
Internet Engineering Task Force D. Miller
Internet-Draft OpenSSH
Intended status: Informational September 30, 2017
Expires: April 3, 2018

SSH Agent Protocol
draft-miller-ssh-agent-02

Abstract

 This document describes a key agent protocol for use in the Secure
 Shell (SSH) protocol.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 3, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Miller Expires April 3, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft SSH Agent September 2017

Table of Contents

1. Introduction . 2
2. Requirements Language . 3
3. Protocol Overview . 3
4. Protocol Messages . 3
4.1. Generic server responses 3
4.2. Adding keys to the agent 4
4.2.1. DSA keys . 4
4.2.2. ECDSA keys . 5
4.2.3. ED25519 keys . 5
4.2.4. RSA keys . 6
4.2.5. Adding keys from a token 6
4.2.6. Key Constraints 7
4.2.6.1. Key lifetime constraint 7
4.2.6.2. Key confirmation constraint 8
4.2.6.3. Constraint extensions 8

4.3. Removing keys from the agent 8
4.4. Requesting a list of keys 9
4.5. Private key operations 9
4.5.1. Signature flags 10

4.6. Locking and unlocking an agent 10
4.7. Extension mechanism 11
4.7.1. Query extension 11

5. Protocol numbers . 11
5.1. Message numbers . 12
5.1.1. Reserved message numbers 12

5.2. Constraint identifiers 12
5.3. Signature flags . 13

6. Acknowledgements . 13
7. IANA Considerations . 13
7.1. New registry: SSH agent protocol numbers 13
7.2. New registry: SSH agent key constraint numbers 14
7.3. New registry: SSH agent signature flags 15

8. Security Considerations 15
9. Normative References . 16

 Author's Address . 17

1. Introduction

 Secure Shell (SSH) is a protocol for secure remote connections and
 login over untrusted networks. It supports multiple authentication
 mechanisms, including public key authentication. This document
 describes the protocol for interacting with an agent that holds
 private keys. Clients (and possibly servers) can use invoke the
 agent via this protocol to perform operations using public and
 private keys held in the agent.

Miller Expires April 3, 2018 [Page 2]

Internet-Draft SSH Agent September 2017

 Holding keys in an agent offers usability and security advantages to
 loading and unwrapping them at each use. Moreover, the agent
 implements a simple protocol and presents a smaller attack surface
 than a key loaded into a full SSH server or client.

 This agent protocol is already widely used and a de-facto standard,
 having been implemented by a number of popular SSH clients and
 servers for many years. The purpose of this document is to describe
 the protocol as it has been implemented.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Protocol Overview

 The agent protocol is a packetised request-response protocol, solely
 driven by the client. It consists of a number of requests sent from
 the client to the server and a set of reply messages that are sent in
 response. At no time does the server send messages except in
 response to a client request. Replies are sent in order.

 All values in the agent protocol are encoded using the SSH wire
 representations specified by [RFC4251]. Messages consist of a
 length, type and contents.

 uint32 message length
 byte message type
 byte[message length - 1] message contents

4. Protocol Messages

4.1. Generic server responses

 The following generic messages may be sent by the server in response
 to requests from the client. On success the agent may reply either
 with:

 byte SSH_AGENT_SUCCESS

 or a request-specific success message. On failure, the agent may
 reply with:

 byte SSH_AGENT_FAILURE

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4251

Miller Expires April 3, 2018 [Page 3]

Internet-Draft SSH Agent September 2017

 SSH_AGENT_FAILURE messages are also sent in reply to requests with
 unknown types.

4.2. Adding keys to the agent

 Keys may be added to the agent using the SSH_AGENTC_ADD_IDENTITY or
 SSH_AGENTC_ADD_ID_CONSTRAINED messages. The latter variant allows
 adding keys with optional constraints on their usage.

 The generic format for the key SSH_AGENTC_ADD_IDENTITY message is:

 byte SSH_AGENTC_ADD_IDENTITY
 string key type
 byte[] key contents
 string key comment

 Here "type" is the specified key type name, for example "ssh-rsa" for
 a RSA key as defined by [RFC4253]. "contents" consists of the public
 and private components of the key and vary by key type, they are
 listed below for standard and commonly used key types. "comment" is
 an optional human-readable key name or comment as a UTF-8 string that
 may serve to identify the key in user-visible messages.

 The SSH_AGENTC_ADD_ID_CONSTRAINED is similar, but adds a extra field:

 byte SSH_AGENTC_ADD_ID_CONSTRAINED
 string type
 byte[] contents
 string comment
 constraint[] constraints

 Constraints are used to place limits on the validity or use of keys.
Section 4.2.6 details constraint types and their format.

 An agent should reply with SSH_AGENT_SUCCESS if the key was
 successfully loaded as a result of one of these messages, or
 SSH_AGENT_FAILURE otherwise.

4.2.1. DSA keys

 DSA keys have key type "ssh-dss" and are defined in [RFC4253]. They
 may be added to the agent using the following message. The
 "constraints" field is only present for the
 SSH_AGENTC_ADD_ID_CONSTRAINED message.

https://datatracker.ietf.org/doc/html/rfc4253
https://datatracker.ietf.org/doc/html/rfc4253

Miller Expires April 3, 2018 [Page 4]

Internet-Draft SSH Agent September 2017

 byte SSH_AGENTC_ADD_IDENTITY or
 SSH_AGENTC_ADD_ID_CONSTRAINED
 string "ssh-dss"
 mpint p
 mpint q
 mpint g
 mpint y
 mpint x
 string comment
 constraint[] constraints

 The "p", "q", "g" values are the DSA domain parameters. "y" and "x"
 are the public and private keys respectively. These values are as
 defined by [FIPS.186-4].

4.2.2. ECDSA keys

 ECDSA keys have key types starting with "ecdsa-sha2-" and are defined
 in [RFC5656]. They may be added to the agent using the following
 message. The "constraints" field is only present for the
 SSH_AGENTC_ADD_ID_CONSTRAINED message.

 byte SSH_AGENTC_ADD_IDENTITY or
 SSH_AGENTC_ADD_ID_CONSTRAINED
 string key type
 string ecdsa_curve_name
 string Q
 mpint d
 string comment
 constraint[] constraints

 The values "Q" and "d" are the ECDSA public and private values
 respectively. Both are defined by [FIPS.186-4].

4.2.3. ED25519 keys

 Ed25519 keys have key type "ssh-ed25519" and are defined in
 [I-D.ietf-curdle-ssh-ed25519]. They may be added to the agent using
 the following message. The "key constraints" field is only present
 for the SSH_AGENTC_ADD_ID_CONSTRAINED message.

 byte SSH_AGENTC_ADD_IDENTITY or
 SSH_AGENTC_ADD_ID_CONSTRAINED
 string "ssh-ed25519"
 string ENC(A)
 string k || ENC(A)
 string comment
 constraint[] constraints

https://datatracker.ietf.org/doc/html/rfc5656

Miller Expires April 3, 2018 [Page 5]

Internet-Draft SSH Agent September 2017

 The first value is the 32 byte Ed25519 public key "ENC(A)". The
 second value is a concatenation of the 32 byte private key "k" and 32
 byte public "ENC(A)" key. The contents and interpretation of the
 "ENC(A)" and "k" values are defined by [I-D.irtf-cfrg-eddsa].

4.2.4. RSA keys

 RSA keys have key type "ssh-rsa" and are defined in [RFC4253]. They
 may be added to the agent using the following message. The "key
 constraints" field is only present for the
 SSH_AGENTC_ADD_ID_CONSTRAINED message.

 byte SSH_AGENTC_ADD_IDENTITY or
 SSH_AGENTC_ADD_ID_CONSTRAINED
 string "ssh-rsa"
 mpint n
 mpint e
 mpint d
 mpint iqmp
 mpint p
 mpint q
 string comment
 constraint[] constraints

 "n" is the public composite modulus. "p" and "q" are its constituent
 private prime factors. "e" is the public exponent. "iqmp" is the
 inverse of "q" modulo "p". All these values except "iqmp" (which can
 be calculated from the others) are defined by [FIPS.186-4].

4.2.5. Adding keys from a token

 Keys hosted on smart-cards or other hardware tokens may be added
 using the SSH_AGENTC_ADD_SMARTCARD_KEY and
 SSH_AGENTC_ADD_SMARTCARD_KEY_CONSTRAINED requests. Note that
 "constraints" field is only included for the
 SSH_AGENTC_ADD_SMARTCARD_KEY_CONSTRAINED variant of this message.

 byte SSH_AGENTC_ADD_SMARTCARD_KEY or
 SSH_AGENTC_ADD_SMARTCARD_KEY_CONSTRAINED
 string id
 string PIN
 constraint[] constraints

 Here "id" is an opaque identifier for the hardware token and "PIN" is
 an optional password on PIN to unlock the key. The interpretation of
 "id" is not defined by the protocol but is left solely up to the
 agent.

https://datatracker.ietf.org/doc/html/rfc4253

Miller Expires April 3, 2018 [Page 6]

Internet-Draft SSH Agent September 2017

 Typically only the public components of any keys supported on a
 hardware token will be loaded into an agent so, strictly speaking,
 this message really arranges future private key operations to be
 delegated to the hardware token in question.

 An agent should reply with SSH_AGENT_SUCCESS if one or more keys were
 successfully loaded as a result of one of these messages, or
 SSH_AGENT_FAILURE if no keys were found. The agent should also
 return SSH_AGENT_FAILURE if the token "id" was not recognised or if
 the agent doesn't support token-hosted keys at all.

4.2.6. Key Constraints

 A number of constraints and may be used in the constrained variants
 of the key add messages. Each constraint is represented by a type
 byte followed by zero or more value bytes.

 Zero or more constraints may be specified when adding a key with one
 of the *_CONSTRAINED requests. Multiple constraints are appended
 consecutively to the end of the request:

 byte constraint1_type
 byte[] constraint1_data
 byte constraint2_type
 byte[] constraint2_data

 byte constraintN_type
 byte[] constraintN_data

 If an agent does not recognise or support a requested constraint it
 MUST refuse the request and return a SSH_AGENT_FAILURE message to the
 client.

 The following constraints are defined.

4.2.6.1. Key lifetime constraint

 This constraint requests that the agent limit the key's lifetime by
 deleting it after the specified duration (in seconds) has elapsed
 from the time the key was added to the agent.

 byte SSH_AGENT_CONSTRAIN_LIFETIME
 uint32 seconds

Miller Expires April 3, 2018 [Page 7]

Internet-Draft SSH Agent September 2017

4.2.6.2. Key confirmation constraint

 This constraint requests that the agent require explicit user
 confirmation for each private key operation using the key. For
 example, the agent could present a confirmation dialog before
 completing a signature operation.

 byte SSH_AGENT_CONSTRAIN_CONFIRM

4.2.6.3. Constraint extensions

 Agents may implement experimental or private-use constraints through
 a extension constraint that supports named constraints.

 byte SSH_AGENT_CONSTRAIN_EXTENSION
 string extension name
 byte[] extension-specific details

 The extension name MUST consist of a UTF-8 string suffixed by the
 implementation domain following the naming scheme defined in

Section 4.2 of [RFC4251], e.g. "foo@example.com".

4.3. Removing keys from the agent

 A client may request that an agent remove all keys that it stores:

 byte SSH_AGENTC_REMOVE_ALL_IDENTITIES

 On receipt of such a message, an agent shall delete all keys that it
 is holding and reply with SSH_AGENT_SUCCESS.

 Specific keys may also be removed:

 byte SSH_AGENTC_REMOVE_IDENTITY
 string key blob

 Where "key blob" is the standard public key encoding of the key to be
 removed. SSH protocol key encodings are defined in [RFC4253] for
 "ssh-rsa" and "ssh-dss" keys, in [RFC5656] for "ecdsa-sha2-*" keys
 and in [I-D.ietf-curdle-ssh-ed25519] for "ssh-ed25519" keys.

 An agent shall reply with SSH_AGENT_SUCCESS if the key was deleted or
 SSH_AGENT_FAILURE if it was not found.

 Smartcard keys may be removed using:

https://datatracker.ietf.org/doc/html/rfc4251#section-4.2
https://datatracker.ietf.org/doc/html/rfc4253
https://datatracker.ietf.org/doc/html/rfc5656

Miller Expires April 3, 2018 [Page 8]

Internet-Draft SSH Agent September 2017

 byte SSH_AGENTC_REMOVE_SMARTCARD_KEY
 string reader id
 string PIN

 Where "reader id" is an opaque identifier for the smartcard reader
 and "PIN" is an optional password or PIN (not typically used).
 Requesting deletion of smartcard-hosted keys will cause the agent to
 remove all keys loaded from that smartcard.

 An agent shall reply with SSH_AGENT_SUCCESS if the key was deleted or
 SSH_AGENT_FAILURE if it was not found.

4.4. Requesting a list of keys

 A client may request a list of keys from an agent using the following
 message:

 byte SSH_AGENTC_REQUEST_IDENTITIES

 The agent shall reply with a message with the following preamble.

 byte SSH_AGENT_IDENTITIES_ANSWER
 uint32 nkeys

 Where "nkeys" indicates the number of keys to follow. Following the
 preamble are zero or more keys, each encoded as:

 string key blob
 string comment

 Where "key blob" is the wire encoding of the public key and "comment"
 is a human-readable comment encoded as a UTF-8 string.

4.5. Private key operations

 A client may request the agent perform a private key signature
 operation using the following message:

 byte SSH_AGENTC_SIGN_REQUEST
 string key blob
 string data
 uint32 flags

 Where "key blob" is the key requested to perform the signature,
 "data" is the data to be signed and "flags" is a bitfield containing
 the bitwise OR of zero or more signature flags (see below).

Miller Expires April 3, 2018 [Page 9]

Internet-Draft SSH Agent September 2017

 If the agent does not support the requested flags, or is otherwise
 unable or unwilling to generate the signature (e.g. because it
 doesn't have the specified key, or the user refused confirmation of a
 constrained key), it must reply with a SSH_AGENT_FAILURE message.

 On success, the agent shall reply with:

 byte SSH_AGENT_SIGN_RESPONSE
 string signature

 The signature format is specific to the algorithm of the key type in
 use. SSH protocol signature formats are defined in [RFC4253] for
 "ssh-rsa" and "ssh-dss" keys, in [RFC5656] for "ecdsa-sha2-*" keys
 and in [I-D.ietf-curdle-ssh-ed25519] for "ssh-ed25519" keys.

4.5.1. Signature flags

 Two flags are currently defined for signature request messages:
 SSH_AGENT_RSA_SHA2_256 and SSH_AGENT_RSA_SHA2_512. These two flags
 are only valid for "ssh-rsa" keys and request that the agent return a
 signature using the "rsa-sha2-256" or "rsa-sha2-512" signature
 methods respectively. These signature schemes are defined in
 [I-D.ietf-curdle-rsa-sha2].

4.6. Locking and unlocking an agent

 The agent protocol supports requesting that an agent temporarily lock
 itself with a pass-phrase. When locked an agent should suspend
 processing of sensitive operations (private key operations at the
 very least) until it has been unlocked with the same pass-phrase.

 The following message requests agent locking

 byte SSH_AGENTC_LOCK
 string passphrase

 The agent shall reply with SSH_AGENT_SUCCESS if locked successfully
 or SSH_AGENT_FAILURE otherwise (e.g. if the agent was already
 locked).

 The following message requests unlocking an agent:

 byte SSH_AGENTC_UNLOCK
 string passphrase

 If the agent is already locked and the pass-phrase matches the one
 used to lock it then it should unlock and reply with
 SSH_AGENT_SUCCESS. If the agent is unlocked or if the the pass-

https://datatracker.ietf.org/doc/html/rfc4253
https://datatracker.ietf.org/doc/html/rfc5656

Miller Expires April 3, 2018 [Page 10]

Internet-Draft SSH Agent September 2017

 phrase does not match it should reply with SSH_AGENT_FAILURE. An
 agent SHOULD take countermeasures against brute-force guessing
 attacks against the pass-phrase.

4.7. Extension mechanism

 The agent protocol includes an optional extension mechanism that
 allows vendor-specific and experimental messages to be sent via the
 agent protocol. Extension requests from the client consist of:

 byte SSH_AGENTC_EXTENSION
 string extension type
 byte[] extension contents

 The extension type indicates the type of the extension message as a
 UTF-8 string. Implementation-specific extensions should be suffixed
 by the implementation domain following the extension naming scheme
 defined in Section 4.2 of [RFC4251], e.g. "foo@example.com".

 An agent that does not support extensions of the supplied type MUST
 reply with an empty SSH_AGENT_FAILURE message. This reply is also
 sent by agents that do not support the extension mechanism at all.

 The contents of successful extension reply messages are specific to
 the extension type. Extension requests may return SSH_AGENT_SUCCESS
 on success or some other extension-specific message.

 Extension failure should be signaled using the
 SSH_AGENT_EXTENSION_FAILURE code - extensions should not use the
 standard SSH_AGENT_FAILURE message. This allows failed requests to
 be distinguished from the extension not being supported.

4.7.1. Query extension

 A single, optional extension request "query" is defined to allow a
 client to query which, if any, extensions are supported by an agent.

 If an agent supports the "query" extension is should reply with a
 list of supported extension names.

 byte SSH_AGENT_SUCCESS
 string[] extension type

5. Protocol numbers

https://datatracker.ietf.org/doc/html/rfc4251#section-4.2

Miller Expires April 3, 2018 [Page 11]

Internet-Draft SSH Agent September 2017

5.1. Message numbers

 The following numbers are used for requests from the client to the
 agent.

 SSH_AGENTC_REQUEST_IDENTITIES 11
 SSH_AGENTC_SIGN_REQUEST 13
 SSH_AGENTC_ADD_IDENTITY 17
 SSH_AGENTC_REMOVE_IDENTITY 18
 SSH_AGENTC_REMOVE_ALL_IDENTITIES 19
 SSH_AGENTC_ADD_ID_CONSTRAINED 25
 SSH_AGENTC_ADD_SMARTCARD_KEY 20
 SSH_AGENTC_REMOVE_SMARTCARD_KEY 21
 SSH_AGENTC_LOCK 22
 SSH_AGENTC_UNLOCK 23
 SSH_AGENTC_ADD_SMARTCARD_KEY_CONSTRAINED 26
 SSH_AGENTC_EXTENSION 27

 The following numbers are used for replies from the agent to the
 client.

 SSH_AGENT_FAILURE 5
 SSH_AGENT_SUCCESS 6
 SSH_AGENT_EXTENSION_FAILURE 28
 SSH_AGENT_IDENTITIES_ANSWER 12
 SSH_AGENT_SIGN_RESPONSE 14

5.1.1. Reserved message numbers

 The following message numbers are reserved for implementations that
 implement support for the legacy SSH protocol version 1: 1-4, 7-9 and
 24 (inclusive). These message numbers MAY be used by an
 implementation supporting the legacy protocol but MUST NOT be reused
 otherwise.

5.2. Constraint identifiers

 The following numbers are used to identify key constraints. These
 are only used in key constraints and are not sent as message numbers.

 SSH_AGENT_CONSTRAIN_LIFETIME 1
 SSH_AGENT_CONSTRAIN_CONFIRM 2
 SSH_AGENT_CONSTRAIN_EXTENSION 3

Miller Expires April 3, 2018 [Page 12]

Internet-Draft SSH Agent September 2017

5.3. Signature flags

 The following numbers may be present in signature request
 (SSH_AGENTC_SIGN_REQUEST) messages. These flags form a bit field by
 taking the logical OR of zero or more flags.

 SSH_AGENT_RSA_SHA2_256 2
 SSH_AGENT_RSA_SHA2_512 4

 The flag value 1 is reserved for historical implementations.

6. Acknowledgements

 This protocol was designed and first implemented by Markus Friedl,
 based on a similar protocol for an agent to support the legacy SSH
 version 1 by Tatu Ylonen.

 Thanks to Simon Tatham who reviewed and helped improve this document.

7. IANA Considerations

 This protocol requires three registries be established, one for
 message numbers, one for constraints and one for signature request
 flags.

7.1. New registry: SSH agent protocol numbers

 This registry, titled "SSH agent protocol numbers" records the
 message numbers for client requests and agent responses. Its initial
 state should consist of the following numbers and reservations.
 Future message number allocations shall require specification in the
 form of an RFC (RFC REQUIRED as per [RFC5226]).

https://datatracker.ietf.org/doc/html/rfc5226

Miller Expires April 3, 2018 [Page 13]

Internet-Draft SSH Agent September 2017

 Number Identifier Reference
 ------ -- -----------
 1 reserved Section 5.1
 2 reserved Section 5.1
 3 reserved Section 5.1
 4 reserved Section 5.1
 5 SSH_AGENT_FAILURE Section 5.1
 6 SSH_AGENT_SUCCESS Section 5.1
 7 reserved Section 5.1
 8 reserved Section 5.1
 9 reserved Section 5.1
 10 reserved Section 5.1
 11 SSH_AGENTC_REQUEST_IDENTITIES Section 5.1
 12 SSH_AGENT_IDENTITIES_ANSWER Section 5.1
 13 SSH_AGENTC_SIGN_REQUEST Section 5.1
 14 SSH_AGENT_SIGN_RESPONSE Section 5.1
 15 reserved Section 5.1
 16 reserved Section 5.1
 17 SSH_AGENTC_ADD_IDENTITY Section 5.1
 18 SSH_AGENTC_REMOVE_IDENTITY Section 5.1
 19 SSH_AGENTC_REMOVE_ALL_IDENTITIES Section 5.1
 20 SSH_AGENTC_ADD_SMARTCARD_KEY Section 5.1
 21 SSH_AGENTC_REMOVE_SMARTCARD_KEY Section 5.1
 22 SSH_AGENTC_LOCK Section 5.1
 23 SSH_AGENTC_UNLOCK Section 5.1
 24 reserved Section 5.1
 25 SSH_AGENTC_ADD_ID_CONSTRAINED Section 5.1
 26 SSH_AGENTC_ADD_SMARTCARD_KEY_CONSTRAINED Section 5.1
 27 SSH_AGENTC_EXTENSION Section 5.1
 28 SSH_AGENT_EXTENSION_FAILURE Section 5.1

 Initial registry state: SSH agent protocol numbers

7.2. New registry: SSH agent key constraint numbers

 This registry, titled "SSH agent key constraint numbers" records the
 message numbers for key use constraints. Its initial state should
 consist of the following numbers. Future constraint number
 allocations shall require specification in the form of an RFC (RFC
 REQUIRED as per [RFC5226]).

 Number Identifier Reference
 ------ ----------------------------- -----------
 1 SSH_AGENT_CONSTRAIN_LIFETIME Section 5.2
 2 SSH_AGENT_CONSTRAIN_CONFIRM Section 5.2
 3 SSH_AGENT_CONSTRAIN_EXTENSION Section 5.2

 Initial registry state: SSH agent key constraint numbers

https://datatracker.ietf.org/doc/html/rfc5226

Miller Expires April 3, 2018 [Page 14]

Internet-Draft SSH Agent September 2017

7.3. New registry: SSH agent signature flags

 This registry, titled "SSH agent signature flags records the values
 for signature request (SSH_AGENTC_SIGN_REQUEST) flag values. Its
 initial state should consist of the following numbers. Note that as
 the flags are combined by bitwise OR, all flag values must be powers
 of two and the maximum available flag value is 0x80000000.

 Future constraint number allocations shall require specification in
 the form of an RFC (RFC REQUIRED as per [RFC5226]).

 Number Identifier Reference
 ------ ---------------------- -----------
 0x01 reserved Section 5.3
 0x02 SSH_AGENT_RSA_SHA2_256 Section 5.3
 0x04 SSH_AGENT_RSA_SHA2_512 Section 5.3

 Initial registry state: SSH agent signature flags

8. Security Considerations

 The agent is a service that is tasked with retaining and providing
 controlled access to what are typically long-lived login
 authentication credentials. It is by nature a sensitive and trusted
 software component. Moreover, the agent protocol itself does not
 include any authentication or transport security; ability to
 communicate with an agent is usually sufficient to invoke it to
 perform private key operations.

 Since being able to access an agent is usually sufficient to perform
 private key operations, it is critically important that the agent
 only be exposed to its owner.

 The primary design intention of an agent is that an attacker with
 unprivileged access to their victim's agent should be prevented from
 gaining a copy of any keys that have been loaded in to it. This may
 not preclude the attacker from stealing use of those keys (e.g. if
 they have been loaded without a confirmation constraint).

 Given this, the agent should, as far as possible, prevent its memory
 being read by other processes to direct theft of loaded keys. This
 typically include disabling debugging interfaces and preventing
 process memory dumps on abnormal termination.

 Another, more subtle, means by which keys may be stolen are via
 cryptographic side-channels. Private key operations may leak
 information about the contents of keys via differences in timing,
 power use or by side-effects in the memory subsystems (e.g. CPU

https://datatracker.ietf.org/doc/html/rfc5226

Miller Expires April 3, 2018 [Page 15]

Internet-Draft SSH Agent September 2017

 caches) of the host running the agent. For the case of a local
 attacker and an agent holding unconstrained keys, the only limit on
 the number of private key operations the attacker may be able to
 observe is the rate at which the CPU can perform signatures. This
 grants the attacker an almost ideal oracle for side-channel attacks.
 While a full treatment of side-channel attacks is beyond the scope of
 this specification, agents SHOULD use cryptographic implementations
 that are resistant to side-channel attacks.

9. Normative References

 [FIPS.186-4]
 National Institute of Standards and Technology, "Digital
 Signature Standard (DSS)", FIPS PUB 186-4, July 2013.

 [I-D.ietf-curdle-rsa-sha2]
 bider, d., "Use of RSA Keys with SHA-2 256 and 512 in
 Secure Shell (SSH)", draft-ietf-curdle-rsa-sha2-10 (work
 in progress), August 2017.

 [I-D.ietf-curdle-ssh-ed25519]
 Harris, B. and L. Velvindron, "Ed25519 public key
 algorithm for the Secure Shell (SSH) protocol", draft-

ietf-curdle-ssh-ed25519-01 (work in progress), August
 2017.

 [I-D.irtf-cfrg-eddsa]
 Josefsson, S. and I. Liusvaara, "Edwards-curve Digital
 Signature Algorithm (EdDSA)", draft-irtf-cfrg-eddsa-08
 (work in progress), August 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4251] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, DOI 10.17487/RFC4251,
 January 2006, <https://www.rfc-editor.org/info/rfc4251>.

 [RFC4253] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
 January 2006, <https://www.rfc-editor.org/info/rfc4253>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <https://www.rfc-editor.org/info/rfc5226>.

https://datatracker.ietf.org/doc/html/draft-ietf-curdle-rsa-sha2-10
https://datatracker.ietf.org/doc/html/draft-ietf-curdle-ssh-ed25519-01
https://datatracker.ietf.org/doc/html/draft-ietf-curdle-ssh-ed25519-01
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-eddsa-08
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4251
https://www.rfc-editor.org/info/rfc4251
https://datatracker.ietf.org/doc/html/rfc4253
https://www.rfc-editor.org/info/rfc4253
https://datatracker.ietf.org/doc/html/rfc5226
https://www.rfc-editor.org/info/rfc5226

Miller Expires April 3, 2018 [Page 16]

Internet-Draft SSH Agent September 2017

 [RFC5656] Stebila, D. and J. Green, "Elliptic Curve Algorithm
 Integration in the Secure Shell Transport Layer",

RFC 5656, DOI 10.17487/RFC5656, December 2009,
 <https://www.rfc-editor.org/info/rfc5656>.

Author's Address

 Damien Miller
 OpenSSH

 Email: djm@openssh.com
 URI: http://www.openssh.com/

Miller Expires April 3, 2018 [Page 17]

https://datatracker.ietf.org/doc/html/rfc5656
https://www.rfc-editor.org/info/rfc5656
http://www.openssh.com/

