Internet Engineering Task Force Greg Minshall
INTERNET-DRAFT Siara Systems
draft-minshall-nagle-00 December 18, 1998

A Suggested Modification to Nagle's Algorithm

Status of This Memo

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas,
and its working groups. Note that other groups may also distribute
working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other
documents at any time. It is inappropriate to use Internet- Drafts
as reference material or to cite them other than as "~ “work in
progress. "'

To view the entire list of current Internet-Drafts, please check
the "~ “l1id-abstracts.txt'' listing contained in the Internet-Drafts
Shadow Directories on ftp.is.co.za (Africa), ftp.nordu.net
(Northern Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au
(Pacific Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu (US
West Coast).

This draft proposes a modification to Nagle's algorithm (as
specified in RFC896) to allow TCP, under certain conditions, to
send a small sized packet immediately after one or more maximum
segment sized packet.

Abstract

The Nagle algorithm is one of the primary mechanisms which protects
the internet from poorly designed and/or implemented applications.
However, for a certain class of applications (notably,
request-response protocols) the Nagle algorithm interacts poorly
with delayed acknowledgements to give these applications poorer
performance.

This draft is NOT suggesting that these applications should disable
the Nagle algorithm.

This draft suggests a fairly small and simple modification to the
Nagle algorithm to preserve Nagle as a means of protecting the
internet while at the same time giving better performance to a
wider class of applications.


https://datatracker.ietf.org/doc/html/draft-minshall-nagle-00
https://datatracker.ietf.org/doc/html/rfc896

Introduction to the Nagle algorithm

The Nagle algorithm [REC896] protects the internet from
applications (most notably Telnet, at the time the algorithm was
developed) which tend to dribble small amounts of data to TCP.
wWithout the Nagle algorithm, TCP would transmit a packet, with a
small amount of data, in response to each of the application's
writes to TCP. With the Nagle algorithm, a first small packet will
be transmitted, then subsequent writes from the application will be
buffered at the sending TCP until either i) enough application data
has accumulated to enable TCP to transmit a maximum sized packet,
or ii) the initial small packet is acknowledged by the receiving
TCP. This limits the number of small packets to one per round trip
time.

While the current Nagle algorithm does a very good job of
protecting the internet from such applications, there are other
applications, such as request-response protocols (with HTTP 1.1
being a topical example) in which the current Nagle algorithm
produces non-optimal results. In this context, the Nagle algorithm
is interacting with TCP's "~ “delayed ACK'' policy [REC1122].

Delayed ACKs

A receiving TCP tries to avoid acknowledging every received data
packet. This process, known as "~ "delayed ACKing'' [RFC1122],
typically causes an ACK to be generated for every other received
(full-sized) data packet. In the case of an ~“isolated'' TCP
packet (i.e., where a second TCP packet is not going to arrive
anytime soon), the delayed ACK policy causes an acknowledgement for
the data in the isolated packet to be sent within 200 milliseconds
of the receipt of the isolated packet. (The way delayed ACKs are
implemented in some systems causes the delayed ACK to be generated
anytime between 0 and 200ms; in this case, the average amount of
time before the delayed ACK is generated is 100ms.)

The interaction of delayed ACKs and Nagle

If a TCP has more application data to transmit than will fit in one
packet, but less than two full-sized packets' worth of data, it
will transmit the first packet. As a result of Nagle, it will not
transmit the second packet until the first packet has been
acknowledged. On the other hand, the receiving TCP will delay
acknowledging the first packet until either i) a second packet
arrives (which, in this case, won't arrive), or ii) approximately
100ms (and a maximum of 200ms) has elapsed.

When the sending TCP receives the delayed ACK, it can then transmit
its second packet.


https://datatracker.ietf.org/doc/html/rfc896
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122

In a request-response protocol, this second packet will complete
either a request or a response, which then enables a succeeding
response or request.

Note two (related) bad results of the interaction of delayed ACKs
and the Nagle algorithm in this case: the request-response time may
be increased by up to 400ms (if both the request and the response
are delayed); and, the number of transactions per second is
substantially reduced.

A proposed modification to the Nagle algorithm
The current Nagle algorithm can be described as follows:

If a TCP has less than a full-sized packet to transmit,
and if any previous packet has not yet been acknowledged,
do not transmit a packet.

The proposed Nagle algorithm modifies this as follows:

If a TCP has less than a full-sized packet to transmit,
and if any previous less than full-sized packet has not
yet been acknowledged, do not transmit a packet.

In other words, when running Nagle, only look at the recent
transmission (and acknowledgement) of small packets (rather than
all packets, as in the current Nagle).

(In writing the above, I am aware that TCP acknowledges BYTES, not
packets. However, expressing the algorithm in terms of packets
seems to make the explanation a bit clearer.)

Implementation of the modified Nagle algorithm in a system

The current Nagle algorithm does not require any more state to be
kept by TCP on a system. SND_NXT is a TCP variable which names the
next byte of data to be transmitted. SND_UNA is a TCP variable
which names the next byte of data to be acknowledged. If SND_NXT
equals SND_UNA, then all previous packets have been acknowledged.

The proposed modification to the Nagle algorithm does,
unfortunately, require one new state variable to be kept by TCP.
SND_SML is a TCP variable which names the last byte of data in the
most recently transmitted small packet.

An implementation could be as follows:

1. When transmitting a small packet, record the sequence
number of the last byte of the small packet in SND_SML.



2. When deciding whether or not to transmit a small packet,
check to ensure that SND_SML is less than, or equal to,
SND_UNA.

A Failure Mode

If an application sends a large amount of data, followed by a small
amount of data, followed by a large amount of data, the current
Nagle algorithm would perform better than the proposed
modification. The current Nagle algorithm would send at most one
small packet (possibly the last packet), delaying the middle
(small) amount of data which would allow the application to send
the following large amount of data; the proposed Nagle algorithm
would send two small packets (the middle packet, plus possibly a
last packet).

A separate, but desirable, system facility

In addition to the Nagle algorithm (or the modification proposed by
this draft), it would be desirable for a system providing TCP
service to applications to allow the application to set TCP into a
mode in which the TCP would only transmit small packets at the
explicit direction of the application. For example, a system based
on BSD might implement a socket option (using setsockopt(2))
SO_EXPLICITPUSH, as well as a flag to sendto(2) (possibly
overloading the semantics of an existing flag, such as MSG_EOF).

In this scenario, an application would set a socket into
SO_EXPLICITPUSH mode, then enter a mode of writing data to the
socket and, at the last write, using send(2) with the MSG_EOF flag.
The underlying TCP would recognize the MSG_EOF flag as an indicator
to transmit the (possibly) small packet.

Like the proposed modification to the Nagle algorithm, this is
fairly simple to implement.

If a system were to implement this interface, it would be important
to NOT disable Nagle when using this interface. In other words,
when using this interface, the default mode for TCP would be to NOT
transmit a small packet (even in the presence of MSG_EOF) if a
previously transmitted small packet was as yet unacknowledged.

Note, also, that implementing this interface does not eliminate the
desirability of using the modification of the Nagle as the default
for applications. More sophisticated networking applications might
well use the new interface, but naive applications will often be
adequately served by the modified Nagle algorithm.

Acknowledgements



Jim Gettys, Henrik Frystyk Nielsen, Jeff Mogul, and Yasushi Saito,
as well as a message forwarded to the end2end-interest list by Sean
Doran, have motivated my current interest in the Nagle algorithm.
John Heidemann's work related to the Nagle algorithm has informed
some of the thinking in this draft; discussions with John have also
been helpful. Members of the End-to-End Research Group (under

the direction of Bob Braden) patiently listened to my discussion of
the current state of the Nagle algorithm and to the modifications
proposed in this document.

Security Considerations
The Nagle algorithm does not have major security consequences.
Implementation of this algorithm should not negatively impact
the performance of the internet. The negative impact of

implementation of this algorithm should be significantly less
than disabling the Nagle algorithm.

References

[RFC896] Nagle, J., "Congestion control in IP/TCP internetworks",
Jan-06-1984.

[REC1122] Braden, R. T., "Requirements for Internet hosts -

communication layers", Oct-01-1989.
Author's Addresses

Greg Minshall

Siara Systems

1399 Charleston Road
Mountain View, CA 94043
USA

<minshall@siara.com>


https://datatracker.ietf.org/doc/html/rfc1122

