
core R. Mietz
Internet-Draft University of Luebeck
Intended status: Standards Track December 10, 2013
Expires: June 13, 2014

CoAP High-Level State Option Extension
draft-mietz-core-coap-state-option-01

Abstract

 CoAP is a RESTful application protocol for constrained devices which
 are often equipped with sensors measuring a physical phenomenon such
 as temperature on a precise scale. These sensor values are made
 available by a resource on the CoAP endpoint. However, for many
 applications it is not necessary to have the full precision a sensor
 can provide. It's often even enough to only have some high-level
 states instead of raw values. This document presents a new option
 for CoAP to dynamically create new resources for a sensor which
 provides user-defined high-level states instead of raw sensor values.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 13, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Mietz Expires June 13, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft CoAP High-Level State Option Extension December 2013

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Motivation . 3
1.2. Terminology . 4

2. High-Level State Option Extension 4
2.1. High-level State Option Definition 4
2.2. Using the High-level State Option 5
2.2.1. Creating State Resources 5
2.2.2. Querying State Resources 9
2.2.3. Deleting States Resources 10

3. Examples of Usage . 10
3.1. Example 1 . 10
3.2. Example 2 . 13

4. Security Considerations 15
5. IANA Considerations . 16
6. Acknowledgements . 16
7. References . 16
7.1. Normative reference 16
7.2. Informative Reference 16

Appendix A. XML Schema for XML Serialization of One State
 Resources . 16

Appendix B. XML Schema for XML Serialization of Multiple
 State Resources 18

Appendix C. Changelog . 19
 Author's Address . 19

Mietz Expires June 13, 2014 [Page 2]

Internet-Draft CoAP High-Level State Option Extension December 2013

1. Introduction

 This document adds a new option to the Constrained Application
 Protocol (CoAP): High-Level State.

1.1. Motivation

 The Constrained Application Protocol [I-D.ietf-core-coap] (CoAP) is a
 lightweight efficient variant of the well-known Hypertext Transfer
 Protocol specifically designed for devices with limited resources
 such as small memory, little processing power, and constrained energy
 capacities. The main area of operation of CoAP is on wireless sensor
 nodes, i.e., wireless devices equipped with sensors to monitor
 environmental parameters such as temperature, air quality, or
 humidity. Hence, not only static metadata but also sensor values are
 retrieved by users via CoAP. The change frequency of measured sensor
 values depends on the one hand on the accuracy of the sensor but on
 the other hand on the (physical) property the sensor measures. It
 therefore may vary from milliseconds up to minutes, hours, or even
 days. A user interested in a parameter needs to request the current
 value periodically to keep track of changes. However, periodic
 querying can consume a good portion of the total amount of energy
 available and results in the quick depletion of a device's energy.
 Additionally, many requests might be unnecessary because the sensor
 value did not change compared to the last request. For that reason,
 CoAP observe [I-D.ietf-core-observe] introduces a mechanism to
 register interest in a resource much like with publish-subscribe
 systems. A CoAP server then only sends a response whenever the
 sensor value changes. As a result, only a reduced number of messages
 are required to keep track of the sensor readings.

 Although the CoAP observe option can save resources, it might happen
 that the number of messages and thus, resource consumption even
 increases. This happens if the sensor value changes very often
 resulting in frequent update messages. Besides that, some clients
 may not be interested in raw precise sensor values but in a range a
 sensor values falls into. We call this range a high-level state
 because it categorizes the sensor value. So, instead of being
 interested if a room has 21.9 oC or 22.1 oC, the user might only want
 to know if it is "warm" in that room. The number of states for an
 environmental parameter is typically low. Accordingly, states change
 with much lower frequency as the underlying raw sensor values.
 Consequently, this leads to fewer responses when using CoAP observe.

 The High-Level State option allows creating, querying and deleting
 high-level state resources for sensor resources on CoAP servers with
 the known CoAP request methods GET, POST, and DELETE. The user can
 define which sensor values are mapped to which high-level state.

Mietz Expires June 13, 2014 [Page 3]

Internet-Draft CoAP High-Level State Option Extension December 2013

 Additionally, he can retrieve descriptions of already existing high-
 level state resources to reuse them.

1.2. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 This document uses terms of the Constrained Application Protocol as
 defined in the terminology section of [I-D.ietf-core-coap].

 Additionally, this specification defines the following terms:

 High-level state:

 In contrast to a raw sensor reading a high-level state combines a
 number of sensor outputs under a new descriptive term given as a
 string.

 High-level state resource:

 A CoAP resource, which returns different high-level states. State
 resource will be used synonymously with the term high-level state
 resource.

2. High-Level State Option Extension

2.1. High-level State Option Definition

 +------+---+---+---+---+------------+--------+----------+---------+
 | Type | C | U | N | R | Name | Format | Length | Default |
 +------+---+---+---+---+------------+--------+----------+---------+
 | TBD | - | - | - | x | High-Level | (see | 1-257 B | (none) |
 | | | | | | State | below) | | |
 +------+---+---+---+---+------------+--------+----------+---------+

 Figure 1: High-Level State Option Definition

 The High-Level State Option is "elective" and "proxy-safe". It is
 "repeatable". Hence, the High-Level State Option can occur more than
 once. The use of repetition will be described in the following
 sections.

 This Option can only be present in requests. Additionally, it has
 different semantics when used with different request methods. These

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Mietz Expires June 13, 2014 [Page 4]

Internet-Draft CoAP High-Level State Option Extension December 2013

 are described in the following sections.

 The value carried in the Option has the following general format:

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | T | - |
 +-+-+-+-+-+-+-+-+
 | Optional |
 + Values +
 ...
 + (0-256 bytes) +
 | |
 +-+-+-+-+-+-+-+-+

 Figure 2: General format

 T (TYPE): The value of the TYPE field is a 2 bit integer. If used in
 POST requests, it indicates the value format after the first byte.
 If used in GET requests, it specifies what representation a client
 expects in response to that request. Further details are discussed
 in Section 2.2.1 and Section 2.2.2 about the creation respectively
 querying of state resources.

 The bits 2-7 are unused and MUST be ignored by the server.

2.2. Using the High-level State Option

 The semantics of the Option depend on the used CoAP request method.
 In short, POST and DELETE create and remove state resources while GET
 is used to retrieve the state or a description of existing state
 resources.

2.2.1. Creating State Resources

 To create a new state resource for a sensor resource, the client has
 to POST a request to the Uri-Path of the sensor. The server MUST
 create the state resource as a subresource of the sensor resource.

 The output of most sensors is on a continuous numerical scale.
 However, some sensors output string or Boolean data types (true/
 false respectively 1/0). The client should be able to map each of
 these data types to high-level states. For numerical values, the
 client should be able to specify mappings from intervals to states
 and for strings it should be able to map one or several different
 strings to a state. Boolean values can be easily mapped by using
 either the string mapping if the output is true or false or the
 numerical mapping if the output is 1 or 0. Hence, two formats for

Mietz Expires June 13, 2014 [Page 5]

Internet-Draft CoAP High-Level State Option Extension December 2013

 the Option are available.

 The used format is indicated by the TYPE field. Figure 3 shows the
 data types of a sensor output along with the integer used for the
 TYPE field and the format which is assumed to follow. Boolean is not
 listed because, as argued before, it can be mapped with the integer
 or string type.

 +-----------+------+--------+
 | Data type | TYPE | Format |
 +-----------+------+--------+
 | integer | 0 | 1 |
 | float | 1 | 1 |
 | string | 2 | 2 |
 +-----------+------+--------+

 Figure 3: Format types

 The number of bytes used for values in the different Option formats
 is given in Figure 4. Floats are encoded in Single-precision
 floating-point format as defined in [IEEE754]. One Option defines
 one state. Therefore, by repeating the High-Level State Option
 several states can be defined.

 +-----------+----------------+
 | Data type | Length (bytes) |
 +-----------+----------------+
 | integer | 2 |
 | float | 4 |
 | string | 0-128 |
 +-----------+----------------+

 Figure 4: Data type lengths

Mietz Expires June 13, 2014 [Page 6]

Internet-Draft CoAP High-Level State Option Extension December 2013

 Format 1 is used for a mapping of an interval of numerical values to
 a state. It consists of a numerical lower and a numerical upper
 bound as well as a string giving the state name. The lower bound is
 inclusive while the upper bound is exclusive. This allows defining
 consecutive, continuous, non-intersecting intervals.

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | T | - |
 +-+-+-+-+-+-+-+-+
 | Lower Bound |
 + (incl.) +
 ...
 + (2/4 bytes) +
 | |
 +-+-+-+-+-+-+-+-+
 | Upper Bound |
 + (excl.) +
 ...
 + (2/4 bytes) +
 | |
 +-+-+-+-+-+-+-+-+
 | |
 + State +
 ...
 + (1-128 bytes) +
 | |
 +-+-+-+-+-+-+-+-+

 Figure 5: Format 1: Used for an interval mapping

Mietz Expires June 13, 2014 [Page 7]

Internet-Draft CoAP High-Level State Option Extension December 2013

 Format 2 is to map a string to a state. Whenever the string output
 of the sensor matches the string which is given as the first
 parameter the string given as the second parameter is the current
 state.

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | T | - |
 +-+-+-+-+-+-+-+-+
 | |
 + Output +
 ...
 + (1-128 bytes) +
 | |
 +-+-+-+-+-+-+-+-+
 | |
 + State +
 ...
 + (1-128 bytes) +
 | |
 +-+-+-+-+-+-+-+-+

 Figure 6: Format 2: Used for a string mapping

 The server MUST ignore payload enclosed in the request.

 If the server successfully created the state resource serving the
 defined states, it MUST send a response with response code 2.01
 (Created) and the Location-Path Option which gives the relative Uri-
 Path for the newly created resource. The Uri-Path of the created
 resource can be an arbitraly allowed string. However, it is
 RECOMMENDED to use short Uri-Paths.

 As already mentioned, by repeating the Option, several states can be
 defined. However, if the Option is repeated with different values
 for the TYPE field, the server MUST NOT process the request, and MUST
 send a response with response code 4.02 (Bad Option).

 If the upper bound of an interval is smaller than the lower bound of
 that interval, the server MUST NOT process the request, and MUST send
 a response with response code 4.02 (Bad Option).

 Due to ambiguity, it is forbidden to define different states for the
 same value. Hence, if a numerical mapping is used and if at least
 one intersection of any two intervals is non-empty, the server MUST
 NOT process the request, and MUST send a response with response code
 4.02 (Bad Option). The same holds, if a string mapping is used and
 the same string is mapped to different states.

Mietz Expires June 13, 2014 [Page 8]

Internet-Draft CoAP High-Level State Option Extension December 2013

 In the case that a client requests creation of a state resource with
 exactly same mappings and states as an already existing one, the
 server SHOULD send a response with response code 2.05 (Content) with
 the Uri-Path of the existing state resource as payload instead of
 creating another resource with the same semantics. Implementers must
 be aware that state resources can be deleted anytime. Accordingly,
 if a state resource is used by several clients and one deletes it,
 the other clients are not aware of that. Contrary, creating state
 resources with same semantics for each client, consumes more
 resources.

 If the server is not able to create the state resource for the given
 sensor resource, e.g., because of insufficient resources, it MUST
 send a response with response code 5.03 (Service Unavailable). The
 server SHOULD include a payload indicating the reason for not
 creating the state resource.

 If a client requests to create a state resource for a non-sensor
 resource, the server MUST NOT process the request and MUST send a
 response with response code 4.03 (Forbidden).

 If the TYPE of a request is not matching the data type outputted by
 the sensor, the server SHOULD reject the request and SHOULD send a
 response with response code 4.02 (Bad Option).

2.2.2. Querying State Resources

 The current state of a state resource can be retrieved by a normal
 GET-request without the High-Level State Option present in the
 request. However, by including the Option, the client can control
 the data which should be returned. The type of data that the server
 should return is indicated by the TYPE field in the request.
 Figure 7 gives an overview of all available T values.

 +--------------+-----+
 | T | No. |
 +--------------+-----+
 | State | 0 |
 | State Number | 1 |
 | Description | 2 |
 +--------------+-----+

 Figure 7: Response types

 If T = 0, the server MUST return the current state. With T = 1 an
 integer representing the state MUST be returned by the server. The
 integer is determined as follows: in each state resource creation

Mietz Expires June 13, 2014 [Page 9]

Internet-Draft CoAP High-Level State Option Extension December 2013

 process upon a POST-request the states MUST be enumerated starting
 with 0 by their order of appearance in the High-Level State Options.
 If T = 2 the server MUST return a description of the state resource
 describing the mappings and the appropriate states. An XML Schema
 for the XML format is given in Appendix A. If there is no defined
 state for a sensor value, i.e., there is no mapping for this value,
 the server MUST return the state "undefined" if T = 0 and -1 if T =
 1.

 A list of all available state resource of a sensor resources can be
 retrieved by sending a GET-request with High-Level-State Option to
 the sensor resource with T = 2 included. The xml format the server
 MUST return is defined by the XML Schema in Appendix B. All other
 requests with the High-Level State Option to a sensor resource SHOULD
 be ignored by the server.

2.2.3. Deleting States Resources

 If a client wants to remove a state resource, it has to send a DELETE
 message to the state resource. The server MUST delete the state
 resource and a "2.02 (Deleted) response code SHOULD be used on
 success or in case the resource did not exist before the request" as
 stated in Section 5.8.4 in [I-D.ietf-core-coap].

3. Examples of Usage

 In the following sections two examples show how the high-level state
 option is used to create, query, and delete state resources.

3.1. Example 1

 Consider four users who want to retrieve data from a temperature
 sensor. However, they are not interested in the raw values but high-
 level states. Hence, they want to create state resources on the
 server. The parameters of the High-Level State Option in the
 examples are T and the appropriate optional values as described in

Section 2.2.

Mietz Expires June 13, 2014 [Page 10]

Internet-Draft CoAP High-Level State Option Extension December 2013

 User 1 is the first to communicate with the CoAP server. He wants to
 have two states, namely a "cold" and a "warm" state, where the first
 is defined as temperature between -50 oC and 20 oC and the second all
 values which are between 20 oC and 50 oC. For that, a POST-request
 with the bounds is send to the server:

 Client Server
 | |
 | |
 +----->| Header: POST
 | POST | Token: 0x06
 | | Uri-Path: "temp"
 | | High-Level State: "1 -50.0 20.0 cold"
 | | High-Level State: "1 20.0 50.0 warm"
 | |
 |<-----+ Header: 2.01 Created
 | 2.01 | Token: 0x06
 | | Location-Path: x42y
 | |

 Figure 8: User 1 creating a state resource with two states

 The server answers with a response code of 2.01 (Created) and a
 Location-Path indicating that a state resource, which can serve the
 two desired high-level states, is now available under the given path.

 Second, the next user wants to have four states ("cold", "moderate",
 "warm", and "hot") with bounds of -50 oC, 0 oC, 10 oC, 25 oC, and 50
 oC. The communication to create these states looks as follows:

 Client Server
 | |
 | |
 +----->| Header: POST
 | POST | Token: 0x09
 | | Uri-Path: "temp"
 | | High-Level State: "1 -50.0 0.0 cold"
 | | High-Level State: "1 0.0 10.0 moderate"
 | | High-Level State: "1 10.0 25.0 warm"
 | | High-Level State: "1 25.0 50 hot"
 | |
 |<-----+ Header: 2.01 Created
 | 2.01 | Token: 0x09
 | | Location-Path: 1ee7
 | |

 Figure 9: User 2 creating another state resource

Mietz Expires June 13, 2014 [Page 11]

Internet-Draft CoAP High-Level State Option Extension December 2013

 Afterwards, the server has two state resources for the sensor
 resource. The one serves two states and the other one which serves
 four states.

 Also the third user wants to create a high-level resource. By
 chance, he requests the same states and bounds as the first user
 which can be seen in the POST-request:

 Client Server
 | |
 | |
 +----->| Header: POST
 | POST | Token: 0x19
 | | Uri-Path: "temp"
 | | High-Level State: "1 -50.0 20.0 cold"
 | | High-Level State: "1 20.0 50.0 warm"
 | |
 |<-----+ Header: 2.05 Content
 | 2.05 | Token: 0x19
 | | Location-Path: x42y
 | |

 Figure 10: Creation of a State Resource with Same Semantics as
 Already Existing State Resource

 Consequently, the response is different too the one sent to user 1.
 The response code is 2.04 (Changed) and the Location-Path Option
 gives the path of the already existing resource.

 The last user finally sends his POST-request to create another
 resource with three states:

 Client Server
 | |
 | |
 +----->| Header: POST
 | POST | Token: 0x83
 | | Uri-Path: "temp"
 | | High-Level State: "1 -60.0 12.3 cold"
 | | High-Level State: "1 12.3 21.9 medium"
 | | High-Level State: "1 21.9 72.0 warm"
 | |
 |<-----+ Header: 5.03 Service Unavailable
 | 5.03 | Token: 0x83
 | | Payload: "Already too many resources"
 | |

 Figure 11: Failing of State Resource Creation due to Low Resources

Mietz Expires June 13, 2014 [Page 12]

Internet-Draft CoAP High-Level State Option Extension December 2013

 Unfortunately, the server rejected to create a new resource due to
 insufficient resources which is indicated by the response. Because
 of that the user sent another request to retrieve a list of already
 available state resources:

 Client Server
 | |
 | |
 +----->| Header: GET
 | GET | Token: 0x84
 | | Uri-Path: "temp"
 | | Accept: application/json
 | | High-Level State: 2
 | |
 | |
 |<-----+ Header: 2.05 Content
 | 2.05 | Token: 0x84
 | | Payload: "{res:{r:[{
 | | p:'x42y',
 | | num:[{l:-50,h:20,s:'cold'},
 | | {l:20,h:50,s:'warm'}]},{
 | | p:'1ee7',
 | | num:[{l:-50,h:0,s:'cold'},
 | | {l:0,h:10,s:'moderate'},
 | | {l:10,h:25,s:'warm'},
 | | {l:25,h:50,s:'hot'}]}]}}"
 | |

 Figure 12: Retrieving List of Existing State Resources

 With this list of JSON-encoded state resource the user has the
 ability to decide if he wants to use one of the existing state
 resources.

3.2. Example 2

 In the second example, we consider a sensor which outputs strings
 describing the current weather and a user who first wants to use a
 string mapping to create a state resource for the weather sensor.
 Afterwards, he queries the state resource and finally deletes it.
 The output range of the sensor is "rainy", "cloudy", "sunny", and
 "foggy".

Mietz Expires June 13, 2014 [Page 13]

Internet-Draft CoAP High-Level State Option Extension December 2013

 The client sends a POST-request with a string mapping to create the
 two states "home" and "beach".

 Client Server
 | |
 | |
 +----->| Header: POST
 | POST | Token: 0x06
 | | Uri-Path: "weather"
 | | High-Level State: "2 rainy home"
 | | High-Level State: "2 cloudy home"
 | | High-Level State: "2 foggy home"
 | | High-Level State: "2 sunny beach"
 | |
 |<-----+ Header: 2.01 Created
 | 2.01 | Token: 0x06
 | | Location-Path: mr21
 | |

 Figure 13: The User Creates a State Resource

 After creation of the state resource, he retrieves the current state
 by sending a GET-request.

 Client Server
 | |
 | |
 +----->| Header: GET
 | GET | Token: 0x09
 | | Uri-Path: "weather/mr21"
 | | High-Level State: "0"
 | |
 |<-----+ Header: 2.05 Content
 | 2.05 | Token: 0x09
 | | Payload: "beach"
 | |

 Figure 14: The User Retrieves the Current State

Mietz Expires June 13, 2014 [Page 14]

Internet-Draft CoAP High-Level State Option Extension December 2013

 Because it is good weather, the user decides to go to the beach. But
 before, he releases the resources on the server by deleting the state
 resource.

 Client Server
 | |
 | |
 +------->| Header: DELETE
 | DELETE | Token: 0x83
 | | Uri-Path: "weather/mr21"
 | |
 |<-------+ Header: 2.02 Deleted
 | 2.05 | Token: 0x83
 | |

 Figure 15: The User Deletes the State Resource

4. Security Considerations

 PUT operations, often used for updates, in conjunction with the High-
 Level State Option are forbidden. Hence, the server MUST NOT process
 such requests and MUST respond with a response code of 4.05 (Method
 not allowed). Updates of state resources can lead to unexpected
 behavior of clients if several clients use the same state resource.
 If one client is updating mappings or states of a state resource,
 other clients which are not aware of the update could end up in
 abnormal behavior because they cannot handle the unexpected results.
 For the same reason, a server SHOULD NOT reuse Uri-Paths of deleted
 state resources.

 Depending on the implementation and the remaining resources of the
 server, creation of state resources can consume a considerable amount
 of resources. However, this is true for all resource creations and
 not limited to the presented new High-Level State Option. Anyway,
 implementers SHOULD be aware of this fact and consider
 countermeasures such as limiting the number of state resources which
 can be created, limiting the number of state resource creation
 requests per client, or to introduce a duration after a successful
 state resource creation in which further requests are rejected.

Mietz Expires June 13, 2014 [Page 15]

Internet-Draft CoAP High-Level State Option Extension December 2013

5. IANA Considerations

 The IANA is requested to add the following "CoAP Option Numbers"
 entry as per Section 12.2 of [I-D.ietf-core-coap]:

 +--------+------------------+-----------------------------+
 | Number | Name | Reference |
 +--------+------------------+-----------------------------+
 | TBD | High-Level State | Section 2 of this document |
 +--------+------------------+-----------------------------+

6. Acknowledgements

 Thanks to Lukas Ruge, Dennis Pfisterer, Kay Roemer and Philipp
 Abraham for proof-reading, helpful comments and discussions that have
 helped to shape this document.

7. References

7.1. Normative reference

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., and C. Bormann, "Constrained
 Application Protocol (CoAP)", draft-ietf-core-coap-18
 (work in progress), June 2013.

 [IEEE754] Institute of Electrical and Electronics Engineers (IEEE),
 "754-2008 - IEEE Standard for Floating-Point
 Arithmetic", August 2008.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

7.2. Informative Reference

 [I-D.ietf-core-observe]
 Hartke, K., "Observing Resources in CoAP",

draft-ietf-core-observe-11 (work in progress),
 October 2013.

Appendix A. XML Schema for XML Serialization of One State Resources

https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-18
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-11

Mietz Expires June 13, 2014 [Page 16]

Internet-Draft CoAP High-Level State Option Extension December 2013

 <?xml version="1.0" encoding="utf-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.example.com/state-option"
 targetNamespace="http://www.example.com/state-option"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <!-- To describe a state resources -->
 <xs:element name="r" type="resource"/>

 <!-- To describe the mappings of a state resource along
 with the uri-path-->
 <xs:complexType name="resource">
 <xs:sequence>
 <xs:choice>
 <xs:element name="num" type="num_map" maxOccurs="unbounded"/>
 <xs:element name="str" type="string_map" maxOccurs="unbounded"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>

 <!-- To describe a numerical mapping with lower bound,
 upper bound and state -->
 <xs:complexType name="num_map">
 <xs:sequence>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="l" type="xs:float"/>
 <xs:element name="h" type="xs:float"/>
 </xs:sequence>
 <xs:element name="s" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

 <!-- To describe a string mapping with
 one or more strings and state -->
 <xs:complexType name="string_map">
 <xs:sequence>
 <xs:element name="str" type="xs:string" maxOccurs="unbounded"/>
 <xs:element name="s" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

 </xs:schema>

Mietz Expires June 13, 2014 [Page 17]

Internet-Draft CoAP High-Level State Option Extension December 2013

Appendix B. XML Schema for XML Serialization of Multiple State
 Resources

 <?xml version="1.0" encoding="utf-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.example.com/state-option"
 targetNamespace="http://www.example.com/state-option"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xs:element name="res" type="res"/>

 <!-- To describe one or more state resources -->
 <xs:complexType name="res">
 <xs:sequence>
 <xs:element name="r" type="resource" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <!-- To describe the mappings of a state resource along
 with the uri-path-->
 <xs:complexType name="resource">
 <xs:sequence>
 <xs:element name="p" type="xs:normalizedString"/>
 <xs:choice>
 <xs:element name="num" type="num_map" maxOccurs="unbounded"/>
 <xs:element name="str" type="string_map" maxOccurs="unbounded"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>

 <!-- To describe a numerical mapping with lower bound,
 upper bound and state -->
 <xs:complexType name="num_map">
 <xs:sequence>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="l" type="xs:float"/>
 <xs:element name="h" type="xs:float"/>
 </xs:sequence>
 <xs:element name="s" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

 <!-- To describe a string mapping with
 one or more strings and state -->
 <xs:complexType name="string_map">
 <xs:sequence>

Mietz Expires June 13, 2014 [Page 18]

Internet-Draft CoAP High-Level State Option Extension December 2013

 <xs:element name="str" type="xs:string" maxOccurs="unbounded"/>
 <xs:element name="s" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

 </xs:schema>

Appendix C. Changelog

 Changes from draft-00 to draft-01:

 o Changed contact details of author.

 o Updated references of CoAP and CoAP observe.

 o Fixed number of Bytes in Figure Figure 2 from 257 to 256.

 o Fixed number of Bytes in Figure Figure 5 from 2-4 to 2/4.

 o Fixed number of Bytes in Figures Figure 5 and Figure 6 from 0-128
 to 1-128.

 o Fixed tokens in Figure Figure 15 and Figure 14.

 o Corrected caption of Figure Figure 15. Before it was the same as
 in Figure Figure 14 because of copy \& paste.

 o Removed "or equal" from the paragraph where handling of a upper
 bound smaller than the lower bound is described (Section

Section 2.2.1). Equal upper and lower bound are allowed because
 one is inclusive and the other exclusive.

Author's Address

 Richard Mietz
 University of Luebeck
 Ratzeburger Allee 160
 Luebeck, Schleswig-Holstein 23562
 DE

 Phone: +49 451 500 5984
 Email: mietz@itm.uni-luebeck.de
 URI: http://www.itm.uni-luebeck.de/

https://datatracker.ietf.org/doc/html/draft-00
https://datatracker.ietf.org/doc/html/draft-01
http://www.itm.uni-luebeck.de/

Mietz Expires June 13, 2014 [Page 19]

