
Network Working Group J. Miller
Internet-Draft P. Saint-Andre
Expires: August 22, 2002 Jabber Software Foundation
 J. Barry
 Jabber, Inc.
 February 21, 2002

Jabber
draft-miller-jabber-00

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 22, 2002.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This informational document describes the Jabber protocols, a set of
 open, XML-based protocols developed over a number of years mainly to
 provide instant messaging and presence services. In addition, this
 document describes the known deficiencies of the Jabber protocols.

Miller, et al. Expires August 22, 2002 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Jabber February 2002

Table of Contents

1. Introduction . 6
1.1 Overview . 6
1.2 Historical Context . 6
1.3 Evolution of Jabber 7
1.4 Requirement Levels . 8
2. Generalized Architecture 9
2.1 Overview . 9
2.2 Host . 9
2.3 Node . 10
2.4 Service . 10
2.4.1 Gateway . 10
2.5 Network . 10
3. Jabber Entities . 12
3.1 Overview . 12
3.2 Domain Identifier . 12
3.3 Node Identifier . 12
3.4 Resource Identifier 13
4. XML Usage within the Jabber Protocols 14
4.1 Overview . 14
4.2 Namespaces . 14
4.3 Validation . 14
5. XML Streams . 15
5.1 Overview . 15
5.2 Scope . 16
5.3 Restrictions . 17
5.4 Formal Definition . 17
5.5 DTD . 18
5.6 Schema . 19
5.7 Stream Errors . 19
5.8 Example . 20
6. Common Data Types . 22
6.1 Overview . 22
6.2 The Message Element 22
6.2.1 Attributes . 22
6.2.2 Children . 23
6.2.3 DTD . 24
6.2.4 Schema . 24
6.2.5 Examples . 25
6.3 The Presence Element 26
6.3.1 Attributes . 26
6.3.2 Children . 27
6.3.3 DTD . 28
6.3.4 Schema . 28
6.3.5 Examples . 30
6.4 The IQ Element . 31
6.4.1 Attributes . 31

Miller, et al. Expires August 22, 2002 [Page 2]

Internet-Draft Jabber February 2002

6.4.2 Children . 32
6.4.3 DTD . 32
6.4.4 Schema . 32
6.4.5 Examples . 33
7. Standard Extended Namespaces 35
7.1 Overview . 35
7.2 jabber:iq:agent - Agent Properties 35
7.2.1 Children . 36
7.2.2 DTD . 37
7.2.3 Schema . 37
7.2.4 Examples . 38
7.3 jabber:iq:agents - Available Agents 38
7.3.1 Children . 38
7.3.2 DTD . 39
7.3.3 Schema . 39
7.3.4 Examples . 41
7.4 jabber:iq:auth - Node Authentication 41
7.4.1 Children . 41
7.4.2 DTD . 42
7.4.3 Schema . 42
7.4.4 Examples . 42
7.5 jabber:iq:oob - Out-of-Band Data 43
7.5.1 Children . 44
7.5.2 DTD . 44
7.5.3 Schema . 44
7.5.4 Examples . 45
7.6 jabber:iq:register - Registration 45
7.6.1 Children . 45
7.6.2 DTD . 46
7.6.3 Schema . 46
7.6.4 Examples . 47
7.7 jabber:iq:roster - Roster Management 49
7.7.1 Children . 50
7.7.2 DTD . 51
7.7.3 Schema . 51
7.7.4 Examples . 52
7.8 jabber:iq:time - Entity Time 54
7.8.1 Children . 54
7.8.2 DTD . 54
7.8.3 Schema . 55
7.8.4 Examples . 55
7.9 jabber:iq:version - Entity Version 56
7.9.1 Children . 56
7.9.2 DTD . 56
7.9.3 Schema . 57
7.9.4 Examples . 57
7.10 jabber:x:delay - Delayed Delivery 58
7.10.1 Attributes . 58

Miller, et al. Expires August 22, 2002 [Page 3]

Internet-Draft Jabber February 2002

7.10.2 DTD . 59
7.10.3 Schema . 59
7.10.4 Examples . 60
7.11 jabber:x:oob - Out-of-Band Data 61
7.11.1 Children . 61
7.11.2 DTD . 61
7.11.3 Schema . 62
7.11.4 Examples . 62
7.12 jabber:x:roster - Embedded Roster Items 62
7.12.1 Children . 62
7.12.2 DTD . 63
7.12.3 Schema . 64
7.12.4 Examples . 65
8. Authentication Mechanisms 66
8.1 Authentication of a Node by a Host 66
8.2 Authentication of a Host by Another Host 66
8.2.1 Overview . 66
8.2.2 Dialback Protocol . 68
8.3 Authentication of Services 70
8.3.1 Authentication of a Service by a Host 71
8.3.2 Authentication of a Host by a Service 72
9. Routing, Delivery, and Presence Guidelines 74
9.1 Routing and Delivery of XML Chunks 74
9.2 Availability Tracking 74
9.3 Presence Probe . 74
9.4 Presence Broadcast . 75
9.5 Supported Namespaces 75
10. Security Considerations 76
10.1 SSL . 76
10.2 Secure Identity and Encryption 76
10.3 Node Connections . 76
10.4 Presence Information 76
10.5 Host-to-Host Communications 76
11. Multi-User Chat . 77
11.1 Entering a Room . 77
11.2 Sending a Message to All Participants 77
11.3 Sending a Message to A Selected Participant 78
11.4 Changing Nickname . 78
11.5 Exiting a Room . 79
12. IMPP and Interoperability Notes 80
12.1 Requirements Conformance 80
12.2 Interoperability . 80
13. Known Deficiencies . 81
13.1 Further Definition of Transport Layer 81
13.2 More Complete Namespace Support 81
13.3 More Flexible Routing 81
13.4 More Robust Security 82
13.5 Improved Subscriptions Model 82

Miller, et al. Expires August 22, 2002 [Page 4]

Internet-Draft Jabber February 2002

14. Future Specifications and Submissions 83
 References . 84
 Authors' Addresses . 85

A. The <error/> element 87
A.1 Attributes . 87
A.2 Examples . 89
B. Acknowledgments . 90

 Full Copyright Statement 91

Miller, et al. Expires August 22, 2002 [Page 5]

Internet-Draft Jabber February 2002

1. Introduction

1.1 Overview

 Jabber is a set of open, XML-based protocols for which there exist
 multiple implementations. These implementations have been used
 mainly to provide instant messaging and presence services that are
 currently deployed on thousands of domains worldwide and are accessed
 by millions of IM users daily. Because a standard description of the
 Jabber protocols is needed to describe this new traffic growing over
 the Internet, the current document defines the Jabber protocols as
 they exist today. In addition, this document describes the known
 deficiencies of the Jabber protocols; however, this document does not
 address those deficiencies, since they are being addressed through a
 variety of standards efforts.

1.2 Historical Context

 Broad adoption of the Internet occurred only after clear, simple
 protocols had been developed and accepted by the technical community.
 These include SMTP [1] for electronic mail and the tandem of HTTP [2]
 and HTML [3] for document publishing and interactive services offered
 over the World Wide Web. The authors of this document see two major
 additional emerging uses of the Internet:

 o the near-real-time exchange of text messages (as well as more
 advanced content) among individuals and applications, enabled by
 the concepts of presence and availability

 o the flexible exchange of structured data between applications,
 enabled by XML [4] along with related technologies such as XML-RPC
 [5] and SOAP [6]

 The standard transport mechanisms for XML-RPC, SOAP, and other forms
 of XML data interchange are HTTP and, to a lesser extent, SMTP; yet
 neither of these mechanisms provides knowledge about the availability
 of network endpoints, nor are they particularly optimized for the
 often asynchronous nature of data interchange, especially when such
 data comes in the form of relatively small payloads as opposed to the
 larger documents originally envisioned to be the main beneficiaries
 of XML. By contrast, the existing instant messaging (IM) services
 have developed fairly robust methods for routing small information
 payloads to presence-aware endpoints (having built text messaging
 systems that scale up to millions of concurrent users), but their
 data formats are unstructured and they have for the most part shunned
 the standard addressing schemes afforded by URIs [7] and the DNS [8]
 infrastructure.

Miller, et al. Expires August 22, 2002 [Page 6]

Internet-Draft Jabber February 2002

 Given these considerations, the developers of the Jabber system saw
 the need for open protocols that would enable the exchange of
 structured information in an asynchronous, near-real-time manner
 between any two or more network endpoints, where each endpoint is
 addressable as a URI and is able to know about the presence and
 availability of other endpoints on the network. Such protocols,
 along with associated implementations, would not only provide an
 alternative (and in many cases more appropriate) transport mechanism
 for XML data interchange, but also would encourage the development of
 instant messaging systems that are consistent with Internet standards
 related to network addressing (URIs, DNS) and structured information
 (XML).

 The Jabber protocols provide just such functionality, since they
 support asynchronous XML-based messaging and the presence or
 availability of network endpoints.

1.3 Evolution of Jabber

 Definition of the Jabber protocols began in early 1998 with the open-
 source Jabber server project (jabberd [9]) and associated IM clients.
 The purpose of the Jabber project was to create an open IM system
 that would be capable of functioning over diverse networks (e.g.,
 through firewalls) and provide a level of interoperability between
 other messaging systems. One of the design goals was that a client
 would need to understand only simple XML data types for messages and
 presence, with most of the complexity residing on the server. The
 protocols co-evolved with the server and clients, and the core
 protocols reached steady-state with release 1.0 in May 2000. Several
 critical protocol enhancements (most importantly the Dialback
 Protocol (Section 8.2)) were added with the 1.2 version released in
 October 2000. It is the protocols as of that date which are
 documented herein.

 Since that time, interest in the Jabber protocols has continued to
 grow. For example, there now exist at least four server
 implementations of the protocols as well as countless clients for a
 wide variety of platforms. In addition, Jabber services have been
 deployed at thousands of domains on the public Internet and on
 private intranets, and it is estimated that there are well over a
 million IM users of Jabber instant messaging services worldwide.

 Given the level of interest in Jabber, the authors have decided to
 document the Jabber protocols and offer the resulting document to the
 IETF for historical purposes.

Miller, et al. Expires August 22, 2002 [Page 7]

Internet-Draft Jabber February 2002

1.4 Requirement Levels

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [10].

Miller, et al. Expires August 22, 2002 [Page 8]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft Jabber February 2002

2. Generalized Architecture

2.1 Overview

 Although the Jabber protocols are not wedded to any specific network
 architecture, to this point they have usually been implemented via a
 typical client-server architecture, wherein a client utilizing the
 Jabber protocols accesses a server over a TCP [11] socket. While it
 is helpful to keep that specific architecture in mind when seeking to
 understand the Jabber protocols, we have herein abstracted from any
 specific architecture and have described the architecture in a more
 generalized fashion.

 The following diagram provides a high-level overview of this
 generalized architecture (where "-" represents communications that
 use the Jabber XML protocols and "=" represents communications that
 use any other protocol).

 Connection Map

 S1 S2
 \ /
 N1 - H1 - H2 - N3
 / \
 N2 - G1 = I1 = F1

 The symbols are as follows:

 o N1, N2, N3 - Nodes on the Jabber network

 o H1, H2 - Hosts on the Jabber network

 o S1, S2 - Services that add functionality to a primary host

 o G1 - A gateway that translates between the Jabber XML protocols
 and the protocol(s) used on a non-Jabber instant messaging network

 o I1 - A non-Jabber instant messaging network

 o F1 - A foreign node on a non-Jabber instant messaging network

2.2 Host

 A host acts as an intelligent abstraction layer for core Jabber
 communications. Its primary responsibility is to manage connections
 from or sessions for other entities (authorized nodes, services, and
 other hosts) and to route appropriately-addressed XML data among such

Miller, et al. Expires August 22, 2002 [Page 9]

Internet-Draft Jabber February 2002

 entities. Most Jabber hosts also assume responsibility for the
 storage of data that is used by nodes or services (e.g., the contact
 list for each IM user, called in Jabber a "roster"); in this case,
 the XML data is processed directly by the host itself on behalf of
 the node or service and is not routed to another entity.

2.3 Node

 Most nodes connect directly to a host over a TCP socket and use the
 Jabber XML protocols to take full advantage of the functionality
 provided by a host and its associated services. (Nodes on non-Jabber
 instant messaging networks are also part of the architecture, made
 accessable via a gateway to that network.) Multiple resources (e.g.,
 devices or locations) may connect to a host on behalf of each
 authorized node, with each resource connecting over a discrete TCP
 socket and differentiated by the resource identifier of a Jabber
 Identifier (Section 3) (e.g., node@host/home vs. node@host/work).
 The port assigned by the IANA [12] for connections between a Jabber
 node and a Jabber host is 5222.

2.4 Service

 In addition to the core functionality provided by a host, additional
 functionality is made possible by connecting trusted services to a
 host. Examples include multi-user chat (a.k.a. conferencing), real-
 time alert systems, custom authentication modules, database
 connectivity, and translation to non-Jabber messaging protocols.
 There is no set port on which services communicate with hosts; this
 is left up to the administrator of the service or host.

2.4.1 Gateway

 A gateway is a special-purpose service whose primary function is to
 translate the Jabber XML protocols into the protocol(s) of another
 messaging system, as well as translate the return data back into
 Jabber XML. Examples are gateways to Internet Relay Chat (IRC),
 Short Message Service (SMS), SMTP, and non-Jabber instant messaging
 networks such as Yahoo!, MSN, ICQ, and AIM.

2.5 Network

 Because each Jabber host is identified by a network address
 (typically a DNS hostname) and because host-to-host communications
 are a simple extension of the Jabber node-to-host protocol, in
 practice the Jabber system consists of a network of Jabber hosts that
 inter-communicate. Thus node-a@host1 is able to exchange messages,
 presence, and other information with node-b@host2. This pattern is
 familiar from other standards-based messaging protocols, such as

Miller, et al. Expires August 22, 2002 [Page 10]

Internet-Draft Jabber February 2002

 SMTP. The usual method for providing a connection between two Jabber
 hosts is to open a TCP socket on the IANA-assigned port 5269 and
 negotiate a connection using the Dialback Protocol (Section 8.2).

Miller, et al. Expires August 22, 2002 [Page 11]

Internet-Draft Jabber February 2002

3. Jabber Entities

3.1 Overview

 Any entity that can be considered a network endpoint (i.e., an ID on
 the network) and that can communicate using the Jabber protocols is
 considered a Jabber Entity. All Jabber Entities are uniquely
 addressable in a form that is nearly consistent with the URI
 specification (see Section 13.3 for details). In particular, a valid
 Jabber Identifier (JID) contains a set of ordered elements formed of
 a domain identifier, node identifier, and resource identifier in the
 following format: [node@]domain[/resource].

 All Jabber Identifiers are based on the foregoing structure. The
 most common use of this structure is to identify an IM user, the host
 to which the user connects, and the user's active sessions in the
 form of user@host/resource. However, other nodes are possible; for
 example, room-name@conference-service is a specific conference room
 that is offered by a multi-user chat service.

3.2 Domain Identifier

 The domain identifier is the primary identifier and is the only
 required element of a Jabber Identifier (a simple domain identifier
 is a valid Jabber Identifier). It usually represents the network
 gateway or "primary" host to which other entities connect for core
 XML routing and data management capabilities. However, the entity
 referenced by a domain identifier is not always a host, and may be a
 service that is addressed as a subdomain of a host and that provides
 functionality above and beyond the capabilities of a host (e.g., a
 multi-user chat service or a gateway to a non-Jabber messaging
 system). The domain identifier for every host or service that will
 communicate over a network should resolve to a Fully Qualified Domain
 Name, and a domain identifier should conform to the specification for
 DNS names. Comparison of domain identifiers occurs without regard to
 case for Basic Latin (U+0041 to U+007A) characters.

3.3 Node Identifier

 The node identifier is an optional secondary identifier. It usually
 represents the entity requesting and using network access provided by
 the host (e.g., a client), although it can also represent other kinds
 of entities (e.g., a multi-user chat room associated with a
 conference service). The entity represented by a node identifier is
 addressed within the context of a specific domain. Node identifiers
 are restricted to 255 characters. Any Unicode character higher than
 U+0020 may be included in a node identifier, with the exception of
 the following:

Miller, et al. Expires August 22, 2002 [Page 12]

Internet-Draft Jabber February 2002

 o U+0022 (")

 o U+0026 (&)

 o U+0027 (')

 o U+003a (:)

 o U+003C (<)

 o U+003E (>)

 o U+0040 (@)

 Comparison of node identifiers occurs directly without regard to case
 or other syntatic differences.

3.4 Resource Identifier

 The resource identifer is an optional third identifier. It
 represents a specific session, connection (e.g., a device or
 location), or object (e.g., a participant in a multi-user chat room)
 belonging to a node. A node may maintain multiple resources
 simultaneously. There are no restrictions on the length of a
 resource identifier and any valid XML character is allowed in a
 resource identifer (as defined in Section 2.2 of the XML 1.0
 specification [4], and as suitably escaped if necessary for inclusion
 within an XML stream). Comparison of resource identifiers is case
 sensitive for Basic Latin (U+0041 to U+007A) characters.

Miller, et al. Expires August 22, 2002 [Page 13]

Internet-Draft Jabber February 2002

4. XML Usage within the Jabber Protocols

4.1 Overview

 In essence, Jabber consists of three interrelated protocols:

 1. XML streams (Section 5), which provide a means for transporting
 data in an asynchronous manner from one Jabber Entity to another

 2. common data types (Section 6) (message, presence, and iq), which
 provide a framework for communications between Jabber Entities

 3. standard extended namespaces (Section 7), which address more
 specific areas of functionality such as registration,
 authentication, and the handling of information related to nodes
 and services

 XML [4] is used to define each of these protocols, as described in
 detail in the following sections.

4.2 Namespaces

 XML Namespaces [13] are used within all Jabber XML to create strict
 boundaries of data ownership. The basic function of namespaces is to
 separate different vocabularies of XML elements that are structurally
 mixed together. Ensuring that Jabber's XML is namespace-aware
 enables any XML to be structurally mixed with any data element within
 the protocols. This feature is relied upon frequently within the
 protocols to separate the XML that is processed by different
 services. There are two main uses of XML namespaces within Jabber:
 to define XML Streams (Section 5) and to define Standard Extended
 Namespaces (Section 7).

4.3 Validation

 A Jabber host is not responsible for validating the XML elements
 forwarded to a node; an implementation may choose to provide only
 validated data elements but is not required to do so. Nodes and
 services should not rely on the ability to send data which does not
 conform to the schemas, and should handle any non-conformant elements
 or attributes on the incoming XML stream by ignoring them.

Miller, et al. Expires August 22, 2002 [Page 14]

Internet-Draft Jabber February 2002

5. XML Streams

5.1 Overview

 Two fundamental concepts make possible the rapid, asynchronous
 exchange of relatively small payloads of structured information
 between presence-aware entities: XML streams and, as a result,
 discrete units of structured information that are referred to as "XML
 chunks". (Note: in this overview we use the example of
 communications between a node and host, however XML streams are more
 generalized and are used in Jabber for communications between a wide
 range of entities [see Section 5.2].)

 On connecting to a Jabber host, a node initiates an XML stream by
 sending a properly namespaced <stream:stream> tag, and the host
 replies with a second XML stream back to the node. Within the
 context of an XML stream, a sender can route a discrete semantic unit
 of structured information to any recipient. This unit of structured
 information is a well-balanced XML chunk, such as a message,
 presence, or iq chunk (a chunk of an XML document is said to be well-
 balanced if it matches production [43] content of XML 1.0
 specification [4]). These chunks exist at the direct child level
 (depth=1) of the root stream element. The start of any XML chunk is
 unambiguously denoted by the element start tag at depth=1 (e.g.,
 <presence>) and the end of any XML chunk is unambiguously denoted by
 the corresponding close tag at depth=1 (e.g., </presence>). Each XML
 chunk may contain child elements or CDATA sections as necessary in
 order to convey the desired information from the sender to the
 recipient. The session is closed at the node's request by sending a
 closing </stream:stream> tag to the host.

 Thus a node's session with a host can be seen as two open-ended XML
 documents that are built up through the accumulation of the XML
 chunks that are sent over the course of the session (one from the
 node to the host and one from the host to the node). In essence, an
 XML stream acts as an envelope for all the XML chunks sent during a
 session. We can represent this graphically as follows:

Miller, et al. Expires August 22, 2002 [Page 15]

Internet-Draft Jabber February 2002

 |-------------------|
open stream
<message to=''>
<body/>
</message>

<presence to=''>
<show/>
</presence>

<iq to=''>
<query/>
</iq>

close stream

5.2 Scope

 XML streams function as containers for any XML chunks sent
 asynchronously between network endpoints. (We now generalize those
 endpoints by using the terms "initiating entity" and "receiving
 entity".) XML streams are used within Jabber for the following types
 of communication:

 o Node to Host

 o Host to Host

 o Service to Host

 These usages are differentiated through the inclusion of a namespace
 declaration in the stream from the initiating entity, which is
 mirrored in the reply from the receiving entity:

 o For node-to-host (and by extension host-to-node communications),
 the namespace declaration is "jabber:client".

 o For host-to-host commmunications, the namespace declaration is
 "jabber:server".

 o Communications between a host and a trusted service are slightly
 more complex, since there are two ways that a service and a host
 can communicate (for detailed information, see Section 8.3):

 * The service initiates communications to the host. In this case

Miller, et al. Expires August 22, 2002 [Page 16]

Internet-Draft Jabber February 2002

 the namespace declaration is "jabber:component:accept" (since
 the host "accepts" communications from the service).

 * The host initiates communications to the service. In this case
 the namespace declaration is "jabber:component:connect" (since
 the host "connects" to the service).

 The common data types (Section 6) are consistent across all three of
 these namespaces, as are many of the standard extended namespaces
 (Section 7) (though not all of the latter are relevant to each type
 of communication; use of the standard extended namespaces is optional
 for any given implementation).

5.3 Restrictions

 XML streams are used to transport a subset of XML. Specifically, XML
 streams should not contain processing instructions, non-predefined
 entities (as defined in Section 4.6 of the XML 1.0 specification
 [4]), comments, or DTDs. Any such XML data should be ignored.

5.4 Formal Definition

 The attributes of the stream element are as follows:

 o to - The 'to' attribute is normally used only in the XML stream
 from the initiating entity to the receiving entity, and is set to
 the Jabber Identifier of the receiving entity. Normally there is
 no 'to' attribute set in the XML stream by which the receiving
 entity replies to the initiating entity, however there is no
 prohibition on such attributes and the should be ignored.

 o from - The 'from' attribute is normally used only in the XML
 stream from the receiving entity to the initiating entity, and is
 set to the Jabber Identifier of the receiving entity granting
 access to the initiating entity. Normally there is no 'from'
 attribute on the XML stream sent from the initiating entity to the
 receiving entity; however, if a 'from' attribute is included it
 should be ignored.

 o id - The 'id' attribute is normally used only in the XML stream
 from the receiving entity to the initiating entity. It is a
 unique identifier created by the receiving entity to function as a
 session key for the initiating entity's session with the receiving
 entity. Normally there is no 'id' attribute on the XML stream
 sent from the initiating entity to the receiving entity; however,
 if an 'id' attribute is included it should be ignored.

 We can summarize these values as follows:

Miller, et al. Expires August 22, 2002 [Page 17]

Internet-Draft Jabber February 2002

 | initiating to receiving | receiving to initiating
 --
 to | JID of receiver | ignored
 from | ignored | JID of receiver
 id | ignored | session key

 The stream element also contains the following namespace
 declarations:

 o xmlns - The 'xmlns' namespace declaration is required and is used
 in both XML streams in order to scope the allowable first-level
 children of the stream element for both streams. This namespace
 declaration must be the same for the initiating stream and the
 responding stream so that both streams are scoped consistently.
 For allowable values of this namespace declaration, see Section

5.2.

 o xmlns:stream - The 'xmlns:stream' namespace declaration is
 required in both XML streams. The only allowable value is "http:/
 /etherx.jabber.org/streams".

 The stream element may also contain the following child element:

 o error - signifies that a stream-level error has occurred (see
Section 5.7)

5.5 DTD

 <!ELEMENT stream (#PCDATA | error?)*>
 <!ATTLIST stream
 to CDATA #REQUIRED
 from CDATA #IMPLIED
 id CDATA #IMPLIED
 <!ELEMENT error (#PCDATA)>

Miller, et al. Expires August 22, 2002 [Page 18]

Internet-Draft Jabber February 2002

5.6 Schema

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://etherx.jabber.org/streams'
 xmlns='http://etherx.jabber.org/streams'
 elementFormDefault='qualified'>

 <xsd:element name='stream'>
 <xsd:complexType mixed='true'>
 <xsd:element ref='error' minOccurs='0' maxOccurs='1'/>
 <xsd:choice>
 <xsd:any namespace='jabber:client' maxOccurs='1'/>
 <xsd:any namespace='jabber:component:accept' maxOccurs='1'/>
 <xsd:any namespace='jabber:component:connect' maxOccurs='1'/>
 <xsd:any namespace='jabber:server' maxOccurs='1'/>
 </xsd:choice>
 <xsd:attribute name='to' type='xsd:string' use='optional'/>
 <xsd:attribute name='from' type='xsd:string' use='optional'/>
 <xsd:attribute name='id' type='xsd:string' use='optional'/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='error' type='xsd:string'/>

 </xsd:schema>

5.7 Stream Errors

 Errors may occur at the level of the stream. Examples are the
 sending of invalid XML, the shutdown of a host, an internal server
 error such as the shutdown of a session manager, and an attempt by a
 node to authenticate as the same resource that is currently
 connected. If an error occurs at the level of the stream, the Jabber
 Entity (initiating entity or receiving entity) that detects the error
 should send a stream error to the other entity specifying why the
 streams are being closed and then send a closing </stream:stream>
 tag. XML of the following form is sent within the context of an
 existing stream:

 <stream:stream ...>
 ...
 <stream:error>
 Error message (e.g., "Invalid XML")
 </stream:error>
 </stream:stream>

Miller, et al. Expires August 22, 2002 [Page 19]

Internet-Draft Jabber February 2002

5.8 Example

 The following is a simple stream-based session of a node on a host
 (where the NODE lines are sent from the node to the host, and the
 HOST lines are sent from the host to the node):

 A simple session:

 NODE: <stream:stream
 to='host'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'>
 HOST: <stream:stream
 from='host'
 id='id_123456789'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'>
 [authentication]
 NODE: <message from='node@host' to='receiving-ID'>
 NODE: <body>Watson come here, I need you!</body>
 NODE: </message>
 HOST: <message from='receiving-ID' to='node@host'>
 HOST: <body>I'm on my way!</body>
 HOST: </message>
 NODE: </stream:stream>
 HOST: </stream:stream>

 These are in actuality a sending stream and a receiving stream, which
 could be viewed as two XML documents (i.e., a-chronologically) in the
 following way:

Miller, et al. Expires August 22, 2002 [Page 20]

Internet-Draft Jabber February 2002

 NODE: <stream:stream
 to='host'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'>
 NODE: <message from='node@host' to='receiving-ID'>
 NODE: <body>Watson come here, I need you!</body>
 NODE: </message>
 NODE: </stream:stream>

 HOST: <stream:stream
 from='host'
 id='id_123456789'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'>
 HOST: <message from='receiving-ID' to='node@host'>
 HOST: <body>I'm on my way!</body>
 HOST: </message>
 HOST: </stream:stream>

 A session gone bad:

 NODE: <stream:stream
 to='host'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'>
 HOST: <stream:stream
 from='host'
 id='id_123456789'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'>
 [authentication]
 NODE: <message><body>Bad XML, no closing body tag!</message>
 HOST: <stream:error>Invalid XML</stream:error>
 HOST: </stream:stream>

Miller, et al. Expires August 22, 2002 [Page 21]

Internet-Draft Jabber February 2002

6. Common Data Types

6.1 Overview

 The common data types (Section 6) for Jabber communications are
 message, presence, and iq. These data types are sent as XML chunks
 (i.e., direct children) of the root stream element.

6.2 The Message Element

 This section describes the valid attributes and child elements of the
 message element.

6.2.1 Attributes

 A message chunk may possess the following attributes:

 o to - Specifies the intended recipient of the message chunk.
 Within the context of communications between a node and host, the
 absence of a 'to' attribute implies that the XML chunk is
 addressed to the node@host sending the chunk. Chunks lacking a
 'to' attribute or addressed to node@host are processed by the host
 on behalf of the node@host. Chunks addressed to node@host/
 resource are sent to a specific connected resource associated with
 the node.

 o from - Specifies the sender of the message chunk. Within the
 context of communications between a node and host, the absence of
 a 'from' attribute implies that the XML chunk is addressed from
 the node@host/resource sending the chunk. A node may specify any
 resource, but the host must verify that the node@host matches that
 of the connected node (this is to prevent spoofing).

 o id - An optional unique identifier for the purpose of tracking
 messages. The sender of the message chunk sets this attribute,
 which may be returned in any replies.

 o type - Used to capture the conversational context of the message,
 thus providing a hint regarding presentation (e.g., in a GUI). If
 no type is set or if the type is set to a value other than those
 specified here, the value should be defaulted by the host to
 "normal". The type should be one of the following:

 * normal - Single message

 * chat - Traditional two-way chat between two entities

 * groupchat - Chat among multiple entities (for details, see

Miller, et al. Expires August 22, 2002 [Page 22]

Internet-Draft Jabber February 2002

 Multi-User Chat (Section 11))

 * headline - Ticker or active list of items (e.g., news, sports
 scores, stock market quotes)

 * error - See the error element (Appendix A)

6.2.2 Children

 A message chunk may contain zero or one of each of the following
 child elements (which may not contain mixed content):

 o body - The textual contents of the message (must have no
 attributes); normally included but not required

 o subject - The (optional) subject of the message (must have no
 attributes)

 o thread - An optional random string that is generated by the
 originating node and that may be copied back in replies; it is
 used for tracking a conversation thread (must have no attributes)

 o error - See the error element (Appendix A).

 Note: a message element may house an optional element containing
 content that extends the meaning of the core message (e.g., an
 encrypted form of the message body). In Jabber usage this child
 element is often the <x/> element but can be any element. The child
 element must possess an 'xmlns' namespace declaration (other than
 those defined for XML streams) that defines all elements contained
 within the child element. The XML data contained within this element
 is outside the scope of this document, except for the specific uses
 of the <x/> element defined in standard extended namespaces (Section

7). If an entity does not understand such a child element or its
 namespace, it must ignore the associated XML data.

Miller, et al. Expires August 22, 2002 [Page 23]

Internet-Draft Jabber February 2002

6.2.3 DTD

 <!ELEMENT message ((body? | subject? | thread? |
 error? | (#PCDATA))*)>

 <!ATTLIST message
 to CDATA #IMPLIED
 from CDATA #IMPLIED
 id CDATA #IMPLIED
 type (normal | chat | groupchat | headline | error) #IMPLIED
 >

 <!ELEMENT body (#PCDATA)>
 <!ELEMENT subject (#PCDATA)>
 <!ELEMENT thread (#PCDATA)>
 <!ELEMENT error (#PCDATA)>
 <!ATTLIST error code CDATA #REQUIRED>

6.2.4 Schema

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://www.jabber.org/protocol'
 xmlns='http://www.jabber.org/protocol'
 elementFormDefault='qualified'>

 <xsd:element name='message'>
 <xsd:complexType mixed='true'>
 <xsd:choice>
 <xsd:element ref='body' minOccurs='0' maxOccurs='1'/>
 <xsd:element ref='subject' minOccurs='0' maxOccurs='1'/>
 <xsd:element ref='thread' minOccurs='0' maxOccurs='1'/>
 <xsd:element ref='error' minOccurs='0' maxOccurs='1'/>
 <xsd:any
 namespace='##other'
 minOccurs='0'
 maxOccurs='unbounded'/>
 </xsd:choice>
 <xsd:attribute name='to' type='xsd:string' use='optional'/>
 <xsd:attribute name='from' type='xsd:string' use='optional'/>
 <xsd:attribute name='id' type='xsd:string' use='optional'/>
 <xsd:attribute name='type' use='optional' default='normal'>
 <xsd:simpleType>
 <xsd:restriction base='xsd:NCName'>
 <xsd:enumeration value='normal'/>
 <xsd:enumeration value='chat'/>

Miller, et al. Expires August 22, 2002 [Page 24]

Internet-Draft Jabber February 2002

 <xsd:enumeration value='groupchat'/>
 <xsd:enumeration value='headline'/>
 <xsd:enumeration value='error'/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='body' type='xsd:string'/>
 <xsd:element name='subject' type='xsd:string'/>
 <xsd:element name='thread' type='xsd:string'/>
 <xsd:element name='error'>
 <xsd:complexType>
 <xsd:attribute
 name='code'
 type='xsd:nonNegativeInteger'
 use='required'/>
 </xsd:complexType>
 </xsd:element>

 </xsd:schema>

6.2.5 Examples

 The following examples have been processed by each sender's host and
 contain the 'from' attribute (node@host/resource) of the sender.
 (For examples of messages of type "groupchat", see Section 11.)

 A simple message:

 <message to="romeo@montague.net" from="juliet@capulet.com/balcony">
 <subject>Imploring</subject>
 <body>Wherefore art thou, Romeo?</body>
 </message>

Miller, et al. Expires August 22, 2002 [Page 25]

Internet-Draft Jabber February 2002

 A simple threaded conversation:

 <message
 to="romeo@montague.net/orchard"
 from="juliet@capulet.com/balcony"
 type="chat">
 <body>Art thou not Romeo, and a Montague?</body>
 <thread>283461923759234</thread>
 </message>

 <message
 to="juliet@capulet.com/balcony"
 from="romeo@montague.net/orchard"
 type="chat">
 <body>Neither, fair saint, if either thee dislike.</body>
 <thread>283461923759234</thread>
 </message>

 <message
 to="romeo@montague.net/orchard"
 from="juliet@capulet.com/balcony"
 type="chat">
 <body>How cam'st thou hither, tell me, and wherefore?</body>
 <thread>283461923759234</thread>
 </message>

6.3 The Presence Element

 Presence is used to express a Jabber Entity's current availability
 status and communicate that status to other entities.

6.3.1 Attributes

 A presence chunk may possess the following attributes:

 o to - Specifies the intended recipient of the presence chunk.
 Within the context of communications between a node and host, the
 absence of a 'to' attribute implies that the XML chunk is
 addressed to the node@host sending the chunk. Chunks lacking a
 'to' attribute or addressed to node@host are processed by the host
 on behalf of the node@host. Chunks addressed to node@host/
 resource are sent to a specific connected resource associated with
 the node.

 o from - Specifies the sender of the presence chunk. Within the
 context of communications between a node and host, the absence of
 a 'from' attribute implies that the XML chunk is addressed from

Miller, et al. Expires August 22, 2002 [Page 26]

Internet-Draft Jabber February 2002

 the node@host/resource sending the chunk. A node may specify any
 resource, but the host must verify that the node@host matches that
 of the connected node (this is to prevent spoofing).

 o id - An optional unique identifier for the purpose of tracking
 presence. The sender of the presence chunk sets this attribute,
 which may be returned in any replies.

 o type - Describes the type of presence. No 'type' attribute, or
 inclusion of a type not specified here, implies that the sender is
 available. The type should be one of the following:

 * unavailable - Signals that the node is no longer available for
 communications.

 * subscribe - The sender wishes to subscribe to the recipient's
 presence.

 * subscribed - The sender has allowed the recipient to receive
 their presence.

 * unsubscribe - A notification that an entity is unsubscribing
 from another entity's presence. The host handles the actual
 unsubscription, but nodes receive a presence element for
 notification reasons.

 * unsubscribed - The subscription has been cancelled.

 * probe - A host-to-host query to request an entity's current
 presence.

 * error - See the error element (Appendix A).

 Note: a presence element may house an optional element containing
 content that extends the meaning of the core presence (e.g., a signed
 form of the availability status). In Jabber usage this child element
 is often the <x/> element but can be any element. The child element
 must possess an 'xmlns' namespace declaration (other than those
 defined for XML streams) that defines all elements contained within
 the child element. The XML data contained within this element is
 outside the scope of this document, except for the specific uses of
 the <x> element defined in standard extended namespaces (Section 7).
 If an entity does not understand such a child element or its
 namespace, it must ignore the associated XML data.

6.3.2 Children

 A presence chunk may contain zero or one of each of the following

Miller, et al. Expires August 22, 2002 [Page 27]

Internet-Draft Jabber February 2002

 child elements:

 o show - Describes the availability status of a node or specific
 resource. The values should be one of the following (values other
 than these four are typically ignored):

 * away - Node or resource is temporarily away.

 * chat - Node or resource is free to chat.

 * xa - Node or resource is away for an extended period ("eXtended
 Away").

 * dnd - Node or resource is busy ("Do Not Disturb").

 o status - An optional natural-language description of availability
 status. Normally used in conjunction with the show element to
 provide a detailed description of an availability state (e.g., "In
 a meeting").

 o priority - A positive integer representing the priority level of
 the connected resource, with zero as the lowest priority.

 o error - See the error element (Appendix A).

6.3.3 DTD

 <!ELEMENT presence ((show? | status? | priority? | error?)*)>

 <!ATTLIST presence
 to CDATA #IMPLIED
 from CDATA #IMPLIED
 type (subscribe | subscribed | unsubscribe |
 unsubscribed | available | unavailable | error) #IMPLIED
 >

 <!ELEMENT show (#PCDATA)>
 <!ELEMENT status (#PCDATA)>
 <!ELEMENT priority (#PCDATA)>
 <!ELEMENT error (#PCDATA)>
 <!ATTLIST error code CDATA #REQUIRED>

6.3.4 Schema

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema

Miller, et al. Expires August 22, 2002 [Page 28]

Internet-Draft Jabber February 2002

 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://www.jabber.org/protocol'
 xmlns='http://www.jabber.org/protocol'
 elementFormDefault='qualified'>

 <xsd:element name='presence'>
 <xsd:complexType>
 <xsd:choice>
 <xsd:element ref='show' minOccurs='0' maxOccurs='1'/>
 <xsd:element ref='status' minOccurs='0' maxOccurs='1'/>
 <xsd:element ref='priority' minOccurs='0' maxOccurs='1'/>
 <xsd:element ref='error' minOccurs='0' maxOccurs='1'/>
 <xsd:any
 namespace='##other'
 minOccurs='0'
 maxOccurs='unbounded'/>
 </xsd:choice>
 <xsd:attribute name='to' type='xsd:string' use='optional'/>
 <xsd:attribute name='from' type='xsd:string' use='optional'/>
 <xsd:attribute name='type' use='optional'>
 <xsd:simpleType>
 <xsd:restriction base='xsd:string'>
 <xsd:enumeration value='subscribe'/>
 <xsd:enumeration value='subscribed'/>
 <xsd:enumeration value='unsubscribe'/>
 <xsd:enumeration value='unsubscribed'/>
 <xsd:enumeration value='available'/>
 <xsd:enumeration value='unavailable'/>
 <xsd:enumeration value='error'/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='show'>
 <xsd:simpleType>
 <xsd:restriction base='xsd:string'>
 <xsd:enumeration value='away'/>
 <xsd:enumeration value='chat'/>
 <xsd:enumeration value='xa'/>
 <xsd:enumeration value='dnd'/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name='status' type='xsd:string'/>
 <xsd:element name='priority' type='xsd:nonNegativeInteger'/>
 <xsd:element name='error'>

Miller, et al. Expires August 22, 2002 [Page 29]

Internet-Draft Jabber February 2002

 <xsd:complexType>
 <xsd:attribute
 name='code'
 type='xsd:nonNegativeInteger'
 use='required'/>
 </xsd:complexType>
 </xsd:element>

 </xsd:schema>

6.3.5 Examples

 Initial presence sent to host upon login to express default
 availability:

 <presence/>

 Receiving detailed presence from another node:

 <presence to="romeo@montague.net" from="juliet@capulet.com">
 <show>xa</show>
 <status>sleeping</status>
 <priority>1</priority>
 </presence>

 Presence sent to host upon logging off to express unavailable state:

 <presence type="unavailable"/>

 A request to subscribe to a node's presence:

 <presence
 to="juliet@capulet.com"
 from="romeo@montague.net"
 type="subscribe"/>

 Acceptance of a presence subscription request:

 <presence
 to="romeo@montague.net"
 from="juliet@capulet.com"
 type="subscribed"/>

Miller, et al. Expires August 22, 2002 [Page 30]

Internet-Draft Jabber February 2002

 Denial of a presence subscription request, or cancellation of a
 previously granted subscription request:

 <presence
 to="romeo@montague.net"
 from="juliet@capulet.com"
 type="unsubscribed"/>

 Notification of unsubscribing from a node's presence:

 <presence
 to="romeo@montague.net"
 from="juliet@capulet.com"
 type="unsubscribe"/>

6.4 The IQ Element

 Info/Query, or IQ, is a simple request-response mechanism. Just as
 HTTP is a request-response medium, the iq element enables an entity
 to make a request and receive a response from another entity.

 The actual content of the request and response is defined by the
 namespace declaration of a direct child element of the iq element.
 Any direct child element of the iq element must possess an 'xmlns'
 namespace declaration (other than those defined for XML streams) that
 defines all elements and attributes contained within that child
 element. For details, see Section 7.

6.4.1 Attributes

 An iq chunk may possess the following attributes:

 o to - Specifies the intended recipient of the iq chunk. Within the
 context of communications between a node and host, the absence of
 a 'to' attribute implies that the XML chunk is addressed to the
 node@host sending the chunk. Chunks lacking a 'to' attribute or
 addressed to node@host are processed by the host on behalf of the
 node@host. Chunks addressed to node@host/resource are sent to a
 specific connected resource associated with the node.

 o from - Specifies the sender of the iq chunk. Within the context
 of communications between a node and host, the absence of a 'from'
 attribute implies that the XML chunk is addressed from the
 node@host/resource sending the chunk. A node may specify any
 resource, but the host must verify that the node@host matches that
 of the connected node (this is to prevent spoofing).

Miller, et al. Expires August 22, 2002 [Page 31]

Internet-Draft Jabber February 2002

 o id - An optional unique identifier for the purpose of tracking the
 information exchange. The sender of the IQ chunk sets this
 attribute, which may be returned in any replies.

 o type - The required 'type' attribute specifies a distinct step
 within a request-response conversation. Should be one of the
 following (all other values are ignored):

 * get - Indicates that the current request is a question or
 search for information.

 * set - This request contains data intended to set values or
 replace existing values.

 * result - This is a successful response to a get/set request.
 If the request was successful, the iq element of type "result"
 is normally empty.

 * error - The request failed. See the error element (Appendix
 A).

6.4.2 Children

 In the strictest terms, the iq element contains no children since it
 is a vessel for XML in another namespace. In operation, a query
 element is usually contained within the iq element as defined by its
 own separate namespace. See Standard Extended Namespaces (Section

7).

6.4.3 DTD

 <!ELEMENT iq (error | (#PCDATA))*>

 <!ATTLIST iq
 to CDATA #IMPLIED
 from CDATA #IMPLIED
 id CDATA #IMPLIED
 type (get | set | result | error) #REQUIRED
 >

 <!ELEMENT error (#PCDATA)>
 <!ATTLIST error code CDATA #REQUIRED>

6.4.4 Schema

 <?xml version='1.0' encoding='UTF-8'?>

Miller, et al. Expires August 22, 2002 [Page 32]

Internet-Draft Jabber February 2002

 <xsd:schema
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://www.jabber.org/protocol'
 xmlns='http://www.jabber.org/protocol'
 elementFormDefault='qualified'>

 <xsd:element name='iq'>
 <xsd:complexType mixed='true'>
 <xsd:choice>
 <xsd:element ref='error' minOccurs='0' maxOccurs='1'/>
 <xsd:any
 namespace='##other'
 minOccurs='0'
 maxOccurs='unbounded'/>
 </xsd:choice>
 <xsd:attribute name='to' type='xsd:string' use='optional'/>
 <xsd:attribute name='from' type='xsd:string' use='optional'/>
 <xsd:attribute name='id' type='xsd:string' use='optional'/>
 <xsd:attribute name='type' use='required'>
 <xsd:simpleType>
 <xsd:restriction base='xsd:string'>
 <xsd:enumeration value='get'/>
 <xsd:enumeration value='set'/>
 <xsd:enumeration value='result'/>
 <xsd:enumeration value='error'/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='error'>
 <xsd:complexType>
 <xsd:attribute
 name='code'
 type='xsd:nonNegativeInteger'
 use='required'/>
 </xsd:complexType>
 </xsd:element>

 </xsd:schema>

6.4.5 Examples

 Most IQ examples follow a common pattern of structured data exchange
 such as get/result or set/result:

Miller, et al. Expires August 22, 2002 [Page 33]

Internet-Draft Jabber February 2002

 Requesting Responding
 Entity Entity
 ---------- ----------
 | |
 | <iq type="get"> |
 | ---------------------> |
 | |
 | <iq type="result"> |
 | <--------------------- |
 | |
 | <iq type="set"> |
 | ---------------------> |
 | |
 | <iq type="result"> |
 | <--------------------- |
 | |

 For specific examples, see Standard Extended Namespaces (Section 7).

Miller, et al. Expires August 22, 2002 [Page 34]

Internet-Draft Jabber February 2002

7. Standard Extended Namespaces

7.1 Overview

 While the common data types provide a basic level of functionality
 for instant messaging and presence, Jabber uses XML namespaces to
 extend the common data types for the purpose of providing additional
 functionality. The extended namespaces accepted by the Jabber
 Software Foundation all begin with 'jabber:'. (In addition, any of
 the core data types can be the target of a custom extension using a
 namespace determined by the creator of that custom extension;
 however, custom extended namespaces are beyond the scope of this
 document.) The XML contained in the extension must be defined in the
 namespace specified in the element that is included as a direct child
 element of the relevant common data type. This information is often
 sent within an appropriately-namespaced <query/> element that is a
 direct child of the iq element, but it can be sent in any element.

 There are two types of standard extended namespaces. Namespaces of
 the first type, which begin with the string 'jabber:iq:', are used
 within the iq element to facilitate requests and responses between
 Jabber Entities. These requests usually embody both the action being
 requested and the data needed for that request, if any.

 Namespaces of the second type, which begin with the string
 'jabber:x:', are used within the message element (and less frequently
 the presence element) to send structured information that is
 specifically related to messages and presence. Jabber Entities can
 use this type of namespace to effect registration or authentication,
 send URLs, roster items, offline options, encrypted data, and other
 information. This information is sent within an appropriately-
 namespaced <x/> element that is a direct child of the message or
 presence element.

 Many (but not all) of the Standard Extended Namespaces are relevant
 to communications from node to host, host to host, and service to
 host. It is up to the implementation to determine which namespaces
 to support for each type of communication.

 The standard iq and x namespaces are described in detail in this
 section.

7.2 jabber:iq:agent - Agent Properties

 The jabber:iq:agent namespace is used to obtain the properties of a
 specific service associated with a host.

Miller, et al. Expires August 22, 2002 [Page 35]

Internet-Draft Jabber February 2002

7.2.1 Children

 Information about agent properties is contained within a <query/>
 element that is scoped by the jabber:iq:agent namespace. That query
 element may contain the following children:

 o agent - the reply to a request of type "get" in the
 jabber:iq:agent namespace contains zero or one <agent/> elements.
 The <agent/> element has a required 'jid' attribute that contains
 the Jabber Identifier of the agent. The <agent/> element in turn
 may contain the following children:

 * name - a natural-language name for the service

 * description - a short phrase describing the service

 * transport - inclusion of this element indicates that the
 service is a gateway to a non-Jabber instant messaging system

 * groupchat - inclusion of this element indicates that the
 service is multi-user chat service

 * service - what type of service this is -- values normally
 included specify the type of gateway (aim, icq, msn, yahoo),
 the type of conferencing service (public or private), or user
 directory (jud)

 * register - the service supports registration

 * search - the service supports searching

Miller, et al. Expires August 22, 2002 [Page 36]

Internet-Draft Jabber February 2002

7.2.2 DTD

 <!ELEMENT query (agent)?>

 <!ELEMENT agent (name | description | transport |
 groupchat | service | register | search)?>
 <!ATTLIST agent
 jid CDATA #REQUIRED
 >
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT description (#PCDATA)>
 <!ELEMENT transport (#PCDATA)>
 <!ELEMENT groupchat (#PCDATA)>
 <!ELEMENT service (#PCDATA)>
 <!ELEMENT register (#PCDATA)>
 <!ELEMENT search (#PCDATA)>

7.2.3 Schema

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://www.jabber.org/protocol'
 xmlns='http://www.jabber.org/protocol'
 elementFormDefault='qualified'>

 <xsd:element name='query'>
 <xsd:complexType>
 <xsd:sequence minOccurs='0' maxOccurs='1'>
 <xsd:element ref='agent'/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='agent'>
 <xsd:complexType>
 <xsd:choice minOccurs='0' maxOccurs='1'>
 <xsd:element ref='name'/>
 <xsd:element ref='description'/>
 <xsd:element ref='transport'/>
 <xsd:element ref='groupchat'/>
 <xsd:element ref='service'/>
 <xsd:element ref='register'/>
 <xsd:element ref='search'/>
 </xsd:choice>
 <xsd:attribute name='jid' type='xsd:string' use='required'/>
 </xsd:complexType>

Miller, et al. Expires August 22, 2002 [Page 37]

Internet-Draft Jabber February 2002

 </xsd:element>

 <xsd:element name='name' type='xsd:string'/>
 <xsd:element name='description' type='xsd:string'/>
 <xsd:element name='service' type='xsd:string'/>
 <xsd:element name='transport' type='xsd:string'/>
 <xsd:element name='groupchat' type='xsd:string'/>
 <xsd:element name='register' type='xsd:string'/>
 <xsd:element name='search' type='xsd:string'/>

 </xsd:schema>

7.2.4 Examples

 Request for agent information:

 <iq id="i_agent_001" type="get" to="host">
 <query xmlns="jabber:iq:agent"/>
 </iq>

 Reply from host describing a conferencing component:

 <iq id="i_agent_001" type="result" from="host">
 <query xmlns="jabber:iq:agent">
 <agent jid="conference-service">
 <name>Conferencing Service</name>
 <description>
 This service provides multi-user chatrooms.
 </description>
 <service>public</service>
 <groupchat/>
 </agent>
 </query>
 </iq>

7.3 jabber:iq:agents - Available Agents

 The jabber:iq:agents namespace is used to obtain a list of entities
 associated with a Jabber Entity. Most commonly this is the list of
 trusted services associated with a specific host.

7.3.1 Children

 Information about available agents properties is contained within a
 <query/> element that is scoped by the jabber:iq:agents namespace.
 That query element may contain the following children:

Miller, et al. Expires August 22, 2002 [Page 38]

Internet-Draft Jabber February 2002

 o agent - the reply to a request of type "get" in the
 jabber:iq:agents namespace contains zero or more <agent/>
 elements. The <agent/> element has a required 'jid' attribute
 that contains the Jabber Identifier of each agent. The <agent/>
 element in turn may contain the following children:

 * name - a natural-language name for the service

 * description - a short phrase describing the service

 * transport - inclusion of this element indicates that the
 service is a gateway to a non-Jabber instant messaging system

 * groupchat - inclusion of this element indicates that the
 service is multi-user chat service

 * service - what type of service this is -- values normally
 included specify the type of gateway (aim, icq, msn, yahoo),
 the type of conferencing service (public or private), or user
 directory (jud)

 * register - the service supports registration

 * search - the service supports searching

7.3.2 DTD

 <!ELEMENT query (agent)*>

 <!ELEMENT agent (name | description | transport |
 groupchat | service | register | search)?>
 <!ATTLIST agent
 jid CDATA #REQUIRED
 >
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT description (#PCDATA)>
 <!ELEMENT transport (#PCDATA)>
 <!ELEMENT groupchat (#PCDATA)>
 <!ELEMENT service (#PCDATA)>
 <!ELEMENT register (#PCDATA)>
 <!ELEMENT search (#PCDATA)>

7.3.3 Schema

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema

Miller, et al. Expires August 22, 2002 [Page 39]

Internet-Draft Jabber February 2002

 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://www.jabber.org/protocol'
 xmlns='http://www.jabber.org/protocol'
 elementFormDefault='qualified'>

 <xsd:element name='query'>
 <xsd:complexType>
 <xsd:sequence minOccurs='0' maxOccurs='unbounded'>
 <xsd:element ref='agent'/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='agent'>
 <xsd:complexType>
 <xsd:choice minOccurs='0' maxOccurs='1'>
 <xsd:element ref='name'/>
 <xsd:element ref='description'/>
 <xsd:element ref='transport'/>
 <xsd:element ref='groupchat'/>
 <xsd:element ref='service'/>
 <xsd:element ref='register'/>
 <xsd:element ref='search'/>
 </xsd:choice>
 <xsd:attribute name='jid' type='xsd:string' use='required'/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='name' type='xsd:string'/>
 <xsd:element name='description' type='xsd:string'/>
 <xsd:element name='service' type='xsd:string'/>
 <xsd:element name='transport' type='xsd:string'/>
 <xsd:element name='groupchat' type='xsd:string'/>
 <xsd:element name='register' type='xsd:string'/>
 <xsd:element name='search' type='xsd:string'/>

 </xsd:schema>

Miller, et al. Expires August 22, 2002 [Page 40]

Internet-Draft Jabber February 2002

7.3.4 Examples

 Request for agents list:

 <iq id="i_agents_001" type="get" to="host">
 <query xmlns="jabber:iq:agents"/>
 </iq>

 Reply from host:

 <iq
 to="node@host/resource"
 from="host"
 type="result"
 id="i_agents_001">
 <query xmlns="jabber:iq:agents">
 <agent jid="user-directory">
 <name>Jabber User Directory</name>
 <service>jud</service>
 <search/>
 <register/>
 </agent>
 <agent jid="conference-service">
 <name>Conferencing Service</name>
 <service>public</service>
 <groupchat/>
 </agent>
 </query>
 </iq>

7.4 jabber:iq:auth - Node Authentication

 The jabber:iq:auth namespace provides a simple mechanism for nodes to
 authenticate and create a resource representing their connection to
 the host.

7.4.1 Children

 o username - the unique username for this node (usually an IM user).

 o password - the secret key or passphrase for the node's access to
 the host.

 o digest - the concatenation of the stream id and the password,
 encrypted according to the SHA1 Secure Hash Algorithm [14] and
 represented as all lowercase hex.

Miller, et al. Expires August 22, 2002 [Page 41]

Internet-Draft Jabber February 2002

 o resource - unique value to represent current connection.

7.4.2 DTD

 <!ELEMENT query ((username? | (password | digest)? | resource)*)>

 <!ELEMENT username (#PCDATA)>
 <!ELEMENT password (#PCDATA)>
 <!ELEMENT digest (#PCDATA)>
 <!ELEMENT resource (#PCDATA)>

7.4.3 Schema

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://www.jabber.org/protocol'
 xmlns='http://www.jabber.org/protocol'
 elementFormDefault='qualified'>

 <xsd:element name='query'>
 <xsd:complexType>
 <xsd:choice minOccurs='0' maxOccurs='unbounded'>
 <xsd:element ref='username'/>
 <xsd:choice minOccurs='0' maxOccurs='1'>
 <xsd:element ref='password'/>
 <xsd:element ref='digest'/>
 </xsd:choice>
 <xsd:element ref='resource'/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='username' type='xsd:string'/>
 <xsd:element name='password' type='xsd:string'/>
 <xsd:element name='digest' type='xsd:string'/>
 <xsd:element name='resource' type='xsd:string'/>

 </xsd:schema>

7.4.4 Examples

 The following is a complete example of how a node authenticates with
 a host.

Miller, et al. Expires August 22, 2002 [Page 42]

Internet-Draft Jabber February 2002

 Node queries host as to what information is required:

 <iq type="get" id="i_auth_001">
 <query xmlns="jabber:iq:auth">
 <username>juliet</username>
 </query>
 </iq>

 Host replies:

 <iq type="result" id="i_auth_001">
 <query xmlns="jabber:iq:auth">
 <username>juliet</username>
 <password/>
 <digest/>
 <resource/>
 </query>
 </iq>

 Node sends authentication information (plaintext password):

 <iq type="set" id="i_auth_002">
 <query xmlns="jabber:iq:auth">
 <username>juliet</username>
 <password>r0m30</password>
 <resource>balcony</resource>
 </query>
 </iq>

 Node sends authentication information (hashed password):

 <iq type="set" id="i_auth_002">
 <query xmlns="jabber:iq:auth">
 <username>juliet</username>
 <digest>64d60e40febe09264c52bc9cbddd5dd1147fae97</digest>
 <resource>balcony</resource>
 </query>
 </iq>

 Host confirms login:

 <iq type="result" id="i_auth_002"/>

7.5 jabber:iq:oob - Out-of-Band Data

 The jabber:iq:oob namespace provides a standard way to perform node-
 to-node transmission of information outside the context of the host

Miller, et al. Expires August 22, 2002 [Page 43]

Internet-Draft Jabber February 2002

 (e.g., for the purpose of file transfers). Note that information can
 be transferred out of band within an iq element using the
 jabber:iq:oob namespace or within a message element using the
 jabber:x:oob namespace. It is expected that a Jabber Entity will
 perform an HTTP HEAD request to determine the MIME type and size of
 any file before retrieving it from a URL.

7.5.1 Children

 o url - a Uniform Resource Locator for the file

 o desc - a natural-language description of the file

7.5.2 DTD

 <!ELEMENT query ((url? | desc?)*)>

 <!ELEMENT url (#PCDATA)>
 <!ELEMENT desc (#PCDATA)>

7.5.3 Schema

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://www.jabber.org/protocol'
 xmlns='http://www.jabber.org/protocol'
 elementFormDefault='qualified'>

 <xsd:element name='query'>
 <xsd:complexType>
 <xsd:choice minOccurs='0' maxOccurs='unbounded'>
 <xsd:element ref='url'/>
 <xsd:element ref='desc'/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='url' type='xsd:string'/>
 <xsd:element name='desc' type='xsd:string'/>

 </xsd:schema>

Miller, et al. Expires August 22, 2002 [Page 44]

Internet-Draft Jabber February 2002

7.5.4 Examples

 Node transmits information to another node:

 <iq type="set" to="horatio@denmark" from="sailor@sea" id="i_oob_001">
 <query xmlns="jabber:iq:oob">
 <url>http://denmark/act4/letter-1.html</url>
 <desc>There's a letter for you sir.</desc>
 </query>
 </iq>

7.6 jabber:iq:register - Registration

 Through the jabber:iq:register namespace, nodes can register with a
 Jabber host itself or with trusted services of that host.

7.6.1 Children

 Note that while numerous fields are available, only the ones returned
 by a host or service (other than "instructions") are required in
 order to register with that host or service.

 o instructions

 o username

 o password

 o name

 o email

 o address

 o city

 o state

 o zip

 o phone

 o url

 o date

 o misc

Miller, et al. Expires August 22, 2002 [Page 45]

Internet-Draft Jabber February 2002

 o text

 o remove - request to unregister

7.6.2 DTD

 <!ELEMENT query ((instructions? | username? |
 password? | name? | email? | address? |
 city? | state? | zip? | phone? | url? |
 date? | misc? | text? | remove?)*)>

 <!ELEMENT instructions (#PCDATA)>
 <!ELEMENT username (#PCDATA)>
 <!ELEMENT password (#PCDATA)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT email (#PCDATA)>
 <!ELEMENT address (#PCDATA)>
 <!ELEMENT city (#PCDATA)>
 <!ELEMENT state (#PCDATA)>
 <!ELEMENT zip (#PCDATA)>
 <!ELEMENT phone (#PCDATA)>
 <!ELEMENT url (#PCDATA)>
 <!ELEMENT date (#PCDATA)>
 <!ELEMENT misc (#PCDATA)>
 <!ELEMENT text (#PCDATA)>
 <!ELEMENT remove EMPTY>

7.6.3 Schema

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://www.jabber.org/protocol'
 xmlns='http://www.jabber.org/protocol'
 elementFormDefault='qualified'>

 <xsd:element name='query'>
 <xsd:complexType>
 <xsd:choice minOccurs='0' maxOccurs='unbounded'>
 <xsd:element ref='instructions'/>
 <xsd:element ref='username'/>
 <xsd:element ref='password'/>
 <xsd:element ref='name'/>
 <xsd:element ref='email'/>
 <xsd:element ref='address'/>
 <xsd:element ref='city'/>

Miller, et al. Expires August 22, 2002 [Page 46]

Internet-Draft Jabber February 2002

 <xsd:element ref='state'/>
 <xsd:element ref='zip'/>
 <xsd:element ref='phone'/>
 <xsd:element ref='url'/>
 <xsd:element ref='date'/>
 <xsd:element ref='misc'/>
 <xsd:element ref='text'/>
 <xsd:element ref='remove'/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='instructions' type='xsd:string'/>
 <xsd:element name='username' type='xsd:string'/>
 <xsd:element name='password' type='xsd:string'/>
 <xsd:element name='name' type='xsd:string'/>
 <xsd:element name='email' type='xsd:string'/>
 <xsd:element name='address' type='xsd:string'/>
 <xsd:element name='city' type='xsd:string'/>
 <xsd:element name='state' type='xsd:string'/>
 <xsd:element name='zip' type='xsd:string'/>
 <xsd:element name='phone' type='xsd:string'/>
 <xsd:element name='url' type='xsd:string'/>
 <xsd:element name='date' type='xsd:string'/>
 <xsd:element name='misc' type='xsd:string'/>
 <xsd:element name='text' type='xsd:string'/>
 <xsd:element name='remove'/>

 </xsd:schema>

7.6.4 Examples

 Node request for information required to register with a service:

 <iq type="get" id="i_reg_001" to="service.denmark">
 <query xmlns="jabber:iq:register"/>
 </iq>

Miller, et al. Expires August 22, 2002 [Page 47]

Internet-Draft Jabber February 2002

 Host response with registration fields required:

 <iq type="result"
 from="service.denmark"
 to="hamlet@denmark"
 id="i_reg_001">
 <query xmlns="jabber:iq:register">
 <instructions>
 Choose a username and password to register with this service.
 </instructions>
 <name/>
 <email/>
 <password/>
 </query>
 </iq>

 Node request to register for an account:

 <iq type="set"
 to="service.denmark"
 from="hamlet@denmark"
 id="i_reg_002">
 <query xmlns="jabber:iq:register">
 <name>hamlet</name>
 <email>hamlet@denmark</email>
 <password>gertrude</password>
 </query>
 </iq>

 Successful registration:

 <iq
 type="result"
 from="service.denmark"
 to="hamlet@denmark"
 id="i_reg_002"/>

Miller, et al. Expires August 22, 2002 [Page 48]

Internet-Draft Jabber February 2002

 Failed registration:

 <iq
 type="error"
 from="service.denmark"
 to="hamlet@denmark"
 id="i_reg_002"/>
 <error code="406">Not Acceptable</error>
 </iq>

 Node request to unregister:

 <iq type="set"
 to="service.denmark"
 from="hamlet@denmark"
 id="i_reg_003">
 <query xmlns="jabber:iq:register">
 <remove/>
 </query>
 </iq>

 Successful unregistration:

 <iq
 type="result"
 from="service.denmark"
 to="hamlet@denmark"
 id="i_reg_003"/>

7.7 jabber:iq:roster - Roster Management

 The jabber:iq:roster namespace provides a mechanism for managing a
 node's roster (also known as a "contact list"). Upon connecting to
 the host, a node should request the roster using jabber:iq:roster.
 Since the roster may not be desirable for all resources (e.g.,
 cellular phone client), the node's request for the roster is
 optional.

 When a specific connected resource for a node updates the node's
 roster on the host, the host is responsible for pushing that change
 out to all connected resources for that node using an iq element of
 type "set" as seen in the final example within this section. This
 enables all connected resources to remain in sync with the host-based
 roster information.

Miller, et al. Expires August 22, 2002 [Page 49]

Internet-Draft Jabber February 2002

7.7.1 Children

 A <query/> element scoped by the jabber:iq:roster namespace may
 contain zero or more <item/> elements. An item element may contain
 the following attributes:

 o jid - a required attribute that contains the complete Jabber
 Identifier of the contact that this item represents

 o name - an optional attribute that contains a natural-language name
 for the contact

 o subscription - the current status of the subscription related to
 this item. Should be one of the following (all other values are
 ignored):

 * none - no subscription.

 * from - this entity has a subscription to the contact.

 * to - the contact has a subscription to this entity.

 * both - subscription is both to and from.

 * remove - item is to be removed.

 o ask - An optional attribute specifying the current status of a
 request to this contact. Should be one of the following (all
 other values are ignored):

 * subscribe - this entity is asking to subscribe to that
 contact's presence.

 * unsubscribe - this entity is asking unsubscribe from that
 contact's presence.

 An <item/> element may contain zero or more instances of the
 following element:

 o group - Natural-language name of a user-specified group for the
 purpose of categorizing contacts into groups.

Miller, et al. Expires August 22, 2002 [Page 50]

Internet-Draft Jabber February 2002

7.7.2 DTD

 <!ELEMENT query ((item)*)>

 <!ELEMENT item ((group)*)>
 <!ATTLIST item
 jid CDATA #REQUIRED
 name CDATA #IMPLIED
 subscription (to | from | both | none | remove) #IMPLIED
 ask (subscribe | unsubscribe) #IMPLIED
 >
 <!ELEMENT group (#PCDATA)>

7.7.3 Schema

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://www.jabber.org/protocol'
 xmlns='http://www.jabber.org/protocol'
 elementFormDefault='qualified'>

 <xsd:element name='query'>
 <xsd:complexType>
 <xsd:sequence minOccurs='0' maxOccurs='unbounded'>
 <xsd:element ref='item'/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='item'>
 <xsd:complexType>
 <xsd:sequence minOccurs='0' maxOccurs='unbounded'>
 <xsd:element ref='group'/>
 </xsd:sequence>
 <xsd:attribute name='jid' type='xsd:string' use='required'/>
 <xsd:attribute name='name' type='xsd:string' use='optional'/>
 <xsd:attribute name='subscription' use='optional'>
 <xsd:simpleType>
 <xsd:restriction base='xsd:string'>
 <xsd:enumeration value='to'/>
 <xsd:enumeration value='from'/>
 <xsd:enumeration value='both'/>
 <xsd:enumeration value='none'/>
 <xsd:enumeration value='remove'/>
 </xsd:restriction>
 </xsd:simpleType>

Miller, et al. Expires August 22, 2002 [Page 51]

Internet-Draft Jabber February 2002

 </xsd:attribute>
 <xsd:attribute name='ask' use='optional'>
 <xsd:simpleType>
 <xsd:restriction base='xsd:string'>
 <xsd:enumeration value='subscribe'/>
 <xsd:enumeration value='unsubscribe'/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='group' type='xsd:string'/>

 </xsd:schema>

7.7.4 Examples

 Node requests current roster from host:

 <iq id="i_roster_001" type="get">
 <query xmlns="jabber:iq:roster"/>
 </iq>

Miller, et al. Expires August 22, 2002 [Page 52]

Internet-Draft Jabber February 2002

 Node receives the roster from the host:

 <iq id="i_roster_001" type="result">
 <query xmlns="jabber:iq:roster>
 <item
 jid="juliet@capulet.com"
 name="Juliet"
 subscription="both"/>
 <item
 jid="mercutio@montague.net"
 name="Mercutio"
 subscription="both">
 <group>Friends</group>
 </item>
 <item
 jid="benvolio@montague.net"
 name="Benvolio"
 subscription="both">
 <group>Friends</group>
 </item>
 </query>
 </iq>

 Node adds a new item:

 <iq type="set" id="i_roster_002">
 <query xmlns="jabber:iq:roster">
 <item
 name="Nurse"
 jid="nurse@capulet.com">
 <group>Servants</group>
 </item>
 </iq>

 Host replies with the updated roster information, plus an IQ result:

 <iq type="set" id="i_roster_003"/>
 <query xmlns="jabber:iq:roster">
 <item
 name="Nurse"
 jid="nurse@capulet.com">
 <group>Servants</group>
 </item>
 </iq>
 <iq type="result" id="i_roster_002"/>

Miller, et al. Expires August 22, 2002 [Page 53]

Internet-Draft Jabber February 2002

7.8 jabber:iq:time - Entity Time

 The jabber:iq:time namespace provides a standard way for Jabber
 Entities to exchange local time (e.g., to "ping" another entity or
 check network latency).

7.8.1 Children

 o utc - the time at the responding entity in UTC (the format should
 be consistent with that defined in ISO 8601 [15])

 o tz - the time zone in which the entity is located

 o display - human-readable time format

7.8.2 DTD

 <!ELEMENT query ((utc | tz? | display?)*)>

 <!ELEMENT utc (#PCDATA)>
 <!ELEMENT tz (#PCDATA)>
 <!ELEMENT display (#PCDATA)>

Miller, et al. Expires August 22, 2002 [Page 54]

Internet-Draft Jabber February 2002

7.8.3 Schema

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://www.jabber.org/protocol'
 xmlns='http://www.jabber.org/protocol'
 elementFormDefault='qualified'>

 <xsd:element name='query'>
 <xsd:complexType>
 <xsd:choice minOccurs='0' maxOccurs='unbounded'>
 <xsd:element ref='utc'/>
 <xsd:element ref='tz'/>
 <xsd:element ref='display'/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='utc' type='xsd:string'/>
 <xsd:element name='tz' type='xsd:string'/>
 <xsd:element name='display' type='xsd:string'/>

 </xsd:schema>

7.8.4 Examples

 Node requests time from another node:

 <iq
 type="get"
 to="juliet@capulet.com/balcony"
 from="romeo@montague.net/orchard"
 id="i_time_001">
 <query xmlns="jabber:iq:time"/>
 </iq>

Miller, et al. Expires August 22, 2002 [Page 55]

Internet-Draft Jabber February 2002

 Node replies to request:

 <iq
 type="result"
 to="romeo@montague.net/orchard"
 from="juliet@capulet.com/balcony"
 id="i_time_001">
 <query xmlns="jabber:iq:time">
 <utc>20020214T23:55:06</utc>
 <tz>WET</tz>
 <display>14 Feb 2002 11:55:06 PM</display>
 </query>
 </iq>

7.9 jabber:iq:version - Entity Version

 The jabber:iq:version namespace provides a standard way for Jabber
 Entities to discover version information about other entities.

7.9.1 Children

 o name - a natural-language name for the entity, resource, or
 application

 o version - the specific version

 o os - the operating system on which the entity is running

7.9.2 DTD

 <!ELEMENT query ((name | version | os)?)>

 <!ELEMENT name (#PCDATA)>
 <!ELEMENT version (#PCDATA)>
 <!ELEMENT os (#PCDATA)>

Miller, et al. Expires August 22, 2002 [Page 56]

Internet-Draft Jabber February 2002

7.9.3 Schema

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://www.jabber.org/protocol'
 xmlns='http://www.jabber.org/protocol'
 elementFormDefault='qualified'>

 <xsd:element name='query'>
 <xsd:complexType>
 <xsd:choice minOccurs='0' maxOccurs='1'>
 <xsd:element ref='name'/>
 <xsd:element ref='version'/>
 <xsd:element ref='os'/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='name' type='xsd:string'/>
 <xsd:element name='version' type='xsd:string'/>
 <xsd:element name='os' type='xsd:string'/>

 </xsd:schema>

7.9.4 Examples

 Node requests version information from another node:

 <iq
 type="get"
 to="romeo@montague.net/orchard"
 from="juliet@capulet.com/balcony"
 id="i_version_001">
 <query xmlns="jabber:iq:version"/>
 </iq>

Miller, et al. Expires August 22, 2002 [Page 57]

Internet-Draft Jabber February 2002

 Node replies to request:

 <iq
 type="result"
 to="juliet@capulet.com/balcony"
 from="romeo@montague.net/orchard"
 id="i_version_001">
 <query xmlns="jabber:iq:version">
 <name>Gabber</name>
 <version>0.8.6</version>
 <os>Linux i686</os>
 </query>
 </iq>

7.10 jabber:x:delay - Delayed Delivery

 The jabber:x:delay namespace is used to provide timestamp information
 about data stored for later delivery. The most common uses of this
 namespace are to stamp:

 o a message sent to an offline entity and that is stored for later
 delivery

 o the last presence update sent by a connected node to a host

 o messages cached by a multi-user chat room for delivery to new
 entrants to the room

7.10.1 Attributes

 o from - the Jabber Identifier of the location where the XML chunk
 has been delayed or held for later delivery (for example, the
 address of a multi-user chat room)

 o stamp - a required attribute that contains information about the
 time when the chunk was originally sent (the format should be
 consistent with that defined in ISO 8601 [15])

Miller, et al. Expires August 22, 2002 [Page 58]

Internet-Draft Jabber February 2002

7.10.2 DTD

 <!ELEMENT x (#PCDATA)>

 <!ATTLIST x
 from CDATA #IMPLIED
 stamp CDATA #REQUIRED
 >

7.10.3 Schema

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://www.jabber.org/protocol'
 xmlns='http://www.jabber.org/protocol'
 elementFormDefault='qualified'>

 <xsd:element name='x'>
 <xsd:complexType mixed='true'>
 <xsd:attribute name='from' type='xsd:string' use='optional'/>
 <xsd:attribute name='stamp' type='xsd:string' use='required'/>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>

Miller, et al. Expires August 22, 2002 [Page 59]

Internet-Draft Jabber February 2002

7.10.4 Examples

 Message sent to an offline node:

 <message
 to="node-a@host1"
 from="node-b@host2"
 type="chat"
 >
 <body>Message me when you log in again.</body>
 <x
 xmlns="jabber:x:delay"
 from="node-a@host1"
 stamp="20020212T23:42:40">
 Offline Storage
 </x>
 </message>

 Last presence update sent by another node:

 <presence
 to="node-a@host1"
 from="node-b@host2"
 <status>In a meeting for the next two hours.</status>
 <show>xa</show>
 <priority>1</priority>
 <x
 from='node-a@host1'
 stamp='20020212T23:57:03'
 xmlns='jabber:x:delay'/>
 </presence>

Miller, et al. Expires August 22, 2002 [Page 60]

Internet-Draft Jabber February 2002

 Message sent in a conference room before the recipient arrived and
 cached for delivery to new entrants:

 <message
 type="groupchat"
 from="cauldron@conference.witches.org/firstwitch"
 to="thirdwitch@kinglear.org"
 >
 <body>Thrice the brinded cat hath mew'd.</body>
 <x
 xmlns="jabber:x:delay"
 from="cauldron@conference.witches.org"
 stamp="10541031T23:53:40">
 Cached In GC History
 </x>
 </message>

7.11 jabber:x:oob - Out-of-Band Data

 The jabber:x:oob namespace enables nodes to exchange special messages
 that contain URIs along along with a description. It is expected
 that a node will perform an HTTP HEAD request to determine the MIME
 type and size of any file before retrieving it from a URL.

7.11.1 Children

 o url - a Uniform Resource Locator for the file

 o desc - a natural language description of the file

7.11.2 DTD

 <!ELEMENT x ((url? | desc?)*)>

 <!ELEMENT url (#PCDATA)>
 <!ELEMENT desc (#PCDATA)>

Miller, et al. Expires August 22, 2002 [Page 61]

Internet-Draft Jabber February 2002

7.11.3 Schema

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://www.jabber.org/protocol'
 xmlns='http://www.jabber.org/protocol'
 elementFormDefault='qualified'>

 <xsd:element name='x'>
 <xsd:complexType>
 <xsd:choice minOccurs='0' maxOccurs='unbounded'>
 <xsd:element ref='url'/>
 <xsd:element ref='desc'/>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='url' type='xsd:string'/>
 <xsd:element name='desc' type='xsd:string'/>

 </xsd:schema>

7.11.4 Examples

 A node sends a message to another node containing information about
 an out-of-band transfer:

 <message from="sailor@sea" to="horatio@denmark">
 <body>URL Attached.</body>
 <x xmlns="jabber:x:oob">
 <url>http://denmark/act4/letter-1.html</url>
 <desc>There's a letter for you sir</desc>
 </x>
 </message>

7.12 jabber:x:roster - Embedded Roster Items

 The jabber:x:roster namespace is used to send roster items from one
 Jabber Entity to another.

7.12.1 Children

 An <x/> element scoped by the jabber:x:roster namespace may contain
 zero or more <item/> elements. An item element may contain the
 following attributes:

Miller, et al. Expires August 22, 2002 [Page 62]

Internet-Draft Jabber February 2002

 o jid - the Jabber Identifier of the item

 o name - a natural-language name or nickname for the item

 An <item/> element may also contain one or more of the following
 children:

 o group - Natural-language name of a user-specified group for the
 purpose of categorizing contacts into groups.

7.12.2 DTD

 <!ELEMENT x ((item)*)>

 <!ELEMENT item ((group)*)>
 <!ATTLIST item
 jid CDATA #IMPLIED
 name CDATA #IMPLIED
 >
 <!ELEMENT group (#PCDATA)>

Miller, et al. Expires August 22, 2002 [Page 63]

Internet-Draft Jabber February 2002

7.12.3 Schema

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://www.jabber.org/protocol'
 xmlns='http://www.jabber.org/protocol'
 elementFormDefault='qualified'>

 <xsd:element name='x'>
 <xsd:complexType>
 <xsd:sequence minOccurs='0' maxOccurs='unbounded'>
 <xsd:element ref='item'/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='item'>
 <xsd:complexType>
 <xsd:sequence minOccurs='0' maxOccurs='unbounded'>
 <xsd:element ref='group'/>
 </xsd:sequence>
 <xsd:attribute name='jid' type='xsd:string' use='optional'/>
 <xsd:attribute name='name' type='xsd:string' use='optional'/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='group' type='xsd:string'/>

 </xsd:schema>

Miller, et al. Expires August 22, 2002 [Page 64]

Internet-Draft Jabber February 2002

7.12.4 Examples

 Sending an embedded roster item to another node:

 <message to="hamlet@denmark" from="horatio@denmark">
 <subject>Visitors</subject>
 <body>This message contains roster items.</body>
 <x xmlns="jabber:x:roster">
 <item
 jid="rosencrantz@denmark"
 name="Rosencrantz">
 <group>Visitors</group>
 </item>
 <item
 jid="guildenstern@denmark"
 name="Guildenstern">
 <group>Visitors</group>
 </item>
 </x>
 </message>

Miller, et al. Expires August 22, 2002 [Page 65]

Internet-Draft Jabber February 2002

8. Authentication Mechanisms

 Authentication is any process of verifying that a Jabber Entity is
 who or what it claims it is. Because nodes, hosts, and services are
 fundamentally different kinds of entities, authentication is the only
 area of Jabber communications that has been perceived to necessitate
 differences at the protocol level (as opposed to implementation
 level) between the treatment of nodes, hosts, and services. The
 standard authentication mechanisms are described in this section.

8.1 Authentication of a Node by a Host

 The process by which a node is authenticated by a host is defined by
 the jabber:iq:auth namespace (Section 7.4). This process is used
 only within XML streams that are declared under the "jabber:client"
 namespace. (Note: because a host never authenticates with a node,
 there is no defined protocol by which such authentication would take
 place.)

8.2 Authentication of a Host by Another Host

8.2.1 Overview

 It became obvious to the developers of the Jabber protocol that they
 needed a method of verifying that a connection between two hosts
 could be trusted. Because the developers wished to avoid the
 overhead of building a network of trusted hosts, they sought a
 protocol-level system that would provide the necessary security.
 This method is called dialback and is used only within XML streams
 that are declared under the "jabber:server" namespace.

 The dialback protocol is used to prevent spoofing of a particular
 hostname and sending false data from it. Dialback is made possible
 by the existence of DNS, since one host can verify that another host
 which is connecting to it is authorized to represent a given host on
 the Jabber network. All DNS host resolutions must first resolve the
 host using an SRV [16] record of _jabber._tcp.host. If the SRV
 lookup fails, the fallback is a normal A lookup using the jabber-
 server port of 5269 assigned by the Internet Assigned Numbers
 Authority [12].

 Note that the method used to generate and verify the keys used in the
 dialback protocol must take into account the hostnames being used,
 along with a secret known only by the receiving host and the random
 id on the stream. Generating unique but verifiable keys is important
 to prevent common man-in-the-middle attacks and host spoofing.

 In the description that follows we use the following terminology:

Miller, et al. Expires August 22, 2002 [Page 66]

Internet-Draft Jabber February 2002

 o Originating Host - the host that is attempting to establish a
 connection between the two hosts

 o Receiving Host - the host that is trying to authenticate that the
 Originating Host represents the Jabber host which it claims to be

 o Authoritative Host - the host which is given when a DNS lookup is
 performed on the name that the Originating Host initially gave;
 for simple environments this will be the Originating Host, but it
 could be a separate machine in the Originating Host's network

 The following is a brief summary of the order of events in dialback:

 1. Originating Host establishes a connection to Receiving Host.

 2. Originating Host sends a 'key' value over the connection to
 Receiving Host.

 3. Receiving Host establishes a connection to Authoritative Host.

 4. Receiving Host sends the same 'key' value to Authoritative Host.

 5. Authoritative Host replies that key is valid or invalid.

 6. Receiving Host tells Originating Host whether it is authenticated
 or not.

 We can represent this flow of events graphically as follows:

Miller, et al. Expires August 22, 2002 [Page 67]

Internet-Draft Jabber February 2002

 Originating Receiving
 Host Host
 ----------- ---------
 | |
 | establish connection |
 | ----------------------> |
 | |
 | send stream header |
 | ----------------------> |
 | |
 | establish connection |
 | <---------------------- |
 | |
 | send stream header |
 | <---------------------- |
 | | Authoritative
 | send dialback key | Host
 | ----------------------> | -------------
 | | |
 | establish connection |
 | ----------------------> |
 | |
 | send stream header |
 | ----------------------> |
 | |
 | send stream header |
 | <---------------------- |
 | |
 | send dialback key |
 | ----------------------> |
 | |
 | validate dialback key |
 | <---------------------- |
 |
 | report dialback result |
 | <---------------------- |
 | |

8.2.2 Dialback Protocol

 The traffic sent between the hosts is as follows:

 1. Originating Host establishes connection to Receiving Host

 2. Originating Host sends a stream header to Receiving Host (the
 'to' and 'from' attributes are not required):

Miller, et al. Expires August 22, 2002 [Page 68]

Internet-Draft Jabber February 2002

 <stream:stream xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 xmlns:db='jabber:server:dialback'>

 Note: the value of the xmlns:db namespace declaration indicates
 to Receiving Host that Originating Host supports dialback.

 3. Receiving Host sends a stream header back to Originating Host
 (the 'to' and 'from' attributes are not required):

 <stream:stream xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 xmlns:db='jabber:server:dialback'
 id='457F9224A0...'>

 4. Originating Host sends a dialback key to Receiving Host:

 <db:result
 to='Receiving Host'
 from='Originating Host'>98AF014EDC0...</db:result>

 Note: this key is not examined by Receiving Host, since the
 Receiving Host does not keep information about Originating Host
 between sessions.

 5. Receiving Host now establishes a connection back to Originating
 Host, getting the Authoritative Host.

 6. Receiving Host sends Authoritative Host a stream header (the
 'to' and 'from' attributes are not required):

 <stream:stream xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 xmlns:db='jabber:server:dialback'>

 7. Authoritative Host sends Receiving Host a stream header:

 <stream:stream xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 xmlns:db='jabber:server:dialback'
 id='1251A342B...'>

 8. Receiving Host sends Authoritative Host a chunk indicating it
 wants Authoritative Host to verify a key:

Miller, et al. Expires August 22, 2002 [Page 69]

Internet-Draft Jabber February 2002

 <db:verify from='Receiving Host' to='Originating Host'
 id='457F9224A0...'>98AF014EDC0...</db:verify>

 Note: passed here are the hostnames, the original identifier
 from Receiving Host's stream header to Originating Host in step
 2, and the key Originating Host gave Receiving Host in step 3.
 Based on this information and shared secret information within
 the 'Originating Host' network, the key is verified. Any
 verifiable method can be used to generate the key.

 9. Authoritative Host sends a chunk back to Receiving Host
 indicating whether the key was valid or invalid:

 <db:result
 from='Originating Host'
 to='Receiving Host'
 type='valid'
 id='457F9224A0...'/>

 or

 <db:result
 from='Originating Host'
 to='Receiving Host'
 type='invalid'
 id='457F9224A0...'/>

 10. Receiving Host informs Originating Host of the result:

 <db:result
 from='Receiving Host'
 to='Originating Host'
 type='valid'/>

 Note: At this point the connection has either been validated via
 a type='valid', or reported as invalid. Once the connection is
 validated, data can be sent by the Originating Host and read by
 the Receiving Host; before that, all data chunks sent to
 Receiving Host are dropped. As a final guard against domain
 spoofing, the Receiving Host must validate all XML chunk
 received from the Originating Host to verify that the from
 address of each chunk includes the validated domain.

8.3 Authentication of Services

 As noted under Section 5.2, there are two ways that a service and a
 host can communicate:

Miller, et al. Expires August 22, 2002 [Page 70]

Internet-Draft Jabber February 2002

 1. The service initiates communications to the host. In this case
 the namespace declaration is "jabber:component:accept" (since the
 host "accepts" communications from the service).

 2. The host initiates communications to the service. In this case
 the namespace declaration is "jabber:component:connect" (since
 the host "connects" to the service).

 The authentication methods for these communication directions are
 defined in this section.

8.3.1 Authentication of a Service by a Host

 When a service initiates a connection to a host, the host will want
 to verify the identity of the service so that it knows whether the
 service can be trusted. The first step is to negotiate the XML
 streams between the service and the host, scoped within the
 "jabber:component:accept" namespace:

 Initiation of XML stream from service to host:

 <stream:stream
 xmlns='jabber:component:accept'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='host'>

 XML stream sent in reply from host to service:

 <stream:stream
 xmlns='jabber:component:accept'
 xmlns:stream='http://etherx.jabber.org/streams'
 from='host'
 id='someid'>

 (Note: the XML stream returned from the host to the service contains
 an 'id' attribute. This ID functions as a session key for the
 service's connection to the host.)

 The next step is for the service to provide authentication
 credentials to the host. These credentials are sent in a <handshake/
 > element. The information contained in the handshake element is a
 concatenation of the stream id and a secret known by the host and the
 service, encrypted according to the SHA1 Secure Hash Algorithm [14]
 and represented as all lowercase hex.

Miller, et al. Expires August 22, 2002 [Page 71]

Internet-Draft Jabber February 2002

 Handshake sent from service to host:

 <handshake>aaee83c26aeeafcbabeabfcbcd50df997e0a2a1e</handshake>

 If the host determines that the service's authentication credentials
 are valid, it will return an empty <handshake/> element to the
 service.

 Handshake validation sent from host to service:

 <handshake/>

 If the host determines that the service's authentication credentials
 are not valid, it will return a stream error to the service and close
 the stream.

 Host sends stream error to service:

 <stream:error>Invalid handshake</stream:error>
 </stream:stream>

8.3.2 Authentication of a Host by a Service

 When a host initiates a connection to a service, the service will
 want to verify the identity of the host so that it knows whether the
 host can be trusted (e.g., if a service accepts connections from
 multiple hosts). The first step is to negotiate the XML streams
 between the service and the host, scoped within the
 "jabber:component:connect" namespace.

 Initiation of XML stream from host to service:

 <stream:stream
 xmlns='jabber:component:connect'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='service'>

 XML stream sent in reply from service to host:

 <stream:stream
 xmlns='jabber:component:connect'
 xmlns:stream='http://etherx.jabber.org/streams'
 from='service'
 id='someid'>

 (Note: the XML stream returned from the service to the host contains
 an 'id' attribute. This ID functions as a session key for the host's

Miller, et al. Expires August 22, 2002 [Page 72]

Internet-Draft Jabber February 2002

 connection to the service.)

 The next step is for the host to provide authentication credentials
 to the service. These credentials are sent in a <handshake/>
 element. The information contained in the handshake element is a
 concatenation of the stream id and a secret known by the host and the
 service, encrypted according to the SHA1 Secure Hash Algorithm [14]
 and represented as all lowercase hex.

 Handshake sent from host to service:

 <handshake>aaee83c26aeeafcbabeabfcbcd50df997e0a2a1e</handshake>

 If the service determines that the host's authentication credentials
 are valid, it will return an empty <handshake/> element to the host.

 Handshake validation sent from host to service:

 <handshake/>

 If the service determines that the host's authentication credentials
 are not valid, it will return a stream error to the host and close
 the stream.

 Host sends stream error to service:

 <stream:error>Invalid handshake</stream:error>
 </stream:stream>

Miller, et al. Expires August 22, 2002 [Page 73]

Internet-Draft Jabber February 2002

9. Routing, Delivery, and Presence Guidelines

9.1 Routing and Delivery of XML Chunks

 XML chunks that are not handled directly by a host (e.g., for the
 purpose of data storage) are routed or delivered to the intended
 recipient of the chunk as represented by a Jabber Identifier in the
 'to' attribute. The following rules apply:

 o If the Jabber Identifier contains a resource identifier
 (to="node@host/resource"), the chunk is delivered first to the
 resource that exactly matches the resource identifier, or
 secondarily to a resource that matches partially (e.g., resource
 "foo" partially matches resource identifier "foobar").

 o If the Jabber Identifier contains a resource identifier and there
 are no matching resources, but there are other connected resources
 associated with the node, then message chunks are further
 processed as if no resource is specified (see next item). For all
 other chunks, the host should return them to the sender with a
 type of "error" and an appropriate error code (503) and message.

 o If the Jabber Identifier contains only a node@host and there is at
 least one connected resource available for the node, the host
 should deliver the chunk to an appropriate resource based on the
 availability state, priority, and connect time of the connected
 resource(s).

 o If the Jabber Identifier contains only a node@host and there are
 no connected resources available for the node (e.g., an IM user is
 offline), the host may choose to store the chunk (usually only
 message and presence subscription chunks) on behalf of the node
 and deliver the chunk when a resource becomes available for that
 node.

9.2 Availability Tracking

 A host is responsible for keeping track of who has been notified of
 availability for a resource, and for ensuring that all of those
 entities are notified when the resource becomes unavailable.

9.3 Presence Probe

 Hosts may discover the presence of remote entities on behalf of a
 connected node by sending a presence chunk of type "probe". The
 remote host is responsible for responding to the presence probe only
 when (1) the probing entity has been allowed to access the probed

Miller, et al. Expires August 22, 2002 [Page 74]

Internet-Draft Jabber February 2002

 entity's presence (e.g., by server rules or user subscriptions) and
 (2) the probed entity is available. The probing entity's host then
 informs the probing entity of the probed entity's last known
 available presence (for all of the probed entity's resources if
 applicable).

9.4 Presence Broadcast

 When a node first becomes available, the host sends presence probes
 to any remote entities that are subscribed to that node's presence.
 The host then sends the node's initial presence chunk and any future
 presence changes to any subscribed entities.

9.5 Supported Namespaces

 If an entity receives an iq chunk in a namespace it does not
 understand, the entity should return an iq chunk of type "error" with
 an appropriate error element (code 400, bad request). If an entity
 receives a message chunk without a body and a namespace it does not
 understand, it must ignore that chunk. If an entity receives a
 message or presence chunk that contains XML data in an extended
 namespace it does not understand, the portion of the chunk that is in
 the unknown namespace should be ignored.

Miller, et al. Expires August 22, 2002 [Page 75]

Internet-Draft Jabber February 2002

10. Security Considerations

10.1 SSL

 Hosts can additionally support normal SSL [17] connections for added
 security on port 5223 for node-to-host communications and 5270 for
 host-to-host communications.

10.2 Secure Identity and Encryption

 Nodes may optionally support signing and encrypting messages and
 presence by using the Public Key Infrastructure (e.g., PGP/GnuPG),
 with the encrypted or signed data sent in an <x/> element in the
 jabber:x:encrypted or jabber:x:signed namespace. (These are draft
 protocols and are not covered in this document.)

 The Jabber model specifically does not require trust in the remote
 hosts. Although there may be benefits to a "trusted host" model,
 direct node-to-node trust is already in use in the SMTP protocol and
 allows those who desire a higher level of security to use it without
 requiring the significant increase in complexity throughout the
 architecture required to implement a trusted host model.

10.3 Node Connections

 The IP address and method of access of nodes are never made
 available, nor are any connections other than the original host
 connection required. This protects the node's host from direct
 attack or identification by third parties via a gateway.

10.4 Presence Information

 Presence subscriptions are enforced by the node's host. Only the
 approved entities are able to discover a node's availability.

10.5 Host-to-Host Communications

 There is no necessity for any given Jabber host to communicate with
 other Jabber hosts, and host-to-host communications may be disabled
 by the administrator of any given Jabber deployment. This is
 especially valuable in non-public environments such as a company
 intranet.

 For additional host-to-host security measures such as prevention of
 spoofing, see Section 8.2.

Miller, et al. Expires August 22, 2002 [Page 76]

Internet-Draft Jabber February 2002

11. Multi-User Chat

 In addition to one-to-one conversations between two people or
 entities, Jabber also enables multi-user chat environments similar to
 those of Internet Relay Chat. In Jabber these environments are
 variously called chat rooms or conference rooms, and utilize a
 special message type of "groupchat". Each room is identified as a
 node@host, specifically as room-name@conference-service, where
 "conference-service" is the hostname at which the conference service
 is running. Each participant in a room is identified as a node@host/
 resource, specifically room-name@conference-service/nickname, where
 "nickname" is the nickname of the participant (which may or may not
 be the participant's actual username).

 Because multi-user chat is not usually considered part of the core
 functionality provided by an IM system, we have decided to describe
 it separately from the main body of this document, even though all
 XML data sent in order to provide multi-user chat functionality is
 fully compliant with the base protocols. The following descriptions
 are divided by "use case" to highlight how the Jabber protocols have
 been used to provide limited multi-user chat functionality.

11.1 Entering a Room

 An IM user or other Jabber Entity becomes a participant in a room by
 entering the room. The user does this by sending presence to the
 room.

 User enters room:

 JABBER USER SENDS:
 <presence
 to='room-name@conference-service/nickname'/>

 JABBER USER RECEIVES:
 <presence
 from='room-name@conference-service/nickname'
 to='node@host/resource'/>

11.2 Sending a Message to All Participants

 A participant can send a message to all other participants in the
 room by sending a message of type "groupchat" to the room itself.
 The conference service is then responsible for reflecting that
 message out to all the participants with a type of "groupchat".

Miller, et al. Expires August 22, 2002 [Page 77]

Internet-Draft Jabber February 2002

 Participant sends message to all participants:

 PARTICIPANT SENDS:
 <message
 to='room-name@conference-service'>
 <body>Hello world</body>
 </message>

 EACH PARTICIPANT RECEIVES:
 <message
 from='room-name@conference-service/nickname'
 to='node@host/resource'
 type='groupchat'>
 <body>Hello room!</body>
 </message>

11.3 Sending a Message to A Selected Participant

 A participant can send a message to a specific other participant in
 the room by sending a message of type other than "groupchat" to that
 participant.

 Participant sends message to a selected participant:

 PARTICIPANT SENDS:
 <message
 to='room-name@conference-service/nick2'
 type='chat'>
 <body>Hi</body>
 </message>

 RECIPIENT RECEIVES:
 <message
 from='room-name@conference-service/nick1'
 to='node@host/resource'
 type='chat'>
 <body>Hi</body>
 </message>

11.4 Changing Nickname

 A participant can change his or her nickname in a room by sending
 updated presence information to the room.

Miller, et al. Expires August 22, 2002 [Page 78]

Internet-Draft Jabber February 2002

 Participant sends nickname change:

 PARTICIPANT SENDS:
 <presence to='room-name@conference-service/newnick'/>

 PARTICIPANT RECEIVES:
 <presence
 from='room-name@conference-service/oldnick'
 to='node@host/resource'
 type='unavailable'/>

 <presence
 from='room-name@conference-service/newnick'
 to='node@host/resource'/>

11.5 Exiting a Room

 A participant exits a room by sending presence of type "unavailable"
 to the room.

 User exits room:

 PARTICIPANT SENDS:
 <presence
 to='room-name@conference-service/nickname'
 type='unavailable'/>

 PARTICIPANT RECEIVES:
 <presence
 from='room-name@conference-service/nickname'
 to='node@host/resource'
 type='unavailable'/>

Miller, et al. Expires August 22, 2002 [Page 79]

Internet-Draft Jabber February 2002

12. IMPP and Interoperability Notes

12.1 Requirements Conformance

 The Jabber protocols presented herein are in near conformance to RFC
2778 [18] and RFC 2779 [19]. Notable differences are:

 o RFC 2779, section 2.5 - Complete conformance with these
 requirements can be obtained by using the public key
 infrastructure via applications such as PGP or GnuPG.

 o RFC 2779, section 4.1, paragraph 10 - all MIME data is delivered
 via HTTP.

 Note: the Jabber protocols have been in evolution for approximately
 four years as of the date of this memo, thus they have not been
 designed in response to RFCs 2778 and 2779.

12.2 Interoperability

 Jabber provides interoperability with certain non-Jabber instant
 messaging networks, but at the cost of reverse engineering each non-
 Jabber instant messaging protocol and operating a host-based gateway
 to that protocol. The form of interoperability that Jabber offers
 also requires the Jabber user to have a valid account on each non-
 Jabber instant messaging network. It is recognized that this form of
 interoperability is sub-optimal, and the Jabber community looks
 forward to assisting in the development of standards-based
 interoperability.

https://datatracker.ietf.org/doc/html/rfc2778
https://datatracker.ietf.org/doc/html/rfc2778
https://datatracker.ietf.org/doc/html/rfc2779
https://datatracker.ietf.org/doc/html/rfc2779#section-2.5
https://datatracker.ietf.org/doc/html/rfc2779#section-4.1

Miller, et al. Expires August 22, 2002 [Page 80]

Internet-Draft Jabber February 2002

13. Known Deficiencies

13.1 Further Definition of Transport Layer

 The transport layer, currently implemented via XML streams, needs to
 be better defined and even further separated from the data to be
 transported. Ideally, any stateful, namespace-aware transport layer
 should be able to transport the common data types defined in the
 Jabber protocols.

 Because Jabber was designed as a lightweight transport layer for
 routing instant messages, presence, and related information, quality
 of service (QoS) did not rank high in the priorities of its
 designers. In addition, features such as multi-hop routing and end-
 to-end store and forward of messages would be desirable in large-
 scale or mission-critical implementations of the Jabber protocols.

 The Jabber protocols were built from the ground up to use XML, and
 the primary focus was on the exchange of small chunks of structured
 information. For this reason, the transport of binary payloads was
 not a priority and currently is supported only by sending them out of
 band (e.g., through HTTP PUTs to and GETs from a DAV server). Robust
 support for binary payloads would be desirable.

 The current method of separating discrete semantic units from the
 stream in Jabber is elegant because all the necessary framing
 information is inherent in the XML; it makes framing entirely
 independent of the underlying transport layer. However, it has
 significant performance disadvantages, since it requires a Jabber
 Entity to parse the XML for the entire XML chunk in order to extract
 a subset of the information from it. A less resource-intensive
 framing mechanism may be desirable.

13.2 More Complete Namespace Support

 At present the Jabber protocols comply only with a subset of the XML
 namespace specification and do not offer the full flexibility of XML
 namespaces. In addition it would be beneficial for the Jabber
 protocols to enable types of availability other than those defined
 for the <show/> element through a properly namespaced sub-element of
 the presence data type.

13.3 More Flexible Routing

 Existing Jabber implementations contain some hardcoded rules (based
 on <priority/> and most recent connection time) for the routing of
 XML chunks to the resources associated with a node. A more flexible
 approach to routing would be desirable. In addition, full

Miller, et al. Expires August 22, 2002 [Page 81]

Internet-Draft Jabber February 2002

 conformance with RFC 2396 [7] would be valuable, perhaps by
 prepending the string "jabber:" to the Jabber Identifier, resulting
 in a URI of the form "jabber:node@host/resource".

13.4 More Robust Security

 While the current Jabber protocols use Secure Sockets Layer to
 provide transport-level encryption and node-level encryption (PGP/
 GPG) for end-to-end message encryption, it would also be desirable to
 support network-wide authentication and trust based on the Public Key
 Infrastructure. This might be pursued through a Certificate
 Authority model, a Web of Trust model, or some combination of the
 two. In addition, XML encryption would be a valuable addition to the
 Jabber protocols.

13.5 Improved Subscriptions Model

 The current specification overloads the presence element in order to
 provide a mechanism for subscription requests and responses. It is
 recognized that this solution is sub-optimal and a future protocol
 revision will address this deficiency by providing subscription
 functionality through the iq element and an appropriate namespace.
 Even further, a generic mechanism for publication and subscription
 (pub/sub) and the management of access control lists (ACLs) would be
 quite beneficial, perhaps on a model similar to the Presence and
 Availability Management [20] specfication.

https://datatracker.ietf.org/doc/html/rfc2396

Miller, et al. Expires August 22, 2002 [Page 82]

Internet-Draft Jabber February 2002

14. Future Specifications and Submissions

 Future specifications and submissions related to the Jabber protocols
 will most likely focus on a clear separation between the different
 protocol levels (e.g., routing, data transport, and messaging/
 presence), as well as next-generation protocol enhancements that
 address the deficiencies described in the previous section.

Miller, et al. Expires August 22, 2002 [Page 83]

Internet-Draft Jabber February 2002

References

 [1] Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC 821,
 August 1982.

 [2] Fielding, R., Gettys, J., Mogul, J., Frystyk, H. and T.
 Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1", RFC

2068, January 1997, <http://www.ietf.org/rfc/rfc2068.txt>.

 [3] World Wide Web Consortium, "HyperText Markup Language", January
 2000, <http://www.w3.org/TR/html/>.

 [4] World Wide Web Consortium, "Extensible Markup Language (XML)
 1.0 (Second Edition)", W3C xml, October 2000, <http://

www.w3.org/TR/2000/REC-xml-20001006>.

 [5] XML-RPC.com, "XML-RPC", May 2001, <http://www.xmlrpc.com/spec>.

 [6] World Wide Web Consortium, "SOAP", May 2000, <http://
www.w3.org/TR/SOAP/>.

 [7] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396, August
 1998, <http://www.ietf.org/rfc/rfc2396.txt>.

 [8] Braden, R., "Requirements for Internet Hosts - Communication
 Layers", STD 3, RFC 1122, October 1989.

 [9] Jeremie Miller, et al., "The jabberd Project", January 1998,
 <http://jabberd.jabberstudio.org/>.

 [10] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [11] University of Southern California, "Transmission Control
 Protocol", RFC 793, September 1981, <http://www.ietf.org/rfc/

rfc0793.txt>.

 [12] Internet Assigned Numbers Authority, "Internet Assigned Numbers
 Authority", January 1998, <http://www.iana.org/>.

 [13] World Wide Web Consortium, "Namespaces in XML", W3C xml-names,
 January 1999, <http://www.w3.org/TR/1999/REC-xml-names-

19990114/>.

 [14] World Wide Web Consortium, "Secure Hash Algorithm - Version
 1.0", October 1997, <http://www.w3.org/PICS/DSig/

SHA1_1_0.html>.

https://datatracker.ietf.org/doc/html/rfc821
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068
http://www.ietf.org/rfc/rfc2068.txt
http://www.w3.org/TR/html/
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.xmlrpc.com/spec
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/SOAP/
https://datatracker.ietf.org/doc/html/rfc2396
http://www.ietf.org/rfc/rfc2396.txt
https://datatracker.ietf.org/doc/html/rfc1122
http://jabberd.jabberstudio.org/
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc793
http://www.ietf.org/rfc/rfc0793.txt
http://www.ietf.org/rfc/rfc0793.txt
http://www.iana.org/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/PICS/DSig/SHA1_1_0.html
http://www.w3.org/PICS/DSig/SHA1_1_0.html

Miller, et al. Expires August 22, 2002 [Page 84]

Internet-Draft Jabber February 2002

 [15] International Organization for Standardization, "Data elements
 and interchange formats - Information interchange -
 Representation of dates and times", ISO Standard 8601, June
 1988.

 [16] Gulbrandsen, A. and P. Vixie, "A DNS RR for specifying the
 location of services (DNS SRV)", RFC 2052, October 1996.

 [17] Freier, A., Karlton, P. and P. Kocher, "The SSL Protocol -
 Version 3.0", November 1996, <http://home.netscape.com/eng/

ssl3/draft302.txt>.

 [18] Day, M., Rosenberg, J. and H. Sugano, "A Model for Presence and
 Instant Messaging", RFC 2778, February 2000, <http://

www.ietf.org/rfc/rfc2778.txt>.

 [19] Day, M., Aggarwal, S., Mohr, G. and J. Vincent, "A Model for
 Presence and Instant Messaging", RFC 2779, February 2000,
 <http://www.ietf.org/rfc/rfc2779.txt>.

 [20] PAM Forum, "Presence and Availability Management", September
 2001, <http://www.pamforum.org/>.

Authors' Addresses

 Jeremie Miller
 Jabber Software Foundation
 1899 Wynkoop Street, Suite 600
 Denver, CO 80202
 US

 EMail: jeremie@jabber.org
 URI: http://www.jabber.org/

 Peter Saint-Andre
 Jabber Software Foundation
 1899 Wynkoop Street, Suite 600
 Denver, CO 80202
 US

 EMail: stpeter@jabber.org
 URI: http://www.jabber.org/

https://datatracker.ietf.org/doc/html/rfc2052
http://home.netscape.com/eng/ssl3/draft302.txt
http://home.netscape.com/eng/ssl3/draft302.txt
https://datatracker.ietf.org/doc/html/rfc2778
http://www.ietf.org/rfc/rfc2778.txt
http://www.ietf.org/rfc/rfc2778.txt
https://datatracker.ietf.org/doc/html/rfc2779
http://www.ietf.org/rfc/rfc2779.txt
http://www.pamforum.org/
http://www.jabber.org/
http://www.jabber.org/

Miller, et al. Expires August 22, 2002 [Page 85]

Internet-Draft Jabber February 2002

 James Barry
 Jabber, Inc.
 1899 Wynkoop Street, Suite 600
 Denver, CO 80202
 US

 EMail: jmbarry@jabber.com
 URI: http://www.jabber.com/

Miller, et al. Expires August 22, 2002 [Page 86]

http://www.jabber.com/

Internet-Draft Jabber February 2002

Appendix A. The <error/> element

 A standard error element is used for failed processing of XML chunks.
 This element is a child of the failed element.

A.1 Attributes

 o code - a numerical error code corresponding to a specific error
 description. The numerical codes used in Jabber are nearly
 synchronous with HTTP error codes:

 * 302 (Redirect) - Whereas the HTTP spec contains eight different
 codes for redirection, Jabber contains only one (which is
 intended to stand for any redirection error). However, Jabber
 code 302 is being reserved for future functionality and is not
 implemented at this time.

 * 400 (Bad Request) - Jabber code 400 is used to inform a sender
 that a request could not be understood by the recipient because
 it cannot be understood. This might be generated when, for
 example, a Jabber Entity sends a message that does not have a
 'to' attribute, or when a node attempts to authenticate without
 sending a username.

 * 401 (Unauthorized) - Jabber code 401 is used to inform Jabber
 nodes that they have provided incorrect authorization
 information, e.g., an incorrect password or unknown username
 when attempting to authenticate with a Jabber host.

 * 402 (Payment Required) - Jabber code 402 is being reserved for
 future use and is not in use at this time.

 * 403 (Forbidden) - Jabber code 403 is used to inform a Jabber
 Entity that the its request was understood but that the
 recipient is refusing to fulfill it, e.g., if a node attempts
 to set information (e.g., preferences or profile information)
 associated with another node.

 * 404 (Not Found) - Jabber code 404 is used to inform a sender
 that no recipient was found matching the Jabber Identifier to
 which an XML chunk was sent, e.g., if a sender has attempted to
 send a message to a Jabber Identifier that does not exist.
 (Note: if the host of the intended recipient cannot be reached,
 an error code from the 500 series will be sent).

 * 405 (Not Allowed) - Jabber code 405 is used when the action
 requested is not allowed for the Jabber Identifier identified
 by the 'from' address, e.g., if a node attempts to set the time

Miller, et al. Expires August 22, 2002 [Page 87]

Internet-Draft Jabber February 2002

 or version of a Jabber host.

 * 406 (Not Acceptable) - Jabber code 406 is used when an XML
 chunk is for some reason not acceptable to a host or other
 Jabber Entity. This might be generated when, for example, a
 node attempts to register with a host using an empty password.

 * 407 (Registration Required) - Jabber code 407 is used when a
 message or request is sent to a service that requires prior
 registration, e.g., if a node attempts to send a message
 through a gateway to a non-Jabber instant messaging system
 without having first registered with that gateway.

 * 408 (Request Timeout) - Jabber code 408 is returned when a
 recipient does not produce a response within the time that the
 sender was prepared to wait.

 * 500 (Internal Server Error) - Jabber code 500 is used when a
 Jabber host or service encounters an unexpected condition which
 prevents it from handling an XML chunk from a sender, e.g., if
 an authentication request is not handled by a host because the
 password could not be retrieved or if password storage fails
 when a node attempts to register with a host.

 * 501 (Not Implemented) - Jabber code 501 is used when the
 recipient does not support the functionality being requested by
 a sender, e.g., if a node sends an authentication request that
 does not contain the elements defined by at least one of the
 accepted authentication methods or when a node attempts to
 register with a host that does not allow registration.

 * 502 (Remote Server Error) - Jabber code 502 is used when
 delivery of an XML chunk fails because of an inability to reach
 the intended remote host or service. Specific examples of why
 this code is generated include a failure to connect to the
 remote host or resolve its hostname.

 * 503 (Service Unavailable) - Jabber code 503 is used when a
 sender requests a service that a recipient is currently unable
 to handle, usually for temporary reasons, e.g., if a sender
 attempts to send a message to a recipient that is offline but
 the recipient's host is not running an offline message storage
 service.

 * 504 (Remote Server Timeout) - Jabber code 504 is used when
 attempts to contact a remote host timeout, e.g., if an
 incorrect hostname is specified.

Miller, et al. Expires August 22, 2002 [Page 88]

Internet-Draft Jabber February 2002

A.2 Examples

 Message error:

 <message
 to="juliet@montague.net"
 from="romeo@montague.net"
 type="error">
 <body>Sleep dwell upon thine eyes</body>
 <error code="404">Not Found</error>
 </message>

 IQ Error:

 <iq
 type="error"
 from="service.shakespeare"
 to="juliet@capulet.com"
 id="i_002">
 <query xmlns="jabber:iq:register">
 <name>juliet</name>
 <email>juliet@somehost</email>
 <password>r0m30</password>
 </query>
 <error code="502">Remote Server Error</error>
 </iq>

Miller, et al. Expires August 22, 2002 [Page 89]

Internet-Draft Jabber February 2002

Appendix B. Acknowledgments

 Thanks are due to all members of the Jabber Software Foundation. The
 following individuals have provided especially valuable assistance
 with the development of the Jabber protocols and/or comments on this
 document:

 o John Hager

 o Michael Lin

 o Peter Millard

 o Julian Missig

 o Thomas Muldowney

 o Iain Shigeoka

 o Dave Smith

 o Daniel Veillard

 o David Waite

Miller, et al. Expires August 22, 2002 [Page 90]

Internet-Draft Jabber February 2002

Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Miller, et al. Expires August 22, 2002 [Page 91]

