When the TLS client proposes PSK based authentication, E indicates

the supported PSK via the PreSharedKeyExtension at the end of the

ClientHello. As described in [RFC8446], the PreSharedKeyExtension

contains an OfferedPsks structure that contains identities (a list

of PskIdentity structure) and binders (a list of PskBinderEntry

structure). As the PskBinder entries requires the binder_key to be

generated and that binder_key is request with the

c_init_client_hello at least for PSKs protected by CS, E provides a

partial ClientHello where OfferedPsks.binders is omitted. The

OfferedPsks structure is thus replaced OfferedPsksWithNoBinders as

detailed below:

This extension MUST be present when the handshake is_psk_proposed

absent otherwise. If these conditions are not met, CS SHOULD raise a

'invalid_handshake' error.

In addition the ClientHello may also have its KeyShare replaced by

PartialKeyShareClientHello as detailed in Section 4.5.

The CS MUST check the handshake is ks_proposed or psk_proposed.

4.2.8. c_server_hello

There is no particular conditions to be met by the handshake.

¶

¶

¶

¶

¶

struct{

 PskIdentity identities<7..2^16-1>;

}OfferedPsksWithNoBinders;

¶

¶

¶

¶

¶

4.2.9. c_client_finished

The c_client_finished exchange considers two types of handshake

messages. Either the handshake message starts with a

EncryptedExtensions message when the exchange follows a

c_server_hello exchange. This situation corresponds to the case

where E c_client_finished follows a c_server_hello. Otherwise the

handshake starts with a ServerHello message. This situation

corresponds to the case where E c_client_finished follows a

c_init_client_hello exchange.

In both cases, Certificate message are not part of the handshake and

are instead carried by the Cert structure (see Section 4.7).

4.3. session_id

A TLS handshake and the establishment of a TLS session may involve a

single interaction between E and CS or multiple interactions. In the

first case, the interactions are called stateless while in the other

case, interactions are statefull and the different interactions are

managed through a session identified by E and CS with a session_id.

The session_id is a 32 bit identifier that identifies a LURK session

between E and the CS. Session_ids are agreed in the first exchange

of the session that instantiates the session. The exchange is

designate with 's_init_' or 'c_init_' and E (resp. the CS) indicates

the value to be used for inbound session_id in the following

exchanges. For other exchanges, the session_id is set by the sender

to the inbound value provided by the receiving party. Once the

session_id has been negotiated by E, all message of the session will

have a session_id.

When CS receives an unexpected session_id CS SHOULD return an

invalid_session_id error.

Some exchange - indicated with * in Figure 5 - may initiate a

session or be part of a stateless interaction between E and CS. More

specifically, the s_init_cert_verify exchange instantiates a session

only when E expects it to be followed by one or multiple

s_new_tickets messages. If the TLS server does not intend to provide

session resumption for example, no further s_new_tickets exchange

are expected. A similar situation occurs with the

c_init_client_finished exchange that may be followed by one or

multiple c_post_hand_auth exchanges. If the TLS client does not

supports post handshake authentication, no further exchanges are

envisioned.

To handle with these case, E indicates a stateless interaction by

setting tag.last_exchange to True and MUST omit the session_id. As

described in To refuse the establishment of the session, CS sets the

¶

¶

¶

¶

¶

¶

tag.last_message to True and omit the session_id.Section 4.8, CS

MUST set the tag.last_message to True and MUST as well and MUST omit

the session_id. Reversely, E may also initiates a session, in which

case, it sets tag.last_exchange to False and it MUST provide a

session_id. Upon receiving the request, CS may establish a session

or refuse the establishment of the session and instead consider the

stateless mode.

The session_id structure is defined below: ~~~ uint32 session_id ~~~

Table Figure 5 indicates the presence of the session_id for each

exchange.

Figure 5: session_id in LURK exchanges

4.4. freshness

The freshness function implements perfect forward secrecy (PFS) and

prevents replay attack. On the TLS server, CS generates the

ServerHello.random of the TLS handshake that is used latter to

derive the secrets. The ServerHello.random value is generated by CS

using the freshness function and the ServerHello.random provided by

E in the handshake structure. CS operates similarly on the TLS

client and generates the ClientHello.random of the TLS handshake

using the freshness function as well as the ClientHello.random value

provided by E in the handshake structure.

If CS does not support the freshness, CS SHOULD return an

invalid_freshness error.

The freshness structure is defined as follows:

¶

¶

¶

+------------------------+------------+

| LURK exchange | session_id |

+------------------------+------------+

| s_init_cert_verify | * |

| s_new_ticket | y |

| s_init_early_secret | y |

| s_hand_and_app_secret | y |

| c_init_client_finished | * |

| c_post_hand_auth | y |

| c_init_client_hello | y |

| c_server_hello | y |

| c_client_finished | y |

| c_register_tickets | y |

+------------------------+------------+

y indicates the session_id is present

* indicates session_id may be present (depending on the tag.last_exchange)

¶

¶

¶

Table {table:freshness} details the exchanges that contains the

freshness structure.

Figure 6: freshness in LURK exchange

When CS is running on the TLS server, the ServerHello.random is

generated as follows:

When CS is running on the TLS client, the ClientHello.random is

generated as follows:

The server_random (resp client_random) MUST be deleted once it has

been received by the CS. In some cases, especially when the TLS

client enables post handshake authentication and interacts with CS

via a (c_init_post_hand_auth) exchange, there might be some delay

between the ClientHello is sent to the server and the Handshake

context is shared with the CS. The client_random MUST be kept until

the post-handshake authentication is performed as the full handshake

is provided during this exchange.

enum { sha256(0), sha384(1), sha512(2), ... (255) } Freshness;¶

¶

+------------------------+-----------+

| LURK exchange | freshness |

+------------------------+-----------+

| s_init_cert_verify | y |

| s_new_ticket | - |

| s_init_early_secret | - |

| s_hand_and_app_secret | y |

| c_init_client_finished | y |

| c_post_hand_auth | - |

| c_init_client_hello | y |

| c_server_hello | - |

| c_client_finished | - |

| c_register_tickets | - |

+------------------------+-----------+

y indicates freshness is present

- indicates freshness is absent

¶

server_random = ServerHello.random

ServerHello.random = freshness(server_random + "tls13 pfs srv");

¶

¶

client_random = ClientHello.random

ClientHello.random = freshness(client_random + "tls13 pfs clt");

¶

¶

coordinate_length

4.5. ephemeral

The Ephemeral structure carries the necessary information to

generate the (EC)DHE shared secret used to derive the secrets. This

document defines the following ephemeral methods to generate the

(EC)DHE shared secret:

e_generated: Where (EC)DHE keys and shared secret are generated

by E and the shared secret is provided to the CS

cs_generated: Where the (EC)DH keys and shared secret are

generated by CS and the public key is returned to the E.

no_secret: where no (EC)DHE is involved, and PSK authentication

is performed.

4.5.1. TLS server side

On the TLS server side, the EphemeralRequest and EphemeralResponse

structures are defined as follows:

Where:

indicates the length in bytes of the

shared_secret and depends on the chosen group. For secp256r1,

secp384r1, secp521r1, x25519, x448, the coordinate_length is

respectively 32 bytes, 48 bytes, 66 bytes, 32 bytes and 56 bytes.

¶

*

¶

*

¶

*

¶

¶

enum { no_secret (0), e_generated(1), cs_generated(2) (255)} EphemeralMethod;

struct {

 NamedGroup group;

 opaque shared_secret[coordinate_length];

} SharedSecret;

EphemeralRequest {

 EphemeralMethod method;

 select(method) {

 case e_generated:

 SharedSecret key <0..2^16>;

 }

}

EphemeralResponse {

 EphemeralMethod method;

 select(method) {

 case cs_generated:

 KeyShareEntry key // KeyShareServerHello.server_share

 }

}

¶

¶

¶

4.5.1.1. e_generated:

When the (EC)DHE keys and (EC)DHE shared secret are generated by the

E, E provides the shared secret value to the CS. E indicates a

shared secret is provided by sending an EphemeralRequest with a

method set to 'e_generated'. The shared secret is transmitted in the

SharedSecret structure. The SharedSecret structure is a

KeyShareEntry described in [RFC8446] section 4.2.8. where the

KeyShareEntry.key_exchange is replaced by

SharedSecret.shared_secret.

Upon receiving a EphemeralRequest, CS MUST check group is proposed

in the KeyShareClientHello and agreed in the KeyShareServerHello. If

not an 'invalid_ephemeral' error SHOULD be raised. CS takes the

shared_secret provide as the input to the key schedule. CS MUST NOT

return any data and the EphemeralResponse only contains the method.

Note that CS is unable to check the (EC)DHE shared secret has been

generated with the public keys provided either by the ClientHello or

the ServerHello.

4.5.1.2. cs_generated:

When the ECDHE public/private keys are generated by the CS, E sends

an EphemeralRequest with a method set to 'cs_generated' to request

CS to generate the (EC)DHE private key and return the corresponding

key that is returned to the TLS client. The EphemeralRequest

structure does not carry any other information than the method.

Instead the ServerHello carries the group information in a NameGroup

structure. The NameGroup structure is carried by a modified

KeyShareEntry of the KeyShareServerHello structure. Note that in

such cases CS would receive an incomplete Handshake Context from E

with the public part of the ECDHE

(KeyShareServerHello.server_share.key_exchange) being of zero length

as described by the EmptyKeyShareEntry below:

Upon receiving the EphemeralRequest, CS MUST check the group field

in the KeyShareServerHello, and get the public value of the TLS

client from the KeyShareClientHello. CS performs the same checks as

described in [RFC8446] section 4.2.8. CS generates the private and

public (EC)DH keys, computes the shared key and return the

KeyShareEntry server_share structure defined in [RFC8446] section

section 4.2.8 to E.

¶

¶

¶

struct {

 NamedGroup group;

 int16 key_exchange=0

} EmptyKeyShareEntry

¶

¶

4.5.2. no_secret

When the PSK only authentication is chosen, (EC)DHE keys and shared

secrets are not needed. To indicate that no ECDHE shared secret is

involved E set the EphemeralRequest.methode to 'no_secret'.

Upon receiving the EphemeralRequest, CS MUST check the PSK

authentication without (EC)DHE has been agreed. More specifically,

CS MUST check the handshake is 'psk_proposed', 'psk_agreed' and is

not 'ks_agreed' as detailed in [RFC8446] section 4.2.9.

When the ephemeral method or the group is not supported, expected

extensions are not found CS SHOULD return an invalid_ephemeral

error.

4.5.3. TLS client side

While the TLS server side proceeds to a ephemeral exchange with

ephemeral structures in both request and response, in the case of

the TLS client, ephemeral only appears in the request or in the

response. Typically, in the c_init_client_hello, E requests CS to

generate (EC)DHE via a specific structure of the KeyShareEntry

carried by the CLientHello. CS on the other hand returns the

generated public (EC)DHE keys in a ephemeral structure. In the case

of the c_server_hello, E provides the necessary information to CS,

but does not receive any response.

4.5.3.1. c_init_client_hello

A TLS client may propose multiple KeyShareEntry to the TLS server in

a KeyShareClientHello.client_shares structure. These KeyShareEntry

may be generated by E or CS. E indicates CS a (EC)DHE key needs to

be generated by replacing the KeyShareEntry by am

EmptyKeyShareEntry. E does not provide any EphemeralRequest message

as no extra information is needed. Upon receiving a

c_init_client_hello, CS processes every KeyShareEntry or

EmptyKeyShareEntry of the KeyShareClientHello.client_shares to

return a list of EphemeralResponse structure. For each KeyShareEntry

or EmptyKeyShareEntry of the client_shares - processed in the exact

order of the client_shares. When a KeyShareEntry is encountered, CS

generates a corresponding EphemeralResponse with a method set to

'e_generated'. When an EmptyKeyShareEntry is encountered, CS

generates the private key and generates a KeyShareEntry that

contains the corresponding public key. That KeyShareEntry replaces

the EmptyKeyShareEntry and is added to an EmphemeralResponse with a

method set to 'cs_generated'. The resulting list of

EphemeralResponse is returned to E, so E can complete its

CLientHello.

¶

¶

¶

¶

¶

4.5.3.2. c_server_hello

With a c_server_hello exchange, E determine the selected

KeyShareEntry by the TLS server KeyShareServerHello.server_share If

the (EC)DHE client secret key has been generated by CS, E sends an

EphemeralRequest with a method set to 'cs_generated'. If the (EC)DHE

client secret key has been generated by E, E provides the share

secret via a EphemeralRequest with its method set to 'e_generated'.

When no (EC)DHE is being used, E sets its ephemeral to 'no_secret'.

A 'no_secret' ephemeral correspond to a psk_agreed handshake only.

Table {table:ephemeral} indicates the exchanges that contain the

ephemeral parameter as well as the permitted methods. The CS MUST

check compliance with Table {table:ephemeral} and raise an

'invalid_ephemeral' error in case of non compliance.

Figure 7: Ephemeral field in LURK exchange

4.6. selected_identity

The selected_identity indicates the identity of the PSK used in the

key schedule. The selected_identity expresses index of the

identities in the in the ClientHello pre_shared_key extension as

expressed in [RFC8446] section 4.2.11.

The selected_identity structure is defined as follows:

¶

¶

+-----------------------+-----------+---------------------------+

| | | method= secret |

| LURK exchange | ephemeral | no | e_gen. | cs_gen. |

+-----------------------+-----------+----+----------+-----------+

| s_init_cert_verify |y | - | y | y |

| s_new_ticket |- | - | - | - |

| s_init_early_secret |- | - | - | - |

| s_hand_and_app_secret |y | y | y | y |

| c_init_client_finished|y | y | y | - |

| c_post_hand_auth |y | - | | - |

| c_init_client_hello |y response | - | y | y |

| c_server_hello |y request | y | y | y |

| c_client_finished |- | - | - | - |

| c_register_tickets |- | - | | |

+-----------------------+-----------+----+----------+-----------+

y indicates possible value for method

- indicates incompatible value for method

¶

¶

uint16 selected_identity; //RFC8446 section 4.2.11¶

Figure 8: psk_id in LURK exchange

CS retrieve the PSK identity from the ClientHello and SHOULD send an

invalid_psk error if an error occurs. For the TLS server, CS MUST

check the selected_identity parameter matches the selected_identity

of the ServerHello as described in Section 4.2.

4.7. cert

cert indicates the presence or absence of a Certificate message as

well as the necessary input for the generation of such message. cert

supports different type of compressed certificates defined by a

cert_type.

cert is essentially motivated to enable compression of the

Certificate message similarly to CompressedCertificate [RFC8879].

The reason to to use a specific cert parameter is that

CompressedCertificate is negotiated between the TLS client and the

TLS server - with some implications on teh ClientHello extensions -

while here the communication is between E and the CS. All related

certificate information are handled by this parameter and

Certificate message MUST not be provided via the handshake

parameter.

cert supports FingerPrintCertificate to compress the Certificate

message when certificates are configured on both E and the CS. This

expected to be used for client Certificate exchanged on the TLS

client between CS and E or server Certificate exchanged on the TLS

server between E and the CS. The compressed format is a

FingerPrintCertificate which contains a list of

FingerPrintCertificateEntry where each opaque certificate data -

+-----------------------+-----+

| LURK exchange | req |

+-----------------------+-----+

| s_init_cert_verify | - |

| s_new_ticket | - |

| s_init_early_secret | y |

| s_hand_and_app_secret | - |

| c_init_post_hand_auth | - |

| c_post_hand_auth | - |

| c_init_client_hello | - |

| c_server_hello | - |

| c_client_finished | - |

| c_register_tickets | - |

+-----------------------+-----+

y indicates the selected_identity is present

- indicates the selected_identity is absent

¶

¶

¶

RawPublicKey or X509 content as described in [RFC8446] section 4.4.2

- is instead replaced by the 4 byte finger_print of these

certificate data. The finger_print consists in the 4 first bytes of

the output hash of the certificate using SHA256 as the hashing

function.

cert also supports the CompressedCertificate [RFC8879] or the

uncompressed Certificate message format.

Finally, cert also indicates the absence of Certificate message with

a special no_certificate type.

CS MUST support the no_certificate, the finger_print an uncompressed

cert_type. CS SHOULD raise a 'invalid_cert_type' error when it

receives a unsupported cert_type and 'invalid_cert' when any other

error occurs.

When (EC)DHE authentication has been agreed (the handshake is not in

psk_agreed), CS MUST check the presence of a server Certificate

message and reject and raise a 'invalid_certificate' error if

cert_type is set to no_certificate. When the handshake is

psk_proposed and psk_agreed, CS MUST check the absence of server

Certificate and raise an 'invalid_certificate' if cert_type is not

set to no_certificate. When the handshake is certificate_request, CS

MUST check the presence of a client Certificate message and raise an

'invalid_certificate' if cert_type is not set to no_certificate.

The cert structure is defined as follows:

¶

¶

¶

¶

¶

¶

certificate

certificate_list

finger_print

structure carrying the compressed form of the

Certificate message. The current format supported are

CompressedCertificate as detailed in [RFC8879],

FingerPrintCertificate, and Certificate certificate as detailed

in [RFC8446] section 4.4.2.

A sequence (chain) of FingerPrintCertificateEntry

structures, each containing a single certificate and set of

extensions.

certificate_request_context, extensions, certificate_type are

defined in [RFC8446] section 4.4.2.

enum { zlib(1), brotli(2), zstd(3), no_certificate(128), finger_print(129), uncompressed(130), (255)

} CertType;

struct{

 select (certificate_type) {

 case RawPublicKey:

 uint32 finger_print;

 case X509:

 uint32 finger_print;

 };

 Extension extensions<0..2^16-1>;

} FingerPrintCertificateEntry;

struct {

 opaque certificate_request_context<0..2^8-1>;

 FingerPrintCertificateEntry certificate_list<0..2^24-1>;

} FingerPrintCertificate;

struct {

 CertType cert_type;

 select (cert_type) {

 case zlib, brotlib, zstd:

 CompressedCertificate certificate; RFC8879 section 4

 case no_certificate:

 // no certificate

 case finger_print

 uint24 uncompressed_length;

 FingerPrintCertificate certificate;

 case uncompressed:

 Certificate certificate; // RFC8446 section 4.4.2

 };

} Cert;

¶

¶

¶

¶

the first 4 bytes of the resulting SHA256 output of the

certificate in DER format or the ASN.1_subjectPublicKeyInfo

[RFC7250].

Table Figure 9 indicates the presence of that field in the LURK

exchanges.

Figure 9: cert in LURK exchange

In the s_new_ticket exchange, if cert_type is set to

'no_certificate', the handshake does not have a CertificateVerify

message. Reversely, if cert_type is not set to 'no_certificate' a

CertificateVerify message MUST be present in the hanshake.

In the c_init_client_finished, if server_certificate.cert_type is

set to 'no_certificate', CS checks the handshake is psk_proposed and

psk_agreed. Reversely, if server_certificate.cert_type is not set to

'no_certificate', CS checks the handshake is certificate_agreed. If

the client_certificate is set to 'no_certificate', CS checks the

handshake is not certificate_request. Reversely, if the

client_certificate is not set to 'no_certificate', CS checks the

handshake is certificate_request.

If one if these condition is not met, CS raises an

'invalid_certificate' error.

4.8. tag

This field provides extra information. Currently, the tag structure

defines tag.last_exchange and tag.cert_request.

¶

¶

+------------------------+------+-------------------+

| LURK exchange | cert | certificate type |

+------------------------+------+-------------------+

| s_init_cert_verify | y | server |

| s_new_ticket | y | client* |

| s_init_early_secret | - | |

| s_hand_and_app_secret | - | |

| c_init_client_finished | y | client* / server* |

| c_post_hand_auth | y | client |

| c_init_client_hello | - | |

| c_server_hello | - | |

| c_client_finished | y | client*/server* |

| c_register_tickets | - | |

+------------------------+------+-------------------+

y indicates the presence of certificate in the exchange

- indicates the certificate structure is absent

* indicates certificate type MAY be set to no_certificate.

¶

¶

¶

¶

E or CS sets the tag.last_exchange to terminate the LURK session.

When E is expecting the current exchange to be the last one, it sets

the tag.last_exchange to True. CS MUST respond with a

tag.last_exchange set to True and E MUST ignore any other values.

When E does not expect the current message to be the last one it

sets the tag.last_exchange to False. CS responds with a

tag.last_exchange set to False to confirm additional exchanges may

be performed. On the other hand, CS may also indicates this is the

last exchange due to configuration or internal policies and set

tag.last_exchange to True. Typically, for the s_new_ticket exchange,

it is RECOMMENDED CS is configured with a maximum number of tickets

to emit, and to set the tag.last_exchange to True when this limit

has been reached. For the c_init_client_finished exchange, the CS

MUST set tag.last_exchange to True if the handshake is not

post_hand_auth_proposed. For the c_post_hand_auth exchange, it is

RECOMMENDED CS is configured with a maximum number of post handshake

authentication and set the tag.last_exchange to True once this limit

has been reached.

Upon receiving a response with a tag.last_exchange set to True, E

MUST reset the session and MUST NOT proceed to any further

exchanges.

In this document, we use setting, setting to True to indicate the

bit is set to 1. Respectively, we say unsetting, setting to False to

indicate the bit is set to 0.

Table Figure 10 indicates the different values carried by the tag as

well as the exchange these tags are considered. The bits values MUST

be ignored outside their exchange context and bits Bits that are not

specified within a given exchange MUST be set to zero by the sender

and MUST be ignored by the receiver.

Figure 10: tag description

¶

¶

¶

¶

+------+----------------+

| Bit | description |

+------+----------------+

| 0 | last_exchange |

| 1-7 | RESERVED |

+------+----------------+

Figure 11: tag per LURK exchange

c_init_client_finished

4.9. secret

The Secret structure is used by CS to send the various secrets

derived by the key schedule described in [RFC8446] section 7.

The Secret structure is defined as follows:

secret_type: The type of the secret or key

secret_data: The value of the secret.

+------------------------+---------------+

| LURK exchange | last_exchange |

+------------------------+---------------+

| s_init_cert_verify | y |

| s_new_ticket | y |

| s_init_early_secret | - |

| s_hand_and_app_secret | y |

| c_init_client_finished | y |

| c_post_hand_auth | y |

| c_init_client_hello | - |

| c_server_hello | - |

| c_client_finished | y |

| c_register_tickets | y |

+------------------------+---------------+

y indicates tag is present

- indicates tag is absent

¶

¶

¶

enum {

 binder_key (0),

 client_early_traffic_secret(1),

 early_exporter_master_secret(2),

 client_handshake_traffic_secret(3),

 server_handshake_traffic_secret(4),

 client_application_traffic_secret_0(5),

 server_application_traffic_secret_0(6),

 exporter_master_secret(7),

 esumption_master_secret(8),

 (255)

} SecretType;

struct {

 SecretType secret_type;

 opaque secret_data<0..2^8-1>;

} Secret;

¶

¶

¶

4.10. signature

The signature requires the signature scheme, a private key and the

appropriated context. The signature scheme is provided using the

SignatureScheme structure defined in [RFC8446] section 4.2.3, the

private key is derived from the certificate Section 4.7 and the

context is derived from the handshake Section 4.2 and certificate

Section 4.7.

Signing operations are described in [RFC8446] section 4.4.3. The

context string is derived from the role and the type of the LURK

exchange as described below. The Handshake Context is taken from the

key schedule context.

The signature structure is defined as follows:

5. LURK exchange on the TLS server

This section describes exchanges performed on the TLS server. Unless

specified, used structures are described in Section 4

The interaction between E and CS are relatively straight forward as

the TLS server is able select how it will be authenticated, that is

either using the certificate or the PSK with (EC)DHE or the PSK

only. If the TLS server selects to be authenticated via its

certificate, E request CS, via a s_init_cert_verify, to generate the

signature, as well as handshake, application and exporter secrets to

complete the handshake. If the TLS server selects to be

authenticated via a PSK E request CS, via a s_init_early_secret, at

least the binder key to validate the binders as well as other early

secrets to complete the handshake. Once the ticket has been

validated, E requests CS the handshake and application secrets and

optionally the generation of the (EC)DHE.

Once, the handshake has been completed, E may request the generation

of tickets to enable session resumption. This is again a server side

decision which may be performed via a s_new_ticket exchange.

¶

¶

+--------------------+-------------------------------------+

| type | context |

+--------------------+-------------------------------------+

| s_init_cert_verify | "TLS 1.3, server CertificateVerify" |

| c_cert_verify | "TLS 1.3, client CertificateVerify" |

+--------------------+-------------------------------------+

¶

¶

struct {

 opaque signature<0..2^16-1>; //RFC8446 section 4.4.3.

} Signature;

¶

¶

¶

¶

sig_algo

The remaining of the section describes CS behavior. Implementation

may differ from the description and generates the response

otherwise. The response SHOULD however remain coherent with the

description provided.

5.1. s_init_cert_verify

s_init_cert_verify initiates a LURK session when the server is

authenticated with (EC)DHE. E sends a SInitCertVerifyRequest to CS

and is responded a SInitCertVerifyResponse structure unless an error

is being raised.

SignatureScheme is defined in [RFC8446] section 4.2.3.

For other parameters, see the corresponding sections tag (Section

4.8), session_id (Section 4.3), freshness (Section 4.4), ephemeral

(Section 4.5), handshake (Section 4.2), certificate (Section 4.7),

secret_request (Section 4.1), signature (Section 4.10), secret_list

(Section 4.9).

If the exchange is expected to be followed by a s_new_ticket

exchange, typically to enable session resumption, E set the

tag.last_exchange to False as described in Section 4.8.

¶

¶

struct{

 uint8 tag;

 select (tag.last_exchange){

 case False:

 uint32 session_id;

 }

 FreshnessFunct freshness;

 Ephemeral ephemeral;

 Handshake handshake<0..2^32>; //RFC8446 section 4

 Cert certificate;

 uint16 secret_request;

 SignatureScheme sig_algo; //RFC8446 section 4.2.3.

}SInitCertVerifyRequest

struct{

 uint8 tag;

 select (tag.last_exchange){

 case False:

 uint32 session_id;

 }

 Ephemeral ephemeral;

 Secret secret_list<0..2^16-1>;

 Signature signature;

}SInitCertVerifyResponse

¶

¶

¶

¶

When tag.last_exchange is set to False, E indicates in the

session_id structure, the session identifier used to further

identify the inbound session - see Section 4.3 for more details. If

tag.last_exchange is set to True, the session_id structure is

ignored by the E.

E sets the freshness function as detailed in Section 4.4. It is

RECOMMENDED to use a freshness function that provides similar

security as TLS Hash function.

E either generates the (EC)DHE or requests CS to generates, in which

case it respectively sets the ephemeral.method to 'e_generated' or

'cs_generated' and proceeds as described in Section 4.5.

E provides the necessary TLS Handshake context in handshake and

certificate as respectively detailed in Section 4.2 and Section 4.7.

The necessary secrets E needs to complete the exchange as well as

the signature scheme used to generate the signature are indicated by

secret_request and sig_algo as described in Section 4.1 and Section

4.10.

Upon receiving the SInitCertVerifyRequest, CS generates the

ServerHello.random as detailed in Section 4.4 to implement anti

replay protection.

Then, CS generates the (EC)DHE to further initialize the key

schedule as described in [RFC8466] section 7.1. As described Section

4.5, the (EC)DHE is either directly provided by E ('e_generated') or

computed by CS ('cs_generated'). When (EC)DHE are generated by the

CS, necessary information are provided by the partial key_share

extension. CS completes the key share extension and returns that

necessary information to E in the ephemeral response.

Once (EC)DHE is computed, CS generates the handshake secrets (h_c,

h_s) as described in [RFC8446] section 7.1, compute the Certificate

message from the certificate and complete the TLS handshake in order

to have the necessary TLS Handshake context to generate the

signature.

CS then generates the signature, provides the resulting value in the

signature field of the response and complete the CeriticateVerify

message that inserted into the TLS handshake context of the CS, so

the Finished message can be generated. This provides the necessary

TLS Handshake context for the generation of the application secrets

(a_c, a_s)

Once generated, the requested secrets are returned in secret_list as

detailed in Section 4.1 and Section 4.9.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

5.2. s_new_tickets

new_session ticket handles session resumption. It enables to

retrieve NewSessionTickets that will be forwarded to the TLS client

by the TLS server to be used later when session resumption is used.

It also provides the ability to delegate the session resumption

authentication from CS to E as the possession of the

resumption_master_secret (r) is sufficient to proceed to session

resumption. It is important to realize that performing session

resumption outside CS may have some security implications -

especially when CS provides a more secure environment than the E. CS

MAY responds with a resumption_master_secret based on its policies.

The LURK client MAY perform multiple s_new_ticket exchanges.

The SNewTicketRequest and SNewTicketResponse are described below:

ticket_nbr: designates the requested number of NewSessionTicket. In

the case of delegation this number MAY be set to zero. CS MAY

responds with less tickets when the value is too high.

For other parameters, see the corresponding sections tag (Section

4.8), session_id (Section 4.3), handshake (Section 4.2), certificate

(Section 4.7), secret_request (Section 4.1), secret_list (Section

4.9).

When E is requesting CS to generate tickets, as described in Section

4.3 E sets the session_id with the value received in the

SInitCertVerifyResponse or the SInitEarlySecretResponse of the

previous exchange.

E MUST ensure CS has sufficient TLS Handshake context, that is the

client Finished and optionally the client Certificate and

¶

¶

¶

struct {

 uint8 tag

 uint32 session_id

 Handshake handshake<0..2^32> //RFC8446 section 4.

 Cert certificate;

 uint8 ticket_nbr;

 uint16 secret_request;

} SNewTicketRequest;

struct {

 uint8 tag

 uint32 session_id

 Secret secret_list<0..2^16-1>;

 NewSessionTicket ticket_list<0..2^16-1>; //RFC8446 section 4.6.1.

} SNewTicketResponse;

¶

¶

¶

¶

selected_identity

CertificateVerify messages have been provided. When these messages

have been already provided, E SHOULD NOT provide them again and CS

MAY upon configuration raise an invalid_handshake error. In such

case, E may resend its request with the appropriated empty handshake

and certificate.

Note that client Certificate are carried via certificate, which

enables to compress the Certificate payload.

E may set the secret_request to 'r'.

Upon receiving a SNewTicketRequest CS check the tag.last_exchange

and define if further messages are expected or not by setting the

tag.last_exchange in its response. The session_id is set to the

value provided in the SInitCertVerifyRequest or the

SInitEarlySecretRequest of the previous exchange.

If CS does not have sufficient handshake context and

invalid_handshake error is raised as described in Section 4.2. If

the ticket_nbr exceeds the maximum number of ticket authorized by

the CS, an authorized lower number of tickets is returned and if not

further tickets can be requested, the tag.last_exchange MUST be set

to True to close the session. If a lower number of ticket is

returned while tag.last_exchange is set to False, E interpret it as

a maximum number of ticket per transaction, and may initiate further

s_new_tickets exchanges.

5.3. s_init_early_secret

s_init_early_secret initiates a LURK session when the server is

authenticated by the PSK or PSK-ECDHE methods.

The SInitEarlySecretRequest and SInitEarlySecretResponse are define

dbelo9w:

indicates the selected PSK as detailed in Section

4.6.

¶

¶

¶

¶

¶

¶

¶

struct{

 uint32 session_id

 FreshnessFunct freshness

 uint16 selected_identity

 Handshake handshake<0..2^32> //RFC8446 section 4

 uint16 secret_request;

}SInitEarlySecretRequest

struct{

 uint32 session_id

 Secret secret_list<0..2^16-1>;

}SInitEarlySecretResponse

¶

¶

For other parameters, see the corresponding sections session_id

(Section 4.3), freshness (Section 4.4), handshake (Section 4.2),

secret_request (Section 4.1), secret_list (Section 4.9).

When E agrees to perform a PSK base server authentication, it sends

a SInitEarlySecretRequest to the CS. The session_id are generated as

described in the s_init_cert_verify exchange (see Section 5.1. The

binder_key MUST be requested, since it is used to validate the PSK.

If the TLS client has indicated support for early application data

via the early_data extension and if the TLS server enable

early_data, E requests the client_early_traffic_secret (e_c). E MAY

also request the early_exporter_master_secret (e_x).

CS MUST check the handshake corresponds to a PSK authentication,

that is the handshake is, for the partial ClientHello, the handshake

is psk_proposed - see Section 4.2 for more details. CS selects the

PSK indicated by the selected_identity and initiates the key

scheduler before generating the requested secrets. The key schedule

is instantiated with the PSK and TLS hash function provided by the

ticket. As detailed in Section 4.1, CS MUST generate the binder_key

and check the binders. If e_c has been requested, CS MUST check the

presence of an early_data extension in the ClientHello before

generating e_c (see Section 4.2). The generation of both e_c and

e_x is subject CS policies.

5.4. s_hand_and_app_secret

The s_hand_and_app_secret follows the s_init_early_secret exchange

and enable the generation of h_c, h_s, a_c, a_s and x. When the

(EC)DHE private key is generated by the CS, this exchange also

provides the corresponding public key necessary to complete the

ServerHello.

The SHandAndAppSecretRequest and SHandAndAppSecretResponse

structures are described below:

¶

¶

¶

¶

¶

Parameters are defined in their corresponding sections tag (Section

4.8), session_id (Section 4.3), ephemeral (Section 4.5), handshake

(Section 4.2), secret_request (Section 4.1), secret_list (Section

4.9).

To send a SHandAndAppSecretRequest, E sets the tag.last_exchange as

described in Section 5.1. As described in Section 4.3 E sets the

session_id with the value received in the SInitEarlySecretResponse.

If E does decides the TLS server is authenticated with the PSK mode

without (EC)DHE, it sets ephemeral.method to 'no_secret'. If the TLS

server is authenticated with PSK and (EC)DHE, then the

ephemeral.method can be set to 'e_generated' or 'cs_generated'

depending whether E or CS generates the (EC)DHE private key.

Upon receiving the SHandAndAppSecretRequest sets the

tag.last_exchange as described in Section 5.1. The session_id is set

to the value provided in the SInitEarlySecretRequest. ephemeral is

generated as described in Section 5.1 when ephemeral method is set

to 'e_generated' or 'cs_generated' and a method set to 'no_secret'

does not trigger any action. CS MUST check the handshake is coherent

both to PSK or PSK with (EC)DHE as well as the ServerHello is

coherent with the choices indicated in the previous

SHandAndAppSecretRequest. More specifically, the handshake must be

psk_agreed for an PSK authentication without (EC)DHE. When PSK

authentication with (EC)DHE has been selected, the handshake MUST be

psk_agreed ks_proposed and ks_agreed. Then CS MUST also ensure the

selected_identity indicated in the ServerHello corresponds to the

one provided in the SInitEarlySecretRequest and that the

cipher_suite of the ServerHello has the same hash function as the

one provided by the ticket - see Section 4.2.

CS generates the ServerHello.random as detailed in Section 4.4 to

implement anti replay protection. Withe the ServerHello message set,

the handshake secrets are generated with the key schedule initiated

struct{

 uint8 tag

 uint32 session_id

 Ephemeral ephemeral

 Handshake handshake<0..2^32> //RFC8446 section 4

 uint16 secret_request;

} SHandAndAppSecretRequest

struct{

 uint8 tag

 uint32 session_id

 Ephemeral ephemeral

 Secret secret_list<0..2^16-1>;

} SHandAndAppSecretResponse

¶

¶

¶

¶

during the s_init_early_secret. CS then generates the Finished

message before generating the application and exporter secrets.

6. LURK exchange on the TLS client

Figure Figure 12 summarizes the different possible LURK session as

well as the different messages that are involved in the session.

Similarly to the TLS server, the credentials involved in the TLS

client authentication are PK, (EC)DHE and PSK. This document assumes

PK, when involved, is always protected by the CS and considers the

three following scenarios:

CS only protects PK in which case CS is limited to generating the

signature of the CertificateVerify of the TLS client. Such

signature may be generated during the TLS handshake or during a

client post handshake authentication.

CS protects the (EC)DHE key or the PSK in addition to the PK. In

particular, resumed session are provided a similar level of

security by CS.

The protection of the (EC)DHE or the PSK requires some interaction

between E and the CS to build the ClientHello message

(c_init_client_hello), as well as once the server Finished is

received to build the optional CertificateVerify and client Finished

message (c_client_finished). Once the TLS handshake is finished, E

and CS may interact to register tickets received by the TLS server

(c_register_ticket) or to proceed to a client post handshake

authentication when requested by the TLS server and when permitted

by the TLS client (c_post_hand_auth).

On the other hand, when only PK is protected, the generation of

signature by the CS may occur for the client authentication (during

the TLS handshake) or after, during a client post handshake

authentication. In both cases, E interacts with CS after the server

Finished is received. When the TLS server request the client

authentication, E requests CS to generate the necessary signature

for the client CertificateVerify message. When the TLS server does

not request the client authentication and that TLS client has

previously indicated the support for post handshake authentication,

E provides to CS the necessary context to later perform the post

handshake authentication. More specifically, a interaction between E

and the CS during a post handshake authentication only would either

require E to provide the full handshake context which would cause

too much penalty to implementation that only keep the transcript of

the handshake. The alternative of providing the necessary transcript

to generate the signature would prevent the CS to control the input

that is actually signed as well as to provide anti-replay protection

¶

¶

¶

*

¶

*

¶

¶

as detailed in Section 4.4. When the TLS client has indicated the

support for post handshake authentication, the only permitted

exchange is c_post_hand_auth.

Figure 12: LURK client State Diagram

6.1. c_init_client_finished

E initiates a c_init_client_finished exchange during a TLS handshake

when it receives a server Finished message an meets the following

conditions:

The TLS handshake has not required any interaction between E

and CS.

The TLS server requests a client authentication or the TLS

client has enabled client post handshake authentication.

¶

ClientHello ^ method is 'cs_generated' no

 Derivation | or PSK in CS Proposed --------------+

ClientHello | yes | |

 sent -->v c_init_client_hello |

ServerHello -->^ | | certificate_request or no

 received | c_server_hello (a) post_hand_auth_proposed ---+

 | | | yes | |

ServerHello | c_client_finished c_init_client_finished |

 Treatment | | | |

clientFinished | +---------+-----------------+ no CS protection

 sent -->v | provided

 ^ |

 |+----------------->+

Posthandshake || +---------+------------+

Treatment || | |

 ||post_hand_auth_proposed method is 'cs_generated'

 || + or PSK in use in CS

 ||CertificateRequest +

 || | NewSessionTicket

 || | |

 ||c_post_hand_auth c_register_tickets

 || | |

 || +-------+--------------+

 || |

 v+----------------+

 |

 LURK session

 closed

(a) (method is 'e_generated' or 'no_secret') and chosen PSK not in CS

¶

1.

¶

2.

¶

psk

The CInitClientFinishedRequest and CInitClientFinishedResponse are

detailed below:

when provided, the PSK to be used for the schedule as described

in [RFC8446] section 7.1.

If the TLS handshake is not post_hand_auth_proposed, E set

tag.last_exchange to True, otherwise, tag.last_exchange SHOULD be

set to False.

The Handshake consists in every messages up to the server Finished

message to which the server Certificate message, if present has been

omitted and is instead carried in the server_certificate. If

handshake is psk_agreed, server_certificate.cert_type is set to

'no_certificate', otherwise another cert_type MUST be used.

client_certificate.cert_type is set to 'no_certificate' in the

absence of CertificateRequest message and other type MUST be used

otherwise.

If the TLS server is authenticated with a certificate or using PSK-

ECDHE, the (EC)DHE is generated by E and ephemeral.method is set to

'e_generated'. If the TLS server is authenticated with PSK, the

ephemeral.method is set to 'no_secret'.

This exchange occurs when E is performing the key schedule. E SHOULD

provide the PSK value unless E knows CS is aware of the PSK or

¶

struct{

 uint8 tag;

 select (tag.last_exchange){

 case False:

 uint32 session_id;

 }

 Handshake handshake<0..2^32>; //RFC8446 section 4

 Cert server_certificate;

 Cert client_certificate

 FreshnessFunct freshness;

 Ephemeral ephemeral; ## e_generated

 opaque psk<0..2^16>;

}CInitClientFinishedRequest

struct{

 uint8 tag;

 select (tag.last_exchange){

 case False:

 uint32 session_id;

 }

 Signature signature;

}CInitClientFinishedResponse

¶

¶

¶

¶

¶

tag.last_message is set to True. In fact the key schedule is only

necessary to enable post handshake authentication. If neither E nor

CS are aware of PSK, the TLS client MUST NOT propose post handshake

authentication.

Upon receiving a CInitClientFinishedRequest, CS place the

server_certificate and client_certificate with a cert_type different

from 'no_certificate' in the handshake as described in Section 4.7.

CS generates the ClientHello.random with the freshness function as

described in Section 4.4. If the handshake is certificate_request,

CS generates the signature.

CS sets tag.last_exchange and session_id as respectively detailed in

Section 4.8 and Section 4.3.

If tag.last_exchange is False, CS generates the client

CertificateVerify and client Finished message, so further post

handshake authentication can be handled. The generation of the

Finished message requires the h_c to be computed key schedule as

described in [RFC8445] section 7.1. The PSK used in the key schedule

is determine as follows by CS. If the CS has any out of band

knowledge of the PSK to be used, CS SHOULD use that value and ignore

the value provided by E. If CS does not have such knowledge, CS

takes the value provided E. A zero length PSK is considered as the

default value as described in [RFC8446] section 7.1.

6.2. c_post_hand_auth

If the TLS client has indicated support for post handshake client

authentication, the TLS client MAY receive a CertificateRequest from

the TLS server.

To proceed to the requested authentication, E proceeds to a

c_post_hand_auth exchange with the CS.

The CPostHandAuthRequest and CPostHandAuthResponse are detailed

below:

¶

¶

¶

¶

¶

¶

¶

E indicates with tag if it is expecting CS to proceed to additional

post handshake client authentication - see Section 4.8. session_id

is set to the negotiated session_id provided by the CS for its

inbound traffic - see Section 4.3. handshake contains the

CertificateRequest received by the TLS server, and sig_algo the

signature scheme selected by E and N which indicates the

client_application_traffic_secret_N used to be used.

Upon receiving a CPostHandAuthRequest, CS checks the handshake is

post_hand_auth_proposed as described in Section 4.2 and SHOULD

return an 'invalid_handshake' error otherwise. If the CS permits a

limited number of post handshake client authentication, and that

limit has been reached, it SHOULD raise an 'invalid_type' error. CS

MUST check client_certificate.cert_type is not set to

'no_certificate', the provided certificate is known to CS. The

certificate is decompressed and added to the handshake context as

described in Section 4.7. Note also that for the client, the

Certificate includes the certificate_request_context provided by the

CertificateRequest message as described in [RFC8446] section . The

signature is computed as detailed in [RFC8446] section 4.4. CS MAY

have a limit of permitted number of post handshake, and set

tag.last_exchange to True when that limit is reached.

6.3. c_init_client_hello

The c_init_client_hello occurs when E requires CS to provide some

information to complete the ClientHello. This occurs when the CS is

generating the (EC)DHE private key as well as when CS protects the

PSK and needs the binder key to generate the binders.

The CInitClientHelloRequest and CInitClientHelloResponse are

detailed below:

struct{

 Tag tag

 uint32 session_id

 Handshake handshake<0..2^32> // CertificateRequest

 Cert client_certificate;

}CPostHandAuthRequest

struct{

 Tag tag

 uint32 session_id

 Signature signature

}CPostHandAuthResponse

¶

¶

¶

¶

¶

E generates the ClientHello.random as described in If E requires CS

to generate (EC)DHE private keys, E replaces the KeyShareEntry

structure by the EmptyKeyShareEntry structure as described in

Section 4.4.Section 4.5.

If PSK is proposed, E replaces the OfferedPsk structure by the

OfferedPsksWithNoBinders defined Section 4.2. The structure contains

the PSK identities the TLS client intend to propose the TLS server.

These identities may combine a set of PSK protected by CS or not

protected by CS. For each PSK not protected by CS, E generates a

PSKIdentityMetadata structure. The PSKIdentityMetadata provides the

necessary element to instantiates a key schedule. In addition, it

contains a identity_index whic is the index of the PSKIdentity in

the OfferedPsksWithNoBinders.identities This structure is then added

to the psk_metadata_list, and structures MUST respect a strict

identity_index increasing order.

Upon receiving a CInitClientHello, CS proceeds to the session_id

negotiation and provides its inbound session_id as detailed in

Section 4.3. CS takes the handshake message, update the

ClientHello.random as described in Section 4.4. The CS extract the

KeyShareClientHello.client_shares. When an EmptyKeyShareClientHello

structure is encountered, CS generates a corresponding private key

enum { sha256(0), sha384(1), sha512(2), ... (255) } TLSHash;

enum { external(0), resumption(1) } PSKType;

struct{

 uint16 identity_index;

 TLSHash tls_hash;

 PSKType psk_type<0..2^16-1>;

 opaque psk_bytes<0..2^16>;

}PSKIdentityMetadata

struct{

 uint32 session_id;

 Handshake handshake<0..2^32>; //RFC8446 section 4

 Freshness freshness;

 PSKMetadata psk_metadata_list<0..2^16>

 uint16 secret_request;

}CInitClientHelloRequest

struct{

 uint32 session_id

 Ephemeral ephemeral_list<0..2^16-1>

 Secret binder_key_list<0..2^16-1>;

 Secret secret_list<0..2^16-1>;

}CInitClientHelloResponse

¶

¶

¶

and generates the corresponding KeyShareEntry. KeyShareEntry is

returned via a EphemeralResponse with method set to 'cs_generated'.

When a KeyShareEntry is found, an EphemeralResponse with method set

to 'e_generated' is generated. As generated EphemeralResponse are

returned as described in Section 4.5 in the ephemeral_list. If CS is

unable to generate an ephemeral of if the number of ephemeral values

to generate is too high, a 'invalid_ephemeral' error SHOULD be

raised.

If the handshake is 'psk_proposed', CS computes the binder key

associated to each PSK present in the OfferedPsks[identities]. The

computation of the binder_key only requires the knowledge of the PSK

as described in [RFC8446] section 7.1. The computed binder_keys are

returned in the binder_key_list following the exact same order as

the OfferedPsks[identities]. Once all binder_keys have been

generated, CS generates the binders, which requires a partial

ClientHello and a binder_key. The binders are integrated to the

resulting ClientHello.

With the ClientHello, early secrets are generated and returned as

described in Section 4.1.

Note that the binder key MUST be part of the binder_key_list and

MUST Be omitted in the secret_list.

6.4. c_server_hello

This exchange follows the c_init_client_hello exchange and the main

purpose is the generation of the handshake secrets so E can decrypt

the encrypted message sent by the TLS server.

The motivation for handling the decryption by E instead of the CS is

to enable E to perform some checks and transformations over the

encrypted message. The down side is that it introduces an additional

exchange.

The CServerHelloRequest and CServerHelloResponse structures are

described below:

¶

¶

¶

¶

¶

¶

¶

struct{

 uint32 session_id

 Handshake handshake<0..2^32> //RFC8446 section 4

 Ephemeral ephemeral

} CServerHelloRequest

struct{

 uint32 session_id

 Secret secret_list<0..2^16-1>;

} CServerHelloResponse

¶

Upon receiving the ServerHello, E checks if the TLS server

authentication is only based on PSK without (EC)DHE. This is

performed by checking the TLS handshake is psk_proposed, psk_agreed

and not ks_agreed. In that case, E sets the EphemeralRequest.method

to 'no_secret'. Otherwise, E evaluates the KeyShareEntry selected by

the TLS server, that is the KeyShareServerHello.server_share. If the

corresponding (EC)DHE private key has been generated by E, E

generates the shared key and provide it via an EphemeralRequest

structure with a method set to 'e_generated'. If the corresponding

(EC)DHE private key has been generated by CS, E sends an

EphemeralRequest with a method set to 'cs_generated'.

Note that the handling enables the use of a combination of PSKs

hosted by CS and PSK hosted by E. The implication of a PSK hosted by

the CS requires a c_init_client_hello exchange. However, the TLS

server may select a PSK hosted by E. When in addition the

authentication is using PSK without (EC)DHE or when the (EC)DHE has

been generated by E, E is able to generate the handshake, the

application and resumption secrets. The only remaining interaction

between E and CS in the client authentication and these interactions

happens during the c_client_finished. In this case E MUST directly

perform a c_client_finished exchange.

Upon receiving an CServerHelloRequest, CS checks the method is

aligned with the TLS handshake. When the TLS server is authenticated

with a certificate, CS initiates the key schedule, otherwise CS

continue with the key schedule initialized during the

c_init_client_hello and generates the handshake secrets.

Upon receiving a CServerHelloResponse, E decrypt the encrypted

messages and proceed to the generation of the application secrets

via a c_client_finished exchange.

6.5. c_client_finished

The computation of the application and resumption secret are

performed as described in Section 6.1. The only difference is that

the key scheduler has already been initialized when it follows a

c_server_hello exchange.

The CClientFinishedRequest and CClientFinishedResponse are detailed

below:

¶

¶

¶

¶

¶

¶

E performs a c_client_finished exchange either after a

c_server_hello exchange or after a c_init_client_hello exchange. As

described in Section 6.4 E performs a c_server_hello to retrieve the

handshake secrets necessary to decrypt the encrypted messages of the

handshake.

When E has access of the optional PSK and optional (EC)DHE values -

or these values are not needed, than E SHOULD compute the secret

without any interactions with CS and interaction with CS are

restricted to the generation of the signature. In any other cases, E

is expected to request a_c, a_s and potentially x and r secrets.

Assuming PK is protected by the CS, E performs a c_client_finished

either when the TLS server requests the TLS client to authenticate

(with a CertificateRequest) or if the TLS client has enabled post

handshake client authentication. In this case, CS MUST NOT

regenerate resumption secret and MUST sets its last_exchange to True

unless post authentication is enabled. In this case handshake starts

with a ServerHello message.

Upon receiving a CClientFinishedRequest, CS generates the handshake

context as in a c_init_client_finished exchange (see Section 6.1)

and generates the signature. More specifically, it generates and

insert the server and client Certificate from the server_certificate

and client_certificate structures.

6.6. c_register_tickets

The c_register_ticket is only used when the TLS client intend to

perform session resumption. The LURK client MAY provide one or

multiple NewSessionTickets. These tickets will be helpful for the

session resumption to bind the PSK value to some identities. As teh

NewSessionTicket's identities may collide when being provided by

multiple TLS servers, CS provides identities it manages to prevent

struct{

 uint8 tag;

 uint32 session_id;

 Handshake handshake<0..2^32>; //RFC8446 section 4

 Cert server_certificate;

 Cert client_certificate

 uint16 secret_request;

}CClientFinishedRequest

struct{

 uint8 tag;

 uint32 session_id;

 Signature signature;

 Secret secret_list<0..2^16-1>;

}CClientFinishedResponse

¶

¶

¶

¶

such collisions (CPskID). One such CPskID is assigned to each ticket

and is later used to designate that ticket (see Section 6.3). When

too many tickets are provided, CS SHOULD raise a too_many_identities

error.

7. Security Considerations

Security credentials as per say are the private key used to sign the

CertificateVerify when ECDHE authentication is performed as well as

the PSK when PSK or PSK-ECDHE authentication is used.

The protection of these credentials means that someone gaining

access to the CS MUST NOT be able to use that access from anything

else than the authentication of an TLS being established. In other

way, it MUST NOT leverage this for: * any operations outside the

scope of TLS session establishment. * any operations on past

established TLS sessions * any operations on future TLS sessions *

any operations on establishing TLS sessions by another LURK client.

CS outputs are limited to secrets as well as NewSessionTickets. The

design of TLS 1.3 make these output of limited use outside the scope

of TLS 1.3. Signature are signing data specific to TLS 1.3 that

makes the signature facility of limited interest outside the scope

of TLS 1.3. NewSessionTicket are only useful in a context of TLS 1.3

authentication.

ECDHE and PSK-ECDHE provides perfect forward secrecy which prevents

past session to be decrypted as long as the secret keys that

generated teh ECDHE share secret are deleted after every TLS

handshake. PSK authentication does not provide perfect forward

secrecy and authentication relies on the PSK remaining sercet. The

Cryptographic Service does not reveal the PSK and instead limits its

disclosure to secrets that are generated from the PSK and hard to be

reversed.

Future session may be impacted if an attacker is able to

authenticate a future session based on what it learns from a current

session. ECDHE authentication relies on cryptographic signature and

¶

struct {

 uint8 tag

 uint32 session_id

 NewSessionTicket ticket_list<0..2^16-1>; //RFC8446 section 4.6.1.

} CRegisterTicketsRequest;

struct {

 uint8 tag

 uint32 session_id

} CRegisterTicketsResponse;

¶

¶

¶

¶

¶

[RFC2119]

[RFC7250]

an ongoing TLS handshake. The robustness of the signature depends on

the signature scheme and the unpredictability of the TLS Handshake.

PSK authentication relies on not revealing the PSK. CS does not

reveal the PSK. TLS 1.3 has been designed so secrets generated do

not disclose the PSK as a result, secrets provided by the

Cryptographic do not reveal the PSK. NewSessionTicket reveals the

identity (ticket) of a PSK. NewSessionTickets.ticket are expected to

be public data. It value is bound to the knowledge of the PSK. The

Cryptographic does not output any material that could help generate

a PSK - the PSK itself or the resumption_master_secret. In addition,

the Cryptographic only generates NewSessionTickets for the LURK

client that initiates the key schedule with CS with a specific way

to generate ctx_id. This prevents the leak of NewSessionTickets to

an attacker gaining access to a given CS.

If an the attacker get the NewSessionTicket, as well as access to

the CS of the TLS client it will be possible to proceed to the

establishment of a TLS session based on the PSK. In this case, the

CS cannot make the distinction between the legitimate TLS client and

teh attacker. This corresponds to the case where the TLS client is

corrupted.

Note that when access to CS on the TLS server side, a similar attack

may be performed. However the limitation to a single re-use of the

NewSessionTicket prevents the TLS server to proceed to the

authentication.

Attacks related to other TLS sessions are hard by design of TLS 1.3

that ensure a close binding between the TLS Handshake and the

generated secrets. In addition communications between the LURK

client and the CS cannot be derived from an observed TLS handshake

(freshness function). This makes attacks on other TLS sessions

unlikely.

8. IANA Considerations

9. Acknowledgments

10. References

10.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,

Weiler, S., and T. Kivinen, "Using Raw Public Keys in

Transport Layer Security (TLS) and Datagram Transport

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC8174]

[RFC8445]

[RFC8446]

[RFC8448]

[RFC8466]

[RFC8879]

[I-D.mglt-lurk-lurk]

[I-D.mglt-lurk-tls12]

Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,

June 2014, <https://www.rfc-editor.org/info/rfc7250>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Keranen, A., Holmberg, C., and J. Rosenberg, "Interactive

Connectivity Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal", RFC 8445, DOI

10.17487/RFC8445, July 2018, <https://www.rfc-editor.org/

info/rfc8445>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Thomson, M., "Example Handshake Traces for TLS 1.3", RFC

8448, DOI 10.17487/RFC8448, January 2019, <https://

www.rfc-editor.org/info/rfc8448>.

Wen, B., Fioccola, G., Ed., Xie, C., and L. Jalil, "A

YANG Data Model for Layer 2 Virtual Private Network

(L2VPN) Service Delivery", RFC 8466, DOI 10.17487/

RFC8466, October 2018, <https://www.rfc-editor.org/info/

rfc8466>.

Ghedini, A. and V. Vasiliev, "TLS Certificate

Compression", RFC 8879, DOI 10.17487/RFC8879, December

2020, <https://www.rfc-editor.org/info/rfc8879>.

10.2. Informative References

Migault, D., "LURK Protocol version 1", Work in

Progress, Internet-Draft, draft-mglt-lurk-lurk-01, 26

July 2021, <https://www.ietf.org/archive/id/draft-mglt-

lurk-lurk-01.txt>.

Migault, D. and I. Boureanu, "LURK Extension

version 1 for (D)TLS 1.2 Authentication", Work in

Progress, Internet-Draft, draft-mglt-lurk-tls12-05, 26

July 2021, <https://www.ietf.org/archive/id/draft-mglt-

lurk-tls12-05.txt>.

https://www.rfc-editor.org/info/rfc7250
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8448
https://www.rfc-editor.org/info/rfc8448
https://www.rfc-editor.org/info/rfc8466
https://www.rfc-editor.org/info/rfc8466
https://www.rfc-editor.org/info/rfc8879
https://www.ietf.org/archive/id/draft-mglt-lurk-lurk-01.txt
https://www.ietf.org/archive/id/draft-mglt-lurk-lurk-01.txt
https://www.ietf.org/archive/id/draft-mglt-lurk-tls12-05.txt
https://www.ietf.org/archive/id/draft-mglt-lurk-tls12-05.txt

Appendix A. Annex

A.1. TLS server ECDHE (no session resumption)

This section illustrates the most common exchange of a TLS client

authenticates a TLS server with it certificate (ECDHE) without

session resumption.

The TLS handshake is depicted below from {!RFC8446}}. For clarity as

ECDHE authentication is performed, PSK related extensions (

psk_key_exchange_modes, pre_shared_key) have been omitted. In

addition, as the TLS client is not authenticated, CertificateRequest

sent by the TLS server as well as Certificate and CertificateVerify

sent by the TLS client have been removed.

The TLS server interacts with CS with a s_init_cert_verify exchange

in order to respond to the ClientHello.

Since there is no session resumption, the request indicates with the

tag set to last_exchange that no subsequent messages are expected.

As a result, no session_id is provided. The freshness function is

set to sha256, the handshake is constituted with the appropriated

messages with a modified server_random to provide PFS. The

Certificate message is also omitted from the handshake and is

instead provided in the certificate structure using a finger_print.

The requested secrets are handshake and application secrets, that is

h_s, h_c, a_s, and a_c. The signature scheme is ed25519. With

authentication based on certificates, there are two ways to generate

the shared secrets that is used as an input to the derive the

secrets. The ECDHE private key and shared secret may be generated by

CS as described in {sec:ex:srv:cs_generated}. On the other hand the

ECDHE private key and shared secret may be generated by the TLS

server as described in {tls_server_generated}

¶

¶

TLS client TLS Server

 Key ^ ClientHello

 Exch | + key_share

 v + signature_algorithms --------->

 ServerHello ^ Key

 + key_share v Exch

 {EncryptedExtensions} Server Params

 {Certificate} ^

 {CertificateVerify} | Auth

 {Finished} v

 <-------- [Application Data*]

 {Finished} -------->

 [Application Data] <-------> [Application Data]

¶

¶

¶

A.1.1. ecdhe generated on CS

When the (EC)DHE private key and shared secrets are generated by the

CS, the LURK client set the method to cs_generated. The (EC)DHE

group x25519 is specified in the handshake in the key_share

extension. In return CS provides the LURK client the public key so

the TLS server can send the ServerHello to the TLS client.

In this scenario, CS is the only entity that knows the private ECDHE

key and the shared secret, and only CS is able to compute the

secrets. CS indicates the exchange is final by setting the tag to

last_exchange, returns the x25519 public key that will be included

in the ServerHello key_share extension, the signature sig that will

be returned in the CertificateVerify message as well as the secrets

that will be used to derive the appropriated keys.

A.1.2. ecdhe generated by the TLS server

When the (EC)DHE private keys and the shared secrets are generated

by the TLS server, the LURK client provides the shared secret to CS

as only the shared secret is necessary to generated the signature.

This is indicated by the method set to e_generated. No (EC)DHE

values are returned by CS as these have already been generated by

the TLS server. However, the TLS server has all the necessary

material to generate the secrets and the only information that CS

owns and that is not known to et TLS server is the private key

(associated to the certificate) used to generate the signature. This

means that is session resumption were allowed, since it is based on

¶

¶

TLS server

LURK client Cryptographic Service

 SInitCertVerifyRequest

 tag=last_exchange -------->

 freshness = sha256

 ephemeral

 method = cs_generated

 handshake = handshake (x25519)

 certificate = finger_print

 secret_request = h_s, h_c, a_s, and a_c

 sig_algo = ed25519

 SInitCertVerifyResponse

 tag=last_exchange

 ephemeral

 key

 group = x25519,

 key_exchange = public_key

 secret_list

 signature = sig

 <---------

¶

PSK authentication derived from the resumption secret, these

sessions could be authenticated by the TLS server without any

implication from the CS.

In this scenario, CS is the only entity that knows the private ECDHE

key. Only CS is able to generate the signature. Both CS and the TLS

server are able to compute all secrets. CS indicates the exchange is

final by setting the tag to last_exchange, returns the signature sig

that will be returned in the CertificateVerify message as well as -

when requested - the secrets that will be used to derive the

appropriated keys.

A.2. TLS server ECDHE (with session resumption)

When the TLS client is enabling session resumption, the TLS server

is expected to generate some tickets that will be later used for

later sessions. The generation of the tickets is based on the

resumption_master_secret. To ensure protection of the authentication

credential used for the session resumption, CS necessarily must have

generated the (EC)DHE keys and must not have provided the

resumption_master_secret. In either other cases, the TLS client is

able to compute the resumption_master_secret and so session

resumption is out of control of the CS. As a result, CS sort of

achieves a delegation to the TLS server.

In the remaining of this section, we consider the session resumption

is performed by the CS.

¶

¶

TLS server

LURK client Cryptographic Service

 SInitCertVerifyRequest

 tag.last_exchange=True -------->

 freshness = sha256

 ephemeral

 method = e_generated

 key

 group = x25519

 shared_secret = shared_secret

 handshake = handshake

 certificate = finger_print

 secret_request = h_s, h_c, a_s, and a_c

 sig_algo = ed25519

 SInitCertVerifyResponse

 tag.last_exchange=True

 secret_list

 signature = sig

 <---------

¶

¶

¶

ECDHE authentication is performed with CS generating the private

part of the (EC)DHE as described in {sec:ex:srv:cs_generated}.

However, additional s_new_ticket exchanges are needed so the TLS

server provides sufficient material to generate the tickets by CS

and retrieves the generated tickets by the CS. As result, the main

difference with the scenario described in {sec:ex:srv:cs_generated}

is that tag carries a session_id to identify the session between the

TLS server and the CS.

To enable session resumption, the TLS server needs to send

NewSessionTickets to the TLS client. This exchange is taken from

[RFC8446] and represented below: ~~~ TLS client TLS Server <-----

[NewSessionTicket] ~~~

The TLS server requests NewSessionTicket to CS by sending a

SNewTicketRequest. The tag.last_exchange set to False indicates to

CS the TLS server is willing to request NewSessionTickets multiple

times. The session_id is set to the value provided previously by the

CS. This session_id will be used to associate the SNewTicketRequest

to the specific context of teh TLS handshake. handshake is the

remaining handshake necessary to generate the secrets. In some

cases, when the TLS client is authenticated, the TLS handshake

contains a Certificate message that is carried in the certificate

structure as opposed as to the handshake structure. In our current

case, the TLS client is not authenticated, so the certificate_type

is set to 'empty'. ticket_nbr is an indication of the number of

¶

TLS server

LURK client Cryptographic Service

 SInitCertVerifyRequest

 tag.last_exchange=False

 session_id = session_id_tls_server -------->

 freshness = sha256

 ephemeral

 method = cs_generated

 handshake = handshake (x25519)

 certificate = finger_print

 secret_request = h_s, h_c, a_s, a_c

 sig_algo = ed25519

 SInitCertVerifyResponse

 tag.last_exchange=False

 session_id = session_id_cs

 ephemeral

 key

 group = x25519,

 key_exchange = public_key

 secret_list

 signature = sig

 <---------

¶

¶

requested NewSessionTicket, and secret_list indicates the requested

secrets. In our case the resumption_master_secret (r) will remain in

CS and will be anyway ignored by the CS, so the secret_request has

its r bit unset.

As depicted below, CS provides a list of tickets that could be later

used in order to authenticate the TLS server using PSK or PSK-ECDHE

authentication as describe din {sec:ex:srv:server-psk}.

A.3. TLS server PSK / PSK-ECDHE

PSK/PSK-ECDHE authentication is the method used for session

resumption but can also be used outside the scope of session

resumption. In both cases, the PSK is hosted by the CS.

The PSK authentication can be illustrated by the exchange below:

The TLS client may propose to the TLS server multiple PSKs.

Each of these PSKs is associated a PskBindersEntry defined in

[RFC8446] section 4.2.11.2. PskBindersEntry is computed similarly to

the Finished message using the binder_key and the partial

¶

¶

TLS server

LURK client Cryptographic Service

 SNewTicketRequest

 tag.last_exchange=False

 session_id = session_id_cs

 handshake = client Finished

 certificate

 certificate_type = empty

 ticket_nbr

 secret_request -------->

 SNewTicketResponse

 tag.last_exchange=False

 session_id = session_id_tls_server

 secret_list

 <--------- ticket_list

¶

¶

¶

TLS client TLS Server

 ClientHello

 + key_share

 + psk_key_exchange_mode

 + pre_shared_key -------->

 ServerHello

 + pre_shared_key

 + key_share

 {EncryptedExtensions}

 {Finished}

 <-------- [Application Data*]

¶

¶

ClientHello. The TLS server is expected to pick a single PSK and

validate the binder. In case the binder does not validate the TLS

Handshake is aborted. As a result, only one binder_key is expected

to be requested by the TLS server as opposed to the TLS client. In

this example we assume the psk_key_exchange_mode indicated by the

TLS client supports PSK-ECDHE as well as PSK authentication. The

presence of a pre_shared_key and a key_share extension in the

ServerHello indicates that PSK-ECDHE has been selected.

While the TLS handshake is performed in one round trip, the TLS

server and CS have 2 LURK exchanges. These exchanges are consecutive

and performed in the scope of a LURK session. A first exchange

(s_init_early_secret) validates the ClientHello receives by the TLS

server and existence of the selected PSK (by the TLS server) is

actually hosted by the CS. Once the s_init_early_secret exchange

succeeds, the TLS server starts building the ServerHello and

requests the necessary parameters derived by CS to complete the

ServerHello with a second exchange (s_init_hand_and_apps).

The TLS server is expected to select a PSK, check the associated

binder and proceed further. If the binder fails, it is not expected

to proceed to another PSK, as a result, the TLS server is expected

to initiates a single LURK session.

The SInitEarlySecretRequest structure provides the session_id that

will be used later by the TLS server to identify the session with

future inbound responses from CS (session_id_server). The freshness

function (sha256) is used to implement PFS together with the

ClientHello.random. selected_identity indicates the PSK chosen by

the TLS server among those proposed by the TLS client in its

ClientHello. The secrets requested by the TLS server are indicated

in secret_request. This example shows only the binder_key, but other

early secrets may be requests as well.

CS responds with a SInitEarlySecretResponse that contains the

session_id_cs used later to identify the incoming packets associated

to the LURK session and the binder_key.

¶

¶

¶

¶

¶

TLS server

LURK client Cryptographic Service

 SInitEarlySecretRequest ---------->

 session_id = session_id_tls_server

 freshness = sha256

 selected_identity = 0

 handshake = ClientHello

 secret_request = b

 SInitEarlySecretResponse

 session_id = session_id_cs

 <--------- secret_list = binder_key

¶

To complete to the ServerHello exchange, the TLS server needs the

handshake and application secrets. These secrets are requested via

an s_hand_and_app_secret LURK exchange.

The SHandAndAppSecretRequest structure carries a tag with its

last_exchange set to False to indicate the willingness of the TLS

server to keep the session open and proceed to further LURK

exchanges. In our case, this could mean the TLS server expects to

request additional tickets. The session_id is set to session_id_cs,

the value provided by the CS. ephemeral is in our case set the

method to cs_generated as described in Appendix A.1. The method

(x25519) to generate the (EC)DHE is indicated in the handshake. The

necessary handshake to derive the handshake and application secrets,

as well the requested secrets are indicated in the secret_request

structure.

CS sets its tag.last_exchange to True to indicate the session will

be closed after this exchange. This also means that no ticket will

be provided by the CS. CS returns the (EC)DHE public key as well as

requested secrets in a SHandAndAppResponse structure similarly to

what is being described in {sec:ex:srv:ecdhe}.

A.4. TLS client unauthenticated ECDHE

This section details the case where a TLS client establishes a TLS

session authenticating the TLS server using ECDHE. The TLS client

interacts with CS in order to generate the (EC)DHE private part.

While this section does not illustrates session resumption, the TLS

client is configured to proceed to session resumption which will be

described with further details in Appendix A.5.

¶

¶

¶

TLS server

LURK client Cryptographic Service

 SHandshakeAndAppRequest

 tag.last_exchange = False

 session_id = session_id_cs

 ephemeral

 method = cs_generated

 handshake = ServerHello(x25519) ... EncryptedExtensions

 secret_request = h_c, h_s, a_c, a_s ------->

 SHandAndAppResponse

 tag.last_exchange = True

 session_id = session_id_tls_server

 ephemeral

 key

 group = x25519,

 key_exchange = public_key

 <--------- secret_list

¶

¶

The TLS handshake described in [RFC8446] is depicted below. In this

example, the TLS client proposes a key_share extension to agree on a

(EC)DHE shared secret, but does not propose any PSK.

If the TLS client generates the (EC)DHE private key, no interaction

with CS is needed as it will have the default PSK value as well as

the (EC)DHE shared secrets necessary to proceed to the key schedule

described in section 7.1 of [RFC8446].

In this example, the TLS client requests CS via a

c_init_client_hello to generate the (EC)DHE private key and provide

back the public part that will be placed into the key_share

extension before being sent to the TLS server.

Like in any init methods, the TLS client indicates with

session_id_tls_client the idnetifier of the session that is being

assigned by the TLS client for future inbound LURK message responses

sent by the CS. Similarly, CS advertises its session_id_cs.

freshness is set to sha256, and the ClientHello.random is generated

as described in Section 4.4. handshake contains the ClientHello

message to which the key_exchange of the KeyShareentries has been

stripped off without changing the other fields. As PSK are not

involved, no early secrets are involved and c_psk_list and

secret_request are empty.

CS provides the KeyShareEntries. The TLS client is able to build the

ClientHello to the TLS server with ClientHello.random and by placing

the KeyShareEntries.

¶

TLS client TLS Server

 Key ^ ClientHello

 Exch | + key_share

 v + signature_algorithms --------->

 ServerHello ^ Key

 + key_share v Exch

 {EncryptedExtensions} Server Params

 {Certificate} ^

 {CertificateVerify} | Auth

 {Finished} v

 <-------- [Application Data*]

 {Finished} -------->

 [Application Data] <-------> [Application Data]

¶

¶

¶

¶

¶

Upon receiving the response from the TLS server, responds with a

ServerHello followed by additional encrypted messages.

The TLS client needs the handshake secrets to decrypt these

encrypted messages and send back the client Finished message. In

addition, the TLS client requests the application secrets to encrypt

and decrypt the TLS session. The secrets are requested via a

c_hand_and_app_secret.

We assume the TLS client supports session resumption so, the

tag.last_exchange is unset. The session_id takes the value

advertises by each party during the previous c_init_client_hello

exchange. Since CS already has the (EC)DHE private keys, it will be

able to derive the (EC)DHE shared secret and no information needs to

be provided by the TLS client. As a result, method is set to

no_secret. The handshake is composed of the messages sent by the TLS

server. As the TLS client does not have yet the messages are not

decrypted, and are provided encrypted. The requested secrets are the

handshake and application secrets.

CS generates the handshake secrets and the associated key to decrypt

the encrypted messages. As no CertificateRequest has been found, CS

does not compute the signature that would authenticate the TLS

client. In this section, we assume CS is ready to accept further

exchanges, and in our case the c_register_tickets exchange to enable

session resumption. Since session resumption is enabled, CS computes

the Finished message to generate the resumption_master_secret.

TLS client

LURK client Cryptographic Service

 CInitClientHello

 session_id = session_id_tls_client

 freshness = sha256

 ephemeral

 method = cs_generated

 handshake = ClientHello(x25519, x488, ...)

 c_psk_id_list = []

 secret_request = [] ------>

 CInitClientHello

 session_id=session_id_cs

 ephemeral_list

 key

 group = x25519,

 key_exchange = public_key

 method = cs_generated

 key

 group = x488,

 key_exchange = public_key

 secret_list=[]

¶

¶

¶

¶

¶

CS returns the response by unsetting the tag.last_exchange and

cert_request. The ephemeral is an empty list and secret_request

returns the requested secrets.

Upon reception of the response, the TLS client generates the

necessary keys to decrypt and encrypt the handshake message and

terminates the TLS handshake. The TLS client is also able to decrypt

and encrypt application traffic.

In this section, we assume that after some time, the TLS client

receives a NewSessionTicket from the TLS server. The TLS client will

then transmit the NewSessionTicket to CS so that it can generate the

associated PSK that will be used for the authentication.

As multiple NewSessionTickets may be sent, in this example, both TLS

client and CS enable further additional registrations by unsetting

tag.last_exchange. For each registered NewSessionTicket, CS returns

c_spk_id that will use for further references. The c_spk_ids are

managed by CS which can ensure the uniqueness of these references as

opposed to using the ticket field that is assigned by the TLS

server.

Appendix A.5 illustrates how session resumption is performed using

PSK / PSK-ECDHE authentication.

¶

TLS client

LURK client Cryptographic Service

 CHandAndAppSecretRequest

 tag.last_exchange=False

 session_id=session_id_cs

 ephemeral

 method = no_secret

 handshake = ServerHello, {EncryptedExtensions}...,{Finished}.

 secret_request = h_c, h_s, a_c, a_s ------->

 CHandAndAppSecretResponse

 tag

 last_exchange=False

 cert_request=False

 session_id=session_id_tls_clt

 ephemeral_list = []

 secret_request = h_s, h_c, a_s, and a_c

¶

¶

¶

¶

¶

A.5. TLS client unauthenticated PSK / PSK-ECDHE

This section describes the intercation between a TLS client and a CS

for a PSK-ECDHE TLS handshake. Appendix A.4 shows how the PSK may be

provisioned during a ECDHE TLS handshake. The scenario described in

this section presents a number of similarities to the one described

in Appendix A.4. As such, we expect the reader to be familiar with

Appendix A.4 and will highlight the differences with Appendix A.4 to

avoid to repeat the description.

In this section, the PSK is protected by the CS, but the (EC)DHE

private keys are generated by the TLS client and as such are

considered as unprotected. As the (EC)DHE secret are generated by

the TLS client, the method is set to no_secret, and the key_share

extension is fully provided in the ClientHello. However, the

ClientHello do not carry the PreSharedKeyExtension. Instead, this

extension is built from the NewSessionTicket identifier nst_id

provided in our case from a previous c_register_ticktes exchange

(see Appendix A.4 }. The TLS client requests the binder_key

associated to nst_id in order to be able to complete the binders.

Upon receiving the message, the CS, computes the binder_keys,

complete the ClientHello in order to synchronize its TLS handshake

with the TLS client (and the TLS server). As CS does not generate

any (EC)DHE, the ephemeral_list is empty.

TLS client

LURK client Cryptographic Service

 RegisterTicketsRequest

 tag.last_exchange=False

 session_id=session_id_cs

 ticket_list = [NewSessionTicket]

 ---------------->

 RegisterTicketsResponse

 last_exchange=False

 session_id=session_id_tls_clt

 <-------- c_spk_id_list = [nst_id]

¶

¶

¶

¶

When the TLS client receives the responses from the TLS server, the

handshake and application secrets are requested with a

c_hand_and_app similarly to Appendix A.4. The only difference here

is that (EC)DHE have been generated by the TLS client and the shared

secret needs to be provided to CS as described below:

Upon receiving the response, the TLS client proceeds similarly to

the TLS client described in Appendix A.4.

A.6. TLS client authenticated ECDHE

This section provides scenarios when the TLS client is authenticated

during the TLS handshake. Post handshake authentication is detailed

in Appendix A.7

TLS client

LURK client Cryptographic Service

 CInitClientHello

 session_id = session_id_tls_client

 freshness = sha256

 ephemeral

 method = no_secret

 handshake = ClientHello without PreSharedKeyExtension

 c_psk_id_list = [nst_id]

 secret_request = [b] ------>

 CInitClientHello

 session_id=session_id_cs

 ephemeral_list = []

 secret_list=[binder_key]

¶

¶

TLS client

LURK client Cryptographic Service

 CHandAndAppSecretRequest

 tag.last_exchange=False

 session_id=session_id_cs

 ephemeral

 method = e_generated

 shared_secret

 handshake = ServerHello, {EncryptedExtensions}...,{Finished}.

 secret_request = h_c, h_s, a_c, a_s ------->

 CHandAndAppSecretResponse

 tag

 last_exchange=False

 cert_request=False

 session_id=session_id_tls_clt

 ephemeral_list = []

 secret_request = h_s, h_c, a_s, and a_c

¶

¶

¶

A.6.1. (EC)DHE or Proposed PSK protected by the CS

When the (EC)DHE part have been generated by the CS, or the proposed

PSK are protected by the CS, the TLS client sends a ClientHello

after a c_client_hello exchange with CS (see Appendix A.5 or

Appendix A.4). The request for TLS client authentication is

indicated by a encrypted CertificateRequest sent by the TLS server

as indicated below:

The TLS client is unaware of the presence of the CertifcateRequest

until it has decrypted the message with a key derived from the

handshake secrets. As a result, the TLS client initiates a

c_hand_an_app_secret exchange as described in Appendix A.5 or

Appendix A.4.

CS proceeds as described in Appendix A.5 or Appendix A.4. However,

after the messages have been decrypted, CS proceeds to the

generation of the signature and returns the necessary information to

build the CertificateVerify. CS indicates their presence by setting

tag.cert_request and returns the certificate, the sig_algo and sig

as described below:

¶

TLS client TLS Server

 Key ^ ClientHello

 Exch | + key_share

 v + signature_algorithms --------->

 ServerHello ^ Key

 + key_share v Exch

 {EncryptedExtensions} ^ Server Params

 {CertificateRequest} v

 {Certificate} ^

 {CertificateVerify} | Auth

 {Finished} v

 <-------- [Application Data*]

 ^ {Certificate}

 Auth | {CertificateVErify}

 v {Finished} -------->

 [Application Data] <-------> [Application Data]

¶

¶

¶

Note that in the example above, (EC)DHE have not been generated by

the CS, but the c_client_hello was motivated to propose a protected

PSK. As the PSK has not been agreed for authentication by the TLS

server, the TLS session does not provide PFS and the protection is

similar as the one described in {sec:ex:clt:auth:ecdhe-certverify},

where the TLS client would have proposed directly ECDHE with (EC)DHE

generated by the TLS client.

A.6.2. (EC)DHE provided by the TLS client

This section considers a TLS client that proposes to authenticate

the TLS server using ECDHE with (EC)DHE private parts being

generated by the TLS client.

The TLS client does not need to interact with CS to build its

ClientHello. Similarly, as the (EC)DHE private part have been

generated by the TLS client, the TLS client is able to perform the

key schedule and derive the necessary keys to decrypt the encrypted

response from the TLS server. Upon receiving a CertificateRequest,

the TLS client requests CS to generate the signature needed to send

the CertificateVerify. The exchange is very similar as the one

s_init_cert_verify (see Appendix A.1.2). As the (EC)DHE shared

secret is generated by the TLS client, the method is necessarily set

to e_generated. The handshake is set to the ClientHello ... server

Finished, and the certificate carries the reference to the TLS

client certificate, so CS picks the appropriated private key.

sig_algo designates the signature algorithm.

TLS client

LURK client Cryptographic Service

 CHandAndAppSecretRequest

 tag.last_exchange=False

 session_id=session_id_cs

 ephemeral

 method = e_generated

 shared_secret

 handshake = ServerHello, {EncryptedExtensions}...,{Finished}.

 secret_request = h_c, h_s, a_c, a_s ------->

 CHandAndAppSecretResponse

 tag

 last_exchange=False

 cert_request=True

 session_id=session_id_tls_clt

 ephemeral_list = []

 secret_request = h_s, h_c, a_s, and a_c

 certificate

 certificate_type = finger_print

 sig_algo = ed25519

 sig

¶

¶

¶

¶

A.7. TLS client authenticated - post handshake authentication

Post handshake authentication may be requested at any time after the

TLS handshake is completed as long as the TLS client has indicated

its support with a post_handshake_authentication extension.

If the establishment of the TLS session did not required any

interactions with the CS, post handshake authentication is performed

with a c_init_post_hand_auth exchange as described in Appendix A.

7.1. When the TLS handshake already required some interactions with

CS the post handshake authentication is performed using a

c_post_hand_auth described in {sec:ex:clt:auth:post_continued}.

In some cases, both c_init_post_hand_auth and c_post_hand_auth can

be used. When this is possible, c_post_hand_auth is preferred as the

handshake context is already being provisioned in the CS. On the

other hand, when the shared secret is only known to the CS,

c_init_post_hand_auth cannot be used instead.

A.7.1. Initial Post Handshake Authentication

This situation describes the case where the TLS client has performed

the TLS handshake without interacting with the CS. As a result, if

involved PSK, (EC)DHE shared secrets are unprotected and hosted by

the TLS client. Upon receiving a CertificateRequest, the TLS client

sends session_id and freshness to initiate the LURK session.

tag.last_exchange is set in order to accept future post handshake

authentication request. method is set to secret_provide as CS is

unable to generate the (EC)DHE shared secret. handshake is set to

the full handshake including the just received CertificateRequest

TLS server

LURK client Cryptographic Service

 CInitClientFinishedRequest

 tag.last_exchange=True -------->

 freshness = sha256

 ephemeral

 method = e_generated

 key

 group = x25519

 shared_secret = shared_secret

 handshake = hanshake

 certificate

 certificate_type = finger_print

 sig_algo = ed25519

 CInitClientFinishedResponse

 tag.last_exchange=True

 signature = sig

 <---------

¶

¶

¶

¶

message. The certificate represents the TLS client certificate to

determine the private key involved in computing the signature.

sig_algo specifies the signature algorithm.

A.7.2. Post Handshake Authentication

In this scenario, the post authentication is performed while a LURK

session has already been set. Upon receiving the CertificateRequest,

the TLS client proceeds similarly to the initial post handshake

authentication as described in As a result, the exchange is

illustrated below:Appendix A.7.1 except that the LURK session does

not need to be initiated, the shared secret is already known to CS

and the handshake is only constituted of the remaining

CertificateRequest message.

¶

TLS server

LURK client Cryptographic Service

 CInitPostHandAuthRequest

 tag.last_exchange = False

 session_id = session_id_tls_client

 freshness = sha256

 ephemeral

 method = e_generated

 handshake = ClientHello ... client Finished CertificateRequest

 certificate

 certificate_type = finger_print

 sig_algo ---------------->

 CInitPostHandAuthResponse

 tag.last_exchange = False

 session_id = session_id_cs

 <-------------- signature = sig

¶

¶

TLS server

LURK client Cryptographic Service

 CInitPostHandAuthRequest

 tag.last_exchange = False

 session_id = session_id_tls_client

 handshake = CertificateRequest

 certificate

 certificate_type = finger_print

 sig_algo ---------------->

 CInitPostHandAuthResponse

 tag.last_exchange = False

 session_id = session_id_cs

 <-------------- signature = sig

¶

Author's Address

Daniel Migault

Ericsson

8275 Trans Canada Route

Saint Laurent, QC 4S 0B6

Canada

Email: daniel.migault@ericsson.com

mailto:daniel.migault@ericsson.com

	LURK Extension version 1 for (D)TLS 1.3 Authentication
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. LURK Header
	4. Structures
	4.1. secret_request
	4.2. handshake
	4.2.1. s_init_cert_verify
	4.2.2. s_new_ticket
	4.2.3. s_init_early_secret
	4.2.4. s_hand_and_app_secret
	4.2.5. c_init_client_finished
	4.2.6. c_post_hand_auth
	4.2.7. c_init_client_hello
	4.2.8. c_server_hello
	4.2.9. c_client_finished

	4.3. session_id
	4.4. freshness
	4.5. ephemeral
	4.5.1. TLS server side
	4.5.1.1. e_generated:
	4.5.1.2. cs_generated:

	4.5.2. no_secret
	4.5.3. TLS client side
	4.5.3.1. c_init_client_hello
	4.5.3.2. c_server_hello

	4.6. selected_identity
	4.7. cert
	4.8. tag
	4.9. secret
	4.10. signature

	5. LURK exchange on the TLS server
	5.1. s_init_cert_verify
	5.2. s_new_tickets
	5.3. s_init_early_secret
	5.4. s_hand_and_app_secret

	6. LURK exchange on the TLS client
	6.1. c_init_client_finished
	6.2. c_post_hand_auth
	6.3. c_init_client_hello
	6.4. c_server_hello
	6.5. c_client_finished
	6.6. c_register_tickets

	7. Security Considerations
	8. IANA Considerations
	9. Acknowledgments
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Annex
	A.1. TLS server ECDHE (no session resumption)
	A.1.1. ecdhe generated on CS
	A.1.2. ecdhe generated by the TLS server

	A.2. TLS server ECDHE (with session resumption)
	A.3. TLS server PSK / PSK-ECDHE
	A.4. TLS client unauthenticated ECDHE
	A.5. TLS client unauthenticated PSK / PSK-ECDHE
	A.6. TLS client authenticated ECDHE
	A.6.1. (EC)DHE or Proposed PSK protected by the CS
	A.6.2. (EC)DHE provided by the TLS client

	A.7. TLS client authenticated - post handshake authentication
	A.7.1. Initial Post Handshake Authentication
	A.7.2. Post Handshake Authentication

	Author's Address

