
KITTEN W. Mills

Internet-Draft T. Showalter

Intended status: Standards Track Yahoo! Inc.

Expires: October 10, 2011 H. Tschofenig

Nokia Siemens Networks

April 08, 2011

A SASL Mechanism for OAuth

draft-mills-kitten-sasl-oauth-02.txt

Abstract

Simple Authentication and Security Layer (SASL) is a framework for

providing authentication and data security services in connection-

oriented protocols via replaceable mechanisms. OAuth is a protocol

framework for delegated HTTP authentication and thereby provides a

method for clients to access a protected resource on behalf of a

resource owner.

This document defines the use of HTTP authentication over SASL, and

additionally defines authoriation and token issuing endpoint discovery.

Thereby, it enables schemes defined within the OAuth framework for non-

HTTP-based application protocols. A future version of this document

will describe the integration into the Generic Security Services

Application Program Interface (GSS-APIO).

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on October 10, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Terminology

3. The OAuth SASL Mechanism

3.1. Channel Binding

3.2. Initial Client Response

3.2.1. Query String in OAUTH-SSL

3.3. Server's Response

3.3.1. Mapping to SASL Identities

3.4. Discovery Information

3.5. Use of Signature Type Authorization

4. Implementation Requirements

5. Examples

5.1. Successful Bearer Token Exchange

5.2. MAC Authentication with Channel Binding

5.3. Failed Exchange

5.4. Failed Channel Binmding

6. Security Considerations

7. IANA Considerations

7.1. SASL Registration

7.2. Link Type Registration

7.2.1. OAuth 2 Authentication Endpoint

7.2.2. OAuth 2 Token Endpoint

7.2.3. OAuth 1.0a Request Initiation Endpoint

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

7.2.4. OAuth 1.0a Authorization Endpoint

7.2.5. OAuth 1.0a Token Endpoint

8. Appendix A -- Document History

9. References

9.1. Normative References

9.2. Informative References

Authors' Addresses

1. Introduction

OAuth [I-D.ietf-oauth-v2] offers a standard mechanism for delegating

authentication typically used for the purpose of control access to

resources. The core OAuth specification defines a framework for

authentication and token usage in an HTTP-based environment. The HTTP

authorization schemes and tokens in this model are defined separately,

some are deined within the OAuth 2 framework such as OAuth 2.0

Protocol: Bearer Tokens [I-D.ietf-oauth-v2-bearer], and some are free

standing with OAuth 2 frameowrk bindings such as MAC Authentication [I-

D.hammer-oauth-v2-mac-token] tokens. This mechanism takes advantage of

the OAuth protocol and infrastructure to provide a way to use SASL

[RFC4422] for access to resources for non-HTTP-based protocols such as

IMAP [RFC3501], which is what this memo uses in the examples.

The general authentication flow is that the application will first

obtain an access token from an OAuth token service for the resource.

Once the client has obtained an OAuth access token it then connects and

authenticated using this SASL mechanism.

Figure 1 shows the relationship between SASL and OAuth graphically.

Item (1) denotes the part of the OAuth exchange that remains unchanged

from [I-D.ietf-oauth-v2], i.e. where the client obtains and refreshes

Access Tokens. This document focuses on item (2) where the Access Token

is presented to the resource server over SASL.

*

*

*

*

*

*

*

 ----+

 +--------+ +---------------+ |

 | |--(C)-- Authorization Request --->| Resource | |

 | | | Owner | |Plain

 | |<-(D)------ Access Grant ---------| | |OAuth

 | | +---------------+ |2.0

 | | |(1)

 | | Client Credentials & +---------------+ |

 | |--(E)------ Access Grant -------->| Authorization | |

 | Client | | Server | |

 | |<-(F)------ Access Token ---------| | |

 | | (w/ Optional Refresh Token) +---------------+ |

 | | ----+

 | |

 | | ----+

 | | (Optional discovery) +---------------+ |

 | |--(A)------- User Name --------->| | |

 | Client | | | |

 | |<-(B)------ Authentication -------| | |

 | | endpoint information | Resource | |OAuth

 | | | Server | |over

 | |--(G)------ Access Token -------->| | |SASL

 | | | | |

 | |<-(H)---- Protected Resource -----| | |(2)

 +--------+ +---------------+ |

 ----+

Note: The discovery procedure in OAuth is still work in progress.

Hence, the discovery components described in this document should

be considered incomplete and a tentative proposal. In general,

there is a tradeoff between a generic, externally available

defined discovery mechanisms (such as Webfinger using host-meta

[I-D.hammer-hostmeta]) and configuration information exchanged

inband between the protocol endpoints.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

The reader is assumed to be familiar with the terms used in the OAuth

2.0 specification.

In examples, "C:" and "S:" indicate lines sent by the client and server

respectively. Line breaks have been inserted for readability.

Note that the IMAP SASL specification requires base64 encoding message,

not this memo.

*

User (OPTIONAL):

Host (REQUIRED):

Authorization (REQUIRED):

3. The OAuth SASL Mechanism

SASL is used as a generalized authentication method in a variety of

protocols. This document defines the "OAUTH" mechanism to allow HTTP

Authorization schemes in the OAuth framework to be used within the SASL

framework. In this model a client authenticates to an OAuth-capable

authorization server over HTTPS. This server then issues tokens after

successfully authenticating the resource owner. Subsequently, the

obtained token may be presented in an OAuth-authenticated request to

the resource server. This mechanism further provides compatibility with

OAuth 1.0a [RFC5849] and the "OAuth" authentication scheme defined

there.

3.1. Channel Binding

Channel binding [RFC5056] in this mechanism is defined in order to

allow satisfying the security requirements of the authorization schemes

used. This document defines the "OAUTH-SSL" mechanism to provide TLS

channel binding [RFC5929] to the OAUTH mechanim, and specifically the

"tls-unique" type of channel binding.

If the specification for the underlying authorization scheme requires a

security layer such as TLS [RFC5246] the server SHOULD only provide

that scheme in a mechanism with channel binding enabled.

3.2. Initial Client Response

The client response is formatted as an HTTP [RFC2616] request. The HTTP

request is limited in that the path MUST be "/". In the OAUTH mechanim

no query string is allowed. The following header lines are defined in

the client response:

Contains the user identifier being

authenticated, and is provided to allow correct discovery

information to be returned.

Contains the host name to which the client

connected.

An HTTP Authorization header..

The user name is provided by the client to allow the discovery

information to be customised for the user, a given server could allow

multiple authenticators and it needs to return the correct one. For

instance, a large ISP could provide mail service for several domains

who manage their own user information. For instance, users at foo-

example.com could be authenticated by an OAuth service at https://

oauth.foo-example.com/, and users at bar-example.com could be

authenticated by https://oauth.bar-example.com, but both could be

served by a hypothetical IMAP server running at a third domain,

imap.example.net.

*

cbdata (REQUIRED):

3.2.1. Query String in OAUTH-SSL

In the OAUTH-SSL mechanism the channel binding information is carried

in the query string. OAUTH-SSL defines following query parameter(s):

Contains the base64 encoded first TLS

Finished message sent.

3.3. Server's Response

The server validates the response per the specification for the

authorization scheme used. If the authorization scheme used includes

signing of the request parameters the client must provide a complete

HTTP style request that satisfies the data requirements for the scheme

in use.

In the OAUTH-SSL mechanism the server must also extract and base64

decode the first TLS Finished message sent from the client out ot the

query parameters of the tunneled HTTP request. It then compares that to

the server's own copy of that message.

The server responds to a successful OAuth authentication by completing

the SASL negotiation. The authentication scheme MUST carry the user ID

to be used as the authorization identity (identity to act as). The

server MUST use that ID as the user being authorized, that is the user

assertion we accept and not other information such as from the URL or

"User:" header.

The server responds to failed authentication by sending discovery

information in an HTTP style response with the HTTP status code set to

401, and then failing the authentication. If channel binding is in use

and the channel binding fails the server responds with a minimal HTTP

response without discovery information and the HTTP status code set to

412 to indicate that the channel binding precondition failed. If the

authentication scheme in use does not include signing the server SHOULD

revoke the presented credential and the client SHOULD discard that

credential.

3.3.1. Mapping to SASL Identities

Some OAuth mechanisms can provide both an authorization identity and an

authentication identity. An example of this is OAuth 1.0a [RFC5849]

where the consumer key (oauth_consumer_key) identifies the entity using

to token which equates to the SASL authentication identity, and is

authenticated using the shared secret. The authorization identity in

the OAuth 1.0a case is carried in the token (per the requirement

above), which SHOULD validated independently. The server MAY use a

consumer key or other comparable identity in the OAuth authorization

scheme as the SASL authentication identity. If an appropriate

authentication identity is not avaialble teh server MUST use the

identity asserted in the token.

*

WWW-Authenticate

realm

scope

oauth2-authenticator

oauth2-token

oauth-initiate

oauth-authorize

oauth-token

3.4. Discovery Information

The server MUST send discovery information in response to a failed

authentication exchange or a request with an empty Authorization

header. If discovery information is returned it MUST include an

authentication endpoint appropriate for the user. If the "User" header

is present the discovery information MUST be for that user. Discovery

information is provided by the server to the client to allow a client

to discover the appropriate OAuth authentication and token endpoints.

The client then uses that information to obtain the access token needed

for OAuth authentication. The client SHOULD cache and re-use the user

specific discovery information for service endpoints.

Discovery information makes use of both the WWW-Authenticate header as

defined in HTTP Authentication: Basic and Digest Access Authentication

[RFC2617] and Link headers as defined in [RFC5988]. The following

elements are defined for discovery information:

A WWW-Authenticate header for each authentication

scheme supported by the server. Authentication scheme names are case

insensitive. The following [RFC2617] authentication parameters are

defined:

REQUIRED -- (as defined by RFC2617)

OPTIONAL -- A quoted string. This provides the client an

OAuth 2 scope known to be valid for the resource.

An [RFC5988] Link header specifying the [I-

D.ietf-oauth-v2] authentication endpoint. This link has an OPTIONAL

link-extension "scheme", if included this link applies ONLY to the

specified scheme.

An [RFC5988] Link header specifying the [I-D.ietf-oauth-

v2] token endpoint. This link has an OPTIONAL link-extension

"scheme", if included this link applies ONLY to the specified

scheme.

(Optional) An [RFC5988] Link header specifying the

Oauth 1.0a [RFC5849] initiation endpoint. The server MUST send this

if "OAuth" is included in the supported list of HTTP authentication

schemes for the server.

(Optional) An [RFC5988] Link header specifying the

Oauth 1.0a [RFC5849] authentication endpoint. The server MUST send

this if "OAuth" is included in the supported list of HTTP

authentication schemes for the server.

(Optional) An [RFC5988] Link header specifying the Oauth

1.0a [RFC5849] token endpoint. The server MUST send this if "OAuth"

is included in the supported list of HTTP authentication schemes for

the server. This link type has one link-extenstion "grant-types"

which is a space separated list of the the OAuth 2.0 grant types

that can be used at the token endpoint to obtain a token.

Usage of the URLs provided in the discovery information is defined in

the relevant specifications. If the server supports multiple

authenticators the discovery information returned for unknown users

MUST be consistent with the discovery information for known users to

prevent user enumeration. The OAuth 2.0 specification [I-D.ietf-oauth-

v2] supports multiple types of authentication schemes and the server

MUST specify at least one supported authentication scheme in the

discovery information. The server MAY support multiple schemes and MAY

support schemes not listed in the discovery information.

If the resource server provides a scope the client SHOULD always

request scoped tokens from the token endpoint. The client MAY use a

scope other than the one provided by the resource server. Scopes other

than those advertised by the resource server must be defined by the

resource owner and provided in service documentation (which is beyond

the scope of this memo).

3.5. Use of Signature Type Authorization

This mechanism supports authorization using signatures, which requires

that both client and server construct the string to be signed. OAuth 2

is designed for authentication/authorization to access specific URIs.

SASL is designed for user authentication, and has no facility for being

more specific. In this mechanism we require an HTTP style format

specifically to support signature type authentication, but this is

extremely limited. The HTTP style request is limited to a path of "/".

This mechanism is in the SASL model, but is designed so that no changes

are needed if there is a revision of SASL which supports more specific

resource authorization, e.g. IMAP access to a specific folder or FTP

access limited to a specific directory.

GET / HTTP/1.1

Host: server.example.com

User: user@example.com

Authorization: MAC token="h480djs93hd8",timestamp="137131200",

 nonce="dj83hs9s",signature="YTVjyNSujYs1WsDurFnvFi4JK6o="

Using the example in the MAC specification [I-D.hammer-oauth-v2-mac-

token] as a starting point, on an IMAP server running on port 143 and

given the MAC style authorization request (with long lines wrapped for

readability) below:

h480djs93hd8\n

137131200\n

dj83hs9s\n

\n

GET\n

server.example.com\n

143\n

/\n

\n

The normalized request string would be constructed per the MAC

specifcation [I-D.hammer-oauth-v2-mac-token]. In this example the

normalized request string with the new line separator character is

represented by "\n" for display purposes only would be:

4. Implementation Requirements

Tokens typically have a restricted lifetime. In addition a previously

obtained token MAY be revoked or rendered invalid at any time. The

client MAY request a new access token for each connection to a resource

server, but it SHOULD cache and re-use access credentials that appear

to be valid. Credential lifetime and how that is communicated to the

client is defined in the authentication scheme specifications. Clients

MAY implement any of the OAuth 2 profiles since they are largely

outside the scope of this specification, and the mentioned profiles in

this document are just examples.

5. Examples

These example illustrate exchanges between an IMAP client and an IMAP

server.

5.1. Successful Bearer Token Exchange

This example shows a successful OAuth 2.0 bearer token exchange with an

initial client response. Note that line breaks are inserted for

readability.

S: * IMAP4rev1 Server Ready

C: t0 CAPABILITY

S: * CAPABILITY IMAP4rev1 AUTH=OAUTH

S: t0 OK Completed

C: t1 AUTHENTICATE OAUTH R0VUIC8gSFRUUC8xLjENCkhvc3Q6IGltYXAuZXhhbXBs

 ZS5jb20NCkF1dGhvcml6YXRpb246IEJFQVJFUiAidkY5ZGZ0NHFtVGMyTnZiM1J

 sY2tCaGJIUmhkbWx6ZEdFdVkyOXRDZz09Ig0KDQo=

S: +

S: t1 OK SASL authentication succeeded

GET / HTTP/1.1

Host: imap.example.com

Authorization: BEARER "vF9dft4qmTc2Nvb3RlckBhbHRhdmlzdGEuY29tCg=="

As required by IMAP [RFC3501], the payloads are base64-encoded. The

decoded initial client response is:

The line conaining just a "+" and a space is an empty response from the

server. This response contains discovery information, and in the

success case no discovery information is necessary so the response is

empty. Like other messages, and in accordance with the IMAP SASL

binding, the empty response is base64-encoded.

5.2. MAC Authentication with Channel Binding

This example shows a channel binding failure. The example sends the

same request as above, but in the context of an OAUTH-SSL exchange the

channel binding information is missing. Note that line breaks are

inserted for readability.

S: * CAPABILITY IMAP4rev1 AUTH=OAUTH SASL-IR IMAP4rev1 Server Ready

S: t0 OK Completed

C: t1 AUTHENTICATE MAC R0VUIC8/Y2JkYXRhPSJTRzkzSUdKcFp5QnBjeUJoSUZSTVV5Q

 m1hVzVoYkNCdFpYTnpZV2RsUHdvPSIgSFRUUC8xLjENCkhvc3Q6IHNlcnZlci5leGFtcG

 xlLmNvbQ0KVXNlcjogdXNlckBleGFtcGxlLmNvbQ0KQXV0aG9yaXphdGlvbjogTUFDIHR

 va2VuPSJoNDgwZGpzOTNoZDgiLHRpbWVzdGFtcD0iMTM3MTMxMjAwIixub25jZT0iZGo4

 M2hzOXMiLHNpZ25hdHVyZT0iV1c5MUlHMTFjM1FnWW1VZ1ltOXlaV1F1SUFvPSINCg0K

S: +

S: t1 OK SASL authentication succeeded

GET /?cbdata="SG93IGJpZyBpcyBhIFRMUyBmaW5hbCBtZXNzYWdlPwo=" HTTP/1.1

Host: server.example.com

User: user@example.com

Authorization: MAC token="h480djs93hd8",timestamp="137131200",

 nonce="dj83hs9s",signature="WW91IG11c3QgYmUgYm9yZWQuIAo="

As required by IMAP [RFC3501], the payloads are base64-encoded. The

decoded initial client response is:

The line conaining just a "+" and a space is an empty response from the

server. This response contains discovery information, and in the

success case no discovery information is necessary so the response is

empty. Like other messages, and in accordance with the IMAP SASL

binding, the empty response is base64-encoded.

5.3. Failed Exchange

This example shows a failed exchange because of the empty Authorization

header, which is how a client can query for discovery information. Note

that line breaks are inserted for readability.

S: * CAPABILITY IMAP4rev1 AUTH=OAUTH SASL-IR IMAP4rev1 Server Ready

S: t0 OK Completed

C: t1 AUTHENTICATE OAUTH R0VUIC8gSFRUUC8xLjENClVzZXI6IHNjb290ZXJAYW

 x0YXZpc3RhLmNvbQ0KSG9zdDogaW1hcC55YWhvby5jb20NCkF1dGhlbnRpY2F0ZT

 ogDQoNCg==

S: + SFRUUC8xLjEgNDAxIFVuYXV0aG9yaXplZA0KV1dXLUF1dGhlbnRpY2F0ZTogQk

 VBUkVSIHJlYWxtPSJleGFtcGxlLmNvbSINCkxpbms6IDxodHRwczovL2xvZ2luLn

 lhaG9vLmNvbS9vYXV0aD4gcmVsPSJvYXV0aDItYXV0aGVudGljYXRvciIgIA0KTG

 luazogPGh0dHBzOi8vbG9naW4ueWFob28uY29tL29hdXRoPiByZWw9Im91YXRoMi

 10b2tlbiINCg0K

S: t1 NO SASL authentication failed

GET / HTTP/1.1

User: alice@example.com

Host: imap.example.com

Authorization:

The decoded initial client response is:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: BEARER realm="example.com"

Link: <https://login.yahoo.com/oauth> rel="oauth2-authenticator"

Link: <https://login.yahoo.com/oauth> rel="ouath2-token"

The decoded server discovery response is:

5.4. Failed Channel Binmding

This example shows a channel binding failure in a discovery request.

The channel binding information is empty. Note that line breaks are

inserted for readability.

S: * CAPABILITY IMAP4rev1 AUTH=OAUTH SASL-IR IMAP4rev1 Server Ready

S: t0 OK Completed

C: t1 AUTHENTICATE OAUTH R0VUIC8/Y2JkYXRhPSIiIEhUVFAvMS4xDQpVc2VyOi

 BhbGljZUBleGFtcGxlLmNvbQ0KSG9zdDogaW1hcC5leGFtcGxlLmNvbQ0KQXV0aG

 9yaXphdGlvbjoNCg0K

S: + SFRUUC8xLjEgNDEyIFByZWNvbmRpdGlvbiBGYWlsZWQNCg0KDQo=

S: t1 NO SASL authentication failed

GET /?cbdata="" HTTP/1.1

User: alice@example.com

Host: imap.example.com

Authorization:

The decoded initial client response is:

HTTP/1.1 412 Precondition Failed

The decoded server response is:

6. Security Considerations

This mechanism does not provide a security layer, but does provide a

provision for channel binding. The OAuth 2 specification [I-D.ietf-

oauth-v2] allows for a variety of usages, and the security properties

of these profiles vary. The usage of bearer tokens, for example,

provide security features similar to cookies. Applications using this

mechanism SHOULD exercise the same level of care using this mechanism

as they would in using the SASL PLAIN mechanism. In particular, TLS 1.2

MUST be implemented and its usage is RECOMMENDED unless tokens expire

quickly.

Channel binding in this mechanim has different properties based on the

authentication scheme used. Bearer tokens have the same properties as

cookies, and the bearer token authentication scheme has no signature or

message integrity. Channel binding to TLS with a bearer token provides

only a binding to the TLS layer. Authentication schemes like MAC tokens

have a signature over the channel binding information. These provide

protection against a man in the middle, and the MAC authorization

header is bound to the channel and only valid in that context.

A significant benefit of OAuth for usage in clients that usually store

passwords is that the password is not stored in the client, a token is.

This means that the password is not exposed, what we risk is a token

that can be more limited or can be easily revoked.

It is possible that SASL will be authenticating a connection and the

life of that connection may outlast the life of the token used to

authenticate it. This is a common problem in application protocols

where connections are long-lived, and not a problem with this mechanism

per se. Servers MAY unilaterally disconnect clients in accordance with

the application protocol.

An OAuth credential is not equivalent to the password or primary

account credential. There are protocols like XMPP that allow actions

like change password. The server SHOULD ensure that actions taken in

the authenticated channel are appropriate to the strength of the

presented credential.

It is possible for an application server running on Evil.example.com to

tell a client to request a token from Good.example.org. A client

following these instructions will pass a token from Good to Evil. This

is by design, since it is possible that Good and Evil are merely names,

not descriptive, and that this is an innocuous activity between

cooperating two servers in different domains. For instance, a site

might operate their authentication service in-house, but outsource

their mail systems to an external entity.

7. IANA Considerations

7.1. SASL Registration

The IANA is requested to register the following SASL profile:

SASL mechanism profile: OAUTH

Security Considerations: See this document

Published Specification: See this document

For further information: Contact the authors of this document.

Owner/Change controller: the IETF

Note: None

The IANA is requested to register the following SASL profile:

SASL mechanism profile: OAUTH-SSL

Security Considerations: See this document

Published Specification: See this document

For further information: Contact the authors of this document.

Owner/Change controller: the IETF

Note: None

7.2. Link Type Registration

Pursuant to [RFC5988] The following link type registrations [[will be]]

registered by mail to link-relations@ietf.org.

7.2.1. OAuth 2 Authentication Endpoint

Relation Name: oauth2-authenticator

Description: An OAuth 2.0 authentication endpoint.

Reference:

Notes: This link type indicates an OAuth 2.0 authentication

endpoint that can be used for user authentication/authorization

for the endpoint providing the link.

Application Data: [optional]

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

7.2.2. OAuth 2 Token Endpoint

Relation Name: oauth2-token

Description: The OAuth token endpoint used to get tokens for

access.

Reference:

Notes: The OAuth 2.0 token enpoint to be used for obtaining

tokens to access the endpoint providing the link.

Application Data: This link type has one link-extenstion "grant-

types" which is the OAuth 2.0 grant types that can be used at the

token endpoint to obtain a token. This is not an exclusive list,

it provides a hint to the application of what SHOULD be valid. A

token endpoint MAY support additional grant types not advertised

by a resource endpoint.

7.2.3. OAuth 1.0a Request Initiation Endpoint

Relation Name: oauth-initiate

Description: The OAuth 1.0a request initiation endpoint used to

get tokens for access.

Reference:

Notes: The OAuth 1.0a enpoint used to initiate the sequence, this

temporary request is what the user approves to grant access to

the resource.

Application Data:

7.2.4. OAuth 1.0a Authorization Endpoint

Relation Name: oauth-authorize

Description: The OAuth 1.0a authorization endpoint used to

approve an access request.

Reference:

Notes:

Application Data:

7.2.5. OAuth 1.0a Token Endpoint

Relation Name: oauth-token

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Description: The OAuth 1.0a token endpoint used to get tokens for

access.

Reference:

Notes:

Application Data:

8. Appendix A -- Document History

[[to be removed by RFC editor before publication as an RFC]]

-02

Filling out Channel Binding

Added text clarifying how to bind to the 2 kinds of SASL

identities.

-01

Bringing this into line with rdraft 12 of the core spec, the

bearer token spec, and references the MAC token spec

Changing discovery over to using the Link header construct from

RFC5988.

Added the seeds of channel binding.

-00

Initial revision

9. References

9.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2616]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P. and T. Berners-Lee,

"Hypertext Transfer Protocol -- HTTP/1.1", RFC

2616, June 1999.

[RFC2617]

Franks, J., Hallam-Baker, P.M., Hostetler, J.L.,

Lawrence, S.D., Leach, P.J., Luotonen, A. and L.

Stewart, "HTTP Authentication: Basic and Digest

Access Authentication", RFC 2617, June 1999.

[RFC4422]

Melnikov, A. and K. Zeilenga, "Simple

Authentication and Security Layer (SASL)", RFC

4422, June 2006.

*

*

*

*

*

*

*

*

*

*

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
mailto:john@math.nwu.edu
mailto:pbaker@verisign.com
mailto:jeff@AbiSource.com
mailto:lawrence@agranat.com
mailto:paulle@microsoft.com
mailto:stewart@OpenMarket.com
mailto:stewart@OpenMarket.com
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc4422

[RFC5056]
Williams, N., "On the Use of Channel Bindings to

Secure Channels", RFC 5056, November 2007.

[RFC5246]

Dierks, T. and E. Rescorla, "The Transport Layer

Security (TLS) Protocol Version 1.2", RFC 5246,

August 2008.

[RFC5849]
Hammer-Lahav, E., "The OAuth 1.0 Protocol", RFC

5849, April 2010.

[RFC5929]
Altman, J., Williams, N. and L. Zhu, "Channel

Bindings for TLS", RFC 5929, July 2010.

[RFC5988]
Nottingham, M., "Web Linking", RFC 5988, October

2010.

[I-D.ietf-

oauth-v2]

Hammer-Lahav, E, Recordon, D and D Hardt, "The

OAuth 2.0 Authorization Protocol", Internet-Draft

draft-ietf-oauth-v2-12, January 2011.

[I-D.ietf-

oauth-v2-

bearer]

Jones, M, Hardt, D and D Recordon, "The OAuth 2.0

Protocol: Bearer Tokens", Internet-Draft draft-

ietf-oauth-v2-bearer-02, January 2011.

[I-D.hammer-

oauth-v2-mac-

token]

Hammer-Lahav, E, "HTTP Authentication: MAC

Authentication", Internet-Draft draft-hammer-oauth-

v2-mac-token-02, January 2011.

9.2. Informative References

[RFC3501]
Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL -

VERSION 4rev1", RFC 3501, March 2003.

[I-D.hammer-

hostmeta]

Hammer-Lahav, E and B Cook, "Web Host Metadata",

Internet-Draft draft-hammer-hostmeta-17, September

2011.

Authors' Addresses

William Mills Mills Yahoo! Inc. EMail: wmills@yahoo-inc.com

Tim Showalter Showalter Yahoo! Inc. EMail: timshow@yahoo-inc.com

Hannes Tschofenig Tschofenig Nokia Siemens Networks Linnoitustie 6

Espoo, 02600 Finland Phone: +358 (50) 4871445 EMail:

Hannes.Tschofenig@gmx.net URI: http://www.tschofenig.priv.at

http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/rfc5929
http://tools.ietf.org/html/rfc5929
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/draft-ietf-oauth-v2-12
http://tools.ietf.org/html/draft-ietf-oauth-v2-12
http://tools.ietf.org/html/draft-ietf-oauth-v2-bearer-02
http://tools.ietf.org/html/draft-ietf-oauth-v2-bearer-02
http://tools.ietf.org/html/draft-hammer-oauth-v2-mac-token-02
http://tools.ietf.org/html/draft-hammer-oauth-v2-mac-token-02
http://tools.ietf.org/html/rfc3501
http://tools.ietf.org/html/rfc3501
http://tools.ietf.org/html/draft-hammer-hostmeta-17
mailto:wmills@yahoo-inc.com%20
mailto:timshow@yahoo-inc.com
mailto:Hannes.Tschofenig@gmx.net
http://www.tschofenig.priv.at

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. The OAuth SASL Mechanism
	3.1. Channel Binding
	3.2. Initial Client Response
	3.2.1. Query String in OAUTH-SSL
	3.3. Server's Response
	3.3.1. Mapping to SASL Identities
	3.4. Discovery Information
	3.5. Use of Signature Type Authorization
	4. Implementation Requirements
	5. Examples
	5.1. Successful Bearer Token Exchange
	5.2. MAC Authentication with Channel Binding
	5.3. Failed Exchange
	5.4. Failed Channel Binmding
	6. Security Considerations
	7. IANA Considerations
	7.1. SASL Registration
	7.2. Link Type Registration
	7.2.1. OAuth 2 Authentication Endpoint
	7.2.2. OAuth 2 Token Endpoint
	7.2.3. OAuth 1.0a Request Initiation Endpoint
	7.2.4. OAuth 1.0a Authorization Endpoint
	7.2.5. OAuth 1.0a Token Endpoint
	8. Appendix A -- Document History
	9. References
	9.1. Normative References
	9.2. Informative References
	Authors' Addresses

