
Network Working Group R. Trace
Internet-Draft A. Foresti
Expires: September 2, 2012 S. Singhal
 O. Mazahir
 H. Nielsen
 B. Raymor
 R. Rao
 G. Montenegro
 Microsoft
 Mar 2012

HTTP Speed+Mobility
draft-montenegro-httpbis-speed-mobility-01

Abstract

 The design of HTTP--how every application and service on the web
 communicates today--can positively impact user experience,
 operational and environmental costs, and even the battery life of the
 devices you carry around.

 Improving HTTP starts with speed. Apps--not just browsers--should
 get faster too. More and more, apps are how people access web
 services, in addition to their browser. Improving HTTP should also
 make mobile better, particularly to ensure great battery life and low
 network cost on constrained devices. People and their apps should
 stay in control of network access. Finally, to achieve rapid
 adoption, HTTP 2.0 needs to retain as much compatibility as possible
 with the existing Web infrastructure. Done right, HTTP 2.0 can help
 people connect their devices and applications to the Internet fast,
 reliably, and securely over a number of diverse networks, with great
 battery life and low cost.

 This document describes "HTTP Speed+Mobility," a proposal for HTTP
 2.0 that emphasizes performance improvements and security while at
 the same time accounting for the important needs of mobile devices
 and applications. The proposal starts from both the Google SPDY
 protocol and the work the IETF has done around WebSockets. The
 proposal is not a final product but rather is intended to form a
 baseline for working group discussion.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

Trace, et al. Expires September 2, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Internet-Draft HTTP Speed+Mobility Mar 2012

 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 2, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Trace, et al. Expires September 2, 2012 [Page 2]

Internet-Draft HTTP Speed+Mobility Mar 2012

Table of Contents

1. Introduction . 4
1.1. Overview . 5
1.1.1. Maintain existing HTTP semantics 6
1.1.2. Layered Architecture 6
1.1.3. Use of Existing standards 6
1.1.4. Client is in control of content 7
1.1.5. Network Cost and Power 7

1.2. Definitions . 9
1.3. Protocol Overview . 9

2. Setting up the session . 11
3. Session layer and Framing 12
3.1. WebSocket framing protocol 12
3.2. WebSocket Keepalive messages 12
3.3. WebSocket Close . 13
3.4. WebSocket errors (Session errors) 13

4. Streams Layer . 14
4.1. Modeling SYN_STREAM in a WebSocket frame 14
4.2. Compression . 15
4.3. Control Frames . 15
4.3.1. SYN_STREAM . 16
4.3.2. SYN_REPLY . 16
4.3.3. HEADERS . 16

4.4. SPDY frames removed in this proposal 16
5. HTTP Layering . 18
5.1. Connection Management 18
5.2. Use of GOAWAY . 18
5.3. Server Push Transactions 19

6. Open Issues for Discussion in the Workgroup 20
7. Acknowledgements . 22
8. Normative References . 23

 Authors' Addresses . 24

Trace, et al. Expires September 2, 2012 [Page 3]

Internet-Draft HTTP Speed+Mobility Mar 2012

1. Introduction

 Over the course of its almost two decades of existence, the HTTP
 protocol has enabled the web to experience phenomenal growth and
 change the world in more ways than its creators might have imagined.
 HTTP's designers got many design principles right, including
 simplicity and robustness. These charateristics allow billions of
 devices to support and use HTTP in a multitude of communication
 scenarios.

 Improving HTTP starts with speed. Web sites have become complex. A
 single site could comprise hundreds of different elements (from
 images to videos to ads to news feeds and so on) that need to get
 retrieved by the client before the page can be fully displayed.
 Users expect all of this to happen securely and instantly across all
 their devices and applications. In many scenarios, HTTP fails to
 meet these expectations. Speed improvements need to apply not only
 for browsers but also for apps. More and more, apps are how people
 access web services, in addition to their browser. A key attribute
 of mobile applications is that they may access only a subset of the
 web site's data, relying on local application logic to process the
 data and create a presentation and interaction layer.

 At the core of the speed problem is that HTTP does not allow for out-
 of-order or interleaved responses. This requires the establishment
 of multiple TCP connections for concurrency (pipelining is formally
 supported by the protocol but is seldom implemented in practice).
 The overhead in terms of additional roundtrips and dealing with TCP
 slow start causes a significant performance penalty. This leads to a
 variety of issues, such as additional round trips for connection
 setup, slow-start delays, and potentially connection rationing: the
 client may not be able to dedicate too many connections to any single
 server, and the server needs to protect itself from denial-of-service
 attacks. As a result, users are often disappointed in the perceived
 performance of websites.

 Improving HTTP should also make mobile apps and devices better. When
 HTTP was first developed mobile communication was virtually non-
 existent, but today the mobile Web is an integral and fast-growing
 part of the Web. The different conditions on mobile communications
 require rethinking of how protocols work. For example, people want
 their mobile devices to have better battery life. HTTP 2.0 can help
 decrease the power consumption of network access. Mobile devices
 also give people a choice of networks with different costs and
 bandwidth limits. Embedded sensors and clients face similar issues.
 Mobile considerations require that HTTP be network efficient while
 simultaneously being sensitive to the limited power, computation, and
 connectivity capabilities of the client device. To support mobile

Trace, et al. Expires September 2, 2012 [Page 4]

Internet-Draft HTTP Speed+Mobility Mar 2012

 devices, HTTP needs to be able to "scale down" to allow clients to
 control the level of data received, the format of that data, and even
 the timing of that data.

1.1. Overview

 This draft describes our proposal for "HTTP Speed+Mobility". The
 approach proposed focuses on all the web's end users---emphasizing
 performance improvements while at the same time accounting for the
 important needs of mobile devices and applications.

 The proposal's intended outcome is a protocol that can be quickly and
 widely adopted in the industry, and start delivering real value to
 end users without imposing undue burden on hardware and software
 vendors, as well as administrators of legacy equipment. Implementors
 should also find it easy to understand due to the familiarity of some
 of its key concepts, which are aligned with innovations that were
 adopted in recent IETF specifications like WebSockets. Most
 important, the proposal seeks to establish a baseline for working
 group discussion on the potential improvements that would define HTTP
 2.0.

 This HTTP Speed+Mobility proposal adheres to the following
 principles:

 o Maintain existing HTTP semantics. The request-response nature of
 the HTTP protocol and semantics of its messages as they traverse
 diverse networks must be preserved. Any deviation from this
 principle would represent an extension to HTTP and should be
 treated as such.

 o Maintain the integrity of the layered architecture.

 o Use existing standards when available to make it easy for the
 protocol to work with the current web infrastructure including
 switches, routers, proxies, load balancers, security systems, DNS
 servers, and NATs. For example, the proposal reuses the
 WebSockets handshake and framing mechanism to establish a
 bidirectional link that is compatible with existing proxies and
 connection models.

 o Be as broadly applicable and flexible as the current protocol, and
 keep the client in control of content. For example, the proposal
 does not mandate the use of TLS or compression, leaving those
 features up to the client to negotiate based on its specific
 security, computation, and communication needs.

Trace, et al. Expires September 2, 2012 [Page 5]

Internet-Draft HTTP Speed+Mobility Mar 2012

 o Account for the needs of modern mobile clients, including power
 efficiency and connectivity through costed networks.

 These principles are described in more detail below.

1.1.1. Maintain existing HTTP semantics

 HTTP at its core is a simple request-response protocol. The working
 group has clearly stated that it is a goal to preserve the semantics
 of HTTP. Thus, we believe that the request-response nature of the
 HTTP protocol must be preserved. The core HTTP 2.0 protocol should
 focus on optimizing these HTTP semantics, while improving the
 transport via a new session layer. Additional capabilities that
 introduce new communication models like unrequested responses must be
 treated as an extension to the core protocol, and explored separately
 from the core protocol.

1.1.2. Layered Architecture

 HTTP relies on an in-order, reliable transport to ensure delivery of
 application data. TCP has almost exclusively provided the reliable,
 ordered delivery of HTTP messages from one computer to another since
 its inception. TCP accounts for adverse network conditions such as
 congestion, or other unpredictable network behavior. Any HTTP 2.0
 proposal should leverage the reliable transport and not attempt to
 replicate functions generally accepted as addressed by other layers.

 Conversely, any proposals for enhancing functionality typically
 provided by other layers of the networking stack (e.g., congestion
 control provided by the transport layer) should be brought to the
 attention of, and discussed in, proper IETF forums (e.g., TCPM WG).

 During the HTTPbis charter proposal discussion, the security and
 applications area directors suggested an additional paragraph on
 security work and authentication. If new work is undertaken in this
 regard, it should be done by existing IETF security groups in this
 area.

1.1.3. Use of Existing standards

 HTTP 2.0 should prefer models that are compatible with the existing
 Internet and, where possible, reuse existing protocol mechanisms.
 One primary example is in protocol negotiation where the WG should
 avoid a proliferation of methods, and instead consider using the HTTP
 1.1 Upgrade header as it is used in the WebSocket protocol. This
 will help HTTP 2.0 to be readily deployed on the existing internet,
 and maintain compatibility with existing web sites and client
 environments (such as some educational networks).

Trace, et al. Expires September 2, 2012 [Page 6]

Internet-Draft HTTP Speed+Mobility Mar 2012

1.1.4. Client is in control of content

 HTTP is used in a vast array of scenarios and a variety of network
 architectures. There is no "one size fits all" deployment of HTTP.
 For example, at times it may not be optimal to use compression in
 certain environments. For constrained sensors from the "Internet of
 things" scenario, CPU resources may be at a premium. Having a high
 performance but flexible HTTP 2.0 solution will enable
 interoperability for a wider variety of scenarios. There also may be
 aspects of security that are not appropriate for all implementations.
 Encryption must be optional to allow HTTP 2.0 to meet certain
 scenarios and regulations. HTTP 2.0 is a universal replacement for
 HTTP 1.X, and there are some instances in which imposing TLS is not
 required (or allowed). For example, a "random thought of the day"
 web service has very little need for it, nor does a sensor spewing
 out a temperature reading every few seconds.

 Because of the variety of clients on the Internet and the number of
 connection scenarios, clients are in the best position to define what
 content is downloaded. The browser or app has firsthand information
 on what the user is currently doing and what data is already locally
 available. For example, most of the browsers in use today have
 powerful caches that should be leveraged to store web elements that
 change infrequently.

 Increasingly, apps, rather than browsers, originate HTTP requests.
 The content retrieved by apps is usually different from that
 downloaded by browsers; in fact, multiple apps may access the same
 content for different purposes. Each app may access different
 subsets of the server content, with different priorities, and in
 different sequences according to their own rendering requirements and
 user interaction models. The server cannot always know the needs or
 intents of a particular application.

 HTTP 2.0 proposals should not force the browser or app to download
 content that has not been requested and may already be cached.
 Furthermore, the client must have the option to decline unwanted or
 unneeded content. Clients need the ability to inform the server
 about cached elements that do not need to be downloaded. Ideally
 this feedback from the client to the server would allow for
 incremental approval of content to enable an efficient "push"
 extension to deliver the right content, with the right security and
 with the right formatting.

1.1.5. Network Cost and Power

 Any new protocol for transporting HTTP data on the Internet must also
 take into account the types of systems and devices that use HTTP and

Trace, et al. Expires September 2, 2012 [Page 7]

Internet-Draft HTTP Speed+Mobility Mar 2012

 how they are connected to the Internet. The growth of the Internet
 of the next decade (and longer) will be fueled by mobile apps and
 mobile devices, as well as by the cheap, limited-capability devices
 envisioned by the "Internet of Things." For all these devices, speed
 is only one design tenet: considerations about battery life,
 bandwidth limitations, processor and memory constraints, and various
 policy mandates will also challenge designers and users. For
 instance, the user of a device connected over mobile broadband may
 need to minimize the amount of data sent in order to conserve
 bandwidth, minimize power usage and monetary cost of communication.
 Furthermore, transmitting the same amount of data may have radically
 different power implications depending on how the transfer is
 structured: for example, when operating over a mobile broadband
 interface it is more efficient to use a single larger transfer than
 to space out the transmission in multiple smaller transfers.
 Multiple transfers may cause multiple radio transitions between low
 and high powered states, causing additional battery drain.

 In short, the choice among speed, cost, and power is not a simple
 one. At times, speed may be the most important consideration. Other
 times, bandwidth cost or battery life may be the deciding factor.
 HTTP 2.0 must allow developers to optimize for the specific
 constraints of their problem space (which might change over time)
 rather than imposing a monolithic solution to a generic problem. For
 example, server push is a good optimization for many scenarios where
 content updates to web pages revisited over time are infrequent, the
 client has plenty of bandwidth as well as the needed processing power
 to either handle the updates instantly, or cache them for later
 processing. On the other hand, it is not likely to be appropriate in
 situations where content is being transmitted over a costed link.
 Neither it will be when the client is running several applications
 that use network bandwidth concurrently, and bursty, server-initiated
 content transmissions would interfere with their smooth operation.
 Rather than forcing developers to choose between using all the
 features of HTTP 2.0 or sticking with HTTP 1.1, it would be better to
 provide mechanisms for developers to fine tune the capabilities of
 HTTP 2.0 to a specific set of requirements.

 In summary, the goals of higher speed, lower cost, lower power may
 often be aligned. For instance, having less data sent on the wire
 will allow pages to load faster, allow the radio to power down sooner
 and consume less bandwidth. But given the variety of the scenarios
 where HTTP 2.0 will be used, this will not always be the case. For
 example, a device whose battery is about to run out, or whose cache
 is near capacity can provide a better user experience by disabling
 server push updates while retaining the other optimizations available
 in HTTP 2.0. Accordingly, the working group should consider power
 and cost as well as speed.

Trace, et al. Expires September 2, 2012 [Page 8]

Internet-Draft HTTP Speed+Mobility Mar 2012

1.2. Definitions

 Client: The endpoint initiating the WebSocket session.

 Connection: A transport-level connection between two endpoints.

 Endpoint: Either the client or server of a connection.

 Frame: A header-prefixed sequence of bytes sent over a HTTP Speed+
 Mobility WebSocket.

 Server: The endpoint which did not initiate the WebSocket session.

 Session: A synonym for a WebSocket.

 Session error: An error on the WebSocket.

 Stream: A bi-directional flow of bytes across a virtual channel
 within a HTTP Speed+Mobility session.

 Stream error: An error on an individual stream.

1.3. Protocol Overview

 This protocol comprises four parts:

 1. Setting up a session (Handshake): Uses WebSocket upgrade

 2. Session maintenance and framing: Uses WebSocket framing,
 including control frames such as keepalive (PING-PONG) and
 WebSocket Close

 3. Multiplexing within the session: Uses SPDY
 [I-D.mbelshe-httpbis-spdy] stream semantics implemented via a
 WebSocket extension

 4. HTTP layering: Same as SPDY

 WebSocket provides a standards-based (RFC 6455) model for
 establishing a bi-directional session (or a socket) between a client
 and a server across the web. The RFC describes the following:

 o A mechanism to create a session between a client and a server
 (Upgrade) and optionally secure the session using TLS

 o A light-weight framing model to send data asynchronously and bi-
 directionally within the session

https://datatracker.ietf.org/doc/html/rfc6455

Trace, et al. Expires September 2, 2012 [Page 9]

Internet-Draft HTTP Speed+Mobility Mar 2012

 o A set of control messages to keep the session alive (PING-PONG),
 and to close the session (CLOSE)

 o An extension model to optionally layer semantics such as
 multiplexing and compression

 In keeping with our principle to leverage existing standards where
 possible, this HTTP Speed+Mobility proposal uses WebSocket as the
 session layer between the client and the server. Using WebSocket as
 a session layer has several advantages. First, we do not have to
 invent a new set of control messages, since we can use the ones
 defined by the WebSocket standard. Second, network intermediaries
 (the middleboxes) do not have to be modified to cope with a new
 protocol for establishing and maintaining bidirectional sessions
 across the web. Finally, clients and servers have the flexibility to
 decide whether they want to secure the session or not.

 Using WebSocket also makes it easy to enable multiplexing within the
 session. In fact, this proposal takes the concept of streams and the
 stream related control messages as defined in SPDY, and models them
 as a WebSocket extension. Barring some important issues as noted in
 the issues section, the HTTP layering on streams is identical to what
 was presented in the SPDY proposal.

 Furthermore, this proposal removes all congestion management control
 frames proposed in SPDY, in accordance with the principle of
 preserving a layered architecture. Instead, any TCP issues raised in
 the SPDY proposal should be submitted to the relevant working group
 for consideration.

 Finally, this proposal regards server push as being outside of the
 scope of HTTP 2.0 because it is not in line with existing HTTP
 semantics. Having said that, given the relevance of server push with
 mobility and in anticipation of such an extension, this proposal does
 offer some thoughts on server push in section 5.

Trace, et al. Expires September 2, 2012 [Page 10]

Internet-Draft HTTP Speed+Mobility Mar 2012

2. Setting up the session

 The opening handshake is the standard WebSocket handshake based on
 HTTP Upgrade. To advertise support for the HTTP 2.0 extension, the
 client request MUST include the "http2" extension token in the |Sec-
 WebSocket-Extensions| header in its opening handshake:

 GET /chat HTTP/1.1
 Host: server.example.com
 Upgrade: websocket
 Connection: Upgrade
 Origin: http://example.com
 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 Sec-WebSocket-Version: 13
 Sec-WebSocket-Extensions: http2

 To accept the HTTP 2.0 extension requested by the client, the server
 MUST include the "http2" extension token in the |Sec-WebSocket-
 Extensions| header in its opening handshake. Otherwise, the client
 MUST fail the WebSocket connection:

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 Sec-WebSocket-Extensions: http2

 For more details, please refer to [RFC6455].

https://datatracker.ietf.org/doc/html/rfc6455

Trace, et al. Expires September 2, 2012 [Page 11]

Internet-Draft HTTP Speed+Mobility Mar 2012

3. Session layer and Framing

 At the end of an HTTP upgrade as described above, the bi-directional
 WebSocket between the client and the server becomes the new session
 layer. In keeping with the principle around re-using existing
 standards, the session layer for HTTP Speed+Mobility uses the
 WebSocket base framing protocol for both data frames and control
 frames.

3.1. WebSocket framing protocol

 Once connected, the client and server can exchange framed messages
 using the framing protocol shown below. For more details, please
 refer to RFC6455.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-------+-+-------------+-------------------------------+
 |F|R|R|R| opcode|M| Payload len | Extended payload length |
 |I|S|S|S| (4) |A| (7) | (16/64) |
 |N|V|V|V| |S| | (if payload len==126/127) |
 | |1|2|3| |K| | |
 +-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - +
 | Extended payload length continued, if payload len == 127 |
 + - - - - - - - - - - - - - - - +-------------------------------+
 | |Masking-key, if MASK set to 1 |
 +-------------------------------+-------------------------------+
 | Masking-key (continued) | Payload Data |
 +-------------------------------- - - - - - - - - - - - - - - - +
 : Payload Data continued ... :
 + - +
 | Payload Data continued ... |
 +---+

3.2. WebSocket Keepalive messages

 Keepalive messages in WebSocket are modeled using the ping and pong
 control frames.

 The Ping frame contains an opcode of 0x9. Upon receipt of a Ping
 frame, an endpoint MUST send a Pong frame in response, unless it
 already received a Close frame. A Ping frame may serve either as a
 keepalive or as a means to verify that the remote endpoint is still
 responsive.

 The Pong frame contains an opcode of 0xA. A Pong frame is sent in
 response to a Ping frame. A Pong frame MAY be sent unsolicited.
 This serves as a unidirectional heartbeat. A response to an

https://datatracker.ietf.org/doc/html/rfc6455

Trace, et al. Expires September 2, 2012 [Page 12]

Internet-Draft HTTP Speed+Mobility Mar 2012

 unsolicited Pong frame is not expected.

 For more details, please see [RFC6455].

3.3. WebSocket Close

 Closing a session uses the standard WebSocket close handshake as
 defined in [RFC6455]. The GOAWAY control frame in SPDY is replaced
 by the WebSocket Close control frame. GOAWAY specific data is mapped
 as follows:

 o Status Code is replaced with the status code in the WebSocket
 Close frame. For example:

 * OK (0) is replaced by 1000 (normal closure)

 * PROTOCOL_ERROR (1) is replaced by 1002 (protocol error)

 o Last-good-stream-id is carried as extension data in the WebSocket
 Close frame.

3.4. WebSocket errors (Session errors)

 The SPDY proposal details session errors and determines that a GOAWAY
 frame MUST be sent when that happens. For the HTTP Speed+Mobility
 protocol, closing a session MUST use the WebSocket Close frame as
 described in section 3.3 of this document.

 For best performance, it is expected that clients will not close open
 TCP connections until the user closes the HTTP app or navigates away
 from all web pages referencing a connection, or until the server
 closes the connection. Servers are encouraged to leave connections
 open for as long as possible, but can terminate idle connections if
 necessary.

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455

Trace, et al. Expires September 2, 2012 [Page 13]

Internet-Draft HTTP Speed+Mobility Mar 2012

4. Streams Layer

 Once the session is established, HTTP Speed+Mobility allows creating
 streams to send and receive HTTP data. The stream operations and
 semantics are borrowed directly from SPDY. As noted earlier,
 WebSocket is the protocol used for framing data that is sent and
 received within the session (and consequently each stream). Stream
 operations (such as SYN_STREAM) are modeled using a WebSocket
 extension.

4.1. Modeling SYN_STREAM in a WebSocket frame

 The SYN_STREAM frame is carried as extension data (as seen in section
3.1) in a binary data frame. The opcode is set to 0x2. A possible

 future refinement is for SYN_STREAM to use a control opcode reserved
 for WebSocket extensions as defined in section 5.8 Extensibility in

RFC6455.

 The payload length is the length of the "Extension data" (which is
 the length of the SYN_STREAM frame) + length of "Application data
 (zero for SYN_STREAM). In other words, the payload length is as
 shown below:

 o Control (1 bit)

 o Version (15 bits)

 o Type (16 bits)

 o Flags (8 bits)

 o Length (24 bits)

 o Length of SYN_STREAM specific data

 The "Payload data" is defined as "Extension data" concatenated with
 "Application data." The payload data for a SYN_STREAM frame consists
 of the SYN_STREAM frame (shown below) tunneled "as-is" in the
 Extension data of the WebSocket frame.

https://datatracker.ietf.org/doc/html/rfc6455

Trace, et al. Expires September 2, 2012 [Page 14]

Internet-Draft HTTP Speed+Mobility Mar 2012

+------------------------------------+
|1| version | 1 |
+------------------------------------+
| Flags (8) | Length (24 bits) |
+------------------------------------+
|X| Stream-ID (31bits) |
+------------------------------------+
|X| Associated-To-Stream-ID (31bits) |
+------------------------------------+
| Pri|Unused | Slot | |
+-------------------+ |
| Number of Name/Value pairs (int32) | <+
+------------------------------------+ |
| Length of name (int32) | | This section is the "Name/Value
+------------------------------------+ | Header Block", and is compressed
| Name (string) | | unless opted out.
+------------------------------------+ |
| Length of value (int32) | |
+------------------------------------+ |
| Value (string) | |
+------------------------------------+ |
| (repeats) | <+

 A Multiplexing Extension for WebSockets
 [draft-tamplin-hybi-google-mux] is being designed in the HyBi working
 group that also defines a multiplexing model. There is an
 opportunity to converge these designs for use by both WebSockets and
 HTTP Speed+Mobility.

4.2. Compression

 Throughout this document, header compression is enabled by default.
 However, either the client or the server may opt out of using
 compression when transmitting headers. This opt out model is
 described with added flags in the SYN_STREAM, HEADERS and SYN_REPLY
 frames.

4.3. Control Frames

 The following set of stream-related control frames are taken directly
 from SPDY.

 o SYN_STREAM

 o SYN_REPLY

 o RST_STREAM

https://datatracker.ietf.org/doc/html/draft-tamplin-hybi-google-mux

Trace, et al. Expires September 2, 2012 [Page 15]

Internet-Draft HTTP Speed+Mobility Mar 2012

 o HEADERS

 All of the frames are identical to SPDY with the few additions
 described below:

4.3.1. SYN_STREAM

 In addition, this protocol adds two new flags: one to make
 Compression opt out, and one to make Server Push opt in.

 o 0x04= FLAG_NO_HEADER_COMPRESSION: indicates the Name/Value header
 block is not compressed.

 o 0x08 = FLAG_PUSH_ALLOWED: a stream created with this flag allows
 the server to push related responses in separate unidirectional
 streams. This flag MUST only be sent by the client.

4.3.2. SYN_REPLY

 In addition, this protocol adds one new flag, to allow opting out of
 compression.

 o 0x04= FLAG_NO_HEADER_COMPRESSION: indicates the Name/Value header
 block is not compressed

4.3.3. HEADERS

 In addition, this protocol adds one new flag, to allow opting out of
 compression.

 o 0x02= FLAG_NO_HEADER_COMPRESSION: indicates the the Name/Value
 header block is not compressed.

4.4. SPDY frames removed in this proposal

 This proposal simplifies the session control messages to remove items
 that are redundant to WebSockets control frames, break compatibility
 with existing HTTP semantics, or implement concepts best addressed at
 the transport layer. The reasons for the deletions are outlined as
 follows:

 SETTINGS: The information in the settings control message are
 concepts best reserved for the transport layer.

 PING: WebSockets already has a keepalive mechanism in Ping / Pong.
 Other functions, such as RTT estimation, are associated with flow
 control, which is a function of the transport layer.

Trace, et al. Expires September 2, 2012 [Page 16]

Internet-Draft HTTP Speed+Mobility Mar 2012

 GOAWAY: Replaced with the WebSockets Close Frame which is documented
 in sections 5.5.1 and 7 of WebSockets [RFC 6455]

 WINDOW_UPDATE: Flow control is a function of the transport layer.

 CREDENTIAL: This is removed from HTTP Speed+Mobility because we
 believe it is not compatible with options such as TLS SNI. For
 this proposal, a session MUST only target one origin as described
 in [RFC6454].

Trace, et al. Expires September 2, 2012 [Page 17]

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6454

Internet-Draft HTTP Speed+Mobility Mar 2012

5. HTTP Layering

 This proposal adopts the HTTP integration model used by SPDY. The
 request-response semantics would be the same as well as stateless
 authentication.

 The places where HTTP Speed+Mobility differs from SPDY are a result
 of its relationship with WebSockets and the removal of the CREDENTIAL
 frame.

 While not addressed in this proposal, stateful authentication is
 something that can be added to the proposal and is captured in the
 Open Issues for Discussion section.

 Lastly Section 5.3 articulates some thoughts on server push and
 discusses mechanisms to allow control from the client.

5.1. Connection Management

 By default, and because it reuses the WebSocket handshake, HTTP
 Speed+Mobility uses port 80 for unsecured connections and port 443
 for connections tunneled over Transport Layer Security (TLS)
 [RFC2818].

 Clients SHOULD attempt to use a single HTTP Speed+Mobility connection
 to a given origin [RFC6454]. The server MUST be able to handle
 multiple connections from the same client and MUST be able to handle
 concurrent establishments and disconnects. As noted above, a client
 MUST only send requests for a single origin over a HTTP Speed+
 Mobility connection.

 For a secure connection, if the client provides a Server Name
 Indication (SNI) extension during TLS handshake then all subsequent
 SYN_STREAM messages on that connection MUST specify a Host
 specification that exactly matches the server name provided in the
 SNI [RFC4366]. If the server receives a SYN_STREAM with a non-
 matching Host specification then it MUST respond with a 400 Bad
 Request. If the client receives a SYN_STREAM with a non-matching
 Host specification then it MUST issue a stream error.

5.2. Use of GOAWAY

 HTTP Speed+Mobility replaces the GOAWAY message with a WebSockets
 CLOSE message per section 2.2 of this document. The last-stream-ID
 is included in the CLOSE message as extension data to provide the
 opportunity for graceful server shutdown.

https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/rfc4366

Trace, et al. Expires September 2, 2012 [Page 18]

Internet-Draft HTTP Speed+Mobility Mar 2012

5.3. Server Push Transactions

 The HTTP Speed+Mobility protocol does not enable server push by
 default, requiring instead that the client explicitly request it
 using the FLAG_PUSH_ALLOWED flag in the SYN_STREAM frame sent from
 the client to the server. Server push is a new concept introduced in
 SPDY wherein a server pushes content to a client even if the client
 may not have requested it. We have disabled server push by default
 because it violates two of our design principles, namely preserving
 HTTP semantics and keeping the client in control of content.

 Server push, as described in the SPDY proposal, has the limitation
 that the client cannot communicate its push requirements to the
 server. The result is that the server may push content to the client
 which is already cached locally, or to a client with a full cache,
 thereby causing unnecessary cache evictions. Furthermore, the server
 does not have sufficient context to know whether the access is coming
 from a browser or an app. We see a trend toward "tailored" apps,
 where each app may access different subsets of the server content,
 with different priorities, and in different sequences according to
 their own rendering requirements and user interaction models. For
 small devices as defined in the "internet of things", it is likely
 that there will be devices that run highly specialized apps to
 consume exactly what they need given limited cache space. In all of
 these scenarios, server push would result in needless traffic to the
 client resulting in bandwidth consumption and reduction in battery
 life.

 We believe that for server push to be truly effective, HTTP 2.0
 requires a feedback model enabling an app to give context to the
 server about its push needs. This proposal does not formally define
 such a mechanism. One way to enable this capability is for a client
 to include identifiers for content it already has in its cache, and
 send this as a hint in a SYN_STREAM message. The server could now
 use this information to only push deltas to that known cached
 content.

 This is an area that requires significant working group discussion.
 Given the principle around maintaining existing HTTP semantics, we
 need to determine in the working group if server push should remain a
 part of HTTP 2.0.

Trace, et al. Expires September 2, 2012 [Page 19]

Internet-Draft HTTP Speed+Mobility Mar 2012

6. Open Issues for Discussion in the Workgroup

 During the drafting of this proposal a number of question came up
 that warrant deeper investigation. This is by no means a complete
 list of discussions around HTTP 2.0 but simply the current list of
 issues that the authors of this document wanted to explore further in
 the Working Group

 Streams Issues:

 o SPDY defines max and min control frame size but does not define
 what size to start with or how to discover what the endpoint can
 support. SPDY defines that an endpoint receiving a SYN that is
 too large must sent a RST with an error FRAME_TOO_LARGE. In order
 to maintain compression context, does the large SYN need to be
 decompressed?

 o Interleaving Headers and data needs more definition. How does a
 server process a header before it is fully delivered?

 HTTP Issues:

 o Are mixed origin requests allowed? How does this work with TLS
 and SNI?

 o What are the changes to the stream layer to naturally enable
 stateful authentication?

 o How can we support chunked encoding.

 o Do we want to support HTTP trailers?

 Optimizations:

 o There is potential optimization between the WebSockets Op codes
 and the Stream frames. This needs more investigation.

 o There is potential optimization with adding settings to the
 WebSockets upgrade handshake (compression, push, header size,
 etc.)

 o Investigate options for implementing a message for a client to
 inform server push of cache contents.

 Server Push issues:

 o Should server push stay in HTTP 2.0 or be defined in a different
 specification?

Trace, et al. Expires September 2, 2012 [Page 20]

Internet-Draft HTTP Speed+Mobility Mar 2012

 o How can a client describe its cached content or indicate its
 content needs, to facilitate efficient server push behavior

 o Should server push negotiation be done as part of the WebSocket
 handshake rather than inside SYN_STREAM?

 Compression issues:

 o Should header compression be negotiated at a session level as part
 of the WebSocket handshake rather than transmitted on a per packet
 basis?

 Security Issues:

 o Is there a DDOS possibility with the way stateful authentication
 is specified?

 o How does interleaving requests for cross origin content over TLS
 work? Are there vulnerabilities there?

Trace, et al. Expires September 2, 2012 [Page 21]

Internet-Draft HTTP Speed+Mobility Mar 2012

7. Acknowledgements

 Thanks to the following individuals who have also contributed with
 discussions and text: Dave Thaler, Ivan Pashov, Jitu Padhye, Jean
 Paoli, Michael Champion, NK Srinivas, Sharad Agarwal and Rob Mauceri.

 This document incorporates materials from
http://tools.ietf.org/html/draft-mbelshe-httpbis-spdy-00.

Trace, et al. Expires September 2, 2012 [Page 22]

http://tools.ietf.org/html/draft-mbelshe-httpbis-spdy-00

Internet-Draft HTTP Speed+Mobility Mar 2012

8. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [I-D.mbelshe-httpbis-spdy]
 Belshe, M. and R. Peon, "SPDY Protocol",

draft-mbelshe-httpbis-spdy-00 (work in progress),
 February 2012.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/draft-mbelshe-httpbis-spdy-00

Trace, et al. Expires September 2, 2012 [Page 23]

Internet-Draft HTTP Speed+Mobility Mar 2012

Authors' Addresses

 Rob Trace
 Microsoft

 Email: Rob.Trace@microsoft.com

 Adalberto Foresti
 Microsoft

 Email: aforesti@microsoft.com

 Sandeep Singhal
 Microsoft

 Email: Sandeep.Singhal@microsoft.com

 Osama Mazahir
 Microsoft

 Email: OsamaM@microsoft.com

 Henrik Frystyk Nielsen
 Microsoft

 Email: HenrikN@microsoft.com

 Brian Raymor
 Microsoft

 Email: Brian.Raymor@microsoft.com

 Ravi Rao
 Microsoft

 Email: RaviRao@microsoft.com

Trace, et al. Expires September 2, 2012 [Page 24]

Internet-Draft HTTP Speed+Mobility Mar 2012

 Gabriel Montenegro
 Microsoft

 Email: Gabriel.Montenegro@microsoft.com

Trace, et al. Expires September 2, 2012 [Page 25]

