Network Working Group A. Amirante _T0C
Internet-Draft T. Castaldi
Expires: May 7, 2009 L. Miniero

S P. Romano

University of Napoli

November 03, 2008

Media Control Channel Framework (CFW) Call Flow Examples
draft-miniero-mediactrl-escs-03

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware have
been or will be disclosed, and any of which he or she becomes aware
will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on May 7, 2009.

Abstract

This document provides with a list of more or less detailed Media
Control Channel Framework [I-D.ietf-mediactrl-sip-control-framework]
(Boulton, C., Melanchuk, T., and S. McGlashan, “Media Control Channel
Framework,” October 2009.) call flows. It aims at being a simple guide
throughout the use of the interface between Application Servers and
MEDIACTRL-based Media Servers, as well as a hopefully helpful base
reference documentation for both implementors and protocol researchers.

Table of Contents

1. Introduction
2. Conventions

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Terminology
Overview
4.1. A Practical Approach
4.1.1. State Diagrams
4.1.2. Implementation
Control Channel Establishment
5.1. COMEDIA Negotiation
5.2. SYNC
Use-case scenarios and examples
6.1. Echo Test
6.1.1. Direct Echo Test

6.1.2. Echo Test based on Recording

6.2. Phone Call

6.2.1. Direct Connection

.2.2. Conference-based Approach

6.2.3. Recording a conversation
6.3. Voice Mail
6.4. Conferencing
.4.1. Simple Bridging
Rich Conference Scenario
Conferencing with Floor Control
Coaching Scenario
6.4. Sidebars
Security Considerations
Change Summary
Acknowledgements
References
8§ Authors' Addresses
§ Intellectual Property and Copyright Statements

[[

o

(0]

B N L)

(SN E N (COR | \V)

1. Introduction TOC

TBD. Discussion upon SIP/MEDIACTRL and separation of responsibilities
between Application Servers (application logic) and Media Servers
(media management and manipulation).

Requirements -> Architecture -> Framework (Control Packages)

2. Conventions TOC

In this document, the key words "MUST", "MUST NOT", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT
RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as described
in BCP 14, RFC 2119 [RFC2119] (Bradner, S., “Key words for use in RFCs

to Indicate Requirement Levels,” March 1997.) and indicate requirement
levels for compliant implementations.

Besides, note that due to RFC formatting conventions, this document
often splits SIP/SDP and CFW across lines whose content would exceed 72
characters. A backslash character marks where this line folding has
taken place. This backslash and its trailing CRLF and whitespace would
not appear in the actual protocol contents.

3. Terminology TOC

This document pretty much makes use of the same terminology as the one
that can be found in the referenced documents. The following terms are
only a summarization of the most commonly used ones in this context,
mostly derived from the terminology used in the related documents:

Application Server: an entity that requests media processing and
manipulation from a Media Server; typical examples are Back to
Back User Agents (B2BUA) and endpoints requesting manipulation of
a third-party's media stream.

Media Server:
an entity that performs a service, such as media
processing, on behalf of an Application Server; typical provided
functionality are mixing, announcement, tone detection and
generation, and play and record services.

Control Channel:
a reliable connection between an Application
Server and a Media Server that is used to exchange Framework
messages.

4. Overview TOC

This document provides with a 1list of more or less detailed MEDIACTRL
Media Control Channel Framework
[I-D.ietf-mediactrl-sip-control-framework] (Boulton, C., Melanchuk, T.,
and S. McGlashan, “Media Control Channel Framework,” October 2009.)
call flows. The motivation for this comes from our implementation
experience with the framework and its protocol. This drove us to
writing what could be both a simple guide throughout the use of the
several interfaces between Application Servers and MEDIACTRL-based

Media Servers (and the related correlations between them) and a
hopefully helpful base reference documentation for other implementors
and protocol researchers.

Following this spirit, this document covers several aspects of the
interaction between Application Servers and Media Servers. However, in
the context of this document, the call flows almost always depict the
interaction between a single Application Server (which, for the sake of
conciseness, is called AS from now on) and a single Media Server (MS).
To ease up the understanding of all the flows (for what concerns both
SIP dialogs and CFW transactions), the domains hosting the AS and the
MS in all the scenarios are called, respectively,
'cicciopernacchio.com' and 'pippozzoserver.org'.

In the next paragraphs a small overview of our implementation
approaches and choices is described, with particular focus upon the
protocol-related aspects. This involves state diagrams for what
concerns both the client side (the AS) and the server side (the MS). Of
course, this section is not at all to be considered a mandatory
approach to the implementation of the framework. It is only meant to
ease up the understanding of how the framework works from a practical
point of view, and of the following examples.

Once done with this preliminary considerations, in the subsequent
sections real-1life scenarios are faced. In this context, first of all,
the establishment of the Control Channel is dealt with: after that,
some typical use case scenarios, involving the most typical multimedia
applications, are depicted and described.

4.1. A Practical Approach TOC

TBD. (What exactly is needed here? Implementation detail are not likely
to belong in here...)

4.1.1. State Diagrams TOC

TBD. (talk about both diagrams; explain why both diagrams have been
separated considering the introduction of the new MS-generated CONTROL
event for notifications; describe how transactions and events are
correlated at package level, but not at framework level).

| Idle/'terminate' |------------ >| CONTROL received |--------- +
o + g + |
A A A API 200/200 | | |
I (. I I I
| I RRAREEEEEEEEEE o |
| 200/- | API Error/Error | |
| e + |
I I
[SRS + |
| Waiting for | \%

| last 200 [<--mmmmm e + L
R + | | '202' sent
N | A,

I I I I

| e + |

| API terminate/ API terminate/ |

| REPORT terminate REPORT termnate |

I I

R + |

| 'update' confirmed |------ + API update/ |

L T + | REPORT update |

A | API update/ |

| | REPORT update |

I v I

| 200/ - R + |

R | 'update' sent |<---------------- +

RS +

Figure 1: Media Server CFW State Diagram

+-->| CONTROL sent |[---------- >| 202 received |

API CONTROL/
send CONTROL
Error/

I
I I
I I
I I
I I
I I
Error |
I
I
I
I
I

| REPORT 'terminate'/
| send 200
REPORT 'update'/
send 200

REPORT 'terminate'/
send 200

| REPORT 'update'/
R + send 200

Figure 2: Application Server CFW State Diagram

+-->| CONTROL sent |

| S +
I I
I I
API CONTROL/ | | 200/-
send CONTROL | |
I I
Fom e e e meooooo - + |
| Idle/'terminate’' |[<----+
B +

Fom e + CONTROL/- +------------------ +
| Idle/'terminate' |[------------ >| CONTROL received |
Fom e e e e e oo o + S +

A API 200/200 |

I

e +

(Application Server perspective)

Figure 3: Event Notifications

4.1.2. Implementation TOC

TBD. (media- and macro-connections, conferences, plugins)

5. Control Channel Establishment TOC

As specified in [I-D.ietf-mediactrl-sip-control-framework] (Boulton,
C., Melanchuk, T., and S. McGlashan, “Media Control Channel Framework,”
October 2009.), the preliminary step to any interaction between an AS
and a MS is the establishment of a control channel between the two. As
explained in the next subsection, this is accomplished by means of a
so-called COMEDIA [RFC4145] (Yon, D. and G. Camarillo, “TCP-Based Media

Transport in the Session Description Protocol (SDP),” September 2005.)
negotiation. This negotiation allows for a TCP connection to be created
between the AS and the MS: once they have connected, a SYNC message
sent by the AS to the MS consolidates the control channel.

AS MS

I I
| INVITE (COMEDIA) |

[<emmmmmrm I
| 200 OK (COMEDIA) |
[<emmmmmmmmm I
| ACK |
[=-mr >|
I I
| TCP CONNECT (CTRL CHANNEL) |

| SYNC (Dialog-ID, etc.)v |

| ++++++++++H+ S>> |

| |-~

| | | Check SYNC
| |<-+

I 200 OK |

| <<+ +++++++Ht bbb |

Figure 4: Control Channel Establishment

5.1. COMEDIA Negotiation TOC

As a first step, the AS and the MS establish a Control SIP dialog. This
is usually originated by the AS itself. The AS generates a SIP INVITE
message containing in its SDP body information about the TCP connection
it wants to establish with the MS. In the provided example (see

Figure 5 (COMEDIA Negotiation: Sequence Diagram) and the attached call
flow), the AS wants to actively open a new TCP connection, which on his
side will be bound to port 5757. If the request is fine, the MS answers
with its own offer, by communicating to the AS the transport address to
connect to in order to establish the TCP connection. In the provided
example, the MS will listen on the port 7575. Once this negotiation is
over, the AS can effectively connect to the MS.

The negotiation includes additional attributes, the most important
being the 'cfw-id' attribute, since it specifies the Dialog-ID which
will be subsequently referred to by both the AS and the MS, as
specified in the core framework draft.

Note that the provided example also includes the indication, from both
the AS and the MS, of the supported control packages. This is achieved
by means of a series of 'ctrl-package' attributes as specified in
[I-D.boulton-mmusic-sdp-control-package-attribute] (Boulton, C., “A
Session Description Protocol (SDP) Control Package Attribute,”

March 2009.). In the example, the AS supports (or is only interested
to) two packages: IVR and the Audio Conferencing. The MS replies with
the list of packages it supports, by adding the VoiceXML IVR package to
the list provided by the AS. It is worth noting that this exchange of
information is not meant as a strictly containing negotiation of
packages: in case the AS gets to know that one or more packages it
needs are not supported according to the indications sent by the MS, it
MAY choose not to open a control channel with the MS at all, if its
application logic leads to such a decision. The actual negotiation of
control packages is done subsequenty through the use of the framework
SYNC transaction.

| 1. INVITE (COMEDIA) |

[<-mmmmmmm I
| 3. 200 OK (COMEDIA) |
[<emmmmmmmm I
| 4. ACK |
[=-mr >|
I I
| TCP CONNECT (CTRL CHANNEL) |

Figure 5: COMEDIA Negotiation: Sequence Diagram

1. AS -> MS (SIP INVITE)
INVITE sip:MediaServer@pippozzoserver.org:5060 SIP/2.0
Via: SIP/2.0/UDP 1.2.3.4:5060;\
branch=z9hG4bK-d8754z-9b07c8201c3aa510-1---d8754z-; rport=5060
Max-Forwards: 70
Contact: <sip:ApplicationServer@1.2.3.4:5060>
To: <sip:MediaServer@pippozzoserver.org:5060>
From: <sip:ApplicationServer@cicciopernacchio.com:5060>;tag=4354ec63
Call-ID: MDk2YTkIMDU3YmVkZjgzYTQwYmJINJESNTA4ZDQ10GY.
CSeq: 1 INVITE
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, UPDATE, INVITE, REGISTER
Content-Type: application/sdp
Content-Length: 263

v=0

o=lminiero 2890844526 2890842807 IN IP4 cicciopernacchio.com
s=MediaCtrl

c=IN IP4 cicciopernacchio.com
t=0 0

m=application 5757 TCP/CFW *
a=connection:new
a=setup:active
a=cfw-id:5feb6486792a
a=ctrl-package:msc-ivr/1.0
a=ctrl-package:msc-mixer/1.0

2. AS <- MS (SIP 100 Trying)
SIP/2.0 100 Trying
Via: SIP/2.0/UDP 1.2.3.4:5060; \
branch=z9hG4bK-d8754z-9b07c8201c3aa510-1---d8754z-; rport=5060
To: <sip:MediaServer@pippozzoserver.org:5060>;tag=499a5hb74
From: <sip:ApplicationServer@cicciopernacchio.com:5060>;tag=4354ec63
Call-ID: MDk2YTkIMDU3YmMVkZjgzYTQwYmJINJESNTA4ZDQ10GY.
CSeq: 1 INVITE
Content-Length: 0

3. AS <- MS (SIP 200 OK)
SIP/2.0 200 OK
Via: SIP/2.0/UDP 1.2.3.4:5060; \
branch=z9hG4bK-d8754z-9b07c8201c3aa510-1---d8754z-; rport=5060
Contact: <sip:MediaServer@pippozzoserver.org:5060>
To: <sip:MediaServer@pippozzoserver.org:5060>;tag=499a5b74

From: <sip:ApplicationServer@cicciopernacchio.com:5060>;tag=4354ec63
Call-ID: MDk2YTkIMDU3YmMVKZjgzYTQwYmJINJESNTA4ZDQ10GY.

CSeq: 1 INVITE

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, UPDATE, INVITE, REGISTER
Content-Type: application/sdp

Content-Length: 329

v=0

o=lminiero 2890844526 2890842808 IN IP4 pippozzoserver.org
s=MediaCtrl

c=IN IP4 pippozzoserver.org

t=0 0

m=application 7575 TCP/CFW *
a=connection:new

a=setup:passive
a=cfw-id:5feb6486792a
a=ctrl-package:msc-ivr-vxml/1.0
a=ctrl-package:msc-ivr/1.0
a=ctrl-package:msc-example-pkg/1.0
a=ctrl-package:msc-mixer/1.0

4, AS -> MS (SIP ACK)
ACK sip:MediaServer@pippozzoserver.org:5060 SIP/2.0
Via: SIP/2.0/UDP 1.2.3.4:5060; \
branch=z9hG4bK-d8754z-22940f5f4589701b-1---d8754z-; rport
Max-Forwards: 70
Contact: <sip:ApplicationServer@1.2.3.4:5060>
To: <sip:MediaServer@pippozzoserver.org:5060>;tag=499a5b74
From: <sip:ApplicationServer@cicciopernacchio.com:5060>;tag=4354ec63
Call-ID: MDk2YTkIMDU3YmMVKZjgzYTQwYmJINJESNTA4ZDQ10GY.
CSeq: 1 ACK
Content-Length: ©

5.2. SYNC T0C

Once the AS and the MS have successfully established a TCP connection,
an additional step is needed before the control channel can be used. In
fact, as seen in the previous subsection, the first interaction between
the AS and the MS happens by means of a SIP dialog, which in turns
allows for the creation of the TCP connection. This introduces the need
for a proper correlation between the above mentioned SIP dialog and TCP
connection, so that the MS can be sure the connection came from the AS
which requested it. This is accomplished by means of a dedicated

framework message called SYNC. This SYNC message makes use of a unique
identifier called Dialog-ID to validate the control channel. This
identifier, as introduced in the previous paragrah, is randomly
generated by the caller (the AS in the call flow), and added as an SDP
media attribute (cfw-id) to the COMEDIA negotiation in order to make
both the entities aware of its value:

a=cfw-1d:5feb6486792a
ANNNANNNANNNNNNN

Besides, it offers an additional negotiation mechanism. In fact, the AS
uses the SYNC not only to properly correlate as explained before, but
also to negotiate with the MS the control packages it is interested to,
as well as to agree on a Keep-Alive timer needed by both the AS and the
MS to understand if problems on the connection occur. In the provided
example (see Figure 5 (COMEDIA Negotiation: Sequence Diagram) and the
related call flow), the AS sends a SYNC with a Dialog-ID constructed as
needed (using the 'cfw-id' attribute from the SIP dialog) and requests
access to two control packages, specifically the IVR and the Audio
Conferencing package (These are the same packages the AS previously
indicated in its SDP as specified in
[I-D.boulton-mmusic-sdp-control-package-attribute] (Boulton, C., “A
Session Description Protocol (SDP) Control Package Attribute,”

March 2009.), with the difference that this time they are reported in
the context of a binding negotiation). Besides, it instructs the MS
that a 100 seconds timeout is to be used for Keep-Alive messages. The
MS validates the request by matching the received Dialog-ID with the
SIP dialog values and, assuming it supports the control packages the AS
requested access to (and for the sake of this document we assume it
does), it answers with a 200 message. Additionally, the MS provides the
AS with a list of other unrequested packages it supports (in this case
the VoiceXML IVR package and a dummy package providing testing
functionality).

AS MS

I I

| 1. SYNC (Dialog-ID, etc.) |

I o I o 1 S >

| |-+

I | | Check SYNC
| |<-+

| 2. 200 OK |

| <<t++++++ttttt bbbttt |

Figure 6: SYNC: Sequence Diagram

1. AS -> MS (CFW SYNC)
CFW 6e5e86f95609 SYNC
Dialog-ID: 5feb6486792a
Keep-Alive: 100
Packages: msc-ivr/1.0,msc-mixer/1.0

2. AS <- MS (CFW 200)

CFW 6e5e86f95609 200

Keep-Alive: 100

Packages: msc-ivr/1.0,msc-mixer/1.0

Supported: msc-ivr-vxml/1.0,msc-example-pkg/1.0

At this step, the control channel is finally established, and can be
used by the AS to request services from the MS.

6. Use-case scenarios and examples TOC

The following scenarios have been chosen for their common presence in
many rich real-time multimedia applications. Each scenario is depicted

as a set of call flows, involving both the SIP/SDP signaling (UACs<-
>AS<->MS) and the Control Channel communication (AS<->MS).

All the examples assume that a Control Channel has already been
correctly established and SYNCed between the reference AS and MS.
Besides, unless stated otherwise, the same UAC session is referenced in
all the above mentioned examples. The UAC session is assumed to have
been created as the Figure 7 (3PCC Sequence Diagram) describes:

I
I
I
I I
[<---mmmmmee e I I
I |--+ I
| | | Handle app(X) |
I |<-+ I
| | INVITE (X) as 3PCC |
I [---mmmmm e >|
| | 100 (Trying) |
| | <o mm |
| | | --+ Negotiate media
| | | | with UAC and map
| | |<-+ tags and labels
| [200 OK |
| | <o |
| 200 OK | |
R RRREEEEEEEE | |
| ACK |
[----mmmm - >| I
| | ACK |
I [----mmmmem e >|
I

| <<##HHBHHBHHBHHHHBHHBHHBHHBHBHHBHHBHHBHHBHHRES> |
| RTP Media Stream(s) flowing |
| <<##HHBHHBHHBHHHH I HBHBHHEH T >> |

Figure 7: 3PCC Sequence Diagram

Note well: this is only an example of a possible approach involving a
3PCC negotiation among the UAC, the AS and the MS, and as such is not
at all to be considered as the mandatory way or as best common practice
either in the presented scenario. [RFC3725] (Rosenberg, J., Peterson,
J., Schulzrinne, H., and G. Camarillo, “Best Current Practices for
Third Party Call Control (3pcc) in the Session Initiation Protocol
(SIP),” April 2004.) provides several different solutions and many
details about how 3PCC can be realized, with pros and cons.

The UAC first places a call to a SIP URI the AS is responsible of. The
specific URI is not relevant to the examples, since the application
logic behind the mapping between a URI and the service it provides is a
matter that is important only to the AS: so, a generic
'sip:example@cicciopernacchio.com' is used in all the examples, whereas
the service this URI is associated with in the AS logic is mapped
scenario by scenario to the case under exam. The UAC INVITE is treated
as envisaged in [I-D.ietf-mediactrl-architecture] (Melanchuk, T., “An
Architectural Framework for Media Server Control,” November 2008.): the
INVITE is forwarded by the AS to the MS in a 3PCC fashion, without the
SDP provided by the UAC being touched, thus to have the session fully
negotiated by the MS for what concerns its description. The MS matches
the UAC's offer with its own capabilities and provides its answer in a
200 OK. This answer is then forwarded, again without the SDP contents
being touched, by the AS to the UAC it is intended for. This way, while
the SIP signaling from the UAC is terminated to the AS, all the media
would start directly flowing between the UAC and the MS.

As a consequence of this negotiation, one or more media connections are
created between the MS and the UAC. They are then addressed, when
needed, by the AS and the MS by means of the tags concatenation as
specified in [I-D.ietf-mediactrl-sip-control-framework] (Boulton, C.,
Melanchuk, T., and S. McGlashan, “Media Control Channel Framework,”
October 2009.). How the identifiers are created and addressed is
explained by making use of the sample signaling provided in Figure 8
(3PCC SIP Signaling).

1. UAC -> AS (SIP INVITE)
INVITE sip:mediactrlDemo@cicciopernacchio.com SIP/2.0
Via: SIP/2.0/UDP 4.3.2.1:5063;rport;branch=z9hG4bK1396873708
From: <sip:lminiero@users.cicciopernacchio.com>;tag=1153573888
To: <sip:mediactrlDemo@cicciopernacchio.com>
Call-ID: 1355333098
CSeq: 20 INVITE
Contact: <sip:lminiero@4.3.2.1:5063>
Content-Type: application/sdp
Max-Forwards: 70
User-Agent: Linphone/2.1.1 (eXosip2/3.0.3)
Subject: Phone call
Expires: 120
Content-Length: 330

v=0

o=lminiero 123456 654321 IN IP4 4.3.2.1
s=A conversation

c=IN IP4 4.3.2.1

t=0 0

m=audio 7078 RTP/AVP 0 3 8 101
a=rtpmap:0 PCMU/8000/1

a=rtpmap:3 GSM/8000/1

a=rtpmap:8 PCMA/8000/1
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-11

m=video 9078 RTP/AVP 98
a=rtpmap:98 H263-1998/90000
a=fmtp:98 CIF=1;QCIF=1

2. UAC <- AS (SIP 180 Ringing)
SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 4.3.2.1:5063;rport=5063; \
branch=z9hG4bK1396873708
Contact: <sip:mediactrlbDemo@cicciopernacchio.com>
To: <sip:mediactrlDemo@cicciopernacchio.com>;tag=bcd47c32
From: <sip:lminiero@users.cicciopernacchio.com>;tag=1153573888
Call-ID: 1355333098
CSeq: 20 INVITE
Content-Length: ©

3. AS -> MS (SIP INVITE)

INVITE sip:MediaServer@pippozzoserver.org:5060;transport=UDP SIP/2.0

Via: SIP/2.0/UDP 1.2.3.4:5060; \
branch=z9hG4bK-d8754z-8723e421ebc45f6b-1---d8754z-;rport

Max-Forwards: 70

Contact: <sip:ApplicationServer@1.2.3.4:5060>

To: <sip:MediaServer@pippozzoserver.org:5060>

From: <sip:ApplicationServer@cicciopernacchio.com:5060>;tag=10514b7f

Call-ID: NzIO®ZjQOZTBIMTEzMGU1ZjVhMjk5NT1iMmImZjEONDQ.

CSeq: 1 INVITE

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, UPDATE, INVITE, REGISTER

Content-Type: application/sdp

Content-Length: 330

v=0

o=lminiero 123456 654321 IN IP4 4.3.2.1
s=A conversation

c=IN IP4 4.3.2.1

t=0 0

m=audio 7078 RTP/AVP 0 3 8 101
a=rtpmap:0 PCMU/8000/1

a=rtpmap:3 GSM/8000/1

a=rtpmap:8 PCMA/8000/1
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-11

m=video 9078 RTP/AVP 98
a=rtpmap:98 H263-1998/90000
a=fmtp:98 CIF=1;QCIF=1

4, AS <- MS (SIP 100 Trying)
SIP/2.0 100 Trying
Via: SIP/2.0/UDP 1.2.3.4:5060; \
branch=z9hG4bK-d8754z-8723e421ebc45f6b-1---d8754z-; rport=5060
To: <sip:MediaServer@pippozzoserver.org:5060>;tag=6a900179
From: <sip:ApplicationServer@cicciopernacchio.com:5060>;tag=10514b7f
Call-ID: NzIO®ZjQOZTBIMTEzMGU1ZjVhMjk5NT1iMmImZjEGNDQ.
CSeq: 1 INVITE
Content-Length: ©

5. AS <- MS (SIP 200 OK)
SIP/2.0 200 OK
Via: SIP/2.0/UDP 1.2.3.4:5060; \
branch=z9hG4bK-d8754z-8723e421ebc45f6b-1---d8754z-; rport=5060
Contact: <sip:MediaServer@pippozzoserver.org:5060>
To: <sip:MediaServer@pippozzoserver.org:5060>;tag=6a900179
From: <sip:ApplicationServer@cicciopernacchio.com:5060>;tag=10514b7f

Call-ID: NzIO®ZjQOZTBIMTEzMGU1ZjVhMjk5NT1iMmJImZjEONDQ.

CSeq: 1 INVITE

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, UPDATE, INVITE, REGISTER
Content-Type: application/sdp

Content-Length: 374

v=0

o=lminiero 123456 654322 IN IP4 pippozzoserver.org
s=MediaCtrl

c=IN IP4 pippozzoserver.org

t=0 0

m=audio 63442 RTP/AVP 0 3 8 101
a=rtpmap:@ PCMU/8000

a=rtpmap:3 GSM/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15

a=ptime:20

a=label:7eda834

m=video 33468 RTP/AVP 98
a=rtpmap:98 H263-1998/90000
a=fmtp:98 CIF=2

a=label:0132ca2

6. UAC <- AS (SIP 200 OK)
SIP/2.0 200 OK
Via: SIP/2.0/UDP 4.3.2.1:5063;rport=5063; \
branch=z9hG4bK1396873708
Contact: <sip:mediactrlbDemo@cicciopernacchio.com>
To: <sip:mediactrlDemo@cicciopernacchio.com>;tag=bcd47c32
From: <sip:lminiero@users.cicciopernacchio.com>;tag=1153573888
Call-ID: 1355333098
CSeq: 20 INVITE
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, UPDATE, INVITE, REGISTER
Content-Type: application/sdp
Content-Length: 374

v=0

o=lminiero 123456 654322 IN IP4 pippozzoserver.org
s=MediaCtrl

c=IN IP4 pippozzoserver.org

t=0 0

m=audio 63442 RTP/AVP 0 3 8 101

a=rtpmap:@ PCMU/8000

a=rtpmap:3 GSM/8000

a=rtpmap:8 PCMA/8000

a=rtpmap:101 telephone-event/8000

a=fmtp:101 0-15

a=ptime:20

a=label:7eda834

m=video 33468 RTP/AVP 98
a=rtpmap:98 H263-1998/90000
a=fmtp:98 CIF=2
a=label:0132ca2

7. UAC -> AS (SIP ACK)
ACK sip:mediactrlDemo@cicciopernacchio.com SIP/2.0
Via: SIP/2.0/UDP 4.3.2.1:5063;rport;branch=z9hG4bK1113338059
From: <sip:lminiero@users.cicciopernacchio.com>;tag=1153573888
To: <sip:mediactrlDemo@cicciopernacchio.com>;tag=bcd47c32
Call-ID: 1355333098
CSeq: 20 ACK
Contact: <sip:lminiero@4.3.2.1:5063>
Max-Forwards: 70
User-Agent: Linphone/2.1.1 (eXosip2/3.0.3)
Content-Length: ©

8. AS -> MS (SIP ACK)
ACK sip:MediaServer@pippozzoserver.org:5060;transport=UDP SIP/2.0
Via: SIP/2.0/UDP 1.2.3.4:5060; \

branch=z9hG4bK-d8754z-5246003419ccd662-1---d8754z-;rport

Max-Forwards: 70
Contact: <sip:ApplicationServer@1.2.3.4:5060>
To: <sip:MediaServer@pippozzoserver.org:5060;tag=6a900179
From: <sip:ApplicationServer@cicciopernacchio.com:5060>;tag=10514b7f
Call-ID: NzIO®ZjQOZTBIMTEzMGU1ZjVhMjk5NT1iMmImZjEGNDQ.
CSeq: 1 ACK
Content-Length: 0

Figure 8: 3PCC SIP Signaling

As a result of the 3PCC negotiation depicted in Figure 8 (3PCC SIP
Signaling), the following relevant information is retrieved:

1. The 'From' and 'To' tags (10514b7f and 6a900179 respectively)
of the AS<->MS session:

2.

From: <sip:ApplicationServer@cicciopernacchio.com:5060>;tag=10514b7f

To: <sip:MediaServer@pippozzoserver.org:5060>;tag=6a900179
ANNNANNNAN

the labels associated with the negotiated media connections, in
this case an audio media stream (7eda834) and a video media
stream (0132ca2).

m=audio 63442 RTP/AVP 0 3 8 101
[-.]
a=label:7eda834

NANNNNNAN

m=video 33468 RTP/AVP 98

[..]
a=label:0132ca2
NANNNNNAN

These three identifiers allow the AS and MS to univocally and
unambiguously address to each other the connections associated with the
related UAC, specifically:

1.

10514b7f~6a2900179, the concatenation of the 'From' and 'To'
tags, addresses all the media connections between the MS and
the UAC;

10514b7f~6a900179~7eda834, the concatenation of the previous
value with the label attribute, addresses only one of the media
connections of the UAC session (in this case, the audio media
stream).

The mapping the AS makes between the UACs<->AS and the AS<->MS SIP
dialogs is instead out of scope for this document: we just assume that
the AS knows how to address the right connection according to the
related session it has with a UAC (e.g. to play an announcement to a
specific UAC), which is obviously very important considering the AS is
responsible for all the business logic of the multimedia application it
provides.

TOC

ANNNNNNN

6.1. Echo Test

The echo test is the simpliest example scenario that can be achieved by
means of a Media Server. It basically consists of a UAC directly or
indirectly "talking" to itself. A media perspective of such a scenario
is depicted in Figure 9 (Echo Test: Media Perspective).

| UAC | —————=—=—=—=—=—=—=—=—=—=—=—=—=—=—======> | Media |
| A | <————————————————————————= | Server |

Figure 9: Echo Test: Media Perspective

From the framework point of view, when the UAC's leg is not attached to
anything yet, what appears is described in Figure 10 (Echo Test: UAC
Media Leg not attached): since there's no connection involving the UAC
yet, the frames it might be sending are discarded, and nothing is sent
to it (except for silence, if it is requested to be transmitted).

MS
Foomoo - +
UAC | |
0----- >>------- X |
O..... << X |
I I
R +

Figure 10: Echo Test: UAC Media Leg not attached

Starting from these considerations, two different approaches to the
Echo Test scenario are explored in this document in the following

paragraphes:

1. a Direct Echo Test approach, where the UAC directly talks to
itself;

2. a Recording-based Echo Test approach, where the UAC indirectly
talks to itself.

6.1.1. Direct Echo Test TOC

In the Direct Echo Test approach, the UAC is directly connected to
itself. This means that, as depicted in Figure 11 (Echo Test: Direct
Echo (self connection)), each frame the MS receives from the UAC is
sent back to it in real-time.

MS
[IS +
UAC | |
0----- - R @ |
0----- <<------- e |
| I
S JSpupR +

Figure 11: Echo Test: Direct Echo (self connection)

In the framework this can be achieved by means of the conference
control package, which is in charge of the task of joining connections

and conferences.
A sequence diagram of a potential transaction is depicted in Figure 12

(Self Connection: Framework Transaction):

UAC AS MS
| | I
| | 1. CONTROL (join UAC to itself) |
| | ++++++++++++H+ RS> |
| | | --+ self
| | | | Jjoin
| | 2. 200 OK |<-+ UAC
| | <<t+++++++ttttt bttt bbbt |
| | I
| <<##tH#HHHHHHH AR T HHHH T T T >> |
| Now the UAC is echoed back everything [
| <<#t#####HHBHHH IR HHHBHHH T >> |
|

Figure 12: Self Connection: Framework Transaction

All the transaction steps have been numbered to ease up the
understanding and the following of the subsequent explaination lines:

*The AS requests the joining of the connection to itself by
sending a CONTROL request (1), specifically meant for the
conferencing control package (msc-mixer/1.0), to the MS: since
the connection must be attached to itself, the idl1 and id2
attributes are set to the same value, i.e. the connectionid;

*The MS, having checked the validity of the request, enforces the
joining of the connection to itself; this means that all the
frames sent by the UAC are sent back to it; to report the result
of the operation, the MS sends a 200 OK (2) in reply to the MS,
thus ending the transaction; the transaction ended successfully,
as testified by the body of the message (the 200 status code in
the <response> tag).

The complete transaction, that is the full bodies of the exchanged
messages, is provided in the following lines:

1. AS -> MS (CFW CONTROL)
CFW 4fed9bf147e2 CONTROL
Control-Package: msc-mixer/1.0
Content-Type: application/msc-mixer+xml
Content-Length: 90

<mscmixer version="1.0">
<join id1="10514b7f~6a900179" \
id2="10514b7f~6a900179"/>
</mscmixer>

2. AS <- MS (CFW 200 OK)
CFW 4fed9bf147e2 200
Timeout: 10
Content-Type: application/msc-mixer+xml
Content-Length: 125

<mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
<response status="200" \
reason="Join successful"/>
</mscmixer>

6.1.2. Echo Test based on Recording TOC

In the Recording-based Echo Test approach, instead, the UAC is NOT
directly connected to itself, but indirectly. This means that, as
depicted in Figure 13 (Echo Test: Recording involved), each frame the
MS receives from the UAC is first recorded: then, when the recording
process is ended, the whole recorded frames are played back to the UAC
as an announcement.

[R +

UAC | |
0----- >>-------4~~~~~> (recording.wav) ~~+
0----- <Lmmmmmm + | |
I v
+--]---+ |
e~ ———— <<~ ~~~+

Figure 13: Echo Test: Recording involved

In the framework this can be achieved by means of the IVR control
package, which is in charge of the task of recording and playout.
However, the whole scenario cannot be accomplished in a single
transaction; at least two steps, in fact, need to be followed:

1. first, a recording (preceded by an announcement, if requested)
must take place;

2. then, a playout of the previously recorded media must occur.

This means that two separate transactions need to be invoked. A
sequence diagram of a potential multiple transaction is depicted in
Figure 14 (Recording-based Echo: Two Framework Transactions):

UAC AS MS

I I
| A1. CONTROL (record for 10s) |
| +++++++++++ RS> |

| A2. 202 |
| <<t ++++++++++ttttt bbbt |

| A3. REPORT (update) |

| <<t+++++++++++++++++ 4+ | prepare &
| +H+++++tt bttt bbb RS> | | the

| A5. REPORT (terminate) |<-+ dialog

| <<+++++++++++++H+HH |

| A6. 200 OK |

| ++++++++++++++++++++H+H S S |

I I

S<SHHBBBHHHHHHH B HHHHHHH B GHHHH ARG HH BT |
| "This is an echo test: tell something" |
| <<#ttt##HHHHHH B HHHH TR HHH T T TR |

I I I
| B HH# R H AR HH TR H T H R H T R TR >> |

I
I
I
I
I
I
I
| | A4. 200 OK |--+ start
I
I
I
I
I
I
I

| 10s of audio from the UAC is recorded | --+ save
| #EHBHHBHHBH PRI R R R #EH>>] | 1n a
I I |<-+ file
| B1. CONTROL (<recordinfo>) |
| <<+++++++++++H++H+ |
Use recorded +--| B2. 200 OK |
file to play | | +H+++++tt bttt bbb RS> |
announcement +->| |
| C1. CONTROL (play recorded) |
| +++++++t bbb S>> |
| C2. 202 |
| <<t+++++++++H+tttHt bbbt |
| C3. REPORT (update) |
| <<+++++++++++++H+++HH+ | prepare &
| c4. 200 OK |--+ start
| the

| C5. REPORT (terminate) |<-+ dialog

| <<t+++++++tttttt bttt bbb |

| C6. 200 OK |

I o k>

I I
<S<HHBHBHHBHHBHHBHHHHBHHBHHBHHBH B S HHH B HBHH RS R |
"Can you hear me? It's me, UAC, talking" |
S<HHBHBHHBHHBHHBHHBHBHHBHHBHHBH R |
I I

| D1. CONTROL (<promptinfo>) |

I
I
I
I
I
I
I
I
I
I
I
I
| IR a2 S o S S o I i k> 02
I
I
I
I
I
I
I
I
I
I
| | <<+ +++++++tttt bttt bbb |

| | D2. 200 OK |
| IR o 0 i o >

Figure 14: Recording-based Echo: Two Framework Transactions

Notice how the AS-originated CONTROL transactions are terminated as
soon as the requested dialogs start: as specified in
[I-D.ietf-mediactrl-ivr-control-package] (McGlashan, S., Melanchuk, T.,

and C. Boulton, “An Interactive Voice Response (IVR) Control Package
for the Media Control Channel Framework,” February 2010.), the MS makes
use of a framework CONTROL message to report the result of the dialog
and how it has proceeded. The two transactions (the AS-generated
CONTROL request and the MS-generated CONTROL event) are correlated by
means of the associated dialog identifier, as it will be clearer from
the following lines. As before, all the transaction steps have been
numbered to ease up the understanding and the following of the
subsequent explaination lines. Besides, the two transactions are
distinguished by the preceding letter (A,B=recording, C,D=playout).

*The AS, as a first transaction, invokes a recording on the UAC
connection by means of a CONTROL request (Al); the body is for
the IVR package (msc-ivr/1.0), and requests the start
(dialogstart) of a new recording context (<record>); the
recording must be preceded by an announcement (<prompt>), must
not last longer than 10s (maxtime), and cannot be interrupted by
a DTMF tone (dtmfterm=false); this has only to be done once
(repeatCount), which means that if the recording does not succeed
the first time, the transaction must fail; a video recording is
requested (type), which is to be feeded by both the negotiated
media streams; a beep has to be played (beep) right before the
recording starts to notify the UAC;

*As seen before, the first responses to the request start flowing:
the provisional 202 (A2), the subsequent REPORT update (A3), and
its ack (A4) from the AS;

*In the meanwhile, the MS prepares the dialog (e.g. by retrieving
the announcement file, for which a HTTP URL is provided, and by
checking that the request is well formed) and if all is fine it
starts it, notifying the AS about it with a new REPORT (A5) with
a terminated status: the connection is then passed to the IVR
package, which first plays the announcement on the connection,
followed by a beep, and then records all the incoming frames to a

buffer; the MS also provides the AS with an unique dialog
identifier (dialogid) which will be used in all subsequent event
notifications concerning the dialog it refers to;

*The AS acks the latest REPORT (A6), thus terminating this
transaction, waiting for the result to come;

*Once the recording is over, the MS prepares a notification
CONTROL (B1); the <event> body is prepared with an explicit
reference to the previously provided dialogid identifier, in
order to make the AS aware of the fact that the notification is
related to that specific dialog; the event body is then completed
with the recording related information (<recordinfo>) , in this
case the path to the recorded file (here a HTTP URL) which can be
used by the AS for whatever it needs to; the payload also
information about the prompt (<promptinfo&gT;), which is however
not relevant to the scenario;

*The AS concludes this first recording transaction by acking the
CONTROL event (B2).

Now that the first transaction has ended, the AS has the 10s recording
of the UAC talking. It can let the UAC hear it by having the MS play it
to the MS as an announcement:

*The AS, as a second transaction, invokes a playout on the UAC
connection by means of a new CONTROL request (Cl); the body is
once againg for the IVR package (msc-ivr/1.0), but this time it
requests the start (dialogstart) of a new announcement context
(<prompt>); the file to be played is the one recorded before
(prompts), and has only to be played once (iterations);

*Again, the usual provisional 202 (C2), the subsequent REPORT
update (C3), and its ack (C4) from the AS take place;

*In the meanwhile, the MS prepares the new dialog and starts it,
notifying the AS about it with a new REPORT (C5) with a
terminated status: the connection is then passed to the IVR
package, which plays the file on it;

*The AS acks the terminating REPORT (C6), now waiting for the
announcement to end;

*Once the playout is over, the MS sends a CONTROL event (D1) which
contains in its body (<promptinfo>) information about the just
concluded announcement; as before, the proper dialogid is used as
a reference to the correct dialog;

*The AS concludes this second and last transaction by acking the
CONTROL event (D2).

As in the previous paragraph, the whole CFW interaction is provided for
a more in depth evaluation of the protocol interaction.

Al. AS -> MS (CFW CONTROL, record)
CFW 796d83aalce4 CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 245

<mscivr version="1.0">
<dialogstart connectionid="10514b7f~6a900179">
<dialog>
<prompt>
<media \
src="http://www.cicciopernacchio.com/demo/echorecord.mpg"/>
</prompt>
<record beep="true" maxtime="10s" vadinitial="false"/>
</dialog>
</dialogstart>
</mscivr>

A2. AS <- MS (CFW 202)

CFW 796d83aalce4 202

A3. AS <- MS (CFW REPORT update)

CFW 796d83aalce4 REPORT

Seq: 1
Status: update
Timeout: 10

Ad4. AS -> MS (CFW 200, ACK to 'REPORT update')
CFW 796d83aalce4 200
Seq: 1

A5. AS <- MS (CFW REPORT terminate)
CFW 796d83aalce4 REPORT
Seq: 2
Status: terminate
Timeout: 25
Content-Type: application/msc-ivr+xml
Content-Length: 137

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
<response status="200" reason="Dialog started" \
dialogid="68d6569"/>
</mscivr>

A6. AS -> MS (CFW 200, ACK to 'REPORT terminate')
CFW 796d83aalce4 200
Seq: 2

B1. AS <- MS (CFW CONTROL event)
CFW 0eb1678cObfc CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 385

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
<event dialogid="68d6569">
<dialogexit status="1" reason="Dialog successfully completed">
<promptinfo duration="5759" termmode="bargein"/>
<recordinfo recording=\
"http://www.pippozzoserver.org/recordings/recording-68d6569.mpg" \
type="video/mpeg" duration="10006" size="1245184" \
termmode="maxtime"/>
</dialogexit>
</event>
</mscivr>

B2. AS -> MS (CFW 200, ACK to 'CONTROL event')

CFW 0eb1678cObfc 200

Cl. AS -> MS (CFW CONTROL, play)
CFW 1632eead7e3b CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 204

<mscivr version="1.0">
<dialogstart connectionid="10514b7f~6a900179">
<dialog>
<prompt>
<media \
src="http://www.pippozzoserver.org/recordings/recording-68d6569.mpg"/>

</prompt>
</dialog>
</dialogstart>
</mscivr>

C2. AS <- MS (CFW 202)

CFW 1632eead7e3b 202

C3. AS <- MS (CFW REPORT update)

CFW 1632eead7e3b REPORT

Seq: 1
Status: update
Timeout: 10

C4. AS -> MS (CFW 200, ACK to 'REPORT update')
CFW 1632eead7e3b 200
Seq: 1

C5. AS <- MS (CFW REPORT terminate)
CFW 1632eead7e3b REPORT
Seq: 2
Status: terminate
Timeout: 25
Content-Type: application/msc-ivr+xml
Content-Length: 137

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
<response status="200" reason="Dialog started" \
dialogid="5f5ch45" />
</mscivr>

C6. AS -> MS (CFW 200, ACK to 'REPORT terminate')

CFW 1632eead7e3b 200
Seq: 2

D1. AS <- MS (CFW CONTROL event)

CFW 502a5fd83db8 CONTROL
Control-Package: msc-ivr/1.0

Content-Type: application/msc-ivr+xml
Content-Length: 230

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
<event dialogid="5f5cbh45">
<dialogexit status="1" reason="Dialog successfully completed">
<promptinfo duration="10366" termmode="completed"/>
</dialogexit>
</event>
</mscivr>

D2. AS -> MS (CFW 200, ACK to 'CONTROL event')

CFW 502a5fd83db8 200

6.2. Phone Call TOC

Another scenario that might involve the interaction between an AS and a
MS is the classic phone call between two UACs. In fact, even though the
most straightforward way to achieve this would be to let the UACs
negotiate the session and the media to make use of between themselves,
there are cases when the services provided by a MS might come in handy
for phone calls as well.

One of these cases is when the two UACs have no common supported
codecs: having the two UACs directly negotiate the session would result
in a session with no available media. Involving the MS as a transcoder
would instead allow the two UACs to communicate anyway. Another
interesting case is when the AS (or any other entity the AS is working
in behalf of) is interested in manipulating or monitoring the media
session between the UACs, e.g. to record the conversation: a similar
scenario will be dealt with in Section 6.2.2 (Conference-based
Approach).

Before proceeding in looking at how such a scenario might be
accomplished by means of the Media Control Channel Framework, it is
worth spending a couple of words upon how the SIP signaling involving
all the interested parties might look like. In fact in such a scenario
a 3PCC approach is absolutely needed. An example is provided in

Figure 15 (Phone Call: Example of 3PCC). Again, the presented example
is not at all to be considered best common practice when 3PCC is needed
in a MediaCtrl-based framework. It is only described in order to let
the reader more easily understand what are the requirements on the MS
side, and as a consequence which information might be required.
[REC3725] (Rosenberg, J., Peterson, J., Schulzrinne, H., and G.
Camarillo, “Best Current Practices for Third Party Call Control (3pcc)

in the Session Initiation Protocol (SIP),” April 2004.) provides with a

much more detailed overview on 3PCC patterns in several use cases. Only

an explainatory sequence diagram is provided, without delving into the

details of the exchanged SIP messages.

UAC(1)
I

UAC(2) AS
I I

| INVITE (offer A) |

| oo >|
| 100 Trying |
Ko m e e e e e e e e oo - |
| INVITE (no offer) |
| <o |
| 180 Ringing |
R LR ELEEPELE >
| 180 Ringing |
< U |

INVITE (offer A)

In the example,

I

I

| | <o |

| | ACK |

| R RRRCEEEEEEEEES >|

| 200 OK (offer B) | |

[------mmm e - - >| INVITE (offer B) |
R R EEEREER >|
| 200 OK (offer B') |
R AR L CEE T DR |

Figure 15: Phone Call: Example of 3PCC

the UAC1 wants to place a phone call to UAC2. To do so,
it sends an INVITE to the AS with its offer A. The AS sends an
offerless INVITE to UAC2. When the UAC2 responds with a 180, the same

message is forwarded by the AS to the UAC1 to notify it the callee is
ringing. In the meanwhile, the AS also adds a leg to the MS for UAC1,
as explained in the previous sections: to do so it of course makes use
of the offer A the UAC1 made. Once the UAC2 accepts the call, by
providing its own offer B in the 200, the AS adds a leg for it too to
the MS. At this point, the negotiation can be completed by providing
the two UACs with the SDP answer negotiated by the MS with them (A' and
B' respectively).

This is only one way to deal with the signaling, and shall not
absolutely be considered as a mandatory approach of course.

Once the negotiation is over, the two UACs are not in communication
yet. In fact, it's up to the AS now to actively trigger the MS into
attaching their media streams to each other someway, by referring to
the connection identifiers associated with the UACs as explained
previously. This document presents two different approaches that might
be followed, according to what needs to be accomplished. A generic
media perspective of the phone call scenario is depicted in Figure 16
(Phone Call: Media Perspective): the MS is basically in the media path
between the two UACs.

>| Media
:::::_:::::::::::::l Server

Figure 16: Phone Call: Media Perspective

From the framework point of view, when the UACs' leg are not attached
to anything yet, what appears is described in Figure 17 (Phone Call:
UAC Media Leg not attached): since there are no connections involving
the UACs yet, the frames they might be sending are discarded, and
nothing is sent to them (except for silence, if it is requested to be
transmitted).

oo +
UAC A | | UAC B
0---=- >>oo-o-- X Xevueons -)
0..... <o X X=mmmmm- <<--m- -)
| |
oo +

Figure 17: Phone Call: UAC Media Leg not attached

6.2.1. Direct Connection TOC

The Direct Connection is the easiest and more straightforward approach
to get the phone call between the two UACs to work. The idea is
basically the same as the one in the Direct Echo approach: a <join>
directive is used to directly attach one UAC to the other, by leaving
the MS to only deal with the transcoding/adaption of the flowing
frames, if needed.

This approach is depicted in Figure 18 (Phone Call: Direct Connection).

MS
o +
UAC A UAC B
0----- P —— Fm > o - >>o o= o}
0----- << e e et P <<----- o}
o +

Figure 18: Phone Call: Direct Connection

UAC1 UAC2 AS MS

I I I I

| 1. CONTROL (join UAC1 to UAC2) |

| ++++++++++++++++++++++H++H+H A SS |
| |--+ join
| | | UAC1
| 2. 200 OK |<-+ UAC2

| <<t++++++++++++++++++++++++++++++++++ |

I I I

SSHHBHBHHBHHBHHBHHHHBFHBHHBHHBH AR>S |

UAC1 can hear UAC2 talking |

S<HHBHBHHBHHBHHBHBHHBHHBHHBHHBHBHHBHHBHHBHHREH U H B HBHE>> |

I I I

| <<##HHBHHBHHBHHBH PRI HBHHBHHH > |

| UAC2 can hear UAC1 talking |

| <<##HHBHHBHHBHHBHBHHBHHBHHBHHBHBHHBHHBHHBHHRES> |

I I I

<*talking*>| | I

Figure 19: Direct Connection: Framework Transactions

The framework transactions needed to accomplish this scenario are very
trivial and easy to understand. They basically are the same as the one
presented in the Direct Echo Test scenario, with the only difference
being in the provided identifiers. In fact, this time the MS is not
supposed to attach the UAC's media connections to themselves, but has
to join the media connections of two different UACs, i.e. UAC1 and
UAC2. This means that, in this transaction, idl and i2 will have to
address the media connections of UAC1 and UAC2. In case of a successful
transaction, the MS takes care of forwarding all media coming from UAC1
to UAC2 and vice versa, transparently taking care of any required
transcoding steps, if necessary.

1. AS -> MS (CFW CONTROL)
CFW 0600855d24c8 CONTROL
Control-Package: msc-mixer/1.0
Content-Type: application/msc-mixer+xml
Content-Length: 90

<mscmixer version="1.0">
<join id1="10514b7f~6a900179" \
id2="elel1427c~1c998d22"/>
</mscmixer>

2. AS <- MS (CFW 200 OK)
CFW 0600855d24c8 200
Timeout: 10
Content-Type: application/msc-mixer+xml
Content-Length: 125

<mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">

<response status="200" \
reason="Join successful"/>
</mscmixer>

Such a simple approach has its drawbacks. For instance, with such an
approach recording a conversation between two users might be tricky to
accomplish. In fact, since no mixing would be involved, only the single
connections (UAC1<->MS and UAC2<->MS) could be recorded. If the AS
wants a conversation recording service to be provided anyway, it needs
additional business logic on its side. An example of such a use case is
provided in Section 6.2.3 (Recording a conversation).

6.2.2. Conference-based Approach TOC

The approach described in Section 6.2.1 (Direct Connection) surely
works for a basic phone call, but as already explained might have some
drawbacks whenever more advanced features were needed. For intance, you
can't record the whole conversation, only the single connections, since
no mixing is involved. Besides, even the single task of playing an
announcement over the conversation could be complex, especially if the
MS does not support implicit mixing over media connections. For this
reason, in more advanced cases a different approach might be taken,
like the conference-based approach described in this section.

The idea is to make use of a mixing entity in the MS that acts as a
bridge between the two UACs: the presence of this entity allows for
more customization on what needs to be done on the conversation, like
the recording of the conversation that has been provided as example.
The approach is depicted in Figure 20 (Phone Call: Conference-based
Approach). The mixing functionality in the MS will be described in more
detail in the following section (which deals with many conference-
related scenarios), so only some hints will be provided here for a
basic comprehension of the approach.

MS
B R +
UAC A UAC B
0----- >>e-o--o- +~~>{#}ri>+rrrrri>>ri0
O:rii<<iiiiiiit<ii{#i<~~t------- <<----- 0
I : I
I : I
Fommme o - e oo - +
+::::> (conversation.wav)

Figure 20: Phone Call: Conference-based Approach

To identify a single sample scenario, let's consider a phone call the
AS wants to be recorded.

Figure 21 (Conference-based Approach: Framework Transactions) shows how
this could be accomplished in the Media Control Channel Framework: the
example, as usual, hides the previous interaction between the UACs and
the AS, and instead focuses on the control channel operations and what
follows.

UAC1 UAC2 AS MS
I I I I
| A1. CONTROL (create conference) |
I 2 0 i > 2
| | --+ create
| | | conf and
| A2. 200 OK (conferenceid=Y) |<-+ its ID
R o o o o o o o o o
I I
| B1. CONTROL (record for 1800s) |
I e I 0 o > 2
| B2. 202 |--+ start
| <<t ++++++Ht bttt bbb | | the
| B3. REPORT (terminate) |<-+ dialog
| | <<t+++++++++Htttt bbbttt |
Recording +--| B4. 200 OK |
of the mix | |+++++++++t++t+ttttttttttttt+++++>> |
has started +->| |
| | C1. CONTROL (join UAC1<->confY) |
| | +++++++++H+ RS> |
I I |--+ Join
| | | | UAC1 &
| | C2. 200 OK |<-+ conf Y
| | <<++++++++++H++HH+Ht bR |
I I I
S<HHHHHHHHBHHH P HH R > |
Now the UAC1 is mixed in the conference |
S<HHBHBHHBHHBHHBHBHHBHHBHHBHHBHBGHBHHBH RSB H B H B H>> |
I | I
| | D1. CONTROL (join UAC2<->confY) |
| | +H++++ bttt bbb RS> |
I | |--+ Join
| | | | UAC2 &
| | D2. 200 OK |<-+ conf Y
| | <<t ++++++Ht bttt bbb |
I I I
| <<##HHBHHBHHBHHBHHHHBHHBHHBHHHHBHHBHHBHHRES> |
| Now the UAC2 is mixed too |
| <#HBHHHBHHH PR HHRHHH R PG HH TS > |
I I I
<*talking*>| | |

Figure 21: Conference-based Approach: Framework Transactions

The AS makes use of two different packages to accomplish this scenario:
the mixer package (to create the mixing entity and join the UACs) and
the IVR package (to record what happens in the conference). The
framework transaction steps can be described as follows:

*First of all, the AS creates a new hidden conference by means of
a 'createconference' request (Al); this conference is properly
configured according to the use it is assigned to; in fact, since
only two participants will be joined to it, both 'reserved-
talkers' and 'reserved-listeners' are set to 2; besides, the
video layout as well is set accordingly (single-view/dual-view);

*the MS notifies the successful creation of the new conference in
a 200 framework message (A2); the identifier assigned to the
conference, which will be used in subsequent request addressed to
it, is 6013f1e;

*the AS requests a new recording upon the newly created
conference; to do so, it places a proper request to the IVR
package (B1); the AS is interested in a video recording
(type=video/mpeg), which must not last longer than 3 hours
(maxtime=1800s), after which the recording must end; besides, no
beep must be played on the conference (beep=false), and the
recording must start immediately whether or not any audio
activity has been reported (vadinitial=false);

*the transaction is extended by the MS (B3), and when the dialog
has been successfully started, a REPORT terminate is issued to
the AS (B4); the message contains the dialogid associated with
the dialog (00b29fb), which the AS must refer to for later
notifications;

*at this point, the AS attaches both the UACs to the conference
with two separate 'join' directives (C1/D1); when the MS confirms
the success of both the operations (C2/D2), the two UACs are
actually in contact with each other (even though indirectly,
since a hidden conference they're unaware of is on their path)
and their media contribution is recorded.

Al.

AS -> MS (CFW CONTROL, createconference)
CFW 238e1f2946e8 CONTROL

Control-Package: msc-mixer

Content-Type: application/msc-mixer+xml
Content-Length: 357

<mscmixer version="1.0">
<createconference reserved-talkers="2" reserved-listeners="2">
<audio-mixing mix-type="nbest"/>
<video-switch type="controller"/>
<video-layouts>
<video-layout min-participants='1'>single-view</video-layout>
<video-layout min-participants='2'>dual-view</video-layout>
</video-layouts>
</createconference>
</mscmixer>

AS <- MS (CFW 200 O0K)

CFW 238e1f2946e8 200

Timeout: 10

Content-Type: application/msc-mixer+xml
Content-Length: 151

<mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
<response status="200" reason="Conference created" \
conferenceid="6013f1e"/>
</mscmixer>

AS -> MS (CFW CONTROL, record)

CFW 515f007c5bd® CONTROL
Control-Package: msc-ivr
Content-Type: application/msc-ivr+xml
Content-Length: 188

<mscivr version="1.0">
<dialogstart conferenceid="6013f1le">
<dialog>
<record beep="false" vadinitial="false" maxtime="1800s" \
type="video/mpeg" />
</dialog>
</dialogstart>
</mscivr>

B2. AS <- MS (CFW 202)

CFW 515f007c5bdo 202

B3. AS <- MS (CFW REPORT terminate)
CFW 515f007c5bd® REPORT
Seq: 1
Status: terminate
Timeout: 25
Content-Type: application/msc-ivr+xml
Content-Length: 137

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
<response status="200" reason="Dialog started" dialogid="00b29fb"/>
</mscivr>

B4. AS -> MS (CFW 200, ACK to 'REPORT terminate')
CFW 515f007c5bdo 200
Seq: 1

Cl. AS -> MS (CFW CONTROL, join)
CFW 0216231b1f16 CONTROL
Control-Package: msc-mixer
Content-Type: application/msc-mixer+xml
Content-Length: 83

<mscmixer version="1.0">
<join id1="10514b7f~6a900179" id2="6013f1e"/>
</mscmixer>

C2. AS <- MS (CFW 200 OK)
CFW 0216231b1f16 200
Timeout: 10
Content-Type: application/msc-mixer+xml
Content-Length: 125

<mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
<response status="200" reason="Join successful"/>
</mscmixer>

D1. AS -> MS (CFW CONTROL, join)
CFW 140e0f763352 CONTROL
Control-Package: msc-mixer
Content-Type: application/msc-mixer+xml
Content-Length: 84

<mscmixer version="1.0">
<join id1="219782951~0b9d3347" id2="6013f1le"/>
</mscmixer>

D2. AS <- MS (CFW 200 OK)
CFW 140e0f763352 200
Timeout: 10
Content-Type: application/msc-mixer+xml
Content-Length: 125

<mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
<response status="200" reason="Join successful"/>
</mscmixer>

The recording of the conversation can subsequently be accessed by the
AS by waiting for an event notification from the MS: this event, which
will be associated with the previously started recording dialog, will
contain the URI to the recorded file. Such an event may be triggered
either by a natural completion of the dialog (e.g. the dialog has
reached its programmed 3 hours) or by any interruption of the dialog
itself (e.g. the AS actively requested the recording to be interrupted
since the call between the UACs ended).

6.2.3. Recording a conversation TOC

The previous section described how to take advantage of the
conferencing functionality of the mixer package in order to allow the
recording of phone calls in a simple way. However, making use of a
dedicated mixer just for a phone call might be considered overkill.
This section shows how recording a conversation and playing it out
subsequently can be accomplished without a mixing entity involved in
the call, that is by using the direct connection approach as described
in Section 6.2.1 (Direct Connection).

As already explained previously, in case the AS wants to record a phone
call between two UACs, the use of just the <join> directive without a
mixer forces the AS to just rely on separate recording commands. That
is, the AS can only instruct the MS to separately record the media

flowing on each media leg: a recording for all the media coming from
UAC1, and a different recording for all the media coming from UAC2. In
case someone wants to access the whole conversation subsequently, the
AS may take at least two different approaches:

1. it may mix the two recordings itself (e.g. by delegating it to
an offline mixing entity) in order to obtain a single file
containing the combination of thw two recordings; this way, a
simple playout as described in section Section 6.1.2 (Echo Test
based on Recording) would suffice;

2. alternatively, it may take advantage of the mixing
functionality provided by the MS itself; a way to do so is to
create a hidden conference on the MS, attach the UAC as a
passive participant to it, and play the separate recordings on
the conference as announcements; this way, the UAC accessing
the recording would experience both the recordings at the same
time.

It is of course option 2 that is considered in this section. The
framework transaction as described in Figure 22 (Phone Call: Playout of
a Recorded Conversation) assumes that a recording has already been
requested for both UAC1 and UAC2, that the phone call has ended and
that the AS has successfully received the URIs to both the recordings
from the MS. Such steps are not described again since they would be
quite similar to the ones described in Section 6.1.2 (Echo Test based
on Recording). As anticipated, the idea is to make use of a properly
constructed hidden conference to mix the two separate recordings on the
fly and present them to the UAC. It is of course up to the AS to
subsequently unjoin the user from the conference and destroy the
conference itself once the playout of the recordings ends for any
reason.

UAC AS MS
I I
(UAC1 and UAC2 have previously been recorded: the AS has |
the two different recordings available for playout). |
I I
| A1. CONTROL (create conference) |
| ++++++++++H+ bR RS> |
| | --+ create
| | | conf and
| A2. 200 OK (conferenceid=Y) |<-+ its ID
| <<++++++++++H+ttttt bbbt |
I I
| B1. CONTROL (join UAC & confY) |
| +H+++++tt bttt bbb RS> |
| |--+ join
[| | UAC &
| B2. 200 OK |<-+ conf Y
IR 2 S o S o o o o o o o o e
I I
S<HHBHBHHBHHBHHBHHHHBHHBHHBHHBHHHHBHHBHHBHH SRR H RS> |
UAC is now a passive participant in the conference |
S<HHUHBHHHHHHHHBHHH PR H PR >> |
I I
| C1. CONTROL (play UAC1 on confY) |
| +++++++++++ RS> |
| D1. CONTROL (play UAC2 on confY) |
| +H+++++tt bttt bbb RS> |
I C2. 202 |
| <<+++++++++++++H+HH |
| C3. REPORT (update) |
| <<t+++++++++Ht bttt bbbt |
| D2. 202 |
| <<+++++++++++++H+HH+ |
| D3. REPORT (update) |
| <<+ +++++++t bttt bbb |
| C4. 200 OK | --+ start
| +++++++++++++++H+H++HH+ S>> | the
| C5. REPORT (terminate) |<-+ dialog
| <<+ +++++++t bttt bbb |
| D4. 200 OK | --+ start
| +++++++++++++++H+H++HH+ S>> | the
| D5. REPORT (terminate) |<-+ dialog
| <<+ +++++++t bttt bbb |

| C6. 200 OK [
| +++++++++ttt bttt RS> |
| D6. 200 OK |

R e L e

I I I
| <<#tt##HHHHHHH BB HHHHHH BB GG HHHH B RS HHHH PR T |

| The two recordings are mixed and played together to UAC |
| <<##t#t##HHH#BHHH PR HH TR HH B H TR H T R |
I I I
	E1l. CONTROL (<promptinfo>)
	<<+ +++++++t bttt bbb
	E2. 200 OK
R 0	
	F1. CONTROL (<promptinfo>)
	<<+ +++++++t bttt bbb
	F2. 200 OK
B >	
I

Figure 22: Phone Call: Playout of a Recorded Conversation

The diagram above assumes a recording of both the channels has already
taken place. It may have been requested by the AS either shortly before
joining UAC1 and UAC2, or shortly after that transaction. Whenever that
happened, a recording is assumed to have taken place, and so the AS is
supposed to have both the recordings available for playback. Once a new
user, UAC, wants to access the recorded conversation, the AS takes care
of the presented transactions. The framework transaction steps are only
apparently more complicated than the ones presented so far. The only
difference, in fact, is that transactions C and D are concurrent, since
the recordings must be played together.

*First of all, the AS creates a new conference to act as a mixing
entity (A1); the settings for the conference are chosen according
to the use case, e.g. the video layout which is fixed to 'dual-
view' and the switching type to 'controller'; when the conference
has been successfully created (A2) the AS takes note of the
conference identifier;

*At this point, the UAC is attached to the conference as a passive
user (B1); there would be no point in letting the user contribute
to the conference mix, since he will only need to watch a
recording; in order to specify his passive status, both the audio
and video streams for the user are set to 'recvonly'; in case the
transaction succeeds, the MS notifies it to the MS (B2);

*Once the conference has been created and UAC has been attached to
it, the AS can request the playout of the recordings; in order to

do so, it requests two concurrent <prompt&gT; directives (C1 and
D1), addressing respectively the recording of UAC1 and UAC2; both
the prompts must be played on the previously created conference
and not to UAC directly, as can be evinced from the
'conferenceid' attribute of the &1;dialog> element;

*The transactions live their life exactly as explained for
previous <prompt> examples; the originating transactions are
first prepared and started (C2-6, D2-6), and then, as soon as any
of the playout ends, a realted CONTROL message to notify this is
triggered by the MS (E1, F1); the notification may contain a
<promptinfo> element with information about how the playout
proceeded (e.g. whether the playout completed normally, or
interrupted by a DTMF tone, etc.).

Al

B2.

. AS -> MS (CFW CONTROL, createconference)

CFW 506e039f65bd CONTROL
Control-Package: msc-mixer/1.0
Content-Type: application/msc-mixer+xml
Content-Length: 271

<mscmixer version="1.0">
<createconference reserved-talkers="0" reserved-listeners="2">
<audio-mixing mix-type="nbest"/>
<video-switch type="controller"/>
<video-layouts>
<video-layout min-participants='1'>dual-view</video-layout>
</video-layouts>
</createconference>
</mscmixer>

AS <- MS (CFW 200 OK)

CFW 506e039f65bd 200

Timeout: 10

Content-Type: application/msc-mixer+xml
Content-Length: 151

<mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
<response status="200" reason="Conference created" \
conferenceid="2625069"/>
</mscmixer>

AS -> MS (CFW CONTROL, join)

CFW 09202baf@c81 CONTROL
Control-Package: msc-mixer/1.0
Content-Type: application/msc-mixer+xml
Content-Length: 174

<mscmixer version="1.0">
<join idil="aafaf62d~0eac5236" 1d2="2625069">
<stream media="audio" direction="recvonly'"/>
<stream media="video" direction="recvonly'"/>
</join>
</mscmixer>

AS <- MS (CFW 200 OK)

CFW 09202baf0c81 200

Timeout: 10

Content-Type: application/msc-mixer+xml
Content-Length: 125

<mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
<response status="200" reason="Join successful"/>
</mscmixer>

Cl. AS -> MS (CFW CONTROL, play recording from UAC1)
CFW 3c2a08be4562 CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 192

<mscivr version="1.0">
<dialogstart conferenceid="2625069">
<dialog>
<prompt>
<media \
src="http://www.pippozzoserver.org/recordings/recording-4ca9fc2.mpg"/>
</prompt>
</dialog>
</dialogstart>
</mscivr>

D1. AS -> MS (CFW CONTROL, play recording from UAC2)
CFW 1c268d810baa CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 192

<mscivr version="1.0">
<dialogstart conferenceid="2625069">
<dialog>
<prompt>
<media \
src="http://www.pippozzoserver.org/recordings/recording-39dfef4.mpg"/>
</prompt>
</dialog>
</dialogstart>
</mscivr>

C2. AS <- MS (CFW 202)

CFW 3c2a08be4562 202

C3. AS <- MS (CFW REPORT update)

CFW 3c2a08be4562 REPORT
Seq: 1

Status: update

Timeout: 10

D2. AS <- MS (CFW 202)

CFW 1c268d810baa 202

D3. AS <- MS (CFW REPORT update)

CFW 1c268d810baa REPORT

Seq: 1
Status: update
Timeout: 10

C4. AS -> MS (CFW 200, ACK to 'REPORT update')
CFW 3c2a08be4562 200
Seq: 1

D4. AS -> MS (CFW 200, ACK to 'REPORT update')
CFW 1c268d810baa 200
Seq: 1

C5. AS <- MS (CFW REPORT terminate)
CFW 1c268d810baa REPORT
Seq: 2
Status: terminate
Timeout: 25
Content-Type: application/msc-ivr+xml
Content-Length: 137

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
<response status="200" reason="Dialog started" \
dialogid="7a457cc"/>
</mscivr>

D5.

F1

AS <- MS (CFW REPORT terminate)

CFW 3c2a08be4562 REPORT

Seq: 2

Status: terminate

Timeout: 25

Content-Type: application/msc-ivr+xml
Content-Length: 137

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
<response status="200" reason="Dialog started" \
dialogid="1a0@c7cf"/>
</mscivr>

. AS -> MS (CFW 200, ACK to 'REPORT terminate')

CFW 1c268d810baa 200
Seq: 2

. AS -> MS (CFW 200, ACK to 'REPORT terminate')

CFW 3c2a08be4562 200
Seq: 2

. AS <- MS (CFW CONTROL event, playout of recorded UAC1 ended)

CFW 77aec0735922 CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 230

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
<event dialogid="7a457cc">
<dialogexit status="1" reason="Dialog successfully completed">
<promptinfo duration="10339" termmode="completed"/>
</dialogexit>
</event>
</mscivr>

. AS -> MS (CFW 200, ACK to 'CONTROL event')

CFW 77aec0735922 200

. AS <- MS (CFW CONTROL event, playout of recorded UAC2 ended)

CFW 62726acel660 CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 230

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
<event dialogid="1a@c7cf">
<dialogexit status="1" reason="Dialog successfully completed">
<promptinfo duration="10342" termmode="completed"/>
</dialogexit>
</event>
</mscivr>

F2. AS -> MS (CFW 200, ACK to 'CONTROL event')

CFW 62726acel660 200

6.3. Voice Mail TOC

Another application that typically makes use of the services a MS can
provide is Voice Mail. In fact, while it is clear that many of its
features are part of the application logic (e.g. the mapping of a URI
with a specific user's voice mailbox, the list of messages and their
properties, and so on), the actual media work is accomplished through
the MS. Features needed by a VoiceMail application include the ability
to record a stream and play it back anytime later, give verbose
announcements regarding the status of the application, controlling the
playout of recorded messages by means of VCR controls and so on, all
features which are supported by the MS through the IVR package.
Without delving into the details of a full VoiceMail application and
all its possible use cases, this section will cover a specific
scenario, trying to deal with as many as possible interactions that may
happen between the AS and the MS in such a context. The covered
scenario, depicted as a sequence diagram in Figure 23 (Voice Mail:
Framework Transactions), will be the following:

1. The UAC INVITEs a URI associated with his mailbox, and the AS
follows the already explained procedure to have the UAC
negotiate a new media session with the MS;

2. The UAC is first prompted an announcement giving him a count of
the available new messages in the mailbox, and the date and

time the last message has been received; after that, the UAC
must choose which message to access by sending a DTMF tone;

3. The UAC is then presented with a VCR controlled announcement,
in which the chosen received mail is played back to him; VCR
controls allow him to navigate through the prompt.

This is a quite oversimplified scenario, considering it doesn't even
allow the UAC to delete old messages, organize them and the like, but
just to choose which received message to play. Nevertheless, it gives
us the chance to deal with variable announcements and VCR controls, two
typical features a Voice Mail application would almost always take
advantage of. Besides, other features a Voice Mail application would
rely upon (e.g. recording streams, event driven IVR menus and so on)
have aready been introduced in previous sections, and so representing
them would be redundant.

UAC AS MS
I I
| A1. CONTROL (play variables and |
| collect the user's choice) |
I a2 S o S o k> 22
| A2. 202 |
| <<++++++++++H++H+Ht bbb |
| A3. REPORT (update) |

| <<++++++++++++++HH+ 44+ | prepare &
| A4. 200 OK | --+ start

| +++++++++ttt bbb RS> |

| the

| A5. REPORT (terminate) |<-+ dialog

| <<++++++++++++++++++++++++++++++H++ |

| A6. 200 OK |

| ++++++++++++++++++++++H+H T ESS |

I I
<<H##HBHHBHHBHHBHHHHBHHBHHBHHRH R TR R |
"5 mails, latest received on ..." |
S<HHBHBHHBHHBHHBHHBH B HBFHBHHBH R |

| <<t++++++++++++tt bbb bbb |
| B2. 200 OK |
R

I I
| C1. CONTROL (VCR for chosen msg) |
I o M i b >l
I C2. 202 |
| <<t++++++ttttt bbbttt bbb |
| C3. REPORT (update) |

| <<t+++++++++++++ 4+ | prepare &
| C4. 200 OK | --+ start

i >

| the

| C5. REPORT (terminate) |<-+ dialog

| <<H++++++++++++tt bbb |
| C6. 200 OK |
>

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| | B1. CONTROL (<collectinfo>) |
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| <<HBHHBHHHHIHHBHHBHHBH I H R R |

| "Hi there, I tried to call you but..." | --+

| <<HBHHBHHBHBHHBHHBHHBHHHHBHHBHHBHHBH B HBHHBHHBEHHEHRHRHR | handle
I I | | VCR-

| #EHBHHBHHRH R R R R R S>> | | driven
| The UAC controls the playout using DTMF | | (DTMF)
| #HHBHHBHHBH B H B HBHHBH B H B H B HBH RGBSR RS> | |playout

| | |<-+

| | D1. CONTROL (<controlinfo>) |

| <<H++++++++HHHHr |
| D2. 200 OK |
| F+++++++ bbb bbb RS> |

(other events are received in the meanwhile) |

| E1l. CONTROL (<controlinfo>) |
| <<t++++++ttttt bbbttt bbb |
| E2. 200 OK |
| ++++++ b > |

Figure 23: Voice Mail: Framework Transactions

The framework transaction steps are described in the following lines:

*The first transaction (A1) is addressed to the IVR package (msc-
ivr); it is basically a 'promptandcollect' dialog, but with a
slight difference: some of the prompts to play are actual audio
files, for which a URI is provided (media src="xxx"), while
others are so-called 'variable' prompts; these 'variable' prompts
are actually constructed by the MS itself according to the
directives provided by the AS; in this example, this is the
sequence of prompts that is requested by the AS:

1. play a wav file ("you have...");

2. play a digit ("five..."), by building it (variable:
digit=5);

3. play a wav file ("messages...");
4. play a wav file ("last...");
5. play a wav file ("received...");

6. play a date ("13th of october 2008..."), by building it
(variable: date with a ymd=year/month/day format);

7. play a wav file ("at...");

8. play a time ("13:38..."), by building it (variable: time
with a t24=24 hour day format);

9. play a wav file ("o' clock...");

a DTMF collection is requested as well (<collect>) to be taken
after the prompts have been played; the AS is only interested to
a single digit (maxdigits=1);

*the transaction is extended by the MS (A2, A3, A4) and, in case
everything went fine (i.e. the MS retrieved all the audio files
and successfully built the variable ones), the dialog is started;
its start is reported, together with the associated identifier
(5db01f4) to the AS in a terminating REPORT message (A5);

*the AS acks the REPORT (A6), and waits for the dialog to end in
order to retrieve the results it is interested to (in this case,
the DTMF tone the UAC chooses, since it will affect which message
will have to be played subsequently);

*the UAC hears the prompts and chooses a message to play; in this
example, he wants to listen to the first message, and so digits
1; the MS intercepts this tone, and notifies it to the AS in a
newly created CONTROL event message (B1l); this CONTROL includes
information about how each single requested operations ended
(<promptinfo> and <collectinfo>); specifically, the event states
that the prompt ended normally (termmode=completed) and that the
subsequently collected tone is 1 (dtmf=1); the AS acks the event
(B2), since the dialogid provided in the message is the same as
the one of the previously started dialog;

*at this point, the AS makes use of the value retrieved from the
event to proceed in its business logic; it decides to present the
UAC with a VCR-controllable playout of the requested message;
this is done with a new request to the IVR package (C1), which
contains two operations: <prompt> to address the media file to
play (an old recording), and <control> to instruct the MS about
how the playout of this media file shall be controlled via DTMF
tones provided by the UAC (in this example, different DTMF digits
are associated with different actions, e.g. pause/resume, fast
forward, rewind and so on); besides, the AS also subscribes to
DTMF events related to this control operation
(matchmode=control), which means that the MS is to trigger an
event anytime a DTMF associated with a control operation (e.g.
7=pause) is intercepted;

*the MS prepares the dialog, notifying about the transaction being
extended (C2, C3, C4) and, when the playout starts, notifies it
in a terminating REPORT (C5), which is acked by the AS (C6); at
this point, the UAC is presented with the prompt, and can make
use of DTMF digits to control the playback;

*as explained previously, any DTMF associated with a VCR operation
is then reported to the AS, together with a timestamp stating
when the event happened; an example is provided (D1) in which the
UAC pressed the fast forward key (6) at a specific time; of
course, as for any other MS-generated event, the AS acks it (D2);

*when the playback ends (whether because the media reached its
termination, or because any other interruption occurred), the MS
triggers a concluding event with information about the whole
dialog (E1); this event, besides including information about the
prompt itself (<promptinfo>), also includes information related
to the VCR operations (<controlinfo>), that is, all the VCR
controls the UAC made use of (in the example fastforward/rewind/
pause/resume) and when it happened; the final ack by the AS (E2)
concludes the scenario.

Al. AS -> MS (CFW CONTROL, play and collect)
CFw 2f931de22820 CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 830

<mscivr version="1.0">
<dialogstart connectionid="10514b7f~6a900179">
<dialog>
<prompt>
<media \
src="http://www.pippozzoserver.org/prompts/vm-youhave.wav" \
type="audio/x-wav"/>
<variable value="5" type="digits"/>
<media \
src="http://www.pippozzoserver.org/prompts/vm-messages.wav'" \
type="audio/x-wav"/>
<media \
src="http://www.pippozzoserver.org/prompts/vm-last.wav" \
type="audio/x-wav"/>
<media \
src="http://www.pippozzoserver.org/prompts/vm-received.wav" \
type="audio/x-wav"/>
<variable value="2008-10-13" type="date" format="ymd"/>
<media \
src="http://www.pippozzoserver.org/prompts/at.wav" \
type="audio/x-wav"/>
<variable value="13:38" type="time" format="t24"/>
<media \
src="http://www.pippozzoserver.org/prompts/oclock.wav" \
type="audio/x-wav"/>
</prompt>
<collect maxdigits="1" escapekey="*" \
cleardigitbuffer="true"/>
</dialog>
</dialogstart>
</mscivr>

A2. AS <- MS (CFW 202)

CFW 2f931de22820 202

A3. AS <- MS (CFW REPORT update)

B2.

CFW 2f931de22820 REPORT

Seq: 1
Status: update
Timeout: 10

. AS -> MS (CFW 200, ACK to 'REPORT update')

CFW 2f931de22820 200
Seq: 1

. AS <- MS (CFW REPORT terminate)

CFwW 2f931de22820 REPORT

Seq: 2

Status: terminate

Timeout: 15

Content-Type: application/msc-ivr+xml
Content-Length: 137

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
<response status="200" reason="Dialog started" dialogid="5db01f4"/>
</mscivr>

. AS -> MS (CFW 200, ACK to 'REPORT terminate')

CFW 2f931de22820 200
Seq: 2

. AS <- MS (CFW CONTROL event)

CFW 7c97adc41b3e CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 270

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
<event dialogid="5dbo1f4">
<dialogexit status="1" reason="Dialog successfully completed">
<promptinfo duration="11713" termmode="completed"/>
<collectinfo dtmf="1" termmode="match"/>
</dialogexit>
</event>
</mscivr>

AS -> MS (CFW 200, ACK to 'CONTROL event')

CFW 7c97adc41b3e 200

Cl. AS -> MS (CFW CONTROL, VCR)
CFW 3140c24614bb CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 386

<mscivr version="1.0">
<dialogstart connectionid="10514b7f~6a900179">

<dialog>
<prompt bargein="false">
<media \
src="http://www.pippozzoserver.org/recordings/recording-4ca9fc2.mpg"/>
</prompt>

<control gotostartkey="1" gotoendkey="3" \
ffkey="6" rwkey="4" pausekey="7" resumekey="9" \
volupkey="#" voldnkey="*"/>
</dialog>
<subscribe>
<dtmfsub matchmode="control"/>
</subscribe>
</dialogstart>
</mscivr>

C2. AS <- MS (CFW 202)

CFW 3140c24614bb 202

C3. AS <- MS (CFW REPORT update)

CFW 3140c24614bb REPORT

Seq: 1
Status: update
Timeout: 10

C4. AS -> MS (CFW 200, ACK to 'REPORT update')

CFW 3140c24614bb 200
Seq: 1

C5. AS <- MS (CFW REPORT terminate)

CFW 3140c24614bb REPORT

Seq: 2

Status: terminate

Timeout: 25

Content-Type: application/msc-ivr+xml
Content-Length: 137

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
<response status="200" reason="Dialog started" dialogid="3e936e0"/>
</mscivr>

C6. AS -> MS (CFW 200, ACK to 'REPORT terminate')
CFW 3140c24614bb 200
Seq: 2

D1. AS <- MS (CFW CONTROL event, dtmfnotify)
CFW 361840da0581 CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 179

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
<event dialogid="3e936e0">
<dtmfnotify matchmode="control" dtmf="6" \
timestamp="2008-10-15T15:50:362"/>
</event>
</mscivr>

D2. AS -> MS (CFW 200, ACK to 'CONTROL event')

CFW 361840da0581 200

[..] The other VCR DTMF notifications are skipped for brevity [..]

E1l. AS <- MS (CFW CONTROL event, dialogexit)
CFw 3ffab81c21e9 CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 485

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
<event dialogid="3e936e0">

<dialogexit status="1" reason="Dialog successfully completed">
<promptinfo duration="10270" termmode="completed"/>
<controlinfo>
<controlmatch dtmf="6" timestamp="2008-10-15T15:50:362"/>
<controlmatch dtmf="4" timestamp="2008-10-15T15:50:372"/>
<controlmatch dtmf="7" timestamp="2008-10-15T15:50:382"/>
<controlmatch dtmf="9" timestamp="2008-10-15T15:50:40Z2"/>
</controlinfo>
</dialogexit>
</event>
</mscivr>

E2. AS -> MS (CFW 200, ACK to 'CONTROL event')

CFW 3ffab81c21e9 200

6.4. Conferencing _TOC _

One of the most important services the MS must be able to provide is
mixing. This involves mixing media streams from different sources, and
delivering the resulting mix(es) to each interested party, often
according to per-user policies, settings and encoding. A typical
scenario involving mixing is of course media conferencing. In such a
scenario, the media sent by each participant is mixed, and each
participant typically receives the overall mix excluding its own
contribtion and encoded in the format it negotiated. This example
points out in a quite clear way how mixing must take care of the
profile of each involved entity.

A media perspective of such a scenario is depicted in Figure 24
(Conference: Media Perspective).

| UAC |
| ¢ |
R +
LI
C (RTP) " "
non
" " A+B (RTP)
v "
b + A (RTP) R + A+C (RTP) b
| UAC | ——————————————=—=—===> | Media | ———————————=—=—=——=—===> | UAC
| A | <—————————————=——=—=—=—= | Server | <———————————————=—=—=—= | B
b + B+C (RTP) +-------- + B (RTP) +-------

Figure 24: Conference: Media Perspective

From the framework point of view, when the UACs' legs are not attached
to anything yet, what appears is described in Figure 25 (Conference:
UAC Legs not attached): since there are no connections involving the
UACs yet, the frames they might be sending are discarded, and nothing
is sent back to them either (except for silence, if it is requested to
be transmitted).

MS
o e e +
UAC A | | UAC B
0---=-- >Pmmemma- X) G >>, ... 0
O..... <<, v X X==mmm-- <<----- 0
I I
I I
I XX I
I | I
R [o------- +
| .
v
v
| .
00

UAC C

Figure 25: Conference: UAC Legs not attached

The next subsections will cover several typical scenarios involving
mixing and conferencing as a whole, specifically:

1. Simple Bridging, where the scenario will be a very basic (i.e.
no "special effects", just mixing involved) conference between
two and more participants;

2. Rich Conference Scenario, which enriches the Simple Bridging
scenario by adding additional features typically found in
conferencing systems (e.g. DTMF collection for PIN-based
conference access, private and global announcements, recordings
and so on);

3. Coaching Scenario, a more complex scenario which involves per-
user mixing (cusomers, agents and coaches don't get all the
same mixes);

4, Sidebars Scenario, which adds more complexity to the previous
conferencing scenarios by involving sidebars (i.e. separate
conference instances that only exist within the context of a
parent conference instance) and the custom media delivery that
follows.

All the above mentioned scenarios depend on the availability of a
mixing entity. Such an entity is provided in the Media Control Channel
Framework by the conferencing package. This package in fact, besides
allowing for the joining of media sources between each other as seen in
the Direct Echo Test section, enables the creation of abstract
connections that can be joined to multiple connections: these abstract
connections, called conferences, mix the contribution of each attached
connection and feed them accordingly (e.g. a connection with 'sendrecv'
property would be able to contribute to the mix and to listen to it,
while a connection with a 'recvonly' property would only be able to
listen to the overall mix but not to actively contribute to it).

That said, each of the above mentioned scenarios will start more or
less in the same way: by the creation of a conference connection (or
more than one, as needed in some cases) to be subsequently referred to
when it comes to mixing. A typical framework transaction to crete a new
conference instance in the Media Control Channel Framework is depicted
in Fiqure 26 (Conference: Framework Transactions):

AS MS
I I
| 1. CONTROL (create conference) |
| +++++++++++++H+ RS> |
| | --+ create
| | | conf and
| 2. 200 OK (conferenceid=Y) |[<-+ its ID
| <<t+++++++++++++H++H+HH+ R |
map URI +-- |
X with | | |
conf Y +->|
I

Figure 26: Conference: Framework Transactions

The call flow is quite straightforward, and can typically be summarized
in the following steps:

*The AS invokes the creation of a new conference instance by means
of a CONTROL request (1); this request is addressed to the
conferencing package (msc-mixer/1.0) and contains in the body the
directive (createconference) with all the desired settings for
it; in the example, the mixing policy is to mix the five
(reserved-talkers) loudest speakers (nbest), while ten listeners
at max are allowed; video settings are configured, including the
mechanism used to select active video sources (controller,
meaning the AS will explicitly instruct the MS about it) and
details about the video layouts to make available; in this
example, the AS is instructing the MS to use a single-view layout
when only one video source is active, to pass to a quad-view
layout when at least two video sources are active, and to use a
5x1 layout whenever the number of sources is at least five;
finally, the AS also subscribes to the "active-talkers" event,
which means it wants to be informed (at a rate of 4 seconds)
whenever an active participant is speaking;

*The MS creates the conference instance assigning a unique
identifier to it (6146dd5), and completes the transaction with a
200 response (2);

*At this point, the requested conference instance is active and
ready to be used by the AS; it is then up to the AS to integrate
the use of this identifier in its application logic.

1. AS -> MS (CFW CONTROL)
CFW 3032e5fb79al1 CONTROL
Control-Package: msc-mixer/1.0
Content-Type: application/msc-mixer+xml
Content-Length: 452

<mscmixer version="1.0">
<createconference reserved-talkers="5" reserved-listeners="10">
<audio-mixing mix-type="nbest"/>
<video-switch type="controller"/>
<video-layouts>
<video-layout min-participants='1'>single-view</video-layout>
<video-layout min-participants='2'>quad-view</video-layout>
<video-layout min-participants='5'>multiple-5x1</video-layout>
</video-layouts>
<subscribe>
<active-talkers-sub interval="4"/>
</subscribe>
</createconference>
</mscmixer>

2. AS <- MS (CFW 200)
CFW 3032e5fb79a1 200
Timeout: 10
Content-Type: application/msc-mixer+xml
Content-Length: 151

<mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
<response status="200" reason="Conference created" \
conferenceid="6146dd5"/>
</mscmixer>

6.4.1. Simple Bridging TOC

As already introduced before, the simplest use an AS can make of a
conference instance is simple bridging. In this scenario, the
conference instance just acts as a bridge for all the participants that
are attached to it. The bridge takes care of transcoding, if needed (in
general, different participants may make use of different codecs for
their streams), echo cancellation (each participant will receive the

overall mix excluding their own contribution) and per-participant
mixing (each participant may receive different mixed streams, according
to what it needs/is allowed to send/receive). This assumes of course
that each interested participant must be joined somehow to the bridge
in order to indirectly communicate with the other paricipants. From the
media perspective, the scenario can be seen as depicted in Figure 27
(Conference: Simple Bridging).

UAC C

Figure 27: Conference: Simple Bridging

In the framework, the first step is obviously to create a new
conference instance as seen in the introductory section (Figure 26
(Conference: Framework Transactions)). Assuming a conference instance
has already been created, bridging participants to it is quite
straightforward, and can be accomplished as already seen in the Direct
Echo Test Scenario: the only difference here is that each participant
is not directly connected to itself (Direct Echo) or another UAC
(Direct Connection) but to the bridge instead. Figure 28 (Simple
Bridging: Framework Transactions (1)) shows the example of two
different UACs joining the same conference: the example, as usual,
hides the previous interaction between each of the two UACs and the AS,
and instead focuses on what the AS does to actually join the
participants to the bridge so that they can interact in a conference.

UAC1 UAC2 AS MS
I I I I
| A1. CONTROL (join UAC1 and confY) |
I o 0 > 22
I |--+ Jjoin
| | | UAC1 &
| A2. 200 OK |<-+ conf Y
R o 2 o o o
I I I
S<HHBHHHHBHHBHHBHHBHBHHBHHBHHBHHEH R >> |
Now the UAC1 is mixed in the conference |
S<HHPBHBHHBHHBHHBHHHHBHHBHHBHHBH BB HBHHBHHBHHRH R R R R HBE>> |
I I I
| | B1. CONTROL (join UAC2 and confY) |
[I e 2 2 o o S o S o o o o i > |
I | |--+ Join
| | |] UAC2 &
| | B2. 200 OK |<-+ conf Y
| | <<t +++++++Ht bttt bbb bbb |
| | |
| <<#####HHBHBHHBHHBHHBHBHHBHHBHHBHHBHBHHBHHBHES> |
| Now the UAC2 too is mixed in the conference |
| <<HHBHHBHHHHBHHBHHBHHBH BRI HBHHBHHBH B> > |

Figure 28: Simple Bridging: Framework Transactions (1)

The framework transaction steps are actually quite trivial to
understand, since they're very similar to some previously described
scenarios. What the AS does is just joining both UAC1 (id1 in A1) and
UAC2 (id1 in B1) to the conference (id2 in both transactions). As a
result of these two operations, both the UACs are mixed in the
conference. Since no <stream> is explicitly provided in any of the
transactions, all the media from the UACs (audio/video) are attached to
the conference (as long as the conference has been properly configured
to support both, of course).

Al. AS -> MS (CFW CONTROL)
CFW 434a95786df8 CONTROL
Control-Package: msc-mixer/1.0
Content-Type: application/msc-mixer+xml
Content-Length: 80

<mscmixer version="1.0">
<join idi1="elel1427c~1c998d22"
id2="6146dd5"/>
</mscmixer>

A2. AS <- MS (CFW 200 OK)
CFW 434a95786df8 200
Timeout: 10
Content-Type: application/msc-mixer+xml
Content-Length: 125

<mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
<response status="200" reason="Join successful"/>
</mscmixer>

B1. AS -> MS (CFW CONTROL)
CFW 5c0chbd372046 CONTROL
Control-Package: msc-mixer/1.0
Content-Type: application/msc-mixer+xml
Content-Length: 80

<mscmixer version="1.0">
<join 1id1="10514b7f~6a900179"
id2="6146dd5"/>
</mscmixer>

B2. AS <- MS (CFW 200 OK)
CFW 5c0chd372046 200
Timeout: 10
Content-Type: application/msc-mixer+xml
Content-Length: 125

<mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
<response status="200" reason="Join successful"/>

</mscmixer>

Once one or more participants have been attached to the bridge, their
connections and how their media are handled by the bridge can be
dynamically manipulated by means of another directive, called
<modifyjoin>: a typical use case for this directive is the change of
direction of an existing media (e.g. a previously speaking participant
is muted, which means its media direction changes from 'sendrecv' to
'recvonly'). Figure 29 (Simple Bridging: Framework Transactions (2))
shows how a framework transaction requesting such a directive might
appear.

UAC1 UAC2 AS MS
I I I I
| 1. CONTROL (modifyjoin UAC1) |
| ++++++ bbb bbb > |
| | --+ modify
I | | join
| 2. 200 OK |<-+ settings
I G o o e e |
I I I
| <<HBHHBHHBH IR HBHHBHHH TR
| Now the UAC1 can receive but not send (recvonly) |
| <<HH#HHBHHBHHHHBHHBHHBHHBHHBHBHHBHHBHHBH RSB H B H R

Figure 29: Simple Bridging: Framework Transactions (2)

The directive used to modify an existing join configuration is
<modifyjoin>, and its syntax is exactly the same as the one required in
<join> instructions. In fact, the same syntax is used for identifiers
(id1/id2). Whenever a modifyjoin is requested and idl and id2 address
one or more joined connections, the AS is requesting a change of the
join configuration. In this case, the AS instructs the MS to mute
(stream=audio, direction=recvonly) UAC1 (id1=UAC1) in the conference
(id2) it has been attached to previously. Any other connection existing
between them is left untouched.

1. AS -> MS (CFW CONTROL)
CFwW 57f2195875c9 CONTROL
Control-Package: msc-mixer/1.0
Content-Type: application/msc-mixer+xml
Content-Length: 142

<mscmixer version="1.0">
<modifyjoin id1="elel1427c~1c998d22" id2="6146dd5">
<stream media="audio" direction="recvonly"/>
</modifyjoin>
</mscmixer>

2. AS <- MS (CFW 200 OK)
CFW 57f2195875c9 200
Timeout: 10
Content-Type: application/msc-mixer+xml
Content-Length: 123

<mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
<response status="200" reason="Join modified"/>
</mscmixer>

6.4.2. Rich Conference Scenario TOC

The previous scenario can be enriched with additional features often
found in existing conferencing systems. Typical examples include IVR-
based menus (e.g. the DTMF collection for PIN-based conference access),
partial and complete recordings in the conference (e.g. for the "state
your name" functionality and recording of the whole conference),
private and global announcements and so on. All of this can be achieved
by means of the functionality provided by the MS. In fact, even if the
conferencing and IVR features come from different packages, the AS can
interact with both of them and achieve complex results by correlating
the results of different transactions in its application logic.

From the media and framework perspective, a typical rich conferencing
scenario can be seen as it is depicted in Figure 30 (Conference: Rich
Conference Scenario).

Fommmm- - (announcement .wav)
(conference_recording.wav) <:::::+|
a
Feommmm - I +
UAC A v UAC B
0----- S>> oo +~~~>{##} Striiiiiii>>iiiiio
O::rii<<:iirrriid<iii{##}<~~——t------- <Lmmmm - 0
I N (I
I lv v
| ++ * (collect DTMF, get name)
I

UAC C

Figure 30: Conference: Rich Conference Scenario

To identify a single sample scenario, let's consider this sequence for
a participant joining a conference (which again we assume has already
been created):

1. The UAC as usual INVITEs a URI associated with a conference,
and the AS follows the already explained procedure to have the
UAC negotiate a new media session with the MS;

2. The UAC is presented with an IVR menu, in which it is requested
to digit a PIN code to access the conference;

3. If the PIN is correct, the UAC is asked to state its name so
that it can be recorded;

4. The UAC is attached to the conference, and the previously
recorded name is announced globally to the conference to
announce its arrival.

Figure 31 (Rich Conference Scenario: Framework Transactions) shows a
single UAC joining a conference: the example, as usual, hides the
previous interaction between the UAC and the AS, and instead focuses on
what the AS does to actually interact with the participant and join it
to the conference bridge.

UAC AS MS
I I I
	A1. CONTROL (request DTMF PIN)
	+++++++++++ RS>
	A2. 202
	<<++++++++++tt bttt bbbt
	A3. REPORT (update)
S o o o o 2 0 o o	
	A4. 200 OK
	+H+++++tt bttt bbb RS>
[A5. REPORT (terminate)
I o 2 0 o o o o o	
	A6. 200 OK
	+H+++++tt bttt bbb RS>
I I I	
<<H#HHBHHHHBHHBHHBHHBHBHHBHHBHHBHHEHBHHBHHBH RSB H R H R	
"Please digit the PIN number to join the conference"	
<<###H#BHHHBHHHBHHH BB HHHBHHH PR HH R	
I I I	
#HHBHHBH BB H B H B HBHHBH B H B HBHHBHHRH B H B H RS R HHEHRHRHH>>	
DTMF digits are collected	--+ get
HEBHH PR HH B H PR HH RS H AR H RS R ##>>	
	B1. CONTROL (<collectinfo>)
S o o o 0 o	
Compare DTMF +--	B2. 200 OK
digits with	
the PIN number +->	
	C1. CONTROL (record name)
	+++++++t bbb S>>
	C2. 202
o e I o o o o	
	C3. REPORT (update)
	S<HHH+H+HHHH
	C4. 200 OK
IR a2 S o S S o I i k> 02	the
	C5. REPORT (terminate)
	<<t+++++++++++++H+Ht
	C6. 200 OK
IR S S o o 0 0 i o > 92	
<<##HHBHHHHBHHBHHBHHBHHHHBHHBHHBHHRHBHHBHHBHH RS HHH R H RS R	
"Please state your name after the beep"	
<<####BHHH#BHHH PR HH PR HH B H TR HH R	
I I I	
#HHBHH B BB H B HBHHBHHBH B YRR B HBH R R YR H R H B H RS RHRHH>>	
Audio from the UAC is recorded (until timeout or DTMF)	--+ save

| #HHBHHBHHBHHHHBHH B HBHHRH B YR HBHHBHHBHHHH B HBHHRH#A#E>>] | 1n a
| | |<-+ file
| | D1. CONTROL (<recordinfo>) |

| e I o o o o o |

| Store recorded +--| D2. 200 OK |

| file to play | I o 0 i o >

| announcement in +->| |

| conference later | |

| | E1. CONTROL (join UAC & confY) |

| | +++++++++++ RS> |

I I |--+ join
| | | | UAC &
| | E2. 200 OK |<-+ conf Y
| | <t++++++++++H++H+ bt |

I I I

| <<#####HHH#BHHH PR HH PR HH B H TR HH RS> |

[UAC is now included in the mix of the conference |

| <<##HHBHHHHBHHBHHBHHBHBHHBHHBHHBHHRHBHHBHHBHHBHBHHBHHBHES> |

I I I

| | F1. CONTROL (play name on confY) |

[B e e I o > 2

| | F2. 202 |

| | <<+ +++++++t bttt |

| | F3. REPORT (update) |

| | <<t+++++++++H+ttt bbbt |

[| F4. 200 OK |--+ start
| | ++++++++++++++ -+ E>>] | the

| | F5. REPORT (terminate) |<-+ dialog
| | <<++++++++++tt bttt bbb bbb |

| | F6. 200 OK |

| | +++++++++++ RS> |

I I I

| <<####BHH#BHHH B HH TS HH B H TR HH R |

| Global announcement: "Simon has joined the conference" |

| <<##HHBHHHHBHHBHHBHHBHBHHBHHBHHBHHRHBHHBHHBHH RS HHH R H RS H R |

I I I

| | G1l. CONTROL (<promptinfo>) |

| o I o o |

| | G2. 200 OK |

| I o e o 0 i o >

I

Figure 31: Rich Conference Scenario: Framework Transactions

As it can be evinced from the sequence diagram above, the AS, in its
business logic, correlates the results of different transactions,
addressed to different packages, to implement a more complex
conferencing scenario than the Simple Bridging previously described.
The framework transaction steps are the following:

*Since this is a private conference, the UAC is to be presented
with a request for a password, in this case a PIN number; to do
so, the AS instructs the MS (Al) to collect a series of DTMF
digits from the specified UAC (connectionid=UAC); the request
includes both a voice message (<prompt>) and the described digit
collection context (<collect>); the PIN is assumed to be a 4-
digit number, and so the MS has to collect at max 4 digits
(maxdigits=4); the DTMF digit buffer must be cleared before
collecting (cleardigitbuffer=true) and the UAC can make use of
the star key to restart the collection (escapekey=*), e.g. in
case it is aware he miswrote any of the digits and wants to start
again;

*the transaction goes on as usual (A2, A3, A4, A5, A6), with the
transaction being extended, and the dialog start being notified
in a REPORT terminate; after that, the UAC is actually presented
with the voice message, and is subsequently requested to insert
the required PIN number;

*we assume UAC wrote the correct PIN number (1234), which is
reported by the MS to the AS by means of the usual MS-generated
CONTROL event (B1); the AS correlates this event to the
previously started dialog by checking the referenced dialogid
(06dlbac) and acks the event (B2); it then extracts the
information it needs from the event (in this case, the digits
provided by the MS) from the <controlinfo> container (dtmf=1234)
and verifies it is correct;

*since the PIN is correct, the AS can proceed towards the next
step, that is asking the UAC to state his name, in order to play
the recording subsequently on the conference to report the new
participant; again, this is done with a request to the IVR
package (Cl1); the AS instructs the MS to play a voice message
("say your name after the beep"), to be followed by a recording
of only the audio from the UAC (in stream, media=audio/sendonly,
while media=video/inactive); a beep must be played right before
the recording starts (beep=true), and the recording must only
last 3 seconds (maxtime=3s) since it is only needed as a brief
announcement;

*without delving again into the details of a recording-related
transaction (C2/C3/C4/C5/C6), the AS finally gets an URI to the
requested recording (D1, acked in D2);

*at this point, the AS attaches the UAC (idl) to the conference
(1d2) just as explained for Simple Bridging (E1/E2);

*finally, to notify the other participants that a new participant
has arrived, the AS requests a global announcement on the
conference; this is a simple <prompt> request to the IVR package
(F1) just as the ones explained in previous sections, but with a
slight difference: the target of the prompt is not a connectionid
(a media connection) but the conference itself
(conferenceid=6146dd5); as a result of this transaction, the
announcement would be played on all the media connections
attached to the conference which are allowed to receive media
from it; the AS specifically requests two media files to be
played:

1. the media file containing the recorded name of the new user
as retrieved in D1 ("Simon...");

2. a pre-recorded media file explaining what happened ("... has
joined the conference");

the transaction then takes its usual flow (F2/F3/F4/F5/F6), and
the event notifying the end of the announcement (G1, acked in G2)
concludes the scenario.

Al. AS -> MS (CFW CONTROL, collect)
CFW 50e56b8d65f9 CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 274

<mscivr version="1.0">
<dialogstart connectionid="10514b7f~6a900179">
<dialog>
<prompt>
<media \
src="http://www.pippozzoserver.org/prompts/conf-getpin.wav" \
type="audio/x-wav"/>
</prompt>
<collect maxdigits="4" escapekey="*" cleardigitbuffer="true"/>
</dialog>
</dialogstart>
</mscivr>

A2. AS <- MS (CFW 202)

CFW 50e56b8d65f9 202

A3. AS <- MS (CFW REPORT update)

CFW 50e56b8d65f9 REPORT

Seq: 1
Status: update
Timeout: 10

Ad. AS -> MS (CFW 200, ACK to 'REPORT update')
CFW 50e56b8d65f9 200
Seq: 1

A5. AS <- MS (CFW REPORT terminate)
CFW 50e56b8d65f9 REPORT
Seq: 2
Status: terminate
Timeout: 25
Content-Type: application/msc-ivr+xml
Content-Length: 137

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
<response status="200" reason="Dialog started" dialogid="@6dlbac"/>
</mscivr>

A6. AS -> MS (CFW 200, ACK to 'REPORT terminate')
CFW 50e56b8d65f9 200
Seq: 2

B1. AS <- MS (CFW CONTROL event)
CFW 166d68a76659 CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 272

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr'">
<event dialogid="0@6d1lbac">
<dialogexit status="1" reason="Dialog successfully completed">
<promptinfo duration="2312" termmode="completed"/>
<collectinfo dtmf="1234" termmode="match"/>
</dialogexit>
</event>
</mscivr>

B2. AS -> MS (CFW 200, ACK to 'CONTROL event')

CFW 166d68a76659 200

Cl. AS -> MS (CFW CONTROL, record)
CFW 61fd484f196e CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 355

<mscivr version="1.0">
<dialogstart connectionid="10514b7f~6a900179">

<dialog>

<prompt>

<media \

src="http://www.pippozzoserver.org/prompts/conf-rec-name.wav" \
type="audio/x-wav"/>

</prompt>

<record beep="true" maxtime="3s" vadinitial="false"/>

</dialog>
<stream media="audio" direction="sendonly"/>
<stream media="video" direction="inactive'"/>
</dialogstart>
</mscivr>

C2. AS <- MS (CFW 202)

CFW 61fd484f196e 202

C3. AS <- MS (CFW REPORT update)
CFW 61fd484f196e REPORT
Seq: 1
Status: update
Timeout: 10

C4. AS -> MS (CFW 200, ACK to 'REPORT update')
CFW 61fd484f196e 200
Seq: 1

C5. AS <- MS (CFW REPORT terminate)
CFW 61fd484f196e REPORT
Seq: 2
Status: terminate
Timeout: 25
Content-Type: application/msc-ivr+xml
Content-Length: 137

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
<response status="200" reason="Dialog started" dialogid="1cf0549"/>
</mscivr>

C6. AS -> MS (CFW 200, ACK to 'REPORT terminate')

CFW 61fd484f196e 200
Seq: 2

D1. AS <- MS (CFW CONTROL event)

CFW 3ec13ab96224 CONTROL
Control-Package: msc-ivr/1.0

Content-Type: application/msc-ivr+xml
Content-Length: 384

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
<event dialogid="1cf0549">
<dialogexit status="1" reason="Dialog successfully completed">
<promptinfo duration="3757" termmode="completed"/>
<recordinfo \
recording="http://www.pippozzoserver.org/recordings/recording-1cf0549.wav" \
type="audio/x-wav" duration="3000" size="48044" termmode="maxtime"/>
</dialogexit>
</event>
</mscivr>

D2. AS -> MS (CFW 200, ACK to 'CONTROL event')

CFW 3ec13abh96224 200

E1. AS -> MS (CFW CONTROL, join)
CFW 261d188b63b7 CONTROL
Control-Package: msc-mixer/1.0
Content-Type: application/msc-mixer+xml
Content-Length: 80

<mscmixer version="1.0">
<join id1="10514b7f~6a900179" id2="6146dd5"/>
</mscmixer>

E2. AS <- MS (CFW 200 OK)
CFW 261d188hb63b7 200
Timeout: 10
Content-Type: application/msc-mixer+xml
Content-Length: 125

<mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
<response status="200" reason="Join successful"/>
</mscmixer>

F1. AS -> MS (CFW CONTROL, play)
CFW 718c30836f38 CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 299

<mscivr version="1.0">
<dialogstart conferenceid="6146dd5">
<dialog>
<prompt>
<media \
src="http://www.pippozzoserver.org/recordings/recording-1cf0549.wav" \
type="audio/x-wav"/>
<media \
src="http://www.pippozzoserver.org/prompts/conf-hasjoin.wav" \
type="audio/x-wav"/>
</prompt>
</dialog>
</dialogstart>
</mscivr>

F2. AS <- MS (CFW 202)

CFW 718c30836f38 202

F3. AS <- MS (CFW REPORT update)

CFW 718c30836138 REPORT

Seq: 1
Status: update
Timeout: 10

F4. AS -> MS (CFW 200, ACK to 'REPORT update')
CFW 718c30836f38 200
Seq: 1

F5. AS <- MS (CFW REPORT terminate)
CFW 718c30836f38 REPORT
Seq: 2
Status: terminate
Timeout: 25
Content-Type: application/msc-ivr+xml
Content-Length: 137

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr'">
<response status="200" reason="Dialog started" dialogid="5f4bc7e"/>
</mscivr>

F6. AS -> MS (CFW 200, ACK to 'REPORT terminate')
CFW 718c30836f38 200
Seq: 2

Gl. AS <- MS (CFW CONTROL event)
CFW 6485194f622f CONTROL
Control-Package: msc-ivr/1.0
Content-Type: application/msc-ivr+xml
Content-Length: 229

<mscivr version="1.0" xmlns="urn:ietf:params:xml:ns:msc-ivr">
<event dialogid="5f4bc7e">
<dialogexit status="1" reason="Dialog successfully completed">
<promptinfo duration="1838" termmode="completed"/>
</dialogexit>
</event>
</mscivr>

G2. AS -> MS (CFW 200, ACK to 'CONTROL event')

CFW 6485194f622f 200

6.4.3. Conferencing with Floor Control TOC

TBD. (Add sequence diagrams and signaling issues; reference draft
[I-D.miniero-bfcp-control-package] (Miniero, L., Romano, S., Even, R.,
and S. McGlashan, “A Binary Floor Control Protocol (BFCP) Control
Package for the Media Control Channel Framework,” July 2008.))

(Figure not available yet.)

Figure 32: Floor Control: Media Perspective

(Figure not available yet.)

Figure 33: Floor Control: UAC Legs not attached

(Figure not available yet.)

Figure 34: Floor Control: UAC Legs mixed and attached

(Figure not available yet.)

Figure 35: Floor Control: Framework Transactions

6.4.4. Coaching Scenario TOC

Another typical conference-based use case is the so called Coaching
Scenario. In such a scenario, a customer (called A in the following
example) places a call to a business call center. An agent (B) is
assigned to the customer. Besides, a coach (C), unheard from the
customer, provides the agent with whispered suggestions about what to
say. This scenario is also described in RFC4579 [RFC4579] (Johnston, A.

and 0. Levin, “Session Initiation Protocol (SIP) Call Control -
Conferencing for User Agents,” August 2006.).

As it can be evinced from the scenario description, per-user policies
for media mixing and delivery, i.e who can hear what, are very
important. The MS must make sure that only the agent can hear the
coach's suggestions. Since this is basically a multiparty call (despite

what the customer may be thinking), a mixing entity is needed in order
to accomplish the scenario requirements. To summarize:

*the customer (A) must only hear what the agent (B) says;

*the agent (B) must be able to hear both the customer (A) and the
coach (C);

*the coach (C) must be able to hear both the customer (A), in
order to give the right suggestions, and the agent (B), in order
to be aware of the whole conversation.

From the media and framework perspective, such a scenario can be seen
as it is depicted in Figure 36 (Coaching Scenario: Media Perspective).

khkkkhkhkhkhhkhkhx e e +
* A=Customer * | UAC |
* B=Agent * | C |
* C=Coach * R +
EE R I I I I LI

Figure 36: Coaching Scenario: Media Perspective

From the framework point of view, when the mentioned legs are not
attached to anything yet, what appears is described in Figure 37
(Coaching Scenario: UAC Legs not attached).

R T +
| |
UAC A | | UAC B
O.... <<, X X======- <<----- (0]
0----- >>------- X X >>, ... 0]
| |
| |
| I
| I
| XX |
| o +
R VA e e e e e o - +
AVZA
|
o
00
UAC C

Figure 37: Coaching Scenario: UAC Legs not attached

What the scenario should look like from the framework point of view is
instead depicted in Figure 38 (Coaching Scenario: UAC Legs mixed and
attached). The customer receives media directly from the agent
(recvonly), while all the three involved participants contribute to a
hidden conference: of course the customer is not allowed to receive the
mixed flows from the conference (sendonly), unlike the agent and the
coach which must both be aware of the whole conversation (sendrecv).

e S[H##] >

+

UAC C

Figure 38: Coaching Scenario: UAC Legs mixed and attached

In the framework this can be achieved by means of the mixer control
package, which, as already explained in previous sections, can be
exploited whenever mixing and joining entities is needed. The needed
steps can be summarized in the following steps:

1. first of all, a hidden conference is created;

2. then, all the three participants are attached to it, each with
a custom mixing policy, specifically:

*the customer (A) as 'sendonly';

*the agent (B) as 'sendrecv';

*the coach (C) as 'sendrecv' and with a -3dB gain to halve
the volume of its own contribution (so that the agent
actually hears the customer louder, and the coach

whispering);

3. finally, the customer is joined to the agent as a passive
receiver (recvonly).

A sequence diagram of such a sequence of transactions is depicted in
Figure 39 (Coaching Scenario: Framework Transactions):

B
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A
I
|
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
|
I
I
I
I
I
I

AS MS

I |

| A1l. CONTROL (create conference) |

| +++++++++H+ RS> |

| |--+
I |

| <<t++++t+tttt bbbttt bbb |
I I
| B1. CONTROL (join A-->confY) |
I o e i R i >l
| |-+
I |
| B2. 200 OK |<-+
I o o e o e o o R

C
I
|
I
I
I
| | A2. 200 OK (conferenceid=Y) |<-+
|
I
I
|
|
I
I
|

HHHBH PR YR H B HBH PR R H R H B H R R R R R R HE>> |
Customer A is mixed (sendonly) in the conference |
BHHBHHRH B H B HBHHBH B H B H RS> |

| | I
| C1. CONTROL (join B<->confY) |
e e
| |-+
| |
| C2. 200 OK |<-+
| <<H++++++++++HHHH bbb |

S<HHBHHBHHHHBHHBHHBHHBHBHHBHHBHHBHHEH B HBFHBHHES> |
Agent B is mixed (sendrecv) in the conference |
<HBHUHHHHH PR H R H R R RS> |

I I |
| | D1. CONTROL (join C<->confY) |
| | +++++++++H+ RS> |
| | |-+
I I |
| | D2. 200 OK |[<-+
| | <<++++++++++H++H+Ht bR |
I I |
| <<HAHHBHHHHBHHBHHBH T HBHHBHHEH RS> |
| Coach C is mixed (sendrecv) as well |
| <<HBHHBHBHHBHHBHHBHHHHBHHBHHBHHHHBHHBHHES> |
I I |
| | E1. CONTROL (join A<--B) |
| | +H++++ bttt b bR S>> |
| | |--+
|
I

| |
| E2. 200 OK |<-+

create
conf and
its ID

join A
& confY
sendonly

join B
& confY
sendrecv

join C
& confyY
sendrecv

join
A &B
recvonly

| | | | <<++++++++++H++HH+ bR |

I I I I I
| < H R |

| Finally, Customer A is joined (recvonly) to Agent B |
| <<##HHBHHBHHHHBHHBHHBHHBHBHHBHHBHHBHHBHHREHBEH B H RS H R |

Figure 39: Coaching Scenario: Framework Transactions

TBD. Describe the framework transaction steps.

Al

B2.

. AS -> MS (CFW CONTROL, createconference)

CFW 238e1f2946e8 CONTROL
Control-Package: msc-mixer
Content-Type: application/msc-mixer+xml
Content-Length: 293

<mscmixer version="1.0">
<createconference reserved-talkers="3" reserved-listeners="2">
<audio-mixing mix-type="nbest"/>
<video-switch type="controller"/>
<video-layouts>
<video-layout min-participants='1'>dual-view</video-layout>
</video-layouts>
</createconference>
</mscmixer>

AS <- MS (CFW 200 OK)

CFW 238e1f2946e8 200

Timeout: 10

Content-Type: application/msc-mixer+xml
Content-Length: 151

<mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
<response status="200" reason="Conference created" \
conferenceid="1df080e"/>
</mscmixer>

AS -> MS (CFW CONTROL, join)

CFW 2eb141f241b7 CONTROL
Control-Package: msc-mixer
Content-Type: application/msc-mixer+xml
Content-Length: 186

<mscmixer version="1.0">
<join id1="10514b7f~6a900179" id2="1df080e">
<stream media="audio" direction="sendonly"/>
<stream media="video" direction="sendonly"/>
</join>
</mscmixer>

AS <- MS (CFW 200 OK)

CFW 2eb141f241b7 200

Timeout: 10

Content-Type: application/msc-mixer+xml
Content-Length: 125

<mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
<response status="200" reason="Join successful"/>
</mscmixer>

Cl. AS -> MS (CFW CONTROL, join)
CFW 515f007c5bd® CONTROL
Control-Package: msc-mixer
Content-Type: application/msc-mixer+xml
Content-Length: 85

<mscmixer version="1.0">
<join id1="756471213~c52ebf1b" id2="1df080e"/>
</mscmixer>

C2. AS <- MS (CFW 200 OK)
CFW 515f007c5bdo 200
Timeout: 10
Content-Type: application/msc-mixer+xml
Content-Length: 125

<mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
<response status="200" reason="Join successful"/>
</mscmixer>

D1. AS -> MS (CFW CONTROL, join)
CFW 0216231b1f16 CONTROL
Control-Package: msc-mixer
Content-Type: application/msc-mixer+xml
Content-Length: 182

<mscmixer version="1.0">
<join id1="z9hG4bK19461552~1353807a" id2="1dfe80e">
<stream media="audio">
<volume controltype="setgain" value="-3"/>
</stream>
</join>
</mscmixer>

D2.

6.4.5.

TBD.

etc..

AS <- MS (CFW 200 OK)

CFW 0216231b1f16 200

Timeout: 10

Content-Type: application/msc-mixer+xml
Content-Length: 125

<mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">
<response status="200" reason="Join successful"/>
</mscmixer>

AS -> MS (CFW CONTROL, join)

CFW 140e0f763352 CONTROL
Control-Package: msc-mixer
Content-Type: application/msc-mixer+xml
Content-Length: 197

<mscmixer version="1.0">
<join id1="10514b7f~6a900179" 1d2="756471213~c52ebf1b">
<stream media="audio" direction="recvonly"/>
<stream media="video" direction="recvonly"/>
</join>
</mscmixer>

AS <- MS (CFW 200 OK)

CFW 140e0f763352 200

Timeout: 10

Content-Type: application/msc-mixer+xml
Content-Length: 125

<mscmixer version="1.0" xmlns="urn:ietf:params:xml:ns:msc-mixer">

<response status="200" reason="Join successful"/>
</mscmixer>

Sidebars TOC

(Even more issues than in coaching scenario; of greater interest
for conferencing, expecially XCON; as before, focus on per-user and
per-conference settings; potential issues and how to deal with them;

).

(Figure not available yet.)

Figure 40: Sidebars: Media Perspective

(Figure not available yet.)

Figure 41: Sidebars: UAC Legs not attached

(Figure not available yet.)

Figure 42: Sidebars: UAC Legs mixed and attached

(Figure not available yet).

Figure 43: Sidebars: Framework Transactions

TOC

7. Security Considerations

TBD. (None, since this is informational? Reference the security
sections from the core and packages drafts?)

8. Change Summary TOC

The following are the major changes between the 02 and the 03 versions
of the draft:

*updated the flows according to the latest drafts;

*updated the State Diagrams;

*recaptured almost all flows with the new prototype;

*captured and explained most of the missing scenarios (e.g.
coaching, conferencing, voicemail, etc);

*added a new scenario (record and then replay a phone call);

*clarified that the provided 3PCC signalings are just simplified
examples and not the mandatory approach to the issue;

*added new explainatory text in several parts of the document.

The following are the major changes between the 01 and the 02 versions
of the draft:

*updated the flows according to the new core draft (COMEDIA, new
dialogid, SYNCH->SYNC, etc.);

*updated the flows involving the updated IVR draft;

*changed the token (ESCS -> SCFW -> CFW);

*references updated (RFC5167 [RFC5167] (Dolly, M. and R. Even,
“Media Server Control Protocol Requirements,” March 2008.), and
IVR draft as WG item [I-D.ietf-mediactrl-ivr-control-package]
(McGlashan, S., Melanchuk, T., and C. Boulton, “An Interactive
Voice Response (IVR) Control Package for the Media Control
Channel Framework,” February 2010.).

The following are the major changes between the 00 and the 01 versions
of the draft:

*changed the title of the draft to reflect the current
specification of the framework;

*added some definitions to the Terminology section;

*added State Diagrams from both the AS and MS perspective;

*added text to the Control Channel Establishment section;

*added sequence diagrams and text to the Phone Call section;

*added sequence diagrams and text to the Simple Bridging section;

*added sequence diagrams and text to the Rich Conference Scenario
section;

*added documented section for Voice Mail;

*added placeholder section for BFCP-moderated Conferencing;

*references updated (RFC3264 [RFC3264] (Rosenberg, J. and H.
Schulzrinne, “An Offer/Answer Model with Session Description
Protocol (SDP),” June 2002.), RFC4145 [RFC4145] (Yon, D. and G.
Camarillo, “TCP-Based Media Transport in the Session Description
Protocol (SDP),” September 2005.) and RFC4579 [RFC4579
(Johnston, A. and 0. Levin, “Session Initiation Protocol (SIP)
Call Control - Conferencing for User Agents,” August 2006.)).

9. Acknowledgements TOC

TBD.

10. References

[RFC2234]

[RFC2119]

[RFC2434]

[RFC3261]

[RFC3264]

[RFC3725]

[RFC3550]

[RFC4574]

[RFC4145]

[RFC4579]

[RFC5167]

[I-D.ietf-
mediactrl-
architecture]

[I-D.ietf-
mediactrl-sip-
control-framework]

TOC

Crocker, D., Ed. and P. Overell, “Augmented BNF
for Syntax Specifications: ABNF,” RFC 2234,
November 1997 (TXT, HTML, XML).

Bradner, S., “Key words for use in RFCs to
Indicate Requirement Levels,” BCP 14, RFC 2119,
March 1997 (TXT, HTML, XML).

Narten, T. and H. Alvestrand, “Guidelines for
Writing an IANA Considerations Section in RFCs,”
BCP 26, RFC 2434, October 1998 (TXT, HTML, XML).
Rosenberg, J., Schulzrinne, H., Camarillo, G.,
Johnston, A., Peterson, J., Sparks, R., Handley,
M., and E. Schooler, “SIP: Session Initiation
Protocol,” RFC 3261, June 2002 (TXT).
Rosenberg, J. and H. Schulzrinne, “An Offer/
Answer Model with Session Description Protocol
(SDP),"” RFC 3264, June 2002 (TXT).

Rosenberg, J., Peterson, J., Schulzrinne, H.,
and G. Camarillo, “Best Current Practices for
Third Party Call Control (3pcc) in the Session
Initiation Protocol (SIP),” BCP 85, RFC 3725,
April 2004 (TXT).

Schulzrinne, H., Casner, S., Frederick, R., and
V. Jacobson, “RTP: A Transport Protocol for
Real-Time Applications,” STD 64, RFC 3550,

July 2003 (TXT, PS, PDF).

Levin, 0. and G. Camarillo, “The Session
Description Protocol (SDP) Label Attribute,”
RFC 4574, August 2006 (TXT).

Yon, D. and G. Camarillo, “TCP-Based Media
Transport in the Session Description Protocol
(SDP),"” RFC 4145, September 2005 (TXT).
Johnston, A. and 0. Levin, *“Session Initiation
Protocol (SIP) Call Control - Conferencing for
User Agents,” BCP 119, RFC 4579, August 2006
(IXT).

Dolly, M. and R. Even, “Media Server Control
Protocol Requirements,” RFC 5167, March 2008
(TXT).

Melanchuk, T., “An Architectural Framework for
Media Server Control,” draft-ietf-mediactrl-
architecture-04 (work in progress),

November 2008 (TXT).

Boulton, C., Melanchuk, T., and S. McGlashan,
“Media Control Channel Framework,” draft-ietf-

mailto:dcrocker@imc.org
mailto:paulo@turnpike.com
http://tools.ietf.org/html/rfc2234
http://tools.ietf.org/html/rfc2234
http://www.rfc-editor.org/rfc/rfc2234.txt
http://xml.resource.org/public/rfc/html/rfc2234.html
http://xml.resource.org/public/rfc/xml/rfc2234.xml
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:narten@raleigh.ibm.com
mailto:Harald@Alvestrand.no
http://tools.ietf.org/html/rfc2434
http://tools.ietf.org/html/rfc2434
http://www.rfc-editor.org/rfc/rfc2434.txt
http://xml.resource.org/public/rfc/html/rfc2434.html
http://xml.resource.org/public/rfc/xml/rfc2434.xml
http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/rfc3261
http://www.rfc-editor.org/rfc/rfc3261.txt
http://tools.ietf.org/html/rfc3264
http://tools.ietf.org/html/rfc3264
http://tools.ietf.org/html/rfc3264
http://www.rfc-editor.org/rfc/rfc3264.txt
http://tools.ietf.org/html/rfc3725
http://tools.ietf.org/html/rfc3725
http://tools.ietf.org/html/rfc3725
http://www.rfc-editor.org/rfc/rfc3725.txt
http://tools.ietf.org/html/rfc3550
http://tools.ietf.org/html/rfc3550
http://www.rfc-editor.org/rfc/rfc3550.txt
http://www.rfc-editor.org/rfc/rfc3550.ps
http://www.rfc-editor.org/rfc/rfc3550.pdf
http://tools.ietf.org/html/rfc4574
http://tools.ietf.org/html/rfc4574
http://www.rfc-editor.org/rfc/rfc4574.txt
http://tools.ietf.org/html/rfc4145
http://tools.ietf.org/html/rfc4145
http://tools.ietf.org/html/rfc4145
http://www.rfc-editor.org/rfc/rfc4145.txt
http://tools.ietf.org/html/rfc4579
http://tools.ietf.org/html/rfc4579
http://tools.ietf.org/html/rfc4579
http://www.rfc-editor.org/rfc/rfc4579.txt
http://tools.ietf.org/html/rfc5167
http://tools.ietf.org/html/rfc5167
http://www.rfc-editor.org/rfc/rfc5167.txt
http://www.ietf.org/internet-drafts/draft-ietf-mediactrl-architecture-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-mediactrl-architecture-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-mediactrl-architecture-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-mediactrl-sip-control-framework-11.txt

[I-D.boulton-
mmusic-sdp-
control-package-
attribute]
[I-D.ietf-
mediactrl-ivr-
control-package]

[I-D.ietf-
mediactrl-mixer -
control-package]

[I-D.boulton-ivr-
vxml-control-
package]

[I-D.miniero-bfcp-
control-package]

Authors' Addresses

Email:

Email:

mediactrl-sip-control-framework-11 (work in
progress), October 2009 (TXT).

Boulton, C., “A Session Description Protocol
(SDP) Control Package Attribute,” draft-boulton-
mmusic-sdp-control-package-attribute-04 (work in
progress), March 2009 (TXT).

McGlashan, S., Melanchuk, T., and C. Boulton,
“An Interactive Voice Response (IVR) Control
Package for the Media Control Channel
Framework,” draft-ietf-mediactrl-ivr-control-
package-08 (work in progress), February 2010
(IXT).

McGlashan, S., Melanchuk, T., and C. Boulton, “A
Mixer Control Package for the Media Control
Channel Framework,” draft-ietf-mediactrl-mixer-
control-package-11 (work in progress),

February 2010 (TXT).

Boulton, C., Melanchuk, T., and S. McGlashan, “A
VoiceXML Control Package for the Media Control
Channel Framework,” draft-boulton-ivr-vxml-
control-package-04 (work in progress),

February 2008 (TXT).

Miniero, L., Romano, S., Even, R., and S.
McGlashan, “A Binary Floor Control Protocol
(BFCP) Control Package for the Media Control
Channel Framework,” draft-miniero-bfcp-control-
package-01 (work in progress), July 2008 (TXT).

TOC
Alessandro Amirante
University of Napoli
Via Claudio 21
Napoli 80125
Italy
alessandro.amirante@unina.it

Tobia Castaldi
University of Napoli
Via Claudio 21

Napoli 80125

Italy
tobia.castaldi@unina.it

Lorenzo Miniero
University of Napoli

http://www.ietf.org/internet-drafts/draft-ietf-mediactrl-sip-control-framework-11.txt
http://www.ietf.org/internet-drafts/draft-boulton-mmusic-sdp-control-package-attribute-04.txt
http://www.ietf.org/internet-drafts/draft-boulton-mmusic-sdp-control-package-attribute-04.txt
http://www.ietf.org/internet-drafts/draft-boulton-mmusic-sdp-control-package-attribute-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-mediactrl-ivr-control-package-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-mediactrl-ivr-control-package-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-mediactrl-ivr-control-package-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-mediactrl-ivr-control-package-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-mediactrl-mixer-control-package-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-mediactrl-mixer-control-package-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-mediactrl-mixer-control-package-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-mediactrl-mixer-control-package-11.txt
http://www.ietf.org/internet-drafts/draft-boulton-ivr-vxml-control-package-04.txt
http://www.ietf.org/internet-drafts/draft-boulton-ivr-vxml-control-package-04.txt
http://www.ietf.org/internet-drafts/draft-boulton-ivr-vxml-control-package-04.txt
http://www.ietf.org/internet-drafts/draft-boulton-ivr-vxml-control-package-04.txt
http://www.ietf.org/internet-drafts/draft-miniero-bfcp-control-package-01.txt
http://www.ietf.org/internet-drafts/draft-miniero-bfcp-control-package-01.txt
http://www.ietf.org/internet-drafts/draft-miniero-bfcp-control-package-01.txt
http://www.ietf.org/internet-drafts/draft-miniero-bfcp-control-package-01.txt
mailto:alessandro.amirante@unina.it
mailto:tobia.castaldi@unina.it

Via Claudio 21
Napoli 80125
Italy
Email: lorenzo.miniero@unina.it

Simon Pietro Romano
University of Napoli
Via Claudio 21
Napoli 80125
Italy

Email: spromano@unina.it

Full Copyright Statement
TOC
Copyright © The IETF Trust (2008).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
“AS IS” basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has made
any independent effort to identify any such rights. Information on the
procedures with respect to rights in RFC documents can be found in

BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification
can be obtained from the IETF on-line IPR repository at http://
www.lietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary rights
that may cover technology that may be required to implement this
standard. Please address the information to the IETF at ietf-

ipr@ietf.org.

mailto:lorenzo.miniero@unina.it
mailto:spromano@unina.it
http://www.ietf.org/ipr
http://www.ietf.org/ipr
mailto:ietf-ipr@ietf.org
mailto:ietf-ipr@ietf.org

	Media Control Channel Framework (CFW) Call Flow Examplesdraft-miniero-mediactrl-escs-03
	Status of this Memo
	Abstract
	Table of Contents
	1. Introduction
	2. Conventions
	3. Terminology
	4. Overview
	4.1. A Practical Approach
	4.1.1. State Diagrams
	4.1.2. Implementation
	5. Control Channel Establishment
	5.1. COMEDIA Negotiation
	5.2. SYNC
	6. Use-case scenarios and examples
	6.1. Echo Test
	6.1.1. Direct Echo Test
	6.1.2. Echo Test based on Recording
	6.2. Phone Call
	6.2.1. Direct Connection
	6.2.2. Conference-based Approach
	6.2.3. Recording a conversation
	6.3. Voice Mail
	6.4. Conferencing
	6.4.1. Simple Bridging
	6.4.2. Rich Conference Scenario
	6.4.3. Conferencing with Floor Control
	6.4.4. Coaching Scenario
	6.4.5. Sidebars
	7. Security Considerations
	8. Change Summary
	9. Acknowledgements
	10. References
	Authors' Addresses
	Full Copyright Statement
	Intellectual Property

