
SUIT B. Moran
Internet-Draft T. Ibbs
Intended status: Informational G. Psimenos
Expires: September 12, 2019 ARM Limited
 March 11, 2019

An Information Model for Behavioural Description of Firmware Update and
 Related Operations

draft-moran-suit-behavioural-manifest-01

Abstract

 This specification describes an approach to formally defining the
 behaviour of a system under firmware update and secure boot
 conditions. The behavioural documents described here can be used
 with [Information] to construct a firmware update manifest.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Moran, et al. Expires September 12, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/draft-moran-suit-behavioural-manifest-01
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-DraftBehavioural description of Firwmware Updates March 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 3
2. Conventions and Terminology 3
3. Design Principles of the Behavioural Manifest 4
4. Structure of a behavioural manifest 5
4.1. Processing Steps . 7

5. Commands . 7
5.1. Verify Recipient Identity 8
5.2. Verify Image Presence 9
5.3. Verify Component Properties 9
5.4. Verify System Properties 9
5.5. Verify 3rd-party Authorisation 9
5.6. Process sub-behaviours 9
5.7. Process Dependencies 9
5.8. Set Parameters . 10
5.9. Move an Image . 10
5.10. Invoke an Image . 10
5.11. Wait for an Event . 10

6. Parameters . 11
6.1. Strict Order . 11
6.2. Soft Failure . 11
6.3. Source List . 11
6.4. Processing Step Configurations 12
6.5. Image Identifier . 12

7. ACLs/permissions . 12
8. Workflows . 13
9. Examples . 15
9.1. Example 1: Boot an image on an XIP processor 16
9.2. Example 2: Download an image 16
9.3. Example 3: Check compatibility, download, and boot . . . 17

 9.4. Example 4: Check compatibility, download, load from
 external, and boot 17

Moran, et al. Expires September 12, 2019 [Page 2]

Internet-DraftBehavioural description of Firwmware Updates March 2019

 9.5. Example 5: Check compatibility, download, load with
 decompress, and boot 18
 9.6. Example 6: Check compatibility, download, install-from-
 external and boot . 20
 9.7. Example 7: Download and boot an image with a dependency . 21
 9.8. Example 8: Download and boot an image with a dependency
 using override. 23

10. IANA Considerations . 25
11. Security Considerations 25
12. References . 25
12.1. Normative References 25
12.2. Informative References 25

Appendix A. Mailing List Information 27
 Authors' Addresses . 27

1. Introduction

 Conventional hierarchical, descriptive documents, such as draft-
moran-manifest-03 imply the behaviour of the recipient without

 specifying that behaviour. This creates a situation where recipients
 must construct the assumed behaviour in accordance with a
 specification, handling many edge cases and introducing significant
 complexity. Capabilities are difficult to specify because they imply
 behaviours, rather than data, but the descriptive document only
 specifies data, not capabilities. This leaves the document author to
 interpret capabilities (supported behaviours) into allowable
 combinations of data. This disconnect demonstrates that devices
 require both an information model and a behavioural model.

 This creates a situation where the behaviour of a system is
 imprecisely specified by the documents that it uses to perform secure
 boot and secure firmware update. In high security applications,
 precise specification of behaviour is beneficial, and can even be
 used for formal verification.

 By specifying the behaviour of a device in a document rather than
 just the information, the gap between specified information and
 specified behaviour can be closed.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC

2119 [RFC2119].

 - SUIT: Sofware Update for the Internet of Things, the IETF working
 group for this standard.

https://datatracker.ietf.org/doc/html/draft-moran-manifest-03
https://datatracker.ietf.org/doc/html/draft-moran-manifest-03
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Moran, et al. Expires September 12, 2019 [Page 3]

Internet-DraftBehavioural description of Firwmware Updates March 2019

 - Image: A piece of information to be delivered. Typically Firmware
 for the purposes of SUIT.

 - Document, Behavioural Document: The data that defines the
 behaviour of a recipient.

 - Component: A target for storage of the Image

 - Dependency: Another Behavioural Document upon which the current
 Document relies.

 - Recipient: The system, typically an IoT device, that receives a
 Behavioural Document.

 - Condition: A test for a property of the Recipient or its
 components.

 - Directive: An action for the Recipient to perform.

 - Command: A Condition or a Directive.

3. Design Principles of the Behavioural Manifest

 In order to provide flexible behaviour to constrained devices, while
 still allowing more powerful devices to use their full capabilities,
 the SUIT manifest takes a new approach, encoding the required
 behaviour of a Recipient device, instead of just presenting the
 information used to determine that behaviour. This gives benefits
 equivalent to those provided by a scripting language or byte code,
 with two substantial differences. First, the language is extremely
 high level, consisting of only the operations that a device may
 perform during update and secure boot of a firmware image. The
 language specifies behaviours in a linearised form, without branches
 or loops. Conditional processing is supported, and parallel and out-
 of-order processing may be performed by sufficiently capable devices.

 By structuring the data in this way, the manifest processor becomes a
 very simple engine that uses a pull parser to interpret the manifest.
 This pull parser consists of command handlers that evaluate a
 Condition or execute a Directive. Most data is structured in a
 highly regular pattern, which simplifies the parser.

 The results of this allow a Recipient with minimal functionality to
 perform complex updates with reduced overhead. Conditional execution
 of commands allows a simple device to perform important decisions at
 validation-time, such as which differential update to download for a
 given current version, or which hash to check, based on the
 installation address.

Moran, et al. Expires September 12, 2019 [Page 4]

Internet-DraftBehavioural description of Firwmware Updates March 2019

 Dependency handling is vastly simplified as well. Dependencies
 function like subroutines of the language. When a manifest has a
 dependency, it can invoke that dependency's commands and modify their
 behaviour by setting parameters. Because some parameters come with
 security implications, the dependencies also have a mechanism to
 reject modifications to parameters on a fine-grained level.

 Developing a robust permissions system works in this model too. The
 Recipient can use a simple ACL that is a table of Identities and
 Component Identifier permissions to ensure that only manifests
 authenticated by the appropriate identity have access to define a
 component.

 Capability reporting is similarly simplified. A Recipient can report
 the Commands and Parameters that it supports. This is sufficiently
 precise for a manifest author to create a manifest that the Recipient
 can accept.

 Because the behavioural description is precise, and the machine
 definition upon which it relies is very simple it can be augmented
 with a proof that the effects of an update fall within a specified
 policy, in the same way as Proof Carrying Code. By combining this
 capability with formal verification of the document processor, it is
 possible to prove the result of a firmware update, prior to
 application, either on the target or on an intermediate system. The
 proof can be discarded before distribution to constrained nodes,
 creating no additional overhead.

 The simplicity of design in the Recipient due to all of these
 benefits allows even a highly constrained platform to use advanced
 update capabilities.

4. Structure of a behavioural manifest

 Behavioural manifests are divided into sections based on the
 behaviours of the Recipient. There are 8 conceptual sections of a
 behavioural manifest, listed below.

 1. Document-global data

 2. Common behaviour

 3. Dependency Resolution behaviour

 4. Image Acquisition behaviour

 5. Image Application behaviour

Moran, et al. Expires September 12, 2019 [Page 5]

Internet-DraftBehavioural description of Firwmware Updates March 2019

 6. System Validation behaviour

 7. Image Loading behaviour

 8. Image Invocation behaviour

 Document-global data contains the information that is required to
 enable most behaviours along with a security parameter. The
 information contained is listed below.

 1. Document Structure Version

 2. Document Sequence Number

 3. List of Dependencies

 1. List of Components affected by each Dependency

 4. List of Components affected by this Document

 Common behaviour is executed prior to each other behaviour. It is
 used to make common decisions for all other behaviours.

 Dependency Resolution is used to ensure that all required documents
 have been collected prior to attempting to acquire any image. Where
 a document has no dependencies, this section is not required.

 Image Acquisition is used to obtain images from local or remote
 sources and stage them for use by the Recipient. If a Document lists
 no affected components, then Image Acquisition is not required. If a
 device operates in a simultaneous Acqusition & Application mode (for
 example, streaming installation), then Image Acquisition should be
 discarded in favour of Image Application. Image Acquisition can be
 used in combination with several processing steps defined in

Section 4.1.

 Image Application is used to place an image into its long-term
 storage. An image can be moved either from a staging area or from
 another source (including a remote) into its long-term storage. This
 can be done in combination with several processing steps defined in

Section 4.1.

 System validation is used to ensure that all required dependencies
 are present and that all required images are present. This process
 is equivalent to that used in the validation portion of Secure Boot
 workflows.

Moran, et al. Expires September 12, 2019 [Page 6]

Internet-DraftBehavioural description of Firwmware Updates March 2019

 Image Loading is used to ensure that all required images are moved
 from long-term storage to active use storage. This can include steps
 like copying from external Flash to RAM, as defined by Component
 information. This can be done in combination with several of the
 processing steps defined in Section 4.1.

 Image Invocation is used to finalise the manifest processor's
 behaviour and forward execution to a designated component. This is
 equivalent to Bootloader behaviour.

 Some behaviours need only a single successful invocation. These
 behaviours can then be discarded, provided that the Document
 serialisation provides a mechanism to do so. Typically discarded
 behaviours are Dependency Resolution, Image Acquisition, and Image
 Application.

4.1. Processing Steps

 Processing steps are the translation that is performed on an image
 prior to its execution. These steps typically include, in order,
 symmetric cryptographic operations, decompression operations,
 unpacking operations.

 Each of these operation may need additional information, such as
 which algorithm is in use or arguments to that algorithm, such as key
 identifiers for cryptographic operations. This information can be
 encoded in Processing Step parameters, as described in Section 6.4.

5. Commands

 Behaviours are constructed as lists of commands, each of which may
 have arguments. The behaviours listed in any of the specified
 sections derives from a short list of commands. These commands are
 divided into two types, Conditions (verification operations) and
 Directives (action operations)

 The lists of commands are logically structured into sequences of zero
 or more conditions followed by zero or more directives. The
 logical structure is described by the following CDDL:

 Behaviour = [
 + {
 conditions => [* Condition],
 directives => [* Directive]
 }
]

Moran, et al. Expires September 12, 2019 [Page 7]

Internet-DraftBehavioural description of Firwmware Updates March 2019

 The conditions form preconditions that MUST be true for the following
 sequence of directives to be executed.

 However, this organisation could introduce significant complexity in
 a parser, so the structure MAY be flattened into the following:

 Behaviour = [* (Condition/Directive)]

 This does not alter the logical organisation of sequences of
 preconditions that precede sequences of directives, but it simplifies
 the consumption of commands in behaviours.

 The Conditions are, broadly, those listed below.

 1. Verify device identity

 2. Verify image presence (correctness) or absence

 3. Verify component properties

 4. Verify system properties

 5. Verify 3rd-party authorisation

 The Directives are those listed below.

 1. Process sub-behaviours

 2. Process dependencies

 3. Set parameters

 4. Move an Image or Document

 5. Invoke an Image

 6. Wait for an event

5.1. Verify Recipient Identity

 This is used to ensure that the document is being processed by the
 appropriate device and to eliminate incompatibility failures.
 Identity can include what sort of device is targeted, what software
 it uses, or who made it. Identity can also include the particular
 device that is targeted.

Moran, et al. Expires September 12, 2019 [Page 8]

Internet-DraftBehavioural description of Firwmware Updates March 2019

5.2. Verify Image Presence

 This is used to ensure that a required image is present. This often
 includes the use of cryptographic checksums to validate the contents
 of an image contained in a component.

5.3. Verify Component Properties

 This can be used to verify several properties of a targeted
 component, such as the current nominal version of its APIs, or the
 base address or offset that it will use.

5.4. Verify System Properties

 This can be used to verify several properties of the system
 including, the current power state, such as battery level or presence
 of external power, the current time reported by the device, or the
 current state of a controlled piece of equipment.

5.5. Verify 3rd-party Authorisation

 This can be used to ensure that some third-party has approved an
 action, in a system specific way. Options include checking a remote
 system for authorisation, looking for a cryptographic token, or
 invoking a user-interface.

5.6. Process sub-behaviours

 In some use-cases, a decision must be made as to which of several
 behaviours must be invoked. To enable this use-case, sub-behaviours
 provide a mechanism to permit soft-failure of a Condition. A
 parameter of the sub-behaviour controls its response to a Condition
 check failure, allowing the command following the sub-behaviour to be
 the next to execute, or causing failure of the whole behaviour,
 depending on its value.

 This allows the construction of a conditional behaviour. A sub-
 behaviour is invoked allowing condition checks to soft-fail. Once
 the conditions that inform the conditional behaviour have succeeded,
 the soft-failure parameter is switched to hard-failure, so that
 further condition failures will be detected.

5.7. Process Dependencies

 Dependencies are processed by invoking two behaviours within the
 dependency; first the common behaviour is invoked, then the behaviour
 matching the current behaviour of the current document is invoked.
 So, if "Image Application" is active when "Process Dependencies" is

Moran, et al. Expires September 12, 2019 [Page 9]

Internet-DraftBehavioural description of Firwmware Updates March 2019

 invoked, then each dependency's "Common" behaviour will be invoked,
 followed by its "Image Application" behaviour.

 It can be advantageous to process dependencies in a particular order,
 so dependencies are processed in the order specified.

 A failure of processing of any dependency results in a failure of the
 Process Dependencies behaviour.

5.8. Set Parameters

 Many Commands are partially governed by configuration present in the
 form of parameters. Parameters control the source used for Image
 Acquisition, the processing steps applied to those images, the order
 in which commands are processed and more. See Section 6 for more
 information.

 Parameters can be set in one of three ways. They can be set-if-unset
 (the default), append-if-set (typically used for source lists), set-
 always (used for critical parameters). Parameters are either global
 or scoped by Component/Component Group.

5.9. Move an Image

 This Command directs the document processor to acquire an Image or
 Document and store it to a specified Component or Document storage,
 respectively. The source can be local or remote, or a prioritised
 list of local and remote sources. The source or source list is
 specified by the source parameter. The Image or document can
 optionally be modified in transit by a sequence of processing steps,
 as defined in Section 6.

5.10. Invoke an Image

 This command forwards execution to the specified image in much the
 same way as a bootloader. As with bootloaders, the semantics of
 forwarding execution are application defined. An argument may be
 provided to the Image. The semantics of the argument are
 application-defined.

5.11. Wait for an Event

 Frequently, a behaviour needs to wait for a property of the system to
 change. This may be a message from a remote, a time, a power state,
 a user-interaction, or some other system parameter.

Moran, et al. Expires September 12, 2019 [Page 10]

Internet-DraftBehavioural description of Firwmware Updates March 2019

6. Parameters

 Available parameters may vary by implementation, but some core
 parameters are usually present.

 Typical parameters are listed below.

 1. Strict Order

 2. Soft-Failure

 3. Source List

 4. Processing Step Configuration

 5. Image Identifier

 In some use-cases, device identity may also be configured in a
 parameter.

6.1. Strict Order

 Some advanced devices may have particular requirements regarding
 command ordering within a behaviour. Others may enable parallel
 execution of commands. When the Strict Order parameter is set to
 False, these extended capabilities are enabled. An advanced device
 may then aggregate all successive commands up until the behaviour
 ends or the Strict Order parameter is returned to True and process
 those commands in parallel or reorder them as it requires. Strict
 Order defaults to True. If a device does not support command
 reordering or parallel processing, Strict Order = False has no
 effect.

6.2. Soft Failure

 When a device invokes a sub-behaviour, any condition check failure
 and any directive failure causes the behaviour to immediately abort.
 However, if the Soft Failure parameter is True, then an abort due to
 a condition failure does not cause the sub-behaviour to report
 failure. If the Soft Failure parameter is True, indicating hard
 failure, then any abort causes the sub-behaviour to report failure as
 well.

6.3. Source List

 The source list is scoped to an individual component or dependency.
 It is a prioritised search path for the Move command to use in order

Moran, et al. Expires September 12, 2019 [Page 11]

Internet-DraftBehavioural description of Firwmware Updates March 2019

 to find an image or document. It can contain either local sources,
 such as other components, or remote ones, such as URIs.

6.4. Processing Step Configurations

 Many processing steps require configuration to operate, or
 configuration informs whether or not to use them. Common processing
 steps include symmetric cryptography, compression or decompression
 operations, and packing or unpacking, for example relocation,
 differential compression, or hex file interpretation.

 Processing step configuration is scoped to an individual component or
 document.

6.5. Image Identifier

 In order to determine whether an image is present, the verify image
 presence condition requires an identifier for the image. This could
 be a version number or a cryptographic identity such as a digest.

7. ACLs/permissions

 To manage permissions in documents, there are three models that can
 be used.

 First, the simplest model requires that all documents are
 authenticated by a single identity. This mode has the advantage that
 only a single document needs to be authenticated, since each
 document's dependencies are uniquely identified in that document.

 This simplest model can be extended by adding key delegation without
 much increase in complexity.

 A second model requires an ACL to be presented to the device,
 authenticated by a trusted party or stored on the device. This ACL
 grants access rights for specific Components or Component Groups to
 the listed identities or identity groups. Any identity may verify
 that an image is present, but Moving an image into or out of a
 Component requires approval from the ACL.

 A third model allows a Document Processor to provide even more fine-
 grained controls: The ACL lists the Component or Component Group that
 an identity may use, and also lists the commands that the identity
 may use in combination with that Component/Group.

Moran, et al. Expires September 12, 2019 [Page 12]

Internet-DraftBehavioural description of Firwmware Updates March 2019

8. Workflows

 The two most common workflows are image installation and image
 invocation. Both of these workflows use a common component:
 do_commands.

 do_commands uses the following pseudocode:

function do_commands(section, sequence)
 rc = SUCCESS
 foreach (command in $sequence)
 choose $command[Type]:
 case Sub-Behaviour:
 Load commands = $command[Argument][commands]
 Load parameters = System Parameters
 Load soft_failure = $parameters[Soft Failure]
 Call rc = do_commands(commands)
 if (soft_failure AND is_condition_failure(rc))
 rc = SUCCESS
 endif
 endcase
 case Process Dependency:
 ; Note Dependency selection can be done via argument or
 ; parameter. May process multiple dependencies in a list.
 Load Dependency
 Load common = $Dependency[Common Sequence]
 Call rc = do_commands(Common, $common)
 if (rc is SUCCESS?)
 Load $sequence = $Dependency[$section]
 Call rc = do_commands($section, $sequence)
 endif
 endcase
 case Set Parameters:
 Load parameter_list = $command[Argument][Parameter List]
 foreach (parameter in parameter_list)
 if (is_append(parameter)?)
 Append argument value to $parameter
 elseif (is_set($parameter[Name]))
 Set $parameter[Name] = $parameter[Value]
 endif
 endfor
 endcase
 case Move:
 ; Note Component selection can be done via argument or
 ; parameter. May process multiple components in a list.
 ; Note Dependency selection can be done via argument or
 ; parameter. May process multiple dependencies in a list.
 ; Source

Moran, et al. Expires September 12, 2019 [Page 13]

Internet-DraftBehavioural description of Firwmware Updates March 2019

 Load component_list = $command[Argument][Component List]
 Load dependency_list = $command[Argument][Dependency List]
 foreach (target_list in [component_list, dependency_list])
 foreach (target in $target_list)
 Load $target parameters
 Set source = choose_best_source($parameters[Source
List])
 Acquire data from $source
 foreach (processing_step in $parameters[Processing Step
Configuration])
 rc = Process_Data($processing_step, $data)
 endfor
 Store $data to $target
 endfor
 endfor
 endcase
 case Invoke:
 ; Note Component selection can be done via argument or
 ; parameter. May process multiple components in a list.
 Select component
 Load Argument = $command[Argument]
 Transfer execution to $component with $Argument;
 endcase
 case Wait:
 Load arguments = $command[Argument][Wait Arguments]
 Load type = $command[Argument][Wait Type]
 Wait ($type, $arguments)
 endcase
 case Device Identity:
 ; Note Device Identity selection can be done via argument or
 ; parameter. May process multiple Device Identities in a list.
 Load device_identity = $parameters[Device Identity]
 if ($device_identity is nil)
 Load device_identity = $command[Argument][Device Identity]
 endif
 rc = Compare $device_identity to $parameters
 endcase
 case Image Present/not Present:
 ; Note Component selection can be done via argument or
 ; parameter. May process multiple components in a list.
 ; Note Dependency selection can be done via argument or
 ; parameter. May process multiple dependencies in a list.
 Load component_list = $command[Argument][Component List]
 Load dependency_list = $command[Argument][Dependency List]
 foreach (target_list in [component_list, dependency_list])
 foreach (target in $target_list)
 Load $target parameters
 Set image_identifier = $parameters[Image Identifier]

 rc = Compare $component to $image_identifier;
 endfor

Moran, et al. Expires September 12, 2019 [Page 14]

Internet-DraftBehavioural description of Firwmware Updates March 2019

 endfor
 endcase
 case Verify Authorisation
 Request authorisation
 Wait for authorisation
 rc = Check Response
 endcase
 endchoose
 endwhile (no)
endfunction

 Installation, is represented by the following pseudocode.

function install(Document)
 Load $Document[Common Data] into parameters
 foreach (sequence in [Common, Dependency Resolution, Image Acquisition,
Image Application])
 rc = do_commands($sequence, $Document[$sequence]);
 if (rc is not SUCCESS)
 Abort
 endif
 endfor
endfunction

 Image invocation is represented by the following pseudocode.

function invoke(Document)
 Load $Document[Common Data] into parameters
 foreach (sequence in [Common, System Validation, Image Loading, Image
Invocation])
 rc = do_commands($sequence, $Document[$sequence]);
 if (rc is not SUCCESS)
 Abort
 endif
 endfor
endfunction

 Each operation represented here is already present in a device
 capable of firmware update or secure boot. This approach simply
 defines the mechanism by which these operations are orchestrated, and
 enforces that the behaviour of the system is defined by the
 Behavioural Document, rather than implied by it.

9. Examples

 These examples demonstrate the serialisation of the behaviours of an
 update. They are serialised in JSON for readability, but JSON is not
 recommended for use on constrained devices.

Moran, et al. Expires September 12, 2019 [Page 15]

Internet-DraftBehavioural description of Firwmware Updates March 2019

9.1. Example 1: Boot an image on an XIP processor

 {
 "structure-version" : 1,
 "sequence-number" : 1,
 "components": [
 {
 "id" : <Component Identifier>,
 "digest":"<SHA256 of Image>",
 "size" : <Size of Image>
 }
],
 "validate" : [
 {
 "condition-validate-image" : {"component" : 0}
 }
],
 "image-invocation" : [
 {
 "directive-run-component":{"component" : 0}
 }
]
 }

9.2. Example 2: Download an image

 {
 "structure-version" : 1,
 "sequence-number" : 2,
 "components": [
 {
 "id" : <Component Identifier>,
 "digest":"<SHA256 of Image>",
 "size" : <Size of Image>
 }
],
 "image-acquisition" : [
 {
 "directive-move" : {
 "source": "http://example.com/file.bin",
 "destination" : 0
 }
 }
]
 }

Moran, et al. Expires September 12, 2019 [Page 16]

Internet-DraftBehavioural description of Firwmware Updates March 2019

9.3. Example 3: Check compatibility, download, and boot

{
 "structure-version" : 1,
 "sequence-number" : 3,
 "components": [
 {
 "id" : <Component Identifier>,
 "digest":"<SHA256 of Image>",
 "size" : <Size of Image>
 }
],
 "common" : [
 {"condition-vendor-id" : "fa6b4a53-d5ad-5fdf-be9d-e663e4d41ffe"},
 {"condition-class-id" : "1492af14-2569-5e48-bf42-9b2d51f2ab45"}
],
 "image-application" : [
 {
 "directive-move" : {
 "source": "http://example.com/file.bin",
 "destination" : 0
 }
 }
],
 "validate" : [
 {
 "condition-validate-image" : {"component" : 0}
 }
],
 "image-invocation" : [
 {
 "directive-run-component":{"component" : 0}
 }
]
}

9.4. Example 4: Check compatibility, download, load from external, and
 boot

{
 "structure-version" : 1,
 "sequence-number" : 4,
 "components": [
 {
 "id" : <Flash Component Identifier>,
 "digest":"<SHA256 of Image>",
 "size" : <Size of Image>
 },

Moran, et al. Expires September 12, 2019 [Page 17]

Internet-DraftBehavioural description of Firwmware Updates March 2019

 {
 "id" : <RAM Component Identifier>,
 "digest":"<SHA256 of Image>",
 "size" : <Size of Image>
 }
],
 "common" : [
 {"condition-vendor-id" : "fa6b4a53-d5ad-5fdf-be9d-e663e4d41ffe"},
 {"condition-class-id" : "1492af14-2569-5e48-bf42-9b2d51f2ab45"}
],
 "image-application" : [
 {
 "directive-move" : {
 "source": "http://example.com/file.bin",
 "destination" : 0
 }
 }
],
 "validate" : [
 {
 "condition-validate-image" : {"component" : 0}
 }
],
 "load-image" : [
 {
 "directive-move" : {
 "source": 0,
 "destination" : 1
 }
 }
],
 "image-invocation" : [
 {
 "condition-validate-image" : {"component" : 1}
 },
 {
 "directive-run-component":{"component" : 1}
 }
]
}

9.5. Example 5: Check compatibility, download, load with decompress,
 and boot

{
 "structure-version" : 1,
 "sequence-number" : 5,
 "components": [

Moran, et al. Expires September 12, 2019 [Page 18]

Internet-DraftBehavioural description of Firwmware Updates March 2019

 {
 "id" : <Flash Component Identifier>,
 "digest":"<SHA256 of Compressed Image>",
 "size" : <Size of Compressed Image>
 },
 {
 "id" : <RAM Component Identifier>,
 "digest":"<SHA256 of Image>",
 "size" : <Size of Image>
 }
],
 "common" : [
 {"condition-vendor-id" : "fa6b4a53-d5ad-5fdf-be9d-e663e4d41ffe"},
 {"condition-class-id" : "1492af14-2569-5e48-bf42-9b2d51f2ab45"}
],
 "image-application" : [
 {
 "directive-move" : {
 "source": "http://example.com/file.bin",
 "destination" : 0
 }
 }
],
 "validate" : [
 {
 "condition-validate-image" : {"component" : 0}
 }
],
 "load-image" : [
 {
 "directive-move" : {
 "source": 0,
 "destination" : 1,
 "processing-step-compression-algorithm" : "gzip"
 }
 }
],
 "image-invocation" : [
 {
 "condition-validate-image" : {"component" : 1}
 },
 {
 "directive-run-component":{"component" : 1}
 }
]
}

Moran, et al. Expires September 12, 2019 [Page 19]

Internet-DraftBehavioural description of Firwmware Updates March 2019

9.6. Example 6: Check compatibility, download, install-from-external
 and boot

{
 "structure-version" : 1,
 "sequence-number" : 6,
 "components": [
 {
 "id" : <External Flash Component Identifier>,
 "digest":"<SHA256 of Image>",
 "size" : <Size of Image>
 },
 {
 "id" : <Internal Flash Component Identifier>,
 "digest":"<SHA256 of Image>",
 "size" : <Size of Image>
 }
],
 "common" : [
 {"condition-vendor-id" : "fa6b4a53-d5ad-5fdf-be9d-e663e4d41ffe"},
 {"condition-class-id" : "1492af14-2569-5e48-bf42-9b2d51f2ab45"}
],
 "image-acquisition" : [
 {
 "directive-move" : {
 "source": "http://example.com/file.bin",
 "destination" : 0
 }
 }
],
 "validate" : [
 {
 "sub-behaviour" : [
 "soft-failure" : True,
 "condition-validate-not-image" : {"component" : 1}
 "soft-failure" : False
 "condition-validate-image" : {"component" : 0}
]
 }
],
 "load-image" : [
 {
 "sub-behaviour" : [
 "soft-failure" : True,
 "condition-validate-not-image" : {"component" : 1}
 "soft-failure" : False
 "directive-move" : {
 "source": 0,

Moran, et al. Expires September 12, 2019 [Page 20]

Internet-DraftBehavioural description of Firwmware Updates March 2019

 "destination" : 1
 }
]
 }
],
 "image-invocation" : [
 {
 "condition-validate-image" : {"component" : 1}
 },
 {
 "directive-run-component":{"component" : 1}
 }
]
}

9.7. Example 7: Download and boot an image with a dependency

[
 {
 "structure-version" : 1,
 "sequence-number" : 7,
 "components": [
 {
 "id" : <Component Identifier 0>,
 "digest":"<SHA256 of Image>",
 "size" : <Size of Image>
 }
],
 "common" : [
 {"condition-vendor-id" : "fa6b4a53-d5ad-5fdf-be9d-e663e4d41ffe"},
 {"condition-class-id" : "1492af14-2569-5e48-bf42-9b2d51f2ab45"}
],
 "image-application" : [
 {
 "directive-move" : {
 "source": "http://example.com/file.bin",
 "destination" : 0
 }
 }
],
 "validate" : [
 {
 "condition-validate-image" : {"component" : 0}
 }
],
 "image-invocation" : [
 {
 "directive-run-component":{"component" : 0}

Moran, et al. Expires September 12, 2019 [Page 21]

Internet-DraftBehavioural description of Firwmware Updates March 2019

 }
]
 },
 {
 "structure-version" : 1,
 "sequence-number" : 8,
 "dependencies" : [
 {
 "digest" : "<SHA256 of Document 0>"
 "components" : [<Component Identifier 0>]
 }
],
 "components": [
 {
 "id" : <Component Identifier 1>,
 "digest":"<SHA256 of Image>",
 "size" : <Size of Image>
 }
],
 "dependency-resolution" : [
 {
 "directive-move" : {
 "source": "http://example.com/document0.bin",
 "destination" : <Document 0 ID>
 }
 },
 {
 "condition-validate-image" : {"dependency" : 0}
 },
],
 "image-application" : [
 {
 "directive-move" : {
 "source": "http://example.com/file1.bin",
 "destination" : 1
 }
 },
 { "process-dependency" : 0 }
]
 "validate" : [
 {
 "condition-validate-image" : {"dependency" : 0}
 },
 { "process-dependency" : 0 },
 {
 "condition-validate-image" : {"image" : 1}
 }
],

Moran, et al. Expires September 12, 2019 [Page 22]

Internet-DraftBehavioural description of Firwmware Updates March 2019

 "image-invocation" : [
 { "process-dependency" : 0 }
]
 }
]

9.8. Example 8: Download and boot an image with a dependency using
 override.

 Override fetch location for dependency.

[
 {
 "structure-version" : 1,
 "sequence-number" : 7,
 "components": [
 {
 "id" : <Component Identifier 0>,
 "digest":"<SHA256 of Image>",
 "size" : <Size of Image>
 }
],
 "common" : [
 {"condition-vendor-id" : "fa6b4a53-d5ad-5fdf-be9d-e663e4d41ffe"},
 {"condition-class-id" : "1492af14-2569-5e48-bf42-9b2d51f2ab45"}
],
 "image-application" : [
 {
 "set-parameter" : {
 "component" : 0
 "source": "http://example.com/file.bin",
 }
 },
 {
 "directive-move" : {
 "destination" : 0
 }
 }
],
 "validate" : [
 {
 "condition-validate-image" : {"component" : 0}
 }
],
 "image-invocation" : [
 {
 "directive-run-component":{"component" : 0}
 }

Moran, et al. Expires September 12, 2019 [Page 23]

Internet-DraftBehavioural description of Firwmware Updates March 2019

]
 },
 {
 "structure-version" : 1,
 "sequence-number" : 8,
 "dependencies" : [
 {
 "digest" : "<SHA256 of Document 0>"
 "components" : [<Component Identifier 0>]
 }
],
 "components": [
 {
 "id" : <Component Identifier 1>,
 "digest":"<SHA256 of Image>",
 "size" : <Size of Image>
 }
],
 "dependency-resolution" : [
 {
 "directive-move" : {
 "source": "http://example.com/document0.bin",
 "destination" : <Document 0 ID>
 }
 },
 {
 "condition-validate-image" : {"dependency" : 0}
 },
],
 "image-application" : [
 {
 "directive-move" : {
 "source": "http://example.com/file1.bin",
 "destination" : 1
 }
 },
 {
 "set-parameter" : {
 "component" : 0
 "source": "http://other-host.com/file.bin",
 }
 },
 { "process-dependency" : 0 }
]
 "validate" : [
 {
 "condition-validate-image" : {"dependency" : 0}
 },

Moran, et al. Expires September 12, 2019 [Page 24]

Internet-DraftBehavioural description of Firwmware Updates March 2019

 { "process-dependency" : 0 },
 {
 "condition-validate-image" : {"image" : 1}
 }
],
 "image-invocation" : [
 { "process-dependency" : 0 }
]
 }
]

10. IANA Considerations

 In any given serialisation of this approach, several registries will
 be required for:

 - Standard Commands

 - Standard Parameters

 This document requires no action from IANA.

11. Security Considerations

 This document describes the distribution of firmware updates and the
 invocation of complex behaviours on a device. As such, the contents
 of a document following the described approach to updates MUST be
 authenticated as described in Section 7. A more detailed discussion
 about security can be found in the architecture document
 [Architecture].

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

12.2. Informative References

 [Architecture]
 Moran, B., "A Firmware Update Architecture for Internet of
 Things Devices", July 2018, <https://tools.ietf.org/html/

draft-ietf-suit-architecture-02>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://tools.ietf.org/html/draft-ietf-suit-architecture-02
https://tools.ietf.org/html/draft-ietf-suit-architecture-02

Moran, et al. Expires September 12, 2019 [Page 25]

Internet-DraftBehavioural description of Firwmware Updates March 2019

 [Information]
 Moran, B., "Firmware Updates for Internet of Things
 Devices - An Information Model for Manifests", July 2018,
 <https://tools.ietf.org/html/

draft-ietf-suit-information-model-02>.

12.3. URIs

 [1] mailto:suit@ietf.org

 [2] https://www1.ietf.org/mailman/listinfo/suit

 [3] https://www.ietf.org/mail-archive/web/suit/current/index.html

Moran, et al. Expires September 12, 2019 [Page 26]

https://tools.ietf.org/html/draft-ietf-suit-information-model-02
https://tools.ietf.org/html/draft-ietf-suit-information-model-02
https://www1.ietf.org/mailman/listinfo/suit
https://www.ietf.org/mail-archive/web/suit/current/index.html

Internet-DraftBehavioural description of Firwmware Updates March 2019

Appendix A. Mailing List Information

 The discussion list for this document is located at the e-mail
 address suit@ietf.org [1]. Information on the group and information
 on how to subscribe to the list is at

https://www1.ietf.org/mailman/listinfo/suit [2]

 Archives of the list can be found at: https://www.ietf.org/mail-
archive/web/suit/current/index.html [3]

Authors' Addresses

 Brendan Moran
 ARM Limited

 EMail: Brendan.Moran@arm.com

 Tony Ibbs
 ARM Limited

 EMail: Tony.Ibbs@arm.com

 George Psimenos
 ARM Limited

https://www1.ietf.org/mailman/listinfo/suit
https://www.ietf.org/mail-archive/web/suit/current/index.html
https://www.ietf.org/mail-archive/web/suit/current/index.html

Moran, et al. Expires September 12, 2019 [Page 27]

