
Workgroup: Internet Engineering Task Force

Internet-Draft: draft-mlichvar-ntp-ntpv5-05

Published: 25 August 2022

Intended Status: Standards Track

Expires: 26 February 2023

Authors: M. Lichvar

Red Hat

Network Time Protocol Version 5

Abstract

This document describes the version 5 of the Network Time Protocol

(NTP).

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 26 February 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Requirements Language

2. Basic Concepts

3. Data Types

4. Message Format

5. Extension Fields

5.1. Padding Extension Field

5.2. MAC Extension Field

5.3. Reference IDs Request and Response Extension Fields

5.4. Server Information Extension Field

5.5. Correction Extension Field

5.6. Reference Timestamp Extension Field

5.7. Monotonic Timestamp Extension Field

6. Measurement Modes

7. Client Operation

8. Server Operation

9. Network Time Security with NTPv5

10. NTPv5 Negotiation in NTPv4

11. Acknowledgements

12. IANA Considerations

13. Security Considerations

14. References

14.1. Normative References

14.2. Informative References

Author's Address

1. Introduction

Network Time Protocol (NTP) is a protocol which enables computers to

synchronize their clocks over network. Time is distributed from

primary time servers to clients, which can be servers for other

clients, and so on. Clients can use multiple servers simultaneously.

NTPv5 is similar to NTPv4 [RFC5905]. The main differences are:

The protocol specification (this document) describes only the

on-wire protocol. Filtering of measurements, security

mechanisms, source selection, clock control, and other

algorithms, are out of scope.

For security reasons, NTPv5 drops support for the symmetric

active, symmetric passive, broadcast, control, and private

modes. The symmetric and broadcast modes are vulnerable to

replay attacks. The control and private modes can be exploited

for denial-of-service traffic amplification attacks. Only the

client and server modes remain in NTPv5.

¶

¶

1.

¶

2.

¶

Timestamps are clearly separated from values used as cookies.

NTPv5 messages can be extended only with extension fields. The

MAC field is wrapped in an extension field.

Extension fields can be of any length, even indivisible by 4,

but are padded to a multiple of 4 octets. Extension fields

specified for NTPv4 are compatible with NTPv5.

NTPv5 adds support for other timescales than UTC.

The NTP era number is exchanged in the protocol, which extends

the unambiguous interval of the client from 136 years to about

35000 years.

NTPv5 adds a new measurement mode to provide clients with more

accurate transmit timestamps.

NTPv5 works with sets of reference IDs to prevent

synchronization loops over multiple hosts.

Resolution of the root delay and root dispersion fields is

improved.

Clients don't leak information about their clock (e.g.

timestamps).

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Basic Concepts

The distance to the reference time sources in the hierarchy of

servers is called stratum. Primary time servers, which are

synchronized to the reference clocks, are stratum 1, their clients

are stratum 2, and so on.

Root delay measures the total delay on the path to the reference

time source used by the primary time server. Each client on the path

adds to the root delay the NTP delay measured to the server it

considers best for synchronization. The delay includes network

delays and any delays between timestamping of NTP messages and their

actual reception and transmission. Half of the root delay estimates

the maximum error of the clock due to asymmetries in the delay.

3. ¶

4.

¶

5.

¶

6. ¶

7.

¶

8.

¶

9.

¶

10.

¶

11.

¶

¶

¶

¶

time16

time32

timestamp64

Root dispersion estimates the maximum error of the clock due to the

instability of the clocks on the path and instability of NTP

measurements. Each server on the path adds its own dispersion to the

root dispersion. Different clock models can be used. In a simple

model, the clock can have a constant dispersion rate, e.g. 15 ppm as

used in NTPv4.

The sum of the root dispersion and half of the root delay is called

root distance. It is the estimated maximum error of the clock,

taking into account asymmetry in delay and stability of clocks and

measurements.

Servers have randomly generated reference IDs to prevent

synchronization loops.

3. Data Types

NTPv5 uses few different data types. They are all in the network

order. Beside signed and unsigned integers, it has also the

following fixed-point types:

A 16-bit fixed-point type containing values in seconds. It has 1

signed integer bit (i.e. it is just the sign) and 15 fractional

bits. The minimum value is the fraction -32767/32768 (almost -1

second), the maximum value is 32767/32768 (almost 1 second), and

the resolution is about 30 microseconds. The type has a special

value of 0x8000, which indicates an unknown value.

A 32-bit fixed-point type containing values in seconds. It has 4

unsigned integer bits and 28 fractional bits. The maximum value

is 16 seconds and the resolution is about 3.7 nanoseconds. Note

that this is different than the 32-bit time format in NTPv4.

A 64-bit fixed-point type containing timestamps. It has 32 signed

integer bits and 32 fractional bits. It spans an interval of

about 136 years and has a resolution of about 0.23 nanoseconds.

It can be used in different timescales. In the UTC timescale it

is the number of SI seconds since 1 Jan 1972 plus 2272060800,

excluding leap seconds. Timestamps in the TAI timescale are the

same except they include leap seconds and extra 10 seconds for

the original difference between TAI and UTC in 1972, when leap

seconds were introduced. One interval covered by the type is

called an NTP era. The era starting at the epoch is era number 0,

the following era is number 1, and so on.

Some fields use a logarithmic scale, where an 8-bit signed integer

represents the rounded log2 value of seconds. For example, a log2

¶

¶

¶

¶

¶

¶

¶

value of 4 is 2 to the power of 4 (16 seconds), or a log2 value of

-2 is 2 to the power of -2 (0.25 seconds).

4. Message Format

NTPv5 servers and clients exchange messages as UDP datagrams.

Clients send requests to servers and servers send them back

responses. The format of the UDP payload is shown in Figure 1.

¶

¶

Leap indicator (LI)

Figure 1: Format of NTPv5 messages

Each NTPv5 message has a header containing the following fields:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|LI | VN |Mode | Scale |Stratum| Poll | Precision |

+-+

| Flags | Era | Timescale Offset |

+-+

| Root Delay |

+-+

| Root Dispersion |

+-+

| |

+ Server Cookie (64) +

| |

+-+

| |

+ Client Cookie (64) +

| |

+-+

| |

+ Receive Timestamp (64) +

| |

+-+

| |

+ Transmit Timestamp (64) +

| |

+-+

| |

. .

. Extension Field 1 (variable) .

. .

| |

+-+

. .

. .

. .

+-+

| |

. .

. Extension Field N (variable) .

. .

| |

+-+

¶

Version Number (VN)

Mode

Scale

Stratum

Poll

Precision

Flags

0x1: Unknown leap

A 2-bit field which can have the following values: 0 (normal), 1

(leap second inserted at the end of the month), 2 (leap second

deleted at the end of the month), 3 (not synchronized). The

values 1 and 2 are set at most 14 days in advance before the leap

second. In requests it is always 0.

A 3-bit field containing the value 5.

A 3-bit field containing the value 3 (request) or 4 (response).

A 4-bit identifier of the timescale. In requests it is the

requested timescale. In responses it is the timescale of the

receive and transmit timestamps. Defined values are:

0: UTC

1: TAI

2: UT1

3: Leap-smeared UTC

A 4-bit field containing the stratum of the server. Primary time

servers have a stratum of 1, their clients have a stratum of 2,

and so on. The value of 0 indicates an unknown or infinite

stratum. In requests it is always 0.

An 8-bit signed integer containing the polling interval as a

rounded log2 value in seconds. In requests it is the current

polling interval. In responses it is the minimum allowed polling

interval.

An 8-bit signed integer containing the precision of the

timestamps included in the message as a rounded log2 value in

seconds. In requests, which don't contain any timestamps, it is

always 0.

An 8-bit integer that can contain the following flags:

In requests it is 0. In responses a value of 1 indicates the

server does not have a time source which provides information

about leap seconds and the client should interpret the Leap

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

0x2: Interleaved mode

Era

Timescale Offset

Root Delay

Root Dispersion

Server Cookie

Client Cookie

Receive Timestamp

Indicator as having only two possible values: synchronized (0)

and not synchronized (3).

In requests a value of 1 is a request for a response in the

interleaved mode. In responses a value of 1 indicates the

response is in the interleaved mode.

An 8-bit unsigned NTP era number corresponding to the receive

timestamp. In requests it is always 0.

A 16-bit value specific to the selected timescale, which is

referenced to the receive timestamp. In requests it is always 0.

In the UTC (0) and TAI (1) timescales it is the TAI-UTC

offset (TAI minus UTC) as a signed integer, or 0x8000 if

unknown.

In the UT1 timescale (2) it is the UT1-UTC offset (UT1

minus UTC) using the time16 type (0x8000 if unknown).

In the leap-smeared UTC (3), it is the current offset

between the leap smeared time and UTC (former minus latter)

using the time16 type (0x8000 if unknown).

A field using the time32 type. In responses it is the server's

root delay. In requests it is always 0.

A field using the time32 type. In responses it is the server's

root dispersion. In requests it is always 0.

A 64-bit field containing a number generated by the server which

enables the interleaved mode. In requests it is 0, or a copy of

the server cookie from the last response.

A 64-bit field containing a random number generated by the

client. Responses contain a copy of the field from the

corresponding request, which allows the client to verify that the

responses are valid responses to the requests.

A field using the timestamp64 type. In requests it is always 0.

In responses it is the time when the request was received. The

timestamp corresponds to the end of the reception.

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

Transmit Timestamp

A field using the timestamp64 type. In requests it is always 0.

In responses it is the beginning of the transmission of a

response to the client. Which response it refers to depends on

the selected mode (basic or interleaved). See Measurement Modes

(Section 6) for detail.

The header has 48 octets, which is the minimum length of a valid

NTPv5 message. A message can contain zero, one, or multiple

extension fields. The maximum length is not specified, but the

length is always divisible by 4.

5. Extension Fields

The format of NTPv5 extension fields is shown in Figure 2.

Figure 2: Format of NTPv5 extension fields

Each extension field has a header which contains a 16-bit type and

16-bit length. The length is in octets and it includes the header.

The minimum length is 4, i.e. an extension field does not have to

contain any data. If the length is not divisible by 4, the extension

field is padded with zeroes to the smallest multiple of 4 octets.

If a request contains an extension field, the server MUST include

this extension field in the response unless the specification of the

extension field states otherwise, or the server does not support the

extension field. A client can interpret the absence of an expected

extension field in a response as an indication that the server does

not support the extension field.

Extension fields specified for NTPv4 can be included in NTPv5

messages as specified for NTPv4.

The rest of this section describes new extension fields specified

for NTPv5. Clients are not required to use or support any of these

extension fields, but servers are required to support some extension

fields.

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type | Length |

+-+

. .

. Data (variable) .

. .

+-+

¶

¶

¶

¶

5.1. Padding Extension Field

This field is used by servers to pad the response to the same length

as the request if the response does not contain all requested

extension fields, or some have a variable length. It can have any

length.

This field MUST be supported on server.

5.2. MAC Extension Field

This field authenticates the NTPv5 message with a symmetric key.

Implementations SHOULD use the MAC specified in RFC8573 [RFC8573].

The extension field MUST be the last extension field in the message

unless an extension field is specifically allowed to be placed after

a MAC or another authenticator field.

5.3. Reference IDs Request and Response Extension Fields

Each NTPv5 server has a randomly generated 120-bit reference ID. The

extension fields described in this section are used to exchange sets

of reference IDs in order to detect synchronization loops, i.e. when

a client is synchronizing (directly or indirectly) to one of its own

clients.

As each client can be synchronized to an unlimited number of servers

(and there can be up to 15 strata of servers), the reference IDs are

exchanged as a Bloom filter instead of a list to limit the amount of

data that needs to be exchanged.

The Bloom filter is an array of 4096 bits. When empty, all bits are

zero. To add a reference ID to the filter, the 120-bit value of the

reference ID is split into 10 12-bit values and the bits of the

array at the 10 positions given by the 12-bit values are set to one.

A server maintains a copy of the filter for each server it is using

as an NTP client. The filter provided by the server to clients is

the union of the filters (using the bitwise OR operation) of the

server's sources selected for synchronization and the server's own

reference ID.

If the server uses a previous version of NTP for some of its

sources, the reference IDs added to the filter are generated from

their IP addresses as the first 120 bits of the MD5 [RFC1321] sum of

the address.

A client checking whether the server's set of reference IDs contains

the client's own reference ID checks whether the bits at the 10

positions corresponding to the 12-bit values from the reference ID

are all set to one.

¶

¶

¶

¶

¶

¶

¶

¶

¶

When a client which serves time to other clients detects a

synchronization loop with one of its servers, it SHOULD stop using

the server for synchronization. When the client's reference ID is no

longer detected in the server's filter, it SHOULD wait for a random

number of polling intervals (e.g. between 0 and 4) before selecting

the server again. The random delay helps with stabilization of the

selection in longer loops.

False positives are possible. The probability of a collision grows

with the number of reference IDs in the filter. With 26 reference

IDs it is about 1e-12. With 118 IDs it is about 1e-6. The client MAY

avoid selecting a server which has too many bits set in the filter

(e.g. more than half) to reduce the probability of the collision for

its own clients. A client which detected a synchronization loop MAY

change its own reference ID to limit the duration of the potential

collision.

The filter can be exchanged as a single 512-octet array, or it can

be exchanged in smaller chunks over multiple NTP messages, making

them shorter, but delaying the detection of the synchronization

loop.

The request extension field specifies the offset of the requested

chunk in the filter as a number of octets. The requested length of

the chunk is given by the length of the extension field. The

response extension field MUST have the same length as the request

extension field. If the request contains an invalid offset, the

extension field MUST be ignored.

The client SHOULD use requests of a constant length for the

association to avoid adding a variation to the measured NTP delay.

The format of the Reference IDs Request is shown in Figure 3.

Figure 3: Format of Reference IDs Request Extension Field

The format of the Reference IDs Response is shown in Figure 4.

¶

¶

¶

¶

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type | Length |

+-+

| Offset | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +

. .

. Padding (variable) .

. .

+-+

¶

Figure 4: Format of Reference IDs Response Extension Field

These fields MUST be supported on server.

5.4. Server Information Extension Field

This field provides clients with information about which NTP

versions are supported by the server, as a minimum and maximum

version. The extension field has a fixed length of 8 octets. In

requests, all data fields of the extension are 0.

Figure 5: Format of Server Information Extension Field

This field MUST be supported on server.

5.5. Correction Extension Field

Processing and queueing delays in network switches and routers may

be a significant source of jitter and asymmetry in network delay,

which has a negative impact on accuracy and stability of clocks

synchronized by NTP. A solution to this problem is defined in the

Precision Time Protocol (PTP) [IEEE1588], which is a different

protocol for synchronization of clocks in networks. In PTP a special

type of switch or router, called a Transparent Clock (TC), updates a

correction field in PTP messages to account for the time messages

spend in the TC. This is accomplished by timestamping the message at

the ingress and egress ports, taking the difference to determine

time in the TC and adding this to the Delay Correction. Clients can

account for the accumulated Delay Correction to determine a more

accurate clock offset.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type | Length |

+-+

. .

. Bloom filter chunk (variable) .

. .

+-+

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type | Length |

+-+

| Min. Version | Max. Version | Reserved |

+-+

¶

¶

Field Type

Length

Origin Correction

Origin ID

Reserved

Delay Correction

The NTPv5 Delay Correction has the same format as the PTP

correctionField to make it easier for manufacturers of switches and

routers to implement NTP corrections. The format of the Correction

Extension Field is shown in Figure 6.

Figure 6: Format of Correction Extension Field

The type which identifies the Correction extension field (value

TBD).

The length of the extension field, which is 28 octets.

A field which contains a copy of the accumulated delay correction

from the request packet in the NTP exchange.

A field which contains a copy of the final path ID from the

request packet in the NTP exchange.

16 bit reserved for future specification by the IETF. Transmit

with all zeros.

A signed fixed-point number of nanoseconds with 48 integer bits

and 16 binary fractional bits, which represents the current

correction of the network delay that has accumulated for this

packet on the path from the source to the destination. The format

of this field is identical to the PTP correctionField.

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type | Length |

+-+

| |

+ Origin Correction +

| |

+-+

| Origin path ID | Reserved |

+-+

| |

+ Delay Correction +

| |

+-+

| Delay Path ID | Checksum complement |

+-+

¶

¶

¶

¶

¶

¶

Path ID

Checksum Complement

A 16-bit identification number of the path where the delay

correction was updated.

A field which can be modified in order to keep the UDP checksum

of the packet valid. This allows the UDP checksum to be

transmitted before the Correction Field is received and modified.

The same field is described in RFC 7821 [RFC7821].

A correction capable client SHALL transmit the request with the

Origin Correction, Origin ID, Delay Correction and Path ID fields

filled with all zeros.

Network nodes, such as switches and routers, that are NTP

corrections capable SHALL add the difference between the beginning

of an NTP message retransmission and the end of the message

reception to the received Delay Correction value, and update this

field. Note that this time difference might be negative, for example

in a cut-through switch. If the packet is transmitted at the same

speed as it was received and the length of the packet does not

change (e.g. due to adding or removing a VLAN tag), the beginning

and end of the interval may correspond to any point of the reception

and transmission as long as it is consistent for all forwarded

packets of the same length. If the transmission speed or length of

the packet is different, the beginning and end of the interval

SHOULD correspond to the end of the reception and beginning of the

transmission respectively. Both timestamps MUST be based on the same

clock. This clock does not need to be synchronized as long as the

frequency is accurate enough such that resulting time difference

estimation errors are acceptable to the precision required by the

application.

If a network node updates the delay correction, it SHOULD also add

the identification numbers of the incoming and outgoing port to the

path ID. Path ID values can be used by clients to determine if the

ntp request and response messages are likely to have traversed the

same network path.

If a network node modified any field of the extension field, it MUST

update the checksum complement field in order to keep the current

UDP checksum valid, or update the UDP checksum itself.

The server SHALL write the received Delay Correction value in the

origin correction field of the response message, and the received

path ID value in the origin ID field. The server SHALL set the Delay

Correction field and Path ID fields to all zeros

¶

¶

¶

¶

¶

¶

¶

5.6. Reference Timestamp Extension Field

This fields contains the time of the last update of the clock. It

has a fixed length of 12 octets. In requests, the timestamp is

always 0.

(Is this really needed? It was mostly unused in NTPv4.)

Figure 7: Format of Reference Timestamp Extension Field

5.7. Monotonic Timestamp Extension Field

When a clock is synchronized to a time source, there is a compromise

between time (phase) accuracy and frequency accuracy, because the

frequency of the clock has to be adjusted to correct time errors

that accumulate due to the frequency error (e.g. caused by changes

in the temperature of the crystal). Faster corrections of time can

minimize the time error, but increase the frequency error, which

transfers to clients using that clock as a time source and increases

their frequency and time errors. This issue can be avoided by

transferring time and frequency separately using different clocks.

The Monotonic Timestamp Extension Field contains an extra receive

timestamp with a 32-bit epoch identifier captured by a clock which

does not have corrected phase and can better transfer frequency than

the clock which captures the receive and transmit timestamps in the

header. The extension field has a constant length of 16 octets. In

requests, the counter and timestamp are always 0.

The epoch identifier is a random number which is changed when

frequency transfer needs to be restarted, e.g. due to a step of the

clock.

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type | Length |

+-+

| |

| Reference Timestamp (64) |

| |

+-+

¶

¶

¶

Figure 8: Format of Monotonic Timestamp Extension Field

The client can determine the frequency-transfer offset from the

time-transfer offset and difference between the two receive

timestamps in the response. It can use the frequency-transfer offset

to better control the frequency of its clock, avoiding the frequency

error in the server's time-transfer clock.

6. Measurement Modes

An NTPv5 client needs four timestamps to measure the offset and

delay of its clock relative to the server's clock:

T1 - client's transmit timestamp of a request

T2 - server's receive timestamp of the request

T3 - server's transmit timestamp of a response

T4 - client's receive timestamp of the response

The offset, delay and dispersion are calculated as:

offset = ((T2 + T3) - (T4 + T1) + (Cd - Co)) / 2

delay = |(T4 - T1) - (T3 - T2) - (Cd + Co)|

dispersion = |T4 - T1| * DR

where

T1, T2, T3, T4 are the receive and transmit timestamps of a

request and response

Co is the Origin Correction from the Correction Extension Field

if present in the response and has acceptable values, zero

otherwise

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type | Length |

+-+

| Epoch ID |

+-+

| |

| Monotonic Receive Timestamp (64) |

| |

+-+

¶

¶

1. ¶

2. ¶

3. ¶

4. ¶

¶

* ¶

* ¶

* ¶

¶

*

¶

*

¶

Cd is the Delay Correction from the Correction Extension Field if

present in the response and has acceptable values, zero otherwise

DR is the client's dispersion rate

The client can make measurements in the basic mode, or interleaved

mode if supported on the server. In the basic mode, the transmit

timestamp in the server response corresponds to the message which

contains the timestamp itself. In the interleaved mode it

corresponds to a previous response identified by the server cookie.

The interleaved mode enables the server to provide the client with a

more accurate transmit timestamp which is available only after the

response was formed or sent.

An example of cookies and timestamps in an NTPv5 exchange using the

basic mode is shown in Figure 9.

Figure 9: Cookies and timestamps in basic mode

From the three exchanges in this example, the client would use the

the following sets of timestamps:

(t1, t2, t3, t4)

(t5, t6, t7, t8)

(t9, t10, t11, t12)

For NTPv4, the interleaved mode is described in NTP Interleaved

Modes [I-D.ietf-ntp-interleaved-modes]. The difference between the

NTPv5 and NTPv4 interleaved modes is that in NTPv5 it is enabled

with a flag and the previous transmit timestamp on the server is

identified by the server cookie instead of the receive timestamp.

*

¶

* ¶

¶

¶

Server t2 t3 t6 t7 t10 t11

 -----+----+----------------+----+----------------+----+-----

 / \ / \ / \

Client / \ / \ / \

 --+----------+----------+----------+----------+----------+--

 t1 t4 t5 t8 t9 t12

 +----+ +----+ +----+ +----+ +----+ +----+

SC | 0 | | s1 | | 0 | | s2 | | 0 | | s3 |

CC | c1 | | c1 | | c2 | | c2 | | c3 | | c3 |

Rx | 0 | | t2 | | 0 | | t6 | | 0 | |t10 |

Tx | 0 | | t3 | | 0 | | t7 | | 0 | |t11 |

 +----+ +----+ +----+ +----+ +----+ +----+

¶

* ¶

* ¶

* ¶

¶

An example of an NTPv5 exchange using the interleaved mode is shown

in Figure 10. The messages in the basic and interleaved mode are

indicated with B and I respectively. The timestamps t3' and t11'

correspond to the same transmissions as t3 and t11, but they may be

less accurate. The first exchange is in the basic mode followed by a

second exchange in the interleaved mode. For the third exchange, the

client request is in the interleaved mode, but the server response

is in the basic mode, because the server no longer had the timestamp

t7 (e.g. it was dropped to save timestamps for other clients using

the interleaved mode).

Figure 10: Cookies and timestamps in interleaved mode

From the three exchanges in this example, the client would use the

following sets of timestamps:

(t1, t2, t3', t4)

(t1, t2, t3, t4) or (t5, t6, t3, t4)

(t9, t10, t11', t12)

7. Client Operation

An NTPv5 client can use one or multiple servers. It has a separate

association with each server. It makes periodic measurements of its

offset and delay to the server. It can filter the measurements and

compare measurements from different servers to select and combine

the best servers for synchronization. It can adjust its clock in

order to minimize its offset and keep the clock synchronized. These

algorithms are not specified in this document.

The polling interval can be adjusted for the network conditions and

stability of the clock. When polling a public server on Internet,

¶

Server t2 t3 t6 t7 t10 t11

 -----+----+----------------+----+----------------+----+-----

 / \ / \ / \

Client / \ / \ / \

 --+----------+----------+----------+----------+----------+--

 t1 t4 t5 t8 t9 t12

Mode: B B I I I B

 +----+ +----+ +----+ +----+ +----+ +----+

SC | 0 | | s1 | | s1 | | s2 | | s2 | | s3 |

CC | c1 | | c1 | | c2 | | c2 | | c3 | | c3 |

Rx | 0 | | t2 | | 0 | | t6 | | 0 | |t10 |

Tx | 0 | | t3'| | 0 | | t3 | | 0 | |t11'|

 +----+ +----+ +----+ +----+ +----+ +----+

¶

* ¶

* ¶

* ¶

¶

the client SHOULD use at least a polling interval of 64 seconds,

increasing up to at least 1024 seconds.

Each successful measurement provides the client with an offset,

delay and dispersion. When combined with the server's root delay and

dispersion, it gives the client an estimate of the maximum error.

On each poll, the client:

Generates a new random cookie.

Formats a request with necessary extension fields and the

fields in the header all zero except:

Version is set to 5.

Mode is set to 3.

Scale is set to the timescale in which the client wants to

operate.

Poll is set to the rounded log2 value of the current

client's polling interval in seconds.

Flags are set according to the requested mode. The

interleaved mode flag requests the server to save the

transmit timestamp of the response and provide the transmit

timestamp of a previous response corresponding to the server

cookie (if not zero).

Server cookie is set only in the interleaved mode. It is set

to the server cookie from the last valid response, or zero

if no such response was received yet or the transmit

timestamp of that response would no longer be useful to the

client (e.g. after missing too many responses).

Client cookie is set to the newly generated cookie.

Sends the request to the server to the UDP port 123 and

captures a transmit timestamp.

Waits for a valid response from the server and captures a

receive timestamp. A valid response has version 5, mode 4,

client cookie equal to the cookie from the request, and passes

authentication if enabled. The client MUST ignore all invalid

responses and accept at most one valid response.

Checks whether the response is usable for synchronization of

the clock. Such a response has a leap indicator not equal to 3,

stratum between 0 and 16, root delay and dispersion both

¶

¶

¶

1. ¶

2.

¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

3.

¶

4.

¶

5.

smaller than a specific value, e.g. 16 seconds, and timescale

equal to the requested timescale. If the response is in a

different timescale, the client can switch to the provided

timescale, convert the timestamps if the offset between the

timescales is provided or known, or drop the response.

Saves the server's receive and transmit timestamps. If the

client internally counts seconds using a type wider than 32

bits, it SHOULD expand the timestamps with the provided NTP

era.

Calculates the offset, delay, and dispersion.

A client which operates as a server for other clients MUST include

the Reference IDs Request Extension Field in its requests in order

to track reference IDs of its sources. If the server's set of

reference IDs contains the client's own reference ID, it SHOULD not

select the server for synchronization to avoid a synchronization

loop.

8. Server Operation

A server receives requests on the UDP port 123. The server MUST

support measurements in the basic mode. It MAY support the

interleaved mode.

For the basic mode the server does not need to keep any client-

specific state. For the interleaved mode it needs to save transmit

timestamps and be able to identify them by a cookie.

The server maintains its leap indicator, stratum, root delay, and

root dispersion:

Leap indicator MUST be 3 if the clock is not synchronized or its

maximum error cannot be estimated with the root delay and

dispersion. Otherwise, it MUST be 0, 1, 2, depending on whether a

leap second is pending in the next 14 day and, if it is, whether

it will be inserted or deleted.

Stratum SHOULD be one larger than stratum of the best server it

uses for its own synchronization.

Root delay SHOULD be the best server's root delay in addition to

the measured delay to the server.

Root dispersion SHOULD be the best server's root dispersion in

addition to an estimate of the maximum drift of its own clock

since the last update of the clock.

¶

6.

¶

7. ¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

Unknown leap

Interleaved mode

The server has a randomly generated 120-bit reference ID. It MUST

track reference IDs of its servers in order to be able to respond

with a Reference IDs Response Extension Field.

For each received request, the server:

Captures a receive timestamp.

Checks the version in the request. If it is not equal to 5, it

MUST either drop the request, or handle it according to the

specification corresponding to the protocol version.

Drops the request if the format is not valid, mode is not 3, or

authentication fails with the MAC Extension Field or another

authenticator which does not have a specified response for

failed authentication. The server MUST ignore unknown extension

fields.

Server forms a response with requested extension fields and

sets the fields in the header as follows:

Leap Indicator, Stratum, Root delay, and Root dispersion,

are set to the current server's values.

Version is set to 5.

Scale is set to the client's requested timescale if it is

supported by the server. If not, the server SHOULD respond

in any timescale it supports.

The flags are set as follows:

is set if the server does not know if a leap

second is pending in the next 14 days, i.e. it has no

source providing information about leap seconds.

is set if the interleaved mode was

requested and a response in the interleaved mode is

possible (i.e. a transmit timestamp is associated with

the server cookie).

Era is set to the NTP era of the receive timestamp.

Timescale Offset is set to the timescale-specific offset, or

0x8000 if unknown.

Server Cookie is set when the interleaved mode is requested

and it is supported by the server, even if the response

cannot be in the requested mode due to the request having an

unknown or zero server cookie. The cookie identifies a more

¶

¶

1. ¶

2.

¶

3.

¶

4.

¶

*

¶

* ¶

*

¶

* ¶

¶

¶

* ¶

*

¶

*

accurate transmit timestamp of the response, which can be

retrieved by the client later with another request. The

cookie generation is implementation-specific.

Client Cookie is set to the Client Cookie from the request.

Receive Timestamp is set to the server's receive timestamp

of the request.

Transmit Timestamp is set to a value which depends on the

measurement mode. In the basic mode it is the server's

current time when the message if formed. In the interleaved

mode it is the transmit timestamp of the previous response

identified by the server cookie in the request, captured at

some point after the message was formed.

Adds the Padding Extension field if necessary to make the

length of the response equal to the length of the request.

Drops the response if it is longer than the request to prevent

traffic amplification.

Sends the response.

Saves the transmit timestamp and server cookie, if the

interleaved mode was requested and is supported by the server.

9. Network Time Security with NTPv5

The Network Time Security [RFC8915] mechanism uses the NTS-KE

protocol to establish keys and negotiate the next protocol. NTPv5 is

added as a new protocol to the Network Time Security Next Protocols

Registry, which can be negotiated by NTPv5 clients and servers

supporting NTS.

No new NTS-KE records are specified for NTPv5. The records that were

specified for NTPv4 (i.e. NTPv4 New Cookie, NTPv4 Server

Negotiation, and NTPv4 Port Negotiation) are reused for NTPv5.

The NTS extension fields specified for NTPv4 are compatible with

NTPv5. No new extension fields are specified.

10. NTPv5 Negotiation in NTPv4

NTPv5 messages are not compatible with NTPv4, even if they do not

contain any extension fields. Some widely used NTPv4 implementations

are known to ignore the version and interpret all requests as NTPv4.

Their responses to NTPv5 requests have a zero client cookie, which

means they fail the client's validation and are ignored.

¶

* ¶

*

¶

*

¶

5.

¶

6.

¶

7. ¶

8.

¶

¶

¶

¶

¶

[RFC1321]

[RFC2119]

The implementations are also known to not respond to requests with

an unknown extension field, which prevents an NTPv4 extension field

to be specified for NTPv5 negotiation. Instead, the reference

timestamp field in the NTPv4 header is reused for this purpose.

An NTP server which supports both NTPv4 and NTPv5 SHOULD check the

reference timestamp in all NTPv4 client requests. If the reference

timestamp contains the value 0x4E5450354E545035 ("NTP5NTP5" in

ASCII), it SHOULD respond with the same reference timestamp to

indicate it supports NTPv5.

An NTP client which supports both NTPv4 and NTPv5, does not use NTS,

and is not configured to use a particular NTP version, SHOULD start

with NTPv4 and set the reference timestamp to 0x4e5450354e545035. If

the server responds with the same reference timestamp, the client

SHOULD switch to NTPv5. If no valid response is received for a

number of requests (e.g. 8), the client SHOULD switch back to NTPv4.

11. Acknowledgements

Some ideas were taken from a different NTPv5 design proposed by

Daniel Franke.

The author would like to thank Doug Arnold for his contributions and

Dan Drown, Watson Ladd, Hal Murray, Kurt Roeckx, and Ulrich Windl

for their suggestions and comments.

12. IANA Considerations

IANA is requested to allocate the following protocol in the Network

Time Security Next Protocols Registry [RFC8915]:

Protocol ID: [[TBD]], selected by IANA from the IETF Review range

Protocol Name: Network Time Protocol version 5 (NTPv5)

Reference: [[this memo]]

13. Security Considerations

14. References

14.1. Normative References

Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,

DOI 10.17487/RFC1321, April 1992, <https://www.rfc-

editor.org/info/rfc1321>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc1321
https://www.rfc-editor.org/info/rfc1321

[RFC8174]

[RFC8573]

[I-D.ietf-ntp-interleaved-modes]

[IEEE1588]

[RFC5905]

[RFC7821]

[RFC8915]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Malhotra, A. and S. Goldberg, "Message Authentication

Code for the Network Time Protocol", RFC 8573, DOI

10.17487/RFC8573, June 2019, <https://www.rfc-editor.org/

info/rfc8573>.

14.2. Informative References

Lichvar, M. and A. Malhotra, "NTP

Interleaved Modes", Work in Progress, Internet-Draft,

draft-ietf-ntp-interleaved-modes-07, 18 October 2021,

<https://datatracker.ietf.org/api/v1/doc/document/draft-

ietf-ntp-interleaved-modes/>.

Institute of Electrical and Electronics Engineers, "IEEE

std. 1588-2019, "IEEE Standard for a Precision Clock

Synchronization for Networked Measurement and Control

Systems."", November 2019, <https://www.ieee.org>.

Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,

"Network Time Protocol Version 4: Protocol and Algorithms

Specification", RFC 5905, DOI 10.17487/RFC5905, June

2010, <https://www.rfc-editor.org/info/rfc5905>.

Mizrahi, T., "UDP Checksum Complement in the Network Time

Protocol (NTP)", RFC 7821, DOI 10.17487/RFC7821, March

2016, <https://www.rfc-editor.org/info/rfc7821>.

Franke, D., Sibold, D., Teichel, K., Dansarie, M., and R.

Sundblad, "Network Time Security for the Network Time

Protocol", RFC 8915, DOI 10.17487/RFC8915, September

2020, <https://www.rfc-editor.org/info/rfc8915>.

Author's Address

Miroslav Lichvar

Red Hat

Purkynova 115

612 00 Brno

Czech Republic

Email: mlichvar@redhat.com

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8573
https://www.rfc-editor.org/info/rfc8573
https://datatracker.ietf.org/api/v1/doc/document/draft-ietf-ntp-interleaved-modes/
https://datatracker.ietf.org/api/v1/doc/document/draft-ietf-ntp-interleaved-modes/
https://www.ieee.org
https://www.rfc-editor.org/info/rfc5905
https://www.rfc-editor.org/info/rfc7821
https://www.rfc-editor.org/info/rfc8915
mailto:mlichvar@redhat.com

	Network Time Protocol Version 5
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language

	2. Basic Concepts
	3. Data Types
	4. Message Format
	5. Extension Fields
	5.1. Padding Extension Field
	5.2. MAC Extension Field
	5.3. Reference IDs Request and Response Extension Fields
	5.4. Server Information Extension Field
	5.5. Correction Extension Field
	5.6. Reference Timestamp Extension Field
	5.7. Monotonic Timestamp Extension Field

	6. Measurement Modes
	7. Client Operation
	8. Server Operation
	9. Network Time Security with NTPv5
	10. NTPv5 Negotiation in NTPv4
	11. Acknowledgements
	12. IANA Considerations
	13. Security Considerations
	14. References
	14.1. Normative References
	14.2. Informative References

	Author's Address

