
FUD B. Moran
Internet-Draft M. Meriac
Intended status: Informational H. Tschofenig
Expires: January 19, 2018 ARM Limited
 July 18, 2017

Firmware Manifest Format
draft-moran-fud-manifest-00

Abstract

 This specification describes the format of a manifest. A manifest is
 a bundle of metadata about the firmware for an IoT device, where to
 find the firmware, the devices to which it applies, and cryptographic
 information protecting the manifest.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 19, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Moran, et al. Expires January 19, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Firmware Manifest Format July 2017

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 2
2. Conventions and Terminology 3
3. Components . 3
3.1. Manifest . 4
3.2. PayloadInfo . 5
3.3. Condition and Directive 6
3.4. Aliases and Dependencies 7
3.5. Device Identification 7
3.5.1. Vendor ID . 7
3.5.2. Device class ID 8
3.5.3. Device ID . 8

4. Manifest ASN.1 Format . 8
5. IANA Considerations . 14
6. Security Considerations 14
7. Mailing List Information 14
8. Acknowledgements . 14
9. References . 15
9.1. Normative References 15
9.2. Informative References 15
9.3. URIs . 15

 Authors' Addresses . 15

1. Introduction

 A firmware update mechanism is an essential security feature for IoT
 devices to deal with vulnerabilities. While the transport of
 firmware images to the devices themselves is important there are
 already various techniques available, such as the Lightweight
 Machine-to-Machine (LwM2M) protocol offering device management of IoT
 devices. Equally important is the inclusion of meta-data about the
 conveyed firmware image (in the form of a manifest) and the use of
 end-to-end security protection to detect modifications and
 (optionally) to make reverse engineering more difficult. End-to-end
 security allows the author, who builds the firmware image, to be sure

Moran, et al. Expires January 19, 2018 [Page 2]

Internet-Draft Firmware Manifest Format July 2017

 that no other party (including potential adversaries) to install
 firmware updates on IoT devices with adequate privileges. This
 authorization process is ensured by the use of dedicated asymmetric
 keys installed on the IoT device: for use cases where only integrity
 protection is required it is sufficient to install a trust anchor on
 the IoT device. For confidentiality protected firmware images it is
 additionally required to install either one or multiple symmetric or
 asymmetric keys on the IoT device. Starting security protection by
 the author is a risk mitigation technique so firmware images and
 manifests can be stored on untrusted respositories.

 It is assumed that the reader is familiar with the high-level
 firmware update architecture [Architecture]. This document is
 structured as follows: In Section 3 we describe the main building
 blocks of the manifest and Section 4 contains the description of the
 ASN.1 of the manifest.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC

2119 [RFC2119].

 To describe the components of the manifest we use the terms
 structures and attributes. The manifest has a hierarchical structure
 and top level components are called structures and the attributes are
 the components within them.

3. Components

 The key components of a manifest are shown in Figure 1 and are
 explained in the sub-sections below.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Moran, et al. Expires January 19, 2018 [Page 3]

Internet-Draft Firmware Manifest Format July 2017

 +-------------------+ +-----------+
 | Manifest | | Condition |
 +-------------------+ +-----------+
 | manifestVersion | | type |
 | text | | value | +-----------+
 | nonce | +-----+-----+ | Directive |
 | timestamp | | +-----------+
 | conditions ------+----------+ | type |
 | directives ------+----------------------+ value |
 | aliases ---------+-----------------+ +-----------+
 | dependencies ----+--------------+ |
 | payloadInfo-+ | | |
 +--------------|----+ +-----+--+-----------+
 | | ResourceReference |
 | +--------------------+
 | | hash |
 | | uri |
 | +---------+----------+
 | |
 +--------------+-----+ |
 | PayloadInfo | |
 +--------------------+ |
 | format | |
 | encryptionInfo | |
 | storageIdentifier | |
 | size | | +------------+
 | payload ----------+-----------------+-----+ integrated |
 +--------------------+ +------------+

 Figure 1: Components of a Manifest.

3.1. Manifest

 The Manifest structure is the top-level construct that ties all other
 structures together. In addition to the structures explained in
 subsections below it contains:

 - a version number (in the 'manifestVersion' attribute)

 - a textual description about the update, including the version /
 vendor / model of the device (in the 'text' attribute). This
 information is optional.

 - a timestamp indicating when the manifest was created (in the
 'timestamp' attribute).

Moran, et al. Expires January 19, 2018 [Page 4]

Internet-Draft Firmware Manifest Format July 2017

3.2. PayloadInfo

 The PayloadInfo structure contains information about the firmware
 image. The 'format' attribute contains the firmware image type (such
 as rawBinary, hexLocationLengthData, ELF). The 'size' attribute
 offers information about the size of the firmware image in bytes. If
 the size of the obtained firmware image differs from the size stated
 in the manifest then the obtained image MUST be consider corrupted.
 The 'nonce' attribute contains a (short) random value to ensure that
 a given manifest is unique. This separates the function of the
 timestamp, which is provided for rollback protection, from the
 function of the nonce, which is for uniqueness. Keeping these
 functions separate ensures that a number of edge cases are catered
 for, for example: the creation of manifests quickly enough that they
 have the same timestamp. The 'storageIdentifier' attribute indicates
 where the image should be placed on the device. This value useful,
 for example, when an IoT device contains multiple microcontrollers
 (MCUs) and the decision needs to be made to which MCU to send which
 firmware image.

 Most importantly, however, the PayloadInfo structure contains a
 reference to the firmware image (in the 'reference' attribute) or the
 image is embedded inside the PayloadInfo structure (within the
 'integrated' attribute). A referenced image first needs to be
 fetched by the device before the update can be applied. The
 'reference' attribute contains a 'hash' and a 'uri' attribute: the
 value in the 'hash' attribute allows the device to determine whether
 it has already obtained this firmware image and, since it is included
 in the digitally signed manifest, it protects the firmware image
 against modifications. The 'uri' attribute references the image.

 Finally, a firmware image may be encrypted and information about how
 to decrypt is provided in this payload in the 'encryptionInfo'
 attribute. The following options are provided:

 - No encryption (mode="none"). In this case the firmware image is
 not encrypted and only integrity protected.

 - Encryption using a symmetric key (mode="preSharedKey"). The
 assumption is that the symmetric key is pre-provisioned (in an
 out-of-band fashion) on the IoT device and also available to the
 developer.

 - Encryption using a symmetric key derived via a key derivation
 function (mode="preSharedKeyKdf"). This option is a variation of
 the symmetric key encryption mode whereby a key derivation
 function is applied to the pre-provisioned key before it is used
 for encrypting the firmware image.

Moran, et al. Expires January 19, 2018 [Page 5]

Internet-Draft Firmware Manifest Format July 2017

 - Encryption using a symmetric key found in the 'KeyTable' attribute
 (mode="keyTable"). This mode is tailored to use cases where a
 single encrypted firmware image is transmitted to many IoT
 devices.

 Depending on the selected mode different information has to be
 conveyed in the manifest.

 - When encryption using a symmetric key is selected then the 'KeyId'
 attributes provides information for identifying the appropriate
 symmetric key.

 - When encryption using a symmetric key derived via a key derivation
 function is selected then the following three parameters are
 provided by the 'KdfParameters' attribute: KDF algorithm, nonce,
 and a key id. The computed function KDF(key, nonce).

 - When encryption using the key table is selected then the
 'KeyTable' attribute is used. Figure 2 shows the concept
 graphically where the firmware image is encrypted by a symmetric
 key and this symmetric key is encrypted with the public key of
 each of the devices.

 +.............................+
 . .
 . Manifest .
 .
 . +----------------------+ .
 . | Key Table | . *****************
 . +----------------------+ . * *
 . | +----------------+ | . * Firmware *
 . | |{K}Pub(Device A)| | . * Image *
 . | +----------------+ |<-------> * (encrypted *
 . | | . * with key K) *
 . | +----------------+ | . * *
 . | |{K}Pub(Device B)| | . *****************
 . | +----------------+ | .
 . +----------------------+ .
 . .
 +.............................+

 Figure 2: Key Table.

3.3. Condition and Directive

 The Condition and the Directive structures together allow "If <...>
 Then <...>" rules to be expressed.

Moran, et al. Expires January 19, 2018 [Page 6]

Internet-Draft Firmware Manifest Format July 2017

 It offers the following functionality:

 - Apply an update before a given date only (Directive.applyAfter)

 - Apply an update immediately (Directive.applyImmediately)

 - Apply an update only to devices that match the vendorId, classId,
 deviceId attributes

 - Apply an update only if the device system time is before the time
 indicated in the Condition.lastApplicationTime.

3.4. Aliases and Dependencies

 In some situations an IoT device may require more than a single
 firmware update image. To express the requirement that more than a
 single image has to be installed on a device the dependencies
 structure is used, which is of type ResourceReference (as used by the
 PayloadInfo structure).

 Aliases are used to refer to alternative locations of firmware
 images. This is useful in environments where organizations cache
 firmware images (and their corresponding manifests) on premise to
 avoid the need to fetch imagines from repositories maintained by the
 developer's organizations (such a device manufacturer or an OEM).

3.5. Device Identification

 A device is identified by at least three identifiers:

 - A vendor identifier

 - A device class identifier

 - A device identifier

3.5.1. Vendor ID

 The vendor ID is a 128-bit number that conforms to RFC-4122, type 5.
 This number is used by the device to verify manifests.

 The Vendor ID should be derived from the manufacturer's domain name
 using the algorithm defined in Section 4.3 of RFC-4122.

 A vendor ID is typically compiled into a firmware image since it is
 static for the lifetime of the firmware.

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122#section-4.3

Moran, et al. Expires January 19, 2018 [Page 7]

Internet-Draft Firmware Manifest Format July 2017

3.5.2. Device class ID

 The device class is a 128-bit number that conforms to RFC-4122, type
 5. This number is used by the client to verify manifests. The
 Device Class ID SHOULD use the Vendor ID as the namespace, but the ID
 within the namespace can be arbitrary.

 A class ID is also typically compiled into a firmware image since it
 is static for the lifetime of the firmware.

3.5.3. Device ID

 The device ID is also a 128-bit number that conforms to RFC-4122.
 The device ID can come from a variety of sources. For example, a
 device may obtain this identifier during the manufacturing phase
 (together with other configuration information and manufacturer-
 provided credentials). In this case, we recommend using RFC-4122,
 type 1, where the node ID is the factory tool ID, which provides
 traceability of a device back to the origin of manufacture. A device
 ID can also come from on-device resources, such as device unique-ID
 registers or device identifiers in CPUs. Our recommendation is to
 provide unique CPU resources to a generator function similar to the
 one used for the class_id. In this example, the device_info may be a
 combination of several components, such as:

 - MAC address

 - Device unique identifier

 Where multiple sources of unique identity are available, they should
 all be provided to the UUID function, since it combines them to
 create a single, unique identifier.

4. Manifest ASN.1 Format

 -- Manifest definition file in ASN.1 (v. 1.0.0-alpha)
 ManifestSchema DEFINITIONS IMPLICIT TAGS ::= BEGIN

 Uri ::= UTF8String
 Bytes ::= OCTET STRING
 UUID ::= OCTET STRING
 Payload ::= OCTET STRING

 AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER,
 parameters ANY DEFINED BY algorithm OPTIONAL }

 KeyId ::= OCTET STRING

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122

Moran, et al. Expires January 19, 2018 [Page 8]

Internet-Draft Firmware Manifest Format July 2017

 KdfParameters ::= SEQUENCE {
 kdfAlgorithm AlgorithmIdentifier,
 kdfNonce OCTET STRING,
 keyId KeyId
 }

 WrappedKey ::= SEQUENCE {
 deviceSubjectKeyIdentifier OCTET STRING,
 key OCTET STRING
 }

 KeyTable ::= SEQUENCE {
 keyWrapAlgorithm AlgorithmIdentifier,
 keySize INTEGER,
 payloadKeyDigest OCTET STRING,
 subjectKeyIdentifier OCTET STRING,
 table CHOICE {
 uri UTF8String,
 integrated SEQUENCE OF WrappedKey
 }
 }

 EncryptionInfo ::= SEQUENCE {
 mode ENUMERATED {
 none(0), preSharedKey(1), preSharedKeyKdf(2), keyTable(3)
 },
 config ANY DEFINED BY mode,
 encryptedPayloadHash OCTET STRING
 }

 PayloadInfo ::= SEQUENCE {
 format CHOICE {
 enum ENUMERATED {
 rawBinary(1), hexLocationLengthData(2), elf(3), bsdiff(4)
 },
 objectId OBJECT IDENTIFIER
 },
 encryptionInfo EncryptionInfo OPTIONAL,
 storageIdentifier OCTET STRING,
 size INTEGER,
 payload CHOICE {
 reference ResourceReference,
 integrated OCTET STRING
 }
 }

 ResourceReference ::= SEQUENCE {
 hash OCTET STRING,

Moran, et al. Expires January 19, 2018 [Page 9]

Internet-Draft Firmware Manifest Format July 2017

 uri Uri
 }

 ConditionValue ::= CHOICE {
 int INTEGER,
 raw OCTET STRING
 }
 Condition ::= SEQUENCE {
 type ENUMERATED {
 vendorId(1),
 classId(2),
 deviceId(3),
 lastApplicationTime(4),

 vendorSpecificMinimum(2147483648)
 },
 value ConditionValue
 }
 DirectiveRule ::= CHOICE {
 int INTEGER,
 bool BOOLEAN,
 raw OCTET STRING
 }
 Directive ::= SEQUENCE {
 type ENUMERATED {
 applyImmediately(1),
 applyAfter(2),
 restartComponent(3),
 restartSystem(4),
 installationHandler(5),

 vendorSpecificMinimum(2147483648)
 },
 rule DirectiveRule
 }

 TextField ::= SEQUENCE {
 type ENUMERATED {
 description(0), version(1), vendor(2), model(3)
 },
 value UTF8String
 }

 Manifest ::= SEQUENCE {
 manifestVersion ENUMERATED {
 v1(1)
 },
 text SEQUENCE OF TextField OPTIONAL,

Moran, et al. Expires January 19, 2018 [Page 10]

Internet-Draft Firmware Manifest Format July 2017

 nonce OCTET STRING,
 digestAlgorithm AlgorithmIdentifier,
 timestamp INTEGER,
 conditions SEQUENCE OF Condition,
 directives SEQUENCE OF Directive,
 aliases SEQUENCE OF ResourceReference,
 dependencies SEQUENCE OF ResourceReference,
 payloadInfo PayloadInfo OPTIONAL
 }

 END

 Below is the manifest format in the ASN.1 2015 format.

 -- Manifest definition file in ASN.1:2015 (v. 1.0.0-alpha)
 ManifestSchema DEFINITIONS IMPLICIT TAGS ::= BEGIN

 Uri ::= UTF8String
 Bytes ::= OCTET STRING
 UUID ::= OCTET STRING
 Payload ::= OCTET STRING

 KeyId ::= OCTET STRING

 KdfParameters ::= SEQUENCE {
 kdfAlgorithm AlgorithmIdentifier,
 kdfNonce OCTET STRING,
 keyId KeyId
 }

 WrappedKey ::= SEQUENCE {
 deviceSubjectKeyIdentifier OCTET STRING,
 key OCTET STRING
 }

 KeyTable ::= SEQUENCE {
 keyWrapAlgorithm AlgorithmIdentifier,
 keySize INTEGER,
 payloadKeyDigest OCTET STRING,
 subjectKeyIdentifier OCTET STRING,
 table CHOICE {
 uri UTF8String,
 integrated SEQUENCE OF WrappedKey
 }
 }

 PAYLOADENCRYPTION ::= CLASS {
 &mode ENUMERATED {

Moran, et al. Expires January 19, 2018 [Page 11]

Internet-Draft Firmware Manifest Format July 2017

 none(0), pre-shared-key(1), pre-shared-key-kdf(2), key-table(3)
 } UNIQUE,
 --OpenType-- &Config
 } WITH SYNTAX { MODE &mode, CONFIG &Config}

 EncryptionOptions PAYLOADENCRYPTION ::= {
 {MODE none, CONFIG NULL} |
 {MODE pre-shared-key, CONFIG KeyId} |
 {MODE pre-shared-key-kdf, CONFIG KdfParameters} |
 {MODE key-table, CONFIG KeyTable}
 }

 EncryptionInfo ::= SEQUENCE {
 mode PAYLOADENCRYPTION.&mode ({EncryptionOptions}),
 config PAYLOADENCRYPTION.&Config ({EncryptionOptions}{@mode}),
 encryptedPayloadHash OCTET STRING
 }

 PayloadInfo ::= SEQUENCE {
 format CHOICE {
 enum ENUMERATED {
 undefined(0), raw-binary(1)
 },
 objectId OBJECT IDENTIFIER
 },
 encryptionInfo EncryptionInfo OPTIONAL,
 storageIdentifier OCTET STRING,
 size INTEGER,
 payload CHOICE {
 reference ResourceReference,
 integrated OCTET STRING
 }
 }

 ResourceReference ::= SEQUENCE {
 hash OCTET STRING,
 uri UTF8String
 }

 CONDITION ::= CLASS {
 &type ENUMERATED {
 vendorId(1),
 classId(2),
 deviceId(3),
 lastApplicationTime(4),

 vendorSpecificMinimum(2147483648)
 },

Moran, et al. Expires January 19, 2018 [Page 12]

Internet-Draft Firmware Manifest Format July 2017

 &Value
 } WITH SYNTAX {TYPE &type, VALUE &Value}

 ConditionTable CONDITION ::= {
 {TYPE vendorId, VALUE OCTET STRING} |
 {TYPE classId, VALUE OCTET STRING} |
 {TYPE deviceId, VALUE OCTET STRING} |
 {TYPE applyBefore, VALUE INTEGER} |
 {TYPE vendorSpecific, VALUE OCTET STRING}
 }

 Condition ::= SEQUENCE {
 type CONDITION.&type ({ConditionTable}),
 value CONDITION.&Value ({ConditionTable} {@type})
 }

 DIRECTIVE ::= CLASS {
 &type ENUMERATED {
 applyImmediately(1),
 applyAfter(2),
 restartComponent(3),
 restartSystem(4),
 installationHandler(5),

 vendorSpecificMinimum(2147483648)
 },
 &Rule
 } WITH SYNTAX {TYPE &type, RULE &Rule}

 DirectiveTable DIRECTIVE ::= {
 {TYPE applyImmediately, RULE BOOLEAN} |
 {TYPE applyAfter, RULE INTEGER} |
 {TYPE restartComponent, RULE BOOLEAN} |
 {TYPE restartSystem, RULE BOOLEAN} |
 {TYPE installationHandler, RULE OCTET STRING} |
 {TYPE vendorSpecific, RULE OCTET STRING}
 }

 Directive ::= SEQUENCE {
 type DIRECTIVE.&type ({DirectiveTable}),
 rule DIRECTIVE.&Rule ({DirectiveTable} {@type})
 }

 TextField ::= SEQUENCE {
 type ENUMERATED {
 description(0), version(1), vendor(2), model(3)
 },
 value UTF8String

Moran, et al. Expires January 19, 2018 [Page 13]

Internet-Draft Firmware Manifest Format July 2017

 }

 Manifest ::= SEQUENCE {
 manifestVersion ENUMERATED {
 v1(1)
 },
 text SEQUENCE OF TextField OPTIONAL,
 nonce OCTET STRING,
 digestAlgorithm AlgorithmIdentifier,
 timestamp INTEGER,
 conditions SEQUENCE OF Condition,
 directives SEQUENCE OF Directive,
 aliases SEQUENCE OF ResourceReference,
 dependencies SEQUENCE OF ResourceReference,
 payload PayloadInfo OPTIONAL
 }

 END

5. IANA Considerations

 Editor's Note: A few registries would be good to allow easier
 allocation of new features.

6. Security Considerations

 This document is about a manifest format describing and protecting
 firmware images and as such it is part of a larger solution for
 offering a standardized way of delivering firmware updates to IoT
 devices. A more detailed discussion about security can be found in
 the architecture document [Architecture].

7. Mailing List Information

 The discussion list for this document is located at the e-mail
 address fud@ietf.org [1]. Information on the group and information
 on how to subscribe to the list is at

https://www1.ietf.org/mailman/listinfo/fud

 Archives of the list can be found at: https://www.ietf.org/mail-
archive/web/fud/current/index.html

8. Acknowledgements

 We would like the following persons for their support in designing
 this mechanism

 - Geraint Luff

https://www1.ietf.org/mailman/listinfo/fud
https://www.ietf.org/mail-archive/web/fud/current/index.html
https://www.ietf.org/mail-archive/web/fud/current/index.html

Moran, et al. Expires January 19, 2018 [Page 14]

Internet-Draft Firmware Manifest Format July 2017

 - Amyas Phillips

 - Dan Ros

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

9.2. Informative References

 [Architecture]
 Moran, B., "A Firmware Update Architecture for Internet of
 Things Devices", July 2017.

9.3. URIs

 [1] mailto:fud@ietf.org

Authors' Addresses

 Brendan Moran
 ARM Limited

 EMail: Brendan.Moran@arm.com

 Milosch Meriac
 ARM Limited

 EMail: Milosch.Meriac@arm.com

 Hannes Tschofenig
 ARM Limited

 EMail: hannes.tschofenig@gmx.net

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119

Moran, et al. Expires January 19, 2018 [Page 15]

