Network Working Group M. Miller ToC

Internet-Draft P. Saint-Andre
Obsoletes: 3923 Cisco Systenms,
(if approved) Inc.

Intended status: Standards

June 29, 2010
Track

Expires: December 31, 2010

End-to-End Object Encryption for the Extensible Messaging and Presence
Protocol (XMPP)
draft-miller-3923bis-02

Abstract

This document defines a method of end-to-end object encryption for the
Extensible Messaging and Presence Protocol (XMPP). The protocol defined
herein is a simplified version of the protocol defined in RFC 3923.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

This Internet-Draft will expire on December 31, 2010.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.


http://tools.ietf.org/html/rfc3923

Table of Contents

1. Introduction
2. Terminology
3. Securing XMPP Stanzas
3.1. Example of Securing Messages
3.2. Example of Securing IQs
4. Interaction with Stanza Semantics
5. Handling of Inbound Stanzas
6. Inclusion and Checking of Timestamps
7. Mandatory-to-Implement Cryptographic Algorithms
8. Certificates
9. Security Considerations
10. TIANA Considerations
10.1. XML Namespace Name for e2e Data in XMPP
11. References

11.1. Normative References

11.2. Informative References
Appendix A. Schema for urn:ietf:params:xml:ns:xmpp-objenc:0
8§ Authors' Addresses

1. Introduction TOC

End-to-end encryption of traffic sent over the Extensible Messaging and
Presence Protocol [XMPP-CORE] (Saint-Andre, P., “Extensible Messaging
and Presence Protocol (XMPP): Core,” May 2010.) is a desirable goal.
Requirements and a threat analysis for XMPP encryption are provided in
[E2E-REQ] (Saint-Andre, P., “Requirements for End-to-End Encryption in
the Extensible Messaging and Presence Protocol (XMPP),” March 2010.).
Many possible approaches to meet those (or similar) requirements have
been proposed over the years, including methods based on PGP, S/MIME,
SIGMA, and TLS.

The S/MIME approach defined in [RFC3923] (Saint-Andre, P., “End-to-End
Signing and Object Encryption for the Extensible Messaging and Presence
Protocol (XMPP),” October 2004.) has never been implemented in XMPP
clients to the best of our knowledge, but has some attractive features,
especially the ability to store-and-forward an encrypted message at a
user's server if the user is not online when the message is received
(in the XMPP community this is called "offline storage" and the message
is referred to as an "offline message"). The authors surmise that RFC
3923 has not been implemented mainly because it adds several new
dependencies to XMPP clients, especially MIME (along with the CPIM and
MSGFMT media types). Therefore this document explores the possibility
of an approach that is similar to but simpler than RFC 3923, while
retaining the same basic object encryption model.




2. Terminology TOC

This document inherits terminology defined in [XMPP-CORE] (Saint-Andre,

P., “Extensible Messaging and Presence Protocol (XMPP): Core,”

May 2010.).

Security-related terms are to be understood in the sense defined in
[SECTERMS] (Shirey, R., “Internet Security Glossary, Version 2,”
August 2007.).

The capitalized key words "MUST", "MUST NOT", "REQUIRED", "SHALL",
"SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
[KEYWORDS] (Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” March 1997.).

3. Securing XMPP Stanzas TOC

The process that a sending agent follows for securing stanzas is the
same regardless of the form of stanza (i.e., <iq/>, <message/>, or
<presence/>).

1. Constructs a cleartext version of the stanza, S.

2. Generates a session key R appropriate for the intended block
cipher (e.g. AES-SHA-256).

3. Notes the current UTC date and time N when this stanza is
constructed, formatted as described under Section 6 (Inclusion
and Checking of Timestamps).

4. Converts the stanza to a UTF-8 encoded string, optionally
removing line breaks and other insignificant whitespace between
elements and attributes, i.e., S' = UTF8-encode(S). We call S'
a "stanza-string" because for purposes of encryption and
decryption it is treated not as XML but as an opaque string
(this avoids the need for complex canonicalization of the XML
input).



5.

10.

Constructs a plaintext envelope (E) <plain/> as follows:

*The attribute 'timestamp' set to the UTC date and time value
N

*The XML character data set to the base64-encoded form of S'
(where the encoding adheres to the definition in Section 4
of [BASE64] (Josefsson, S., “The Basel6, Base32, and Base64
Data Encodings,” October 2006.) and where the padding bits
are set to zero). This encoding is necessary to preserve a
canonicalized form of S'.

Converts the envelope (E) to a UTF-8 encoded string, optionally
removing line breaks and other insignificant whitespace between
elements and attributes, i.e., E' = UTF8-encode(E).

Encrypts the UTF8-encoded enveloped (E') using the intended
block cipher, i.e. T = block-encrypt(R, E').

Generates a message authentication code (MAC) with a
cryptographic hashing algorithm (e.g. HMACSHA256) using the
encrypted data T as the salt and the session block cipher key R
as the message, i.e., M = mac-hash(T, R)

Encrypts the session key (R) using the recipient's public key
to produce encrypted data K. (Known issue: This step is under-
specified and will be expanded in a later version of this
document.)

Constructs an <e2e/> element qualified by the
"urn:ietf:params:xml:ns:xmpp-objenc:0" namespace as follows:

*The child element <key/> (implicitly qualified by the
"urn:ietf:params:xml:ns:xmpp-objenc:0" namespace) as
follows:

-The attribute 'cipher-algo' set to the asynchronous
encryption scheme used in step 9;

-The XML character data set to the base64-encoded form of
K.



3.1.

*The child element <data/> qualified by the
"urn:ietf:params:xml:ns:xmpp-objenc:0" namespace as follows:

-The attribute 'mac-algo' set to the cryptographic hashing
algorithm used to generate M in step 8;

-The attribute 'mac-hash' set to the base64-encoded result
of the MAC, M;

-The attribute 'cipher-algo' set to the block encryption
scheme used to generate the encrypted data T in step 7;

-The XML character data as the base64-encoded form of T.

11. Sends the <e2e/> element as the payload of a stanza that SHOULD

match the stanza from step 1 in kind (e.g., <message/>), type
(e.g., "chat"), and addressing (e.g. to="romeo@montague.net"
from="juliet@capulet.net/balcony"). If the original stanza (S)
has a value for the "id" attribute, this stanza MUST NOT use
the same value for its "id" attribute.

Example of Securing Messages TOC

The sender begins with the cleartext version of the <message/> stanza

IIS" :

<message xmlns="'jabber:client'

from='juliet@capulet.net/balcony'

id='183ef129'

to='romeo@montague.net'

type='chat'>
<thread>8996aef0-061d-012d-347a-549a200771aa</thread>
<body>Wherefore art thou, Romeo?</body>

</message>

The sender then performs the steps 1 through 5 from above to generate:



<plain xmlns="urn:ietf:params:xml:ns:xmpp-objenc:0"

timestamp="2010-06-29T02:15:21.012Z2">
PG11c3Nhz2UgeG1sbnM9ImphYmJlcjpjbGllbnQiIGZyb209ImplbGl11dEB]YXB
1bGVOLM51dC9iYWxjh255I1BObz0icm9tZWOAbWIUAGVNdWUUubmVOIiBOeXB1PS
JjaGFOIj48dGhyZWFkPmM2MzczODIOLWEZMDCctNDBkZCO4ZmUwLWIhZDZ1NzI50
WFKMDwvdGhyZWFkPjxib2R5P1dozXJ1Zm9yZSBhcnQgdGhvdSwgum9tZw8/PC91i
b2R5PjwvbwWVzc2FnZT4=

</plain>

Then performs steps 6 through 10, and sends the following:

3.

2.

<message xmlns='jabber:client'

from="'juliet@capulet.net/balcony'
id='6410ed123'
to='romeo@montague.net'
type='chat'>
<e2e xmlns="urn:ietf:params:xml:ns:xmpp-objenc:0">
<key cipher-algo="RSAES-0OAEP-SHA-256-MFG1">

OPfr4zudgiEelLc0QazzJIB6B9gx3zrVbyHKTU8a/abDbOwiZevztxxCi8hto0+Qw
Foyhcupj547WbFZJIN1B2dsAPh1JzeH9SuGLJIShjhbkOyKjmqzZLLCZr30QtJjcTuU
SAV]j7IZZsO0PDmwsb4Dxv5sz+icsDpi51+5APfthDaoHbcrvz2pA1CI5IFQoob4
a0iOWevCcAFyB+VWXSRQQCxjn5sHdb6G4viQ/m1lzTwWahzKvi56pNUm711180I8L
mPil1VWUEQH3aayGLV1J9fhBDSSpW4jTQ/ts1inzPJwV1KdTqdgNBusFEhrRMhJD5

1JdLOhxx+0v2Xbs22++XQ1tS8/A==
</key>
<data cipher-algo="AES-256-CBC-PKCS5-WITH-IV"
mac-algo="HMACSHA256"

mac-data="HSGmwUFd4sESB+012S32xsXVvMn04gjRPaQITIrjwbs=">
a8zpjgRc01VHZ9CoqU19/jB7nn58Gzu5/sQm8YQe4F9zz+YKUfqTS9LaHcqdAwa
z8BG1a24Z72VYb5Ptjh7nQ19f5QQdA/P417230qeTJITsA4DkhvJaSuUhrjYib/NOk
31kMoatR/0SbfvhPdgXQ/dut LURFjkilXGVwNWkgLm3iSnKUiYSdUzWvj88RgR3
1dVHFeyrdgufu9qu/Fy06MzXjfEtD800+3ZBbESqllzmYFXnfkzBrhfil4iCba6
/b5I05zhFUyWaq5e6qq2z72a+1bjewWkG8F9XBiMkyaxkB64wASOo6aDpwWdir50i
+RNms4LV/wxL4Is/0e8F09xR3UmrdlAiaehdGBh+EnJGqprKa9eccOKqSu7/1JQ
ObAdJGEOeAVs8JEkQkxw+qR8edkEDUv6ZXN7JCWQx9LNaiiwsfAzApJJIbqfrtDx
koQ3JaBbxQ+8FE3TMOE4Thr9V8NDZC8abgBramlpUBfgknJvLYMTzx11lnsiCUxo

6ezCoOxqVv
</data>
</e2e>

</message>

Example of Securing IQs TOC

The sender begins with the cleartext version of the <iq/> stanza "S":



<iq xmlns="jabber:client"
from="juliet@capulet.net/crypt"
id="a543bc3ee"
to="romeo@montegue.net/crypt"
type="result">
<mood xmlns="http://jabber.org/protocol/mood">
<dejected />
<text>
Romeo, what's here? Poison? Drunk all, and
left no friendly drop to help me after?
</text>
</mood>
</igq>

The sender then performs the steps 1 through 5 from above to generate:

<plain xmlns="urn:ietf:params:xml:ns:xmpp-objenc:0"
timestamp="2010-06-29T02:15:21.012Z2">

PG1lxIHhtbG5zPSJqYWJiZXI6aXEiIGZyb209ImplbGl1dEB]jYXB1bGVOLM51dC9
jcnlwdCIgawWQ9ImMEINDNiYzN1ZSIgdG89InJvbwVvQGlvbnR1Z3V1Lm51dC9jcn
1wdCIgdHIwZTOicmVzdwWx0Ij48bWovZCB4bwWxucz0iaHROcDovL2phYmJlci5ve
mcvcHJIvdG9jb2wvbwWovZCI+PGR1amVjdGVKIC8+PHR1eHQ+Um9tZW8sIHdoYXQn
cyBozXJ1PyBQb21zb24/IERydW5rIGFsbCwgYW5kIGx1ZnQgbm8gzZnJ1lbmRseSB
kcm9wIHRVIGh1bHAgbWUQYWZOZXI/PC90ZXhOPjwvbwWovZD48L21XxPg==

</plain>

Then performs steps 6 through 10, and sends the following:



4.

<iq

xmlns="jabber:client"
type="result"
to="romeo@montegue.net/crypt"
id="42ca3de0345"
from="juliet@capulet.net/crypt">

<e2e xmlns="urn:ietf:params:xml:ns:xmpp-objenc:0">
<key cipher-algo="RSAES-0AEP-SHA-256-MFG1">

hOU+BRKECCY0+eKTX9hzCbhP30Ij0q5zZ9buFgkOWu4LsVkI920iH65SVYL/XCB6
12sb9fhjkiAIeROAYSGiid+AeS7KZDzpcZ+0Rg8j9CKEX/LeTYszBfZFiHzDFkh
gtwu3s7QMAROBzXjINVE7W8fSdleusvy00P5cOscrpRkXDMV02Z3/rTjCOXINX3
XQUP+R1qFE7g1HCr01BjoPjI4p3N+fONVVOUIMwtt1I5t JAEXgTofUMOGMNGX1i
NONNjPDb9XsihpLvDIjMb1XVHVYAIYyPwCs2ZdDv7L5kmzZ6U+35b7Qx8TdWUN2I4
5fBbxczvkFN6+cx2h5uap0TxBkw==

</key>
<data cipher-algo="AES-256-CBC-PKCS5-WITH-IV"

mac-algo="HMACSHA256"

mac-data="iKuTGRZNHe3PbZNdfxkFzwC1XLMQ1lhx0Y8BuYawbaho=">
ksCAkoJeoymtf3ygzBJkrJYQV+g@4CkAs50Smej60GUBIMRN3rKSX5FVTWo558W
Bcn8mVUXFXWhSANBrswW5GQS1EyygDT+yfJe60qzLTCqZn4iqaCyIPWM7XB/PolA
fVELW7y3hf8JrEAM4JXIfXxrcOYDgewr7zmamwuuos4B6qzgiNN9ZW2ATTyKL3+1
twemFVF/nWF1YN8CquGmBm83WFNn7IKkOR+Nqq54+QNCABjSFPT25ZYqUEhXKk/RIS
CDAIXF0aFB0zGjC20M3UDgnuwLsUF+P4uc]jybysxhHQlgLOffX0VhblYeswazZac
pvsj80vfpv+ESrWGptXr+8GMK109g69GHRrd2k2TonPFp1KwS5MkbEpPP2tS7R+nT
b9oGFojréwaNKhhhVmP/9FWRM17C2KfLCHggAatLWDjBG8k7yd5DWdSqY7LwkwB
hT6+iErRfhdvklEVXxn2TVqjfhsFh33XDqkRT4BhPJUjJPkwLZkQO3PVgHK1uUMSE
JoUBSO0XxD7gE5(q808hy3gA+r5PDowy6nQ9zbUaCu4JbvKv2moql7fgHUy8MZLIe
DFVJ5A5z8Te6K4pFaQGAzXEOOUS2A+BmvPAFczFelL+QGy58RSNMiXJ9ZMpb+N2C
1iDzPD80OL

</data>
</e2e>

</iqgq>

Interaction with Stanza Semantics TOC

The following limitations and caveats apply:

*Undirected <presence/> stanzas MUST NOT be encrypted. Such
stanzas are delivered to anyone the sender has authorized, and
therefore it is highly unlikely that the sender can find an
appropriate certificate.

*Stanzas directed to multiplexing services (e.g. multi-user chat)
SHOULD NOT be encrypted, unless the sender has established an
acceptable trust relationship with the multiplexing service.



5. Handling of Inbound Stanzas TOC

Several scenarios are possible when an entity receives an encrypted
stanza:

*The receiving application does not understand the protocol.

*The receiving application understands the protocol and is able to
decrypt the payload.

*The receiving application understands the protocol and is able to
decrypt the payload, but the timestamps fail the checks specified
under Checking of Timestamps (Inclusion and Checking of

Timestamps).

*The receiving application understands the protocol but is unable
to decrypt the payload.

In Case #1, the receiving application MUST do one and only one of the
following: (1) ignore the <e2e/> extension, (2) ignore the entire
stanza, or (3) return a <service-unavailable/> error to the sender, as
described in [XMPP-CORE] (Saint-Andre, P., “Extensible Messaging and
Presence Protocol (XMPP): Core,” May 2010.).

In Case #2, the receiving application MUST NOT return a stanza error to
the sender, since this is the success case.

In Case #3, the receiving application MAY return a <not-acceptable/>
error to the sender (as described in [XMPP-CORE] (Saint-Andre, P.,
“Extensible Messaging and Presence Protocol (XMPP): Core,” May 2010.)),
optionally supplemented by an application-specific error condition
element of <bad-timestamp/> (previously defined in [RFC3923] (Saint-
Andre, P., “End-to-End Signing and Object Encryption for the Extensible
Messaging and Presence Protocol (XMPP),” October 2004.)):




<message from='romeo@example.net/orchard'
id='6410ed123"'
to='juliet@capulet.net/balcony'
type='error'>
<e2e xmlns='urn:ietf:params:xml:ns:xmpp-objenc:0'>
XML-character-data-here
</e2e>
<error type='modify'>
<not-acceptable xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
<bad-timestamp xmlns='urn:ietf:params:xml:xmpp-e2e'/>
</error>
</message>

In Case #4, the receiving application SHOULD return a <bad-request/>
error to the sender (as described in [XMPP-CORE] (Saint-Andre, P.,
“Extensible Messaging and Presence Protocol (XMPP): Core,” May 2010.)),
optionally supplemented by an application-specific error condition
element of <decryption-failed/> (previously defined in [RFC3923
(Saint-Andre, P., “End-to-End Signing and Object Encryption for the
Extensible Messaging and Presence Protocol (XMPP),” October 2004.)):

<message from='romeo@example.net/orchard’
id='6410ed123"'
to='juliet@capulet.net/balcony'
type='error'>
<e2e xmlns='urn:ietf:params:xml:ns:xmpp-objenc:0'>
XML-character-data-here
</e2e>
<error type='modify'>
<bad-request xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
<decryption-failed xmlns='urn:ietf:params:xml:xmpp-e2e'/>
</error>
</message>

In addition to returning an error in Case #4, the receiving application
SHOULD NOT present the stanza to the intended recipient (human or
application) and SHOULD provide some explicit alternate processing of
the stanza (which MAY be to display a message informing the recipient
that it has received a stanza that cannot be decrypted).

6. Inclusion and Checking of Timestamps TOC

Timestamps are included to help prevent replay attacks. All timestamps
MUST conform to [DATETIME] (Klyne, G. and C. Newman, “Date and Time on
the Internet: Timestamps,” July 2002.) and be presented as UTC with no
offset, and SHOULD include the seconds and fractions of a second to




three digits. Absent a local adjustment to the sending agent's
perceived time or the underlying clock time, the sending agent MUST
ensure that the timestamps it sends to the receiver increase
monotonically (if necessary by incrementing the seconds fraction in the
timestamp if the clock returns the same time for multiple requests).
The following rules apply to the receiving application:

*It MUST verify that the timestamp received is within five minutes
of the current time, except as described below for offline
messages.

*It SHOULD verify that the timestamp received is greater than any
timestamp received in the last 10 minutes which passed the
previous check.

*If any of the foregoing checks fails, the timestamp SHOULD be
presented to the receiving entity (human or application) marked
as "old timestamp", "future timestamp", or "decreasing
timestamp", and the receiving entity MAY return a stanza error to
the sender.

The foregoing timestamp checks assume that the recipient is online when
the message is received. However, if the recipient is offline then the
server will probably store the message for delivery when the recipient
is next online (offline storage does not apply to <iq/> or <presence/>
stanzas, only <message/> stanzas). As described in [OFFLINE] (Saint-
Andre, P., “Best Practices for Handling Offline Messages,”

January 2006.), when sending an offline message to the recipient, the
server SHOULD include delayed delivery data as specified in [DELAY
(Saint-Andre, P., “Delayed Delivery,” September 2009.) so that the
recipient knows that this is an offline message and also knows the
original time of receipt at the server. In this case, the recipient
SHOULD verify that the timestamp received in the encrypted message is
within five minutes of the time stamped by the recipient's server in
the <delay/> element.

7. Mandatory-to-Implement Cryptographic Algorithms TOC

All implementations MUST support the following algorithms.
Implementations MAY support other algorithms as well.

*The RSA (PKCS #1 v2.1) key transport, as specified in [X509-ALGO]
(Jonsson, J. and B. Kaliski, “Public-Key Cryptography Standards
(PKCS) #1: RSA Cryptography Specifications Version 2.1,”

February 2003.).




*The AES-128 encryption algorithm in CBC mode, as specified in
[CMS-AES] (Schaad, J., “Use of the Advanced Encryption Standard
(AES) Encryption Algorithm in Cryptographic Message Syntax
(CMS),"” July 2003.).

*The HMACSHA256 hashing algorithm, as specified in [HMAC
(Eastlake, D. and T. Hansen, “US Secure Hash Algorithms (SHA and
HMAC-SHA),"” July 2006.).

8. Certificates TOC

To participate in end-to-end encryption using the methods defined in
this document, a client needs to possess an X.509 certificate [PKIX]
(Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and
W. Polk, “Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile,” May 2008.). It is expected
that many clients will generate their own (self-signed) certificates
rather than obtain a certificate issued by a certification authority
(CA). In any case the certificate MUST include an XMPP address that is
represented using the ASN.1 Object Identifier "id-on-xmppAddr" as
specified in Section 5.1.1 of [XMPP-CORE] (Saint-Andre, P., “Extensible
Messaging and Presence Protocol (XMPP): Core,” May 2010.).

9. Security Considerations TOC

The recipient's server might store any <message/> stanzas received
until the recipient is next available; this duration could be anywhere
from a few minutes to several months.

10. TIANA Considerations TOC

TOC



10.1. XML Namespace Name for e2e Data in XMPP

A URN sub-namespace of encrypted content for the Extensible Messaging
and Presence Protocol (XMPP) is defined as follows.

URI: wurn:ietf:params:xml:ns:xmpp-objenc:0

Specification: RFC XXXX

Description:

This is an XML namespace name of signed and encrypted

content for the Extensible Messaging and Presence Protocol as
defined by RFC XXXX.

Registrant Contact: IESG, <iesg@ietf.org>

11. References

T0C

11.1. Normative References

[BASE64]

[CMS-AES]

[DATETIME]

[DELAY]

[E2E-REQ]

[KEYWORDS]

[HMAC]

[PKIX]

[SECTERMS]

TOC
Josefsson, S., “The Basel6, Base32, and Base64 Data
Encodings,” RFC 4648, October 2006 (TXT).
Schaad, J., “Use of the Advanced Encryption Standard
(AES) Encryption Algorithm in Cryptographic Message
Syntax (CMS),” RFC 3565, July 2003 (TXT).
Klyne, G. and C. Newman, “Date and Time on the Internet:

Timestamps,” RFC 3339, July 2002 (TXT).

Saint-Andre, P., “Delayed Delivery,” XSF XEP 0203,
September 2009.

Saint-Andre, P., “Requirements for End-to-End Encryption

in the Extensible Messaging and Presence Protocol
(XMPP),"” draft-saintandre-xmpp-e2e-requirements-01 (work
in progress), March 2010 (TXT).

Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997.
Eastlake, D. and T. Hansen, “US Secure Hash Algorithms
(SHA and HMAC-SHA),” RFC 4634, July 2006 (TXT).
Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation
List (CRL) Profile,” RFC 5280, May 2008 (TXT).

Shirey, R., “Internet Security Glossary, Version 2,”
RFC 4949, August 2007 (TXT).



http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4648
ftp://ftp.isi.edu/in-notes/rfc4648.txt
http://tools.ietf.org/html/rfc3565
http://tools.ietf.org/html/rfc3565
http://tools.ietf.org/html/rfc3565
ftp://ftp.isi.edu/in-notes/rfc3565.txt
http://tools.ietf.org/html/rfc3339
http://tools.ietf.org/html/rfc3339
ftp://ftp.isi.edu/in-notes/rfc3339.txt
mailto:stpeter@jabber.org
http://xmpp.org/extensions/xep-0203.html
http://www.ietf.org/internet-drafts/draft-saintandre-xmpp-e2e-requirements-01.txt
http://www.ietf.org/internet-drafts/draft-saintandre-xmpp-e2e-requirements-01.txt
http://www.ietf.org/internet-drafts/draft-saintandre-xmpp-e2e-requirements-01.txt
http://www.ietf.org/internet-drafts/draft-saintandre-xmpp-e2e-requirements-01.txt
mailto:-
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc4634
http://tools.ietf.org/html/rfc4634
ftp://ftp.isi.edu/in-notes/rfc4634.txt
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
ftp://ftp.isi.edu/in-notes/rfc5280.txt
http://tools.ietf.org/html/rfc4949
ftp://ftp.isi.edu/in-notes/rfc4949.txt

[X509-
ALGO]

[XMPP -
CORE]

Jonsson, J. and B. Kaliski, “Public-Key Cryptography
Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1,"” RFC 3447, February 2003 (TXT).
Saint-Andre, P., “Extensible Messaging and Presence
Protocol (XMPP): Core,” draft-ietf-xmpp-3920bis-08 (work
in progress), May 2010 (TXT).

11.2. Informative References

[OFFLINE]

[RFC3923]

Appendix A.

TOC
Saint-Andre, P., “Best Practices for Handling Offline
Messages,” XSF XEP 0160, January 2006.
Saint-Andre, P., “End-to-End Signing and Object
Encryption for the Extensible Messaging and Presence
Protocol (XMPP),” RFC 3923, October 2004 (TXT).

Schema for urn:ietf:params:xml:ns:xmpp-objenc:0 TOC

The following XML schema is descriptive, not normative.


http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc3447
ftp://ftp.isi.edu/in-notes/rfc3447.txt
http://www.ietf.org/internet-drafts/draft-ietf-xmpp-3920bis-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-xmpp-3920bis-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-xmpp-3920bis-08.txt
mailto:stpeter@jabber.org
http://xmpp.org/extensions/xep-0160.html
http://xmpp.org/extensions/xep-0160.html
http://tools.ietf.org/html/rfc3923
http://tools.ietf.org/html/rfc3923
http://tools.ietf.org/html/rfc3923
ftp://ftp.isi.edu/in-notes/rfc3923.txt

<?xml version='1.0' encoding='UTF-8'?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="'urn:ietf:params:xml:ns:xmpp-objenc:0'
xmlns='urn:ietf:params:xml:ns:xmpp-objenc:0'
elementFormDefault="qualified'>

<xs:element name='e2e'>
<xs:complexType>
<xs:sequence>
<xs:element ref='key' minOccurs='1' maxOccurs='1"'/>
<xs:element ref='data' minOccurs='1"' maxOccurs='1"'/>
</Xs:sequence>
</Xxs:complexType>
</xs:element>

<xs:element name='key'>
<xs:complexType>
<xs:simpleType>
<xs:extension base='xs:string'>
<xs:attribute name='cipher-algo'
type='xs:string'/>
</xs:extension>
</Xs:simpleType>
</xs:complexType>
</xs:element>

<xs:element name='data'>
<xs:complexType>
<xs:simpleType>
<xs:extension base='xs:string'>
<xs:attribute name='cipher-algo'
type='xs:string'/>
<xs:attribute name='mac-algo'
type='xs:string'/>
<xs:attribute name='mac-hash'
type='xs:string'/>
</Xxs:extension>
</Xs:simpleType>
</xs:complexType>
</xs:element>

<xs:element name='plain'>
<xs:complexType>
<xs:simpleType>
<xs:extension base='xs:string'>
<xs:attribute name='timestamp'



type='xs:string'/>

</Xs:extension>

</Xs:simpleType>
</xs:complexType>

</xs:element>

<xs:element name='decryption-failed' type='empty'/>

<xs:element name='bad-timestamp' type='empty'/>

<xs:simpleType name='empty'>
<xs:restriction base='xs:string'>
<xs:enumeration value=''/>

</Xxs:restriction>

</xs:simpleType>

</Xs:schema>

Authors' Addresses

Phone:
Email:

Phone:
Email:

Matthew Miller

Cisco Systems, Inc.

1899 Wyknoop Street, Suite 600
Denver, CO 80202

USA

+1-303-308-3204
mamille2@cisco.com

Peter Saint-Andre

Cisco Systems, Inc.

1899 Wyknoop Street, Suite 600
Denver, CO 80202

USA

+1-303-308-3282
psaintan@cisco.com

T0C


mailto:mamille2@cisco.com
mailto:psaintan@cisco.com

	End-to-End Object Encryption for the Extensible Messaging and Presence Protocol (XMPP)draft-miller-3923bis-02
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1.  Introduction
	2.  Terminology
	3.  Securing XMPP Stanzas
	3.1.  Example of Securing Messages
	3.2.  Example of Securing IQs
	4.  Interaction with Stanza Semantics
	5.  Handling of Inbound Stanzas
	6.  Inclusion and Checking of Timestamps
	7.  Mandatory-to-Implement Cryptographic Algorithms
	8.  Certificates
	9.  Security Considerations
	10.  IANA Considerations
	10.1.  XML Namespace Name for e2e Data in XMPP
	11.  References
	11.1. Normative References
	11.2. Informative References
	Appendix A.  Schema for urn:ietf:params:xml:ns:xmpp-objenc:0
	Authors' Addresses


