
SUIT B. Moran
Internet-Draft H. Tschofenig
Intended status: Standards Track Arm Limited
Expires: April 25, 2019 October 22, 2018

A CBOR-based Firmware Manifest Serialisation Format
draft-moran-suit-manifest-03

Abstract

 This specification describes the format of a manifest. A manifest is
 a bundle of metadata about the firmware for an IoT device, where to
 find the firmware, the devices to which it applies, and cryptographic
 information protecting the manifest.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Moran & Tschofenig Expires April 25, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft SUIT Firmware Manifest Format October 2018

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 3
2. Conventions and Terminology 3
3. COSE Digest Container . 4
3.1. Computing and Verifying a Digest 4

4. Distributing Firmware . 6
5. Workflow of a device applying a firmware update 6
6. The SUIT Manifest . 7
6.1. Severable Elements 8
6.2. Conventions . 8
6.3. Payloads . 8

7. Manifest Structure . 9
7.1. Outer wrapper . 10
7.2. Manifest . 11
7.3. DependencyInfo . 13
7.4. PayloadInfo . 14
7.5. PreInstallationInfo 17
7.6. PreCondition . 17
7.7. Identifiers . 19
7.7.1. Creating UUIDs 20

7.8. PreDirective . 20
7.9. InstallationInfo . 22
7.10. Processor . 24
7.10.1. Resource . 25
7.10.2. Cipher . 26
7.10.3. Compress . 26
7.10.4. Relocate . 27
7.10.5. BinText . 27
7.10.6. Object . 29

7.11. PostInstallationInfo 29
8. Complete CDDL . 29
9. Examples . 34
9.1. Unsigned Manifest with One Payload 35
9.2. ECDSA secp256r1-signed Manifest with One Payload 35

 9.3. A ECDSA-signed Raw Binary Payload with Conditions, Text,

Moran & Tschofenig Expires April 25, 2019 [Page 2]

Internet-Draft SUIT Firmware Manifest Format October 2018

 and InstallationInfo 37
10. IANA Considerations . 40
11. Security Considerations 40
12. Mailing List Information 40
13. Acknowledgements . 40
14. References . 41
14.1. Normative References 41
14.2. Informative References 41
14.3. URIs . 42

 Authors' Addresses . 42

1. Introduction

 A firmware update mechanism is an essential security feature for IoT
 devices to deal with vulnerabilities. While the transport of
 firmware images to the devices themselves is important there are
 already various techniques available, such as the Lightweight
 Machine-to-Machine (LwM2M) protocol offering device management of IoT
 devices. Equally important is the inclusion of meta-data about the
 conveyed firmware image (in the form of a manifest) and the use of
 end-to-end security protection to detect modifications and
 (optionally) to make reverse engineering more difficult. End-to-end
 security allows the author, who builds the firmware image, to be sure
 that no other party (including potential adversaries) can install
 firmware updates on IoT devices without adequate privileges. This
 authorization process is ensured by the use of dedicated symmetric or
 asymmetric keys installed on the IoT device: for use cases where only
 integrity protection is required it is sufficient to install a trust
 anchor on the IoT device. For confidentiality protected firmware
 images it is additionally required to install either one or multiple
 symmetric or asymmetric keys on the IoT device. Starting security
 protection at the author is a risk mitigation technique so firmware
 images and manifests can be stored on untrusted respositories; it
 also reduces the scope of a compromise of any repository or
 intermediate system to be no worse than a denial of service.

 It is assumed that the reader is familiar with the high-level
 firmware update architecture [Architecture] and with the information
 model specification [Information], which motivates various elements
 in the manifest. In Section 6 we describe the main building blocks
 of the manifest and Section 7 contains the description of the CBOR of
 the manifest. Examples are found in Section 9.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

Moran & Tschofenig Expires April 25, 2019 [Page 3]

Internet-Draft SUIT Firmware Manifest Format October 2018

 "OPTIONAL" in this document are to be interpreted as described in RFC
2119 [RFC2119].

 - SUIT: Sofware Update for the Internet of Things, the IETF working
 group for this specification.

 - Payload: A piece of information, typically Firmware, to be
 delivered.

 - Resource: A piece of information that is used to construct a
 payload.

 - Processor: A component that transforms one or more Resources into
 another resource or into a payload.

 - Manifest: A piece of information that describes one or more
 payloads, one or more resources, and the processors needed to
 transform resources into payloads.

 - Update: One or more manifests that describe one or more payloads.

 - Update Authority: The owner of a cryptographic key used to sign
 updates, trusted by recipient devices.

3. COSE Digest Container

RFC 8152 [RFC8152] provides containers for signature, MAC, and
 encryption, but no basic digest container. The container needed for
 a digest is identical to a COSE_Mac0 structure, so no new container
 is defined.

 COSE_Digest_Tagged = #6.19(COSE_Digest)
 COSE_Digest = COSE_Mac0

 N.B. The value 19 is a placeholder and needs to be registered.

3.1. Computing and Verifying a Digest

 In order to get a consistent encoding of the data to be digested, the
 Digest_structure is used to have a canonical form. The
 Digest_structure is a CBOR array. The fields of the Digest_structure
 in order are:

 1. A text string that identifies the structure that is being
 encoded. This string is "Digest".

 2. The protected attributes from the COSE_Digest structure. If
 there are no protected attributes, a zero-length bstr is used.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152

Moran & Tschofenig Expires April 25, 2019 [Page 4]

Internet-Draft SUIT Firmware Manifest Format October 2018

 3. The protected attributes from the application encoded as a bstr
 type. If this field is not supplied, it defaults to a zero-
 length binary string. (See RFC 8152 [RFC8152], Section 4.3 for
 application UUIDance on constructing this field.)

 4. The payload to be digested encoded in a bstr type. The payload
 is placed here independent of how it is transported.

 The CDDL fragment that corresponds to the above text is:

 Digest_structure = [
 context : "Digest",
 protected : empty_or_serialized_map,
 external_aad : bstr,
 payload : bstr
]

 The steps to compute a Digest are:

 1. Create a Digest_structure and populate it with the appropriate
 fields.

 2. Create the value ToBeDigested by encoding the Digest_structure to
 a byte stream, using the encoding described in RFC 8152

[RFC8152], Section 14.

 3. Call the Digest creation algorithm passing in alg (the algorithm
 to Digest with), and ToBeDigested (the value to compute the
 digest on).

 4. Place the resulting Digest in the 'tag' field of the COSE_Digest
 structure.

 The steps to verify a Digest are:

 1. Create a Digest_structure object and populate it with the
 appropriate fields.

 2. Create the value ToBeDigested by encoding the Digest_structure to
 a byte stream, using the encoding described in RFC 8152

[RFC8152], Section 14.

 3. Call the digest creation algorithm passing in alg (the algorithm
 to digest with), and ToBeDigested (the value to compute the
 Digest on).

 4. Compare the digest value to the 'tag' field of the COSE_Digest
 structure.

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152#section-4.3
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152#section-14
https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152#section-14

Moran & Tschofenig Expires April 25, 2019 [Page 5]

Internet-Draft SUIT Firmware Manifest Format October 2018

 +----------+-------+
 | Name | Value |
 +----------+-------+
 | SHA-224 | 40 |
 | | |
 | SHA-256 | 41 |
 | | |
 | SHA-384 | 42 |
 | | |
 | SHA-512 | 43 |
 | | |
 | SHA3-224 | 44 |
 | | |
 | SHA3-256 | 45 |
 | | |
 | SHA3-384 | 46 |
 | | |
 | SHA3-512 | 47 |
 +----------+-------+

 N.B. Values are provisional, pending review.

4. Distributing Firmware

 Distributing firmware in a multi-party environment is a difficult
 operation. Each party requires a different subset of data. Some
 data may not be accessible to all parties. Multiple signatures may
 be required from parties with different authority. This topic is
 covered in more depth in [Architecture]

5. Workflow of a device applying a firmware update

 The manifest is designed to work with a pull parser, where each
 section of the manifest is used in sequence. The expected workflow
 for a device installing a manifest is as follows:

 1. Verify the signature of the manifest

 2. Verify the applicability of the manifest (verify PreConditions)

 3. Verify that all installation processors are available

 4. Verify that all dependencies are met

 5. Run PreInstalation Directives

 6. Load the descriptor for the next payload to be installed

Moran & Tschofenig Expires April 25, 2019 [Page 6]

Internet-Draft SUIT Firmware Manifest Format October 2018

 7. Load installation descriptor for the next payload to be
 installed

 8. Install the payload

 9. While there are more payloads to install, go to 5.

 10. Validate PostInstallation Conditions

 11. Run PostInstallation Directives

 When multiple manifests are used for an update, the pull parser is
 not possible to orchestrate in the same manner.

6. The SUIT Manifest

 The SUIT manifest can be used for a variety of purposes throughout
 its lifecycle. The manifest allows:

 1. the Firmware Author to reason about releasing a firmware.

 2. the Network Operator to reason about compatibility of a firmware.

 3. the Device Operator to reason about the impact of a firmware.

 4. the Device Operator to manage distribution of firmware to
 devices.

 5. the Plant Manager to reason about timing and acceptance of
 firmware updates.

 6. the device to reason about the authority & authenticity of a
 firmware prior to installation.

 7. the device to reason about the applicability of a firmware.

 8. the device to reason about the installation of a firmware.

 9. the device to reason about the authenticity of a firmware at
 boot.

 Each of these uses happens at a different stage of the manifest
 lifecycle, so each has different requirements.

 To verify authenticity at boot time, only the smallest portion of the
 manifest is required. This core part of the manifest describes only
 the fully installed firmware and any of its dependencies.

Moran & Tschofenig Expires April 25, 2019 [Page 7]

Internet-Draft SUIT Firmware Manifest Format October 2018

6.1. Severable Elements

 Because the manifest can be used by different actors at different
 times, some parts of the manifest can be removed without affecting
 later stages of the lifecycle. This is called "Severing." Severing
 of information is achieved by separating that information from the
 signed container so that removing it does not affect the signature.
 This means that ensuring authenticity of severable parts of the
 manifest is a requirement for the signed portion of the manifest.
 Severing some parts makes it possible to discard parts of the
 manifest that are no longer necessary. This is important because it
 allows the storage used by the manifest to be greatly reduced. For
 example, no text size limits are needed if text is removed from the
 manifest prior to delivery to a constrained device.

 Elements are made severable by removing them from the manifest,
 encoding them in a bstr, and placing a COSE_Digest of the bstr in the
 manifest so that they can still be authenticated. The COSE_Digest
 typically consumes 10 bytes more than the size of the raw digest,
 therefore elements smaller than (Digest Bits)/8 + 10 SHOULD never be
 severable. Elements larger than (Digest Bits)/8 + 10 MAY be
 severable, while elements that are much larger than (Digest Bits)/8 +
 10 SHOULD be severable.

6.2. Conventions

 The map indices in this encoding are reset to 1 for each map within
 the structure. This is to keep the indices as small as possible.
 The goal is to keep the index objects to single bytes (CBOR positive
 integers 1-23).

 Wherever enumerations are used, they are started at 1. This allows
 detection of several common software errors that are caused by
 uninitialised variables. Positive numbers in enumerations are
 reserved for IANA registration. Negative numbers are used to
 identify application-specific implementations.

 CDDL names are lowerCamelCase and CDDL structures are UpperCamelCase
 so that these names can be directly transcribed into most common
 programming languages, whereas hyphens require translation and CDDL
 prefers hyphens to underscores.

6.3. Payloads

 Payloads can take many forms, for example, binary, hex, s-record,
 elf, binary diff, PEM certificate, CBOR Web Token, serialised
 configuration. These payloads fall into two broad categories: those
 that require installation-time processing and those that do not.

Moran & Tschofenig Expires April 25, 2019 [Page 8]

Internet-Draft SUIT Firmware Manifest Format October 2018

 Binary, PEM certificate, and CBOR Web Token do not require
 installation-time processing. Hex, s-record, elf, and serialised
 configuration require installation-time processing. Binary diff is a
 special case that can be handled either in a pre-processing step or
 in an installation-time step, depending on the architectural
 requirements of the application.

 Some payloads cannot be directly converted to a writable binary
 stream. Hex, s-record, and elf may contain gaps and they have no
 guarantee of monotonic increase of address, which makes pre-
 processing them into a binary stream difficult on constrained
 platforms. Serialised configuration may be unpacked into a
 configuration database, which makes it impossible to preprocess into
 a binary stream, suitable for direct writing.

 This presents two problems for the manifest: first, it must indicate
 that a specialised installer is needed and, second, it cannot provide
 a hash of the payload that is checkable after installation. These
 two problems are resolved in the payloadInstaller and payloadInfo
 sections, respectively.

 Where a specialised installer is needed, a digest is not always
 calculable over an installed payload. For example, an elf, s-record
 or hex file may contain gaps that can contain any data, while not
 changing whether or not an installed payload is valid. Serialised
 configuration may update only some device data rather than all of it.
 This means that the digest cannot always be calculated over an
 installed payload when a specialised installer is used.

7. Manifest Structure

 The manifest is divided into several sections in a hierarchy as
 follows:

 1. The outer wrapper

 1. The authentication wrapper

 2. The manifest

 1. Critical Information

 2. Pre-installation Information / Reference

 3. Payloads

 4. Installation Information / Reference

Moran & Tschofenig Expires April 25, 2019 [Page 9]

Internet-Draft SUIT Firmware Manifest Format October 2018

 5. Post-installation Information / Reference

 6. Text / Reference

 7. COSWID / Reference

 3. Pre-installation Information

 4. Installation Information

 5. Post-installation Information

 6. Text

7.1. Outer wrapper

 This container is just a holder for the other pieces of the manifest.
 The CDDL that describes the wrapper is below:

 OuterWrapper = {
 authenticationWrapper: AuthenticationWrapper,
 manifest: bstr .cbor Manifest,
 ? preInstallExt: bstr .cbor PreInstallationInfo,
 ? installExt: bstr .cbor InstallationInfo,
 ? postInstallExt: bstr .cbor PostInstallationInfo,
 ? textInfoExt: bstr .cbor Text,
 ? coswidExt: bstr .cbor concise-software-identity
 }
 authenticationWrapper = 1
 manifest = 2
 preInstallExt = 3
 installExt = 4
 postInstallExt = 5
 textExt = 6
 coswidExt = 7

 AuthenticationWrapper = COSE_Mac_Tagged / COSE_Sign_Tagged /
 COSE_Mac0_Tagged / COSE_Sign1_Tagged

 The authenticationWrapper contains a cryptographic authentication
 wrapper for the core part of the manifest. This is implemented as a
 COSE_Mac_Tagged or COSE_Sign_Tagged block. The Manifest is
 authenticated by this block in "detached payload" mode. The
 COSE_Mac_Tagged and COSE_Sign_Tagged blocks are described in RFC 8152
 [RFC8152] and are beyond the scope of this document. The
 AuthenticationWrapper MUST come first in the OuterWrapper, regardless
 of canonical encoding of CBOR. All validators MUST reject any

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152

Moran & Tschofenig Expires April 25, 2019 [Page 10]

Internet-Draft SUIT Firmware Manifest Format October 2018

 OuterWrapper that begins with any element other than an
 AuthenticationWrapper.

 Every other element must be wrapped in a bstr to minimize the
 complexity of the code that evaluates the cryptographic integrity of
 the element and to ensure correct serialisation for integrity and
 authenticity checks.

 manifest contains a Manifest structure, which describes the
 payload(s) to be installed and any dependencies on other manifests.

 PreInstallationInfo provides all the information that a device needs
 in order to decide whether and when to install an update

 InstallationInfo provides all the information that a device needs in
 order to process one or more resources into one or more payloads.

 PostInstallationInfo provides the information that a device needs to
 verify that a payload has been installed correctly, any instructions
 for what to do after the payload has been installed, for example
 migration tools.

 Text contains all the human-readable information that describes any
 and all parts of the manifest, its payload(s) and its resource(s).

7.2. Manifest

 The manifest describes the critical metadata for the referenced
 payload(s). In addition, it contains:

 1. a version number for the manifest structure itself

 2. a sequence number

 3. a list of dependencies

 4. a list of payloads

 5. a reference for each of the severable blocks.

 The following CDDL fragment defines the manifest.

Moran & Tschofenig Expires April 25, 2019 [Page 11]

Internet-Draft SUIT Firmware Manifest Format October 2018

 Manifest = {
 manifestVersion : 1,
 sequence : SequenceNumber,
 ? preInstall : PreInstallationInfo / COSE_Digest,
 ? dependencies : [* DependencyInfo],
 ? payloads : [* PayloadInfo],
 ? install : InstallationInfo / COSE_Digest,
 ? postInstall : PostInstallationInfo / COSE_Digest,
 ? text : TextInfo / COSE_Digest,
 ? coswid : concise-software-identity / COSE_Digest
 }

 manifestVersion = 1
 sequence = 2
 preInstall = 3
 dependencies = 4
 payloads = 5
 install = 6
 postInstall = 7
 text = 8
 coswid = 9

 SequenceNumber = uint

 Several fields in the Manifest can be either a CBOR structure or a
 COSE_Digest. In each of these cases, the COSE_Digest provides for a
 severable field. Severable fields are RECOMMENDED to implement. In
 particular, text SHOULD be severable, since most useful text elements
 occupy more space than a COSE_Digest, but are not needed by recipient
 devices. Because COSE_Digest is a CBOR Array and each severable
 element is a CBOR Map, it is straight-forward for a recipient to
 determine whether an element has been severed.

 The manifestVersion indicates the version of serialisation used to
 encode the manifest. Version 1 is the version described in this
 document. manifestVersion is MANDATORY.

 The sequence number is an anti-rollback counter. It also helps
 devices to determine which in a set of manifests is the "root"
 manifest in a given update. Each manifest MUST have a sequence
 number higher than each of its dependencies. It MAY be convenient to
 use a UTC timestamp in seconds as the sequence number. The
 SequenceNumber is MANDATORY.

 preInstall is a digest that uniquely identifies the content of the
 PreInstallationInfo that is packaged in the OuterWrapper. preInstall
 is OPTIONAL within a given Manifest. There MUST be one preInstall in
 at least one Manifest within an Update because PreInstallationInfo

Moran & Tschofenig Expires April 25, 2019 [Page 12]

Internet-Draft SUIT Firmware Manifest Format October 2018

 contains the conditions that define the applicability of the Update
 to specific hardware/firmware versions. preInstall MAY be severable.

 dependencies is a list of DependencyInfo blocks that specify
 manifests that must be present before the current manifest can be
 processed. dependencies is OPTIONAL.

 payloads is a list of PayloadInfo blocks that describe the payloads
 to be installed. payloads is OPTIONAL.

 install is a digest that uniquely identifies the content of the
 InstallationInfo that is packaged in the OuterWrapper. install is
 OPTIONAL. install MAY

 postInstall is a digest that uniquely identifies the content of the
 PostInstallationInfo that is packaged in the OuterWrapper.
 postInstall is OPTIONAL.

 text is a digest that uniquely identifies the content of the Text
 that is packaged in the OuterWrapper. text is OPTIONAL.

 coswid is a digest that uniquely identifies the content of the
 concise-software-identifier that is packaged in the OuterWrapper.
 coswid is OPTIONAL.

7.3. DependencyInfo

 DependencyInfo specifies a manifest that describes one or more
 dependencies of the current manifest.

 The following CDDL describes the DependencyInfo structure.

 DependencyInfo = {
 depDigest : COSE_Digest, ; digest of the resource
 depScope : ComponentIdentifier, ; where the dependency's
 ; payloads will be applied
 ? depUris : UriList ; where to find the resource
 }
 depDigest = 1
 depScope = 2
 depUris = 3

 UriList = [+ [priority: int, uri: tstr]]
 ComponentIdentifier = [* bstr]

 The depDigest specifies the dependency manifest uniquely by
 identifying a particular Manifest structure. The digest is
 calculated over the Manifest structure instead of the COSE

Moran & Tschofenig Expires April 25, 2019 [Page 13]

Internet-Draft SUIT Firmware Manifest Format October 2018

 Sig_structure or Mac_structure. This means that a digest may need to
 be calculated more than once, however this is necessary to ensure
 that removing a signature from a manifest does not break dependencies
 due to missing 'body_protected' and 'body_signed' elements. This is
 also necessary to support the trusted intermediary use case, where an
 intermediary re-signs the Manifest, removing the original signature,
 potentially with a different algorithm, or trading COSE_Sign for
 COSE_Mac.

 The depUris element describes one or more indications of where to
 find the dependency. This element is OPTIONAL when the fetch
 location for a dependency is known implicitly.

 The depScope element contains a ComponentIdentifier. This specifies
 the scope at which the dependency operates. This allows the
 dependency to be forwarded on to a component that is capable of
 parsing its own manifests. It also allows one manifest to be
 deployed to multiple dependent devices without those devices needing
 consistent component hierarchy. This element is MANDATORY.

7.4. PayloadInfo

 Payload Info describes a payload that is ready for installation.
 When representing a payload that requires a specialised installer,
 the Update Authority can provide information to regenerate a digest.

 The following CDDL describes the PayloadInfo structure.

Moran & Tschofenig Expires April 25, 2019 [Page 14]

Internet-Draft SUIT Firmware Manifest Format October 2018

 PayloadInfo = {
 payloadComponent: ComponentIdentifier,
 payloadSize: uint / nil,
 payloadDigest: COSE_Digest,
 ? regenInfo : {
 regenDigest: COSE_Digest
 regenType: int
 ? regenParameters: bstr
 },
 }
 payloadComponent = 1
 payloadSize = 2
 payloadDigest = 3
 regenInfo = 4
 regenDigest = 5
 regenType = 6
 regenParameters = 7

 RegenType = LocationLengthRegenType /
 FileListRegenType /
 KeyListRegenType /
 CustomRegenType

 LocationLengthRegenType = 1
 FileListRegenType = 2
 KeyListRegenType = 3
 CustomRegenType = nint

 RegenParameters = LocationLengthRegenParameters /
 FileListRegenParameters /
 KeyListRegenParameters /
 CustomRegenParameters
 LocationLengthRegenParameters = [* [location: uint, length: uint]]
 FileListRegenParameters = [* file: tstr]
 KeyListRegenParameters = [* key: tstr]
 CustomRegenParameters = bstr

 The payloadComponent element contains a ComponentIdentifier. This
 specifies the module/component/location in which the payload should
 be installed. The meaning of ComponentIdentifier is application-
 specific. In general, the last bstr in the ComponentIdentifier
 defines where to store a payload within a given storage subsystem in
 a Heterogeneous Storage Architecture device, the remainder of the
 elements in the ComponentIdentifier define which storage subsystem to
 use to store the payload. payloadComponent is MANDATORY. When used
 on a single-image device payloadComponent MAY contain 0 elements. On
 multi-image devices, payloadComponent MUST contain at least one
 element.

Moran & Tschofenig Expires April 25, 2019 [Page 15]

Internet-Draft SUIT Firmware Manifest Format October 2018

 payloadSize contains a positive integer that describes the size of
 the ready-to-install payload. Where the payload requires a
 specialised installer, this is the payload prior to installation.
 This element is MANDATORY.

 payloadDigest contains a digest of the payload, prior to
 installation. For payloads that do not require a specialised
 installer, this is the also the post-installation digest. This
 element is MANDATORY.

 regenInfo describes the mechanism for recreating a message digest of
 payload that requires a specialised installer. This element is
 OPTIONAL. This element is OPTIONAL TO IMPLEMENT.

 regenDigest is a Digest that contains the message digest that an
 application should regenerate to verify the installed payload. This
 element is MANDATORY when regenInfo is present.

 regenType is an int that identifies a particular mechanism for
 creating the regenDigest. This element is MANDATORY when regenInfo
 is present.

 regenParameters is a bstr that provides any additional arguments
 needed by the specialised installer. This element is OPTIONAL.

 When message digest regeneration is in place, regenType implies a
 regenParameters structure, as described in the following table:

 +-----------+-----------------------+-------------------------------+
 | regenType | RegenParameters | Description |
 +-----------+-----------------------+-------------------------------+
0	-	Reserved
1	[* [location: uint,	Lists a series of regions to
	length: uint]]	include in the digest
2	[* file: tstr]	Lists a series of files to
		digest
3	[* key: tstr]	Lists a series of keys, whose
		values should be digested
 +-----------+-----------------------+-------------------------------+

 Positive RegenType numbers are reserved for IANA registration.
 Negative numbers are reserved for proprietary, application-specific
 directives.

Moran & Tschofenig Expires April 25, 2019 [Page 16]

Internet-Draft SUIT Firmware Manifest Format October 2018

7.5. PreInstallationInfo

 The recipient processes the PreInstallationInfo in order to determine
 whether the manifest is applicable to it. This check is only needed
 once, so the PreInstallationInfo is severable.

 The following CDDL describes the PreInstallationInfo structure.

 PreInstallationInfo = {
 ? preConditions : [* PreCondition],
 ? preDirectives : [* PreDirective]
 }
 preConditions = 1
 preDirectives = 2

 preConditions contains a list of 0 or more PreCondition structures.

 preDirectives contains a list of 0 or more PreDirective structures.

7.6. PreCondition

 PreCondition structures describe conditions that must be true in
 order for a manifest to be installed. The target device MUST check
 these conditions before any installation is performed. The target
 device MAY check these conditions prior to fetching any dependency
 manifests.

 All updates MUST contain either a device IdCondition or both a vendor
 IdCondition and a class IdCondition. This is to ensure that firmware
 is only ever delivered to compatible devices.

 The following CDDL describes the PreCondition structure.

Moran & Tschofenig Expires April 25, 2019 [Page 17]

Internet-Draft SUIT Firmware Manifest Format October 2018

 PreCondition = IdCondition /
 TimeCondition /
 ImageCondition /
 BatteryLevelCondition /
 CustomCondition
 IdCondition = [vendor : 1, id: Uuid] /
 [class : 2, id: Uuid] /
 [device : 3, id: Uuid]
 Uuid = bstr .size 16

 TimeCondition = [useBy: 4,
 time: Timestamp]
 ImageCondition = [currentContent : 6 ,
 digest: COSE_Digest / nil,
 location: ComponentIdentifier] /
 [notCurrentContent : 7 ,
 digest: COSE_Digest / nil,
 location: ComponentIdentifier]
 BatteryLevelCondition = [batteryLevel: 8,
 level: uint]
 CustomCondition = [nint,
 parameters: bstr]

 Timestamp = uint

 All PreConditions are serialised as a list of one integer and one or
 more parameters. The type of the parameters is dictated by the value
 of the integer. An update that has contradictory preConditions MUST
 be rejected.

 IdCondition describes three conditions: the vendor ID condition, the
 class ID condition, and the device ID condition. Each of these
 conditions present a RFC 4122 [RFC4122] UUID that MUST be matched by
 the installing device in order to consider the manifest valid.

 A device MUST have at least one vendor ID and one class ID. A device
 MAY have one or more device IDs, more than one vendor ID, and/or more
 than one class ID.

 TimeCondition describes one condition: the useBy condition, which can
 be used to specify the last time at which an update should be
 installed. The timestamp is encoded as a POSIX timestamp, that is
 seconds after 1970-01-01 00:00:00. Timestamp conditions MUST be
 evaluated in 64 bits, regardless of encoded CBOR size.

 ImageCondition describes two conditions: the currentContent and the
 notCurrentContent conditions. Both of these conditions specify a

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122

Moran & Tschofenig Expires April 25, 2019 [Page 18]

Internet-Draft SUIT Firmware Manifest Format October 2018

 storage identifier and a digest that the contents of that storage
 identifier should match.

 BatteryLevelCondition provides a mechanism to test a device's battery
 level before installing an update. This condition is for use in
 primary-cell applications, where the battery is only ever discharged.
 For batteries that are charged, BatteryLevelDirective is more
 appropriate, since it defines a "wait" until the battery level is
 sufficient to install the update. BatteryLevelCondition is specified
 in mWh.

 CustomCondition describes any proprietary, application specific
 condition. This is encoded as a negative integer, chosen by the
 firmware developer, and a bstr that encodes the parameters passed to
 system that evaluates the condition matching that integer.

 Positive Condition numbers are reserved for IANA registration.
 Negative numbers are reserved for proprietary, application-specific
 directives. When a negative number is used, the parameters MUST be
 wrapped in a bstr.

7.7. Identifiers

 Many conditions use identifiers to determine whether a manifest
 matches a given recipient or not. These identifiers are defined to
 be RFC 4122 [RFC4122] UUIDs. These UUIDs are explicitly NOT human-
 readable. They are for machine-based matching only.

 A device may match any number of UUIDs for vendor or class
 identifier. This may be relevant to physical or software modules.
 For example, a device that has an OS and one or more applications
 might list one Vendor ID for the OS and one or more additional Vendor
 IDs for the applications. This device might also have a Class ID
 that must be matched for the OS and one or more Class IDs for the
 applications.

 A more complete example: A device has the following physical
 components: 1. A host MCU 2. A WiFi module

 This same device has three software modules: 1. An operating system
 2. A WiFi module interface driver 3. An application

 Suppose that the WiFi module's firmware has a proprietary update
 mechanism and does not support manifest processing. This device can
 report four class IDs:

 1. hardware model/revision

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122

Moran & Tschofenig Expires April 25, 2019 [Page 19]

Internet-Draft SUIT Firmware Manifest Format October 2018

 2. OS

 3. WiFi module model/revision

 4. Application

 This allows the OS, WiFi module, and application to be updated
 independently. To combat possible incompatibilities, the OS class ID
 can be changed each time the OS has a change to its API.

 This approach allows a vendor to target, for example, all devices
 with a particular WiFi module with an update, which is a very
 powerful mechanism, particularly when used for security updates.

7.7.1. Creating UUIDs

 UUIDs MUST be created according to RFC 4122 [RFC4122]. UUIDs SHOULD
 use versions 3, 4, or 5, as described in RFC 4122. Versions 1 and 2
 do not provide a tangible benefit over version 4 for this
 application.

 The RECOMMENDED method to create a vendor ID is: Vendor ID =
 UUID5(DNS_PREFIX, vendor domain name)

 The RECOMMENDED method to create a class ID is: Class ID =
 UUID5(Vendor ID, Class-Specific-Information)

 Class-specific information is composed of a variety of data, for
 example:

 - Model number

 - Hardware revision

 - Bootloader version (for immutable bootloaders)

7.8. PreDirective

 PreDirective structures describe operations that a device MUST
 execute prior to installing an update. For example, shut down
 monitored equipment, enter safe mode, sync cached files to disk, wait
 for another device to be updated, or wait until a specific time.
 Some PreDirectives may appear similar to PreConditions, however there
 is one difference: a PreCondition is evaluated at one time. A
 PreDirective can include a "wait" instruction, that means that the
 evaluation of the manifest does not immediately fail if the condition
 in the PreDirective is not met. Instead, the PreDirective remains
 active, waiting for its condition to be met.

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122

Moran & Tschofenig Expires April 25, 2019 [Page 20]

Internet-Draft SUIT Firmware Manifest Format October 2018

 For example, suppose two devices, A and B. Device B has an "other
 device firmware version" condition, requiring Device A to be at Rev
 2. If both devices are updated from Rev 1 to Rev 2 simultaneously,
 then Device B may fail the PreCondition check if Device A has not
 finished its installation. If a PreDirective is used instead, then
 it can be a "wait for other device firmware version" directive.
 Then, Device B will postpone its update until Device A has finished
 updating.

 The following CDDL describes the PreDirective structure.

 PreDirective = WaitUntilDirective /
 DayOfWeekDirective /
 TimeOfDayDirective /
 BatteryLevelDirective /
 ExternalPowerDirective /
 CustomDirective

 WaitUntilDirective = [1,
 timestamp: uint]
 DayOfWeekDirective = [2, day: 0..6]
 TimeOfDayDirective = [3, hours: 0..23,
 ? minutes: 0..59,
 ? seconds: 0..59]
 BatteryLevelDirective = [4, level: uint]
 ExternalPowerDirective = [5]
 NetworkDisconnectDirective = [6]
 CustomDirective = [nint,
 ? parameters: bstr]

 WaitUntilDirective instructs the target device to wait until a
 specific time to install the update. The timestamp is encoded as a
 POSIX timestamp, that is seconds after 1970-01-01 00:00:00.
 Timestamp conditions MUST be evaluated in 64 bits, regardless of
 encoded CBOR size.

 DayOfWeekDirective instructs the target device to wait until a
 specific day of the week to install the update. The day is encoded
 as days since Sunday, with Sunday being day 0 and Saturday being day
 6.

 TimeOfDayDirective instructs the target device to wait until a
 specific time each day to install the update. When combined with
 DayOfWeekDirective, this can specify a particular time on a
 particular day of the week to install an update. Leap seconds are
 not allowed in the TimeOfDayDirective.

Moran & Tschofenig Expires April 25, 2019 [Page 21]

Internet-Draft SUIT Firmware Manifest Format October 2018

 BatteryLevelDirective defines a directive to wait until the battery
 is above the specified value. This is for use in rechargeable
 battery and energy harvesting devices because it instructs the device
 to wait for a minimum charge. BatteryLevelCondition should be used
 in discharge-only devices. BatteryLevelDirective is specified in
 mWh. Battery Levels MUST be evaluated in 16 bits or more. 32 bit
 evaluation MUST be used for high battery capacity devices (over 65535
 mWh capacity)

 ExternalPowerDirective defines a directive to the device to wait
 until it is connected to an external power source before installing
 the update.

 NetworkDisconnectDirective defines a directive to the device to
 disconnect from the network before installing the update.

 Positive Directive numbers are reserved for IANA registration.
 Negative numbers are reserved for proprietary, application-specific
 directives.

7.9. InstallationInfo

 InstallationInfo contains the information that a device needs in
 order to install a payload. As described in [Payloads], some
 payloads require specialised installers. Where a specialised
 installer is needed, the InstallationInfo block must represent this
 requirement.

 InstallationInfo is described by the following CDDL.

 InstallationInfo = {
 payloadInstallationInfo : [* PayloadInstallationInfo],
 }
 payloadInstallationInfo = 1

 installationInfo contains a list of 0 or more PayloadInstallationInfo
 blocks. PayloadInstallationInfo is described by the following CDDL

Moran & Tschofenig Expires April 25, 2019 [Page 22]

Internet-Draft SUIT Firmware Manifest Format October 2018

 PayloadInstallationInfo = {
 installComponent : ComponentIdentifier
 payloadProcessors : [* Processor],
 ? allowOverride : bool,
 ? payloadInstaller: {
 payloadInstallerID: [* int],
 ? payloadInstallerParameters: bstr,
 }
 }
 installComponent = 1
 payloadProcessors = 2
 allowOverride = 3
 payloadInstaller = 4
 payloadInstallerID = 5
 payloadInstallerParameters = 6

 installComponent defines the component identifier of the component to
 update. This includes both the storage subsystem designator and the
 path within the storage subsystem as the final element of the
 component identifier. This element is MANDATORY.

 payloadProcessors defines where to obtain a resource and how to
 transform it into a payload. This element is MANDATORY. Processors
 MUST be instantiated in a parent-last order.

 The payloadInstaller contains a map of elements that are only needed
 when a specialised payload installer is used. This element is
 OPTIONAL TO IMPLEMENT.

 payloadInstallerID contains an integer that defines which payload
 installer will be used. Positive integers are reserved for IANA
 registration. Negative integers are reserved for application-
 specific payload installers. Default payload installers are listed
 below. This element is MANDATORY when payloadInstaller is defined.

 +--------------------+--------------------------------------+
 | payloadInstallerID | Definition |
 +--------------------+--------------------------------------+
 | [0] | Binary |
 | | |
 | [5, 2] | Intel Hex |
 | | |
 | [5, 3] | Motorola S-Record |
 | | |
 | [6, 1] | Executable and Linkable Format (ELF) |
 | | |
 | [7, 1] | CBOR-encoded data |
 +--------------------+--------------------------------------+

Moran & Tschofenig Expires April 25, 2019 [Page 23]

Internet-Draft SUIT Firmware Manifest Format October 2018

 Note that specialised installer 0 (binary) is typically not necessary
 and SHOULD ONLY be used when one of the other members of the
 payloadInstaller structure is required for a particular application.

 These IDs are chosen to match those chosen for ProcessorIDs.

 payloadInstallerParameters contains a bstr that provides any
 additional arguments needed by the specialised installer. This
 element is OPTIONAL.

7.10. Processor

 Processors define one operation performed in order to modify a
 Resource in one step towards reconstructing the payload.

 All Processors are OPTIONAL to implement.

 Processor = {
 processorId: ProcessorID
 parameters: Digest / COSE_Encrypt / COSE_Encrypt0 /
 int / tstr / bstr / nil,
 inputs: UriList / ComponentIdentifier /
 ProcessorDependencies
 }
 ProcessorID = [* int]
 ProcessorDependencies = {int => int}

 The form of parameters and inputs depends on the processorId.

 ProcessorDependencies is an interger-indexed map of integers. Each
 processor defines its inputs as integers-these are the indicies of
 the map. The inputs to the processor are other processors,
 identified by index in the Processors list. Processors that use the
 ProcessorDependencies input form MUST have an index in the Processors
 list greater than any index listed in ProcessorDependencies. The
 last processor listed in Processors is the processor that generates
 the payload to be installed in the ComponentIdentifier in
 PayloadInstallationInfo.

 processorID contains a list of ints. This is conceptually similar to
 an OID, however, unlike an OID, this list is context-sensitive,
 encoded as a CBOR list, and supports negative numbers. The reasons
 for these distinctions are as follows. Contextual IDs are smaller
 because their use is correlated with their context. CBOR is already
 in use, so it reduces the number of CODECs required. Negative
 numbers allow for non-standard extension of IDs.

Moran & Tschofenig Expires April 25, 2019 [Page 24]

Internet-Draft SUIT Firmware Manifest Format October 2018

 Devices are expected to compare processorIDs, bytewise, as binary
 blobs.

 The first integer represents a broad classification of the processor,
 as defined in the following table.

 +-------+----------+--+
 | ID[0] | Type | Description |
 +-------+----------+--+
0	Reserved	Do not use.
1	Resource	Indicates that the processor sources data by
		reading a resource.
2	Cipher	Encrypts or Decrypts data.
3	Compress	Compresses or Decompresses data.
4	Relocate	Reserved for Relocation.
5	BinText	Packs or Unpacks Binary-to-text encoding
		formats.
6	Object	Reserved for object formats, such as elf.
 +-------+----------+--+

 Each of these classifications has a subset

7.10.1. Resource

 A resource can be either local or remote. Local resources fetch
 ComponentIdentifiers. Remote Resources fetch from URIs.

 +------+--------+------------+---------------------+----------------+
 | ID | Type | Parameters | Inputs | Description |
 +------+--------+------------+---------------------+----------------+
[1,	Remote	Digest	UriList	Fetch a
1]				resource from
				a remote
				location
[1,	Local	Digest	ComponentIdentifier	Fetch a
2]				resource from
				a local
				location
 +------+--------+------------+---------------------+----------------+

Moran & Tschofenig Expires April 25, 2019 [Page 25]

Internet-Draft SUIT Firmware Manifest Format October 2018

7.10.2. Cipher

 Ciphers are typically implemented using a cryptographic container,
 such as a COSE_Encrypt structure. In the context of SUIT Ciphers are
 typically used in decrypt mode, so this is the default behaviour. If
 encrypt mode is needed, then this can be achieved by extending the ID
 as shown in the table below.

 Only one input is used, specified using ProcessorDependencies[0], a
 positive integer index of the data to be processed in the tree.

 Only two Cipher modes are defined, the COSE_Encrypt and COSE_Encrypt0
 Cipher mode2.

 +------+---------------+---------------+----------+-----------------+
 | ID | Type | Parameters | Inputs | Description |
 +------+---------------+---------------+----------+-----------------+
[2,	COSE_Encrypt	COSE_Encrypt	{0 :	Decrypt data
1]			dataIdx}	enveloped by a
				COSE_Encrypt
				structure
[2,	COSE_Encrypt	COSE_Encrypt	{0 :	Encrypt data
1, 2			dataIdx}	enveloped by a
]				COSE_Encrypt
				structure
[2,	COSE_Encrypt0	COSE_Encrypt0	{0 :	Decrypt data
2]			dataIdx}	enveloped by a
				COSE_Encrypt0
				structure
[2,	COSE_Encrypt0	COSE_Encrypt0	{0 :	Encrypt data
2, 2			dataIdx}	enveloped by a
]				COSE_Encrypt0
				structure
 +------+---------------+---------------+----------+-----------------+

 Mode 1 (decrypt) is implied when mode 2 (encrypt) is not specified.

7.10.3. Compress

 A compression/decompression algorithm. Typically, this means that
 the input should contain a valid compression container. Compression
 algorithms are typically used in decompress mode, so this is the
 default behaviour.

Moran & Tschofenig Expires April 25, 2019 [Page 26]

Internet-Draft SUIT Firmware Manifest Format October 2018

 Only one input is used, specified using ProcessorDependencies[0], a
 positive integer index of the data to be processed in the tree.

 +------------+-------+------------+-------------+-------------------+
 | ID | Type | Parameters | Inputs | Description |
 +------------+-------+------------+-------------+-------------------+
[3, 1]	gzip	nil	{0 :	Decompress using
			dataIdx}	gzip
[3, 1, 2	gzip	nil	{0 :	Compress using
]			dataIdx}	gzip
[3, 2]	bzip2	nil	{0 :	Decompress using
			dataIdx}	bzip2
[3, 2, 2	bzip2	nil	{0 :	Compress using
]			dataIdx}	bzip2
[3, 4]	lz4	nil	{0 :	Decompress using
			dataIdx}	lz4
[3, 4, 2	lz4	nil	{0 :	Compress using
]			dataIdx}	lz4
[3, 7]	lzma	nil	{0 :	Decompress using
			dataIdx}	lzma
[3, 7, 2	lzma	nil	{0 :	Compress using
]			dataIdx}	lzma
 +------------+-------+------------+-------------+-------------------+

 Mode 1 (decompress) is implied when mode 2 (compress) is not
 specified.

7.10.4. Relocate

 Relocation is reserved for future use.

7.10.5. BinText

 Packs or unpacks a binary-to-text format.

 WARNING: Some binary-to-text formats can cause significant difficulty
 for a resource-constrained device. They also dramatically increase
 bandwidth over equivalent binary formats, with the worst being hex
 encoding at a 2:1 inflation. The best is base64 at a 4:3 inflation.

Moran & Tschofenig Expires April 25, 2019 [Page 27]

Internet-Draft SUIT Firmware Manifest Format October 2018

 binary-to-text formats are typically used in decode mode, so this is
 the default behaviour.

 Only one input is used, specified using ProcessorDependencies[0], a
 positive integer index of the data to be processed in the tree.

 +---------+---------+------------+-----------+----------------------+
 | ID | Type | Parameters | Inputs | Description |
 +---------+---------+------------+-----------+----------------------+
[5, 1	base64	uint /	{ 0 :	Decode base64 data
]		tstr	dataIdx }	in one of several
				encodings
[5, 1,	base64	uint /	{ 0 :	Decode base64 data
2]		tstr	dataIdx }	in one of several
				encodings
[5, 2	hex	nil	{ 0 :	Decode Intel Hex
]			dataIdx }	data
[5, 2,	hex	nil	{ 0 :	Encode Intel Hex
2]			dataIdx }	data
[5, 3	srecord	nil	{ 0 :	Decode S-Record data
]			dataIdx }	
[5, 3,	srecord	nil	{ 0 :	Encode S-Record data
2]			dataIdx }	
 +---------+---------+------------+-----------+----------------------+

 Mode 1 (decode) is implied when mode 2 (encode) is not specified.

 When base64 is specified, several choices of parameter are available:

 +------+-----------------+--+
 | Type | Value | Description |
 +------+-----------------+--+
uint	1	RFC 4648 [RFC4648] standard base64
uint	2	base64url
tstr	base64	Arbitrary base64, as specified by the
	characterset	character set.
 +------+-----------------+--+

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648

Moran & Tschofenig Expires April 25, 2019 [Page 28]

Internet-Draft SUIT Firmware Manifest Format October 2018

7.10.6. Object

 Object packing and unpacking is reserved for future use.

7.11. PostInstallationInfo

 PostInstallationInfo contains information that the recipient needs in
 order to determine whether an installation has completed successfully
 and whether anything needs to be done after completion. These checks
 and instructions are only needed once, so PostInstallationInfo is
 severable.

 The following CDDL describes the PostInstallationInfo structure.

 PostInstallationInfo = {
 ? postConditions : [* PostCondition],
 ? postDirectives : [* PostDirective]
 }
 postConditions = 1
 postDirectives = 2

 PostCondition = ImageCondition / CustomCondition
 PostDirective = CustomDirective

 postConditions contains a list of 0 or more PostCondition structures.
 postConditions is OPTIONAL and OPTIONAL to implement.

 postDirectives contains a list of 0 or more PostDirective structures.
 postDirectives is OPTIONAL and OPTIONAL to implement.

 PostConditions are used to specify conditions that must be true after
 an update has completed. The ImageCondition specifies a digest of an
 image that must match after application of an update.

 PostDirectives can be used to specify an action taken by the
 recipient after application of an update is complete, such as:

 - Reboot after application

 - Restart designated component when installation is complete

8. Complete CDDL

 A small portion of RFC 8152 [RFC8152] is reproduced in this CDDL so
 that COSE_Digest can be fully defined.

 OuterWrapper = {
 authenticationWrapper: AuthenticationWrapper,

https://datatracker.ietf.org/doc/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8152

Moran & Tschofenig Expires April 25, 2019 [Page 29]

Internet-Draft SUIT Firmware Manifest Format October 2018

 manifest: bstr .cbor Manifest,
 ? preInstallExt: bstr .cbor PreInstallationInfo,
 ? installExt: bstr .cbor InstallationInfo,
 ? postInstallExt: bstr .cbor PostInstallationInfo,
 ? textInfoExt: bstr .cbor Text,
 ? coswidExt: bstr .cbor concise-software-identity
 }
 authenticationWrapper = 1
 manifest = 2
 preInstallExt = 3
 installExt = 4
 postInstallExt = 5
 textExt = 6
 coswidExt = 7

 AuthenticationWrapper = COSE_Mac_Tagged / COSE_Sign_Tagged /
 COSE_Mac0_Tagged / COSE_Sign1_Tagged

 concise-software-identity = any
 AuthenticationWrapper = COSE_Mac_Tagged / COSE_Sign_Tagged /
 COSE_Mac0_Tagged / COSE_Sign1_Tagged

 COSE_Mac_Tagged = any
 COSE_Sign_Tagged = any
 COSE_Mac0_Tagged = any
 COSE_Sign1_Tagged = any
 COSE_Encrypt = any
 COSE_Encrypt0 = any

 COSE_Mac0 = [
 Headers,
 payload : bstr / nil,
 tag : bstr,
]

 Headers = (
 protected : empty_or_serialized_map,
 unprotected : header_map
)

 header_map = {
 Generic_Headers,
 * label => values
 }

 empty_or_serialized_map = bstr .cbor header_map / bstr .size 0

 Generic_Headers = (

Moran & Tschofenig Expires April 25, 2019 [Page 30]

Internet-Draft SUIT Firmware Manifest Format October 2018

 ? 1 => int / tstr, ; algorithm identifier
 ? 2 => [+label], ; criticality
 ? 3 => tstr / int, ; content type
 ? 4 => bstr, ; key identifier
 ? 5 => bstr, ; IV
 ? 6 => bstr, ; Partial IV
 ? 7 => COSE_Signature / [+COSE_Signature] ; Counter signature
)
 COSE_Digest = COSE_Mac0

 Manifest = {
 manifestVersion : 1,
 sequence : SequenceNumber,
 ? preInstall : PreInstallationInfo / COSE_Digest,
 ? dependencies : [* DependencyInfo],
 ? payloads : [* PayloadInfo],
 ? install : InstallationInfo / COSE_Digest,
 ? postInstall : PostInstallationInfo / COSE_Digest,
 ? text : TextInfo / COSE_Digest,
 ? coswid : concise-software-identity / COSE_Digest
 }

 manifestVersion = 1
 sequence = 2
 preInstall = 3
 dependencies = 4
 payloads = 5
 install = 6
 postInstall = 7
 text = 8
 coswid = 9

 SequenceNumber = uint

 DependencyInfo = {
 depDigest : COSE_Digest, ; digest of the resource
 depScope : ComponentIdentifier, ; where the dependency's
 ; payloads will be applied
 ? depUris : UriList ; where to find the resource
 ; applied
 }
 depDigest = 1
 depScope = 2
 depUris = 3

 UriList = [+ [priority: int, uri: tstr]]
 ComponentIdentifier = [* bstr]

Moran & Tschofenig Expires April 25, 2019 [Page 31]

Internet-Draft SUIT Firmware Manifest Format October 2018

 PayloadInfo = {
 payloadComponent: ComponentIdentifier,
 payloadSize: uint / nil,
 payloadDigest: COSE_Digest,
 ? regenInfo : {
 regenDigest: COSE_Digest
 regenType: int
 ? regenParameters: bstr
 },
 }
 payloadComponent = 1
 payloadSize = 2
 payloadDigest = 3
 regenInfo = 4
 regenDigest = 5
 regenType = 6
 regenParameters = 7

 RegenType = LocationLengthRegenType /
 FileListRegenType /
 KeyListRegenType /
 CustomRegenType

 LocationLengthRegenType = 1
 FileListRegenType = 2
 KeyListRegenType = 3
 CustomRegenType = nint

 RegenParameters = LocationLengthRegenParameters /
 FileListRegenParameters /
 KeyListRegenParameters /
 CustomRegenParameters
 LocationLengthRegenParameters = [* [location: uint, length: uint]]
 FileListRegenParameters = [* file: tstr]
 KeyListRegenParameters = [* key: tstr]
 CustomRegenParameters = bstr

 PreInstallationInfo = {
 ? preConditions : [* PreCondition],
 ? preDirectives : [* PreDirective]
 }
 preConditions = 1
 preDirectives = 2

 PreCondition = IdCondition /
 TimeCondition /
 ImageCondition /
 BatteryLevelCondition /

Moran & Tschofenig Expires April 25, 2019 [Page 32]

Internet-Draft SUIT Firmware Manifest Format October 2018

 CustomCondition

 IdCondition = [vendor : 1, id: Uuid] /
 [class : 2, id: Uuid] /
 [device : 3, id: Uuid]
 Uuid = bstr .size 16

 TimeCondition = [useBy: 4,
 time: Timestamp]
 ImageCondition = [currentContent : 6 ,
 digest: COSE_Digest / nil,
 location: ComponentIdentifier] /
 [notCurrentContent : 7 ,
 digest: COSE_Digest / nil,
 location: ComponentIdentifier]
 BatteryLevelCondition = [batteryLevel: 8,
 level: uint]
 CustomCondition = [nint,
 parameters: bstr]

 Timestamp = uint

 PreDirective = WaitUntilDirective /
 DayOfWeekDirective /
 TimeOfDayDirective /
 BatteryLevelDirective /
 ExternalPowerDirective /
 CustomDirective

 WaitUntilDirective = [1,
 timestamp: uint]
 DayOfWeekDirective = [2, day: 0..6]
 TimeOfDayDirective = [3, hours: 0..23,
 ? minutes: 0..59,
 ? seconds: 0..59]
 BatteryLevelDirective = [4, level: uint]
 ExternalPowerDirective = [5]
 NetworkDisconnectDirective = [6]
 CustomDirective = [nint,
 ? parameters: bstr]

 InstallationInfo = {
 payloadInstallationInfo : [* PayloadInstallationInfo],
 }
 payloadInstallationInfo = 1

 PayloadInstallationInfo = {
 installComponent : ComponentIdentifier

Moran & Tschofenig Expires April 25, 2019 [Page 33]

Internet-Draft SUIT Firmware Manifest Format October 2018

 payloadProcessors : [* Processor],
 ? allowOverride : bool,
 ? payloadInstaller: {
 payloadInstallerID: [* int],
 ? payloadInstallerParameters: bstr,
 }
 }
 installComponent = 1
 payloadProcessors = 2
 allowOverride = 3
 payloadInstaller = 4
 payloadInstallerID = 5
 payloadInstallerParameters = 6

 Processor = {
 processorId: ProcessorID
 parameters: COSE_Digest / COSE_Encrypt / COSE_Encrypt0 /
 int / tstr / bstr / nil,
 inputs: UriList / ComponentIdentifier / {int => int}
 }
 ProcessorID = [* int]

 PostInstallationInfo = {
 ? postConditions : [* PostCondition],
 ? postDirectives : [* PostDirective]
 }
 postConditions = 1
 postDirectives = 2

 PostCondition = ImageCondition / CustomCondition
 PostDirective = CustomDirective

 Text = {
 * int => tstr
 }

 NOTE: COSE structures are specified as "any" to enable CDDL tooling
 to process this CDDL without including all of the COSE specification.
 The same consideration applies to concise-software-identifier.

9. Examples

 Note: Line-breaks have been introduced to meet the character line
 limit.

Moran & Tschofenig Expires April 25, 2019 [Page 34]

Internet-Draft SUIT Firmware Manifest Format October 2018

9.1. Unsigned Manifest with One Payload

 OuterWrapper = {
 / authenticationWrapper / 1 : F6 / null /,
 / manifest / 2: h'a3010102020581a301814130021825038444a
 1011829a0f658208caf9283b13666ca4e50f7
 a1eee86ba40b5e6a1d2ca39f7498b6a6a7be8d8d67' /
 {
 \ manifestVersion \ 1 : 1,
 \ sequence \ 2: 1,
 \ payloads \ 5: [
 {
 \ payloadComponent \ 1: [h'30'],
 \ payloadSize \ 2: 37,
 \ payloadDigest \ 3: [
 \ protected \ "a1011829" \ {
 \ alg \ 1 : 41 \ sha-256 \
 } \ ,
 \ unprotected \ {},
 \ payload \ F6 \ null,
 \ tag \ h'8caf9283b13666ca4e50f7a1eee86ba40
 b5e6a1d2ca39f7498b6a6a7be8d8d67'
]
 }
]
 } /
 }

 Raw OuterWrapper: 62 bytes

 a102583aa3010102020581a301814130021825038444a1011829a0f658208c
 af9283b13666ca4e50f7a1eee86ba40b5e6a1d2ca39f7498b6a6a7be8d8d67

9.2. ECDSA secp256r1-signed Manifest with One Payload

 A manifest with payload description only, authenticated by an ECDSA
 signature. The signing key is identified by the Subject Key
 Identifier.

Moran & Tschofenig Expires April 25, 2019 [Page 35]

Internet-Draft SUIT Firmware Manifest Format October 2018

 OuterWrapper = {
 / authenticationWrapper / 1: #98([
 / protected / h'A103182A' / {
 \ content type \ 3 : 42 \ application octet-stream \
 } / ,
 / unprotected / {},
 / payload / null,
 / signatures / [
 [
 / protected / h'A10126' / {
 \ alg \ 1 : -7 \ ECDSA 256 \
 },
 / unprotected / {
 / kid / 4 : h'537ac93ac909e79990914caa00fe87ee
 ea637ef89b5512e5cb6e558a136ff98d'
 } / ,
 / signature / h'304502201d65938ec454354a6e866b468e9
 808db4ef36e97de09f98fda92e9c0e3302f
 c8022100aff871fe581d3f6b831d74e46f9
 acd7a015e5548770b2a437970be9272a7fbaa'
]
]
])
 / manifest / 2: h'a3010102020581a301814130021825038444a1011829a
 0f658208caf9283b13666ca4e50f7a1eee86ba40b5e6a
 1d2ca39f7498b6a6a7be8d8d67' /
 {
 \ manifestVersion \ 1 : 1,
 \ sequence \ 2: 1,
 \ payloads \ 5: [
 {
 \ payloadComponent \ 1: [h'30'],
 \ payloadSize \ 2: 37,
 \ payloadDigest \ 3: [
 \ protected \ "a1011829" \ {
 \ alg \ 1 : 41 \ sha-256 \
 } \ ,
 \ unprotected \ {},
 \ payload \ F6 \ null,
 \ tag \ h'8caf9283b13666ca4e50f7a1eee86ba4
 0b5e6a1d2ca39f7498b6a6a7be8d8d67'
]
 }
]
 } /
 }

 Raw OuterWrapper: 188 bytes

Moran & Tschofenig Expires April 25, 2019 [Page 36]

Internet-Draft SUIT Firmware Manifest Format October 2018

 a201d8628444a103182aa0f6818343a10126a1045820537ac93ac909e79990
 914caa00fe87eeea637ef89b5512e5cb6e558a136ff98d5847304502201d65
 938ec454354a6e866b468e9808db4ef36e97de09f98fda92e9c0e3302fc802
 2100aff871fe581d3f6b831d74e46f9acd7a015e5548770b2a437970be9272
 a7fbaa02583aa3010102020581a301814130021825038444a1011829a0f658
 208caf9283b13666ca4e50f7a1eee86ba40b5e6a1d2ca39f7498b6a6a7be8d8d67

9.3. A ECDSA-signed Raw Binary Payload with Conditions, Text, and
 InstallationInfo

 OuterWrapper = {
 / authenticationWrapper / 1: #98([
 / protected / h'A103182A' / {
 \ content type \ 3 : 42 \ application octet-stream \
 } / ,
 / unprotected / {},
 / payload / null,
 / signatures / [
 [
 / protected / h'A10126' / {
 \ alg \ 1 : -7 \ ECDSA 256 \
 },
 / unprotected / {
 / kid / 4 : h'537ac93ac909e79990914caa00
 fe87eeea637ef89b5512e5cb6e
 558a136ff98d'
 } / ,
 / signature /"3045022100830cf142cc4adf563392dc7e043
 0000158bf3720b28b7cea388b0f1a5f8918a8
 02201def2df34d6abd3b17c3425573ff2b7ca
 cae3dd085e11dfc23bf0c60be51b7da"
]
]
])
 / manifest / 2: h'a60101020203a10182820150fa6b4a53d5ad5fdfbe9de
 663e4d41ffe8202506e04d3c2488759e4a597b5e7cd49
 76530581a301814130021825038444a1011829a0f6582
 08caf9283b13666ca4e50f7a1eee86ba40b5e6a1d2ca3
 9f7498b6a6a7be8d8d6706a10181a2018141300281a20
 182010103820076687474703a2f2f666f6f2e6261722f
 62617a2e62696e088444a1011829a0f658204e2714598
 479d8b6634805df5019ef3420edff0329894acc91de8c
 8de16fb0cf' /
 {
 \ manifestVersion \ 1 : 1,
 \ sequence \ 2 : 2,
 \ preInstall \ 3 : {
 \ preConditions 1 : [

Moran & Tschofenig Expires April 25, 2019 [Page 37]

Internet-Draft SUIT Firmware Manifest Format October 2018

 [\ vendorId \ 1, h'fa6b4a53d5ad5fdfbe9de663e4d41ffe'],
 [\ classId \ 2, h'6e04d3c2488759e4a597b5e7cd497653']
]
 },
 \ payloads \ 5: [
 {
 \ payloadComponent \ 1: [h'30'],
 \ payloadSize \ 2: 37,
 \ payloadDigest \ 3: [
 \ protected \ "a1011829" \ {
 \ alg \ 1 : 41 \ sha-256 \
 } \ ,
 \ unprotected \ {},
 \ payload \ F6 \ null,
 \ tag \ h'8caf9283b13666ca4e50f7a1eee86ba4
 0b5e6a1d2ca39f7498b6a6a7be8d8d67'
]
 }
],
 \ install \ 6 : {
 \ payloadInstallationInfo \ 1 : [
 {
 \ installComponent \ 1 : [h'30'],
 \ payloadProcessors \ 2 : [
 {
 \ processorId \ 1 :
 [1,1] \ remote resource \ ,
 \ inputs \ 3 : [
 0, "http://foo.bar/baz.bin"
]
 }
]
 }
]
 },
 \ textInfo \ 8 : [
 \ protected \ "a1011829" \ {
 \ alg \ 1 : 41 \ sha-256 \
 } \ ,
 \ unprotected \ {},
 \ payload \ F6 \ null,
 \ tag \ "4e2714598479d8b6634805df5019ef342
 0edff0329894acc91de8c8de16fb0cf"
]
 }
 / textInfoExt / 6 : h'a10178c84c6f72656d20697073756d20646f6c6f7
 22073697420616d65742c20636f6e736563746574
 75722061646970 697363696e6720656c69742e20

Moran & Tschofenig Expires April 25, 2019 [Page 38]

Internet-Draft SUIT Firmware Manifest Format October 2018

 4e756e63207365642074696e636964756e7420616
 e74652c206120736f64616c6573206c6967756c61
 2e205068617365 6c6c757320756c6c616d636f72
 706572206f64696f20636f6d6d6f646f206970737
 56d20656765737461732c207669746165206c6163
 696e6961206c656f206f726e6172652e205375737
 0656e646973736520706f7375657265207365642e' /
 {
 \ updateDescription \ 1 : "Lorem ipsum dolor sit amet,
 consectetur adipiscing elit.
 Nunc sed tincidunt ante, a
 sodales ligula. Phasellus
 ullamcorper odio commodo ipsum
 egestas, vitae lacinia leo ornare.
 Suspendisse posuere sed."
 } /
 }

 Raw OuterWrapper: 522 bytes

 a301d8628444a103182aa0f6818343a10126a1045820537ac93ac909e79990914ca
 a00fe87eeea637ef89b5512e5cb6e558a136ff98d58473045022100830cf142cc4a
 df563392dc7e0430000158bf3720b28b7cea388b0f1a5f8918a802201def2df34d6
 abd3b17c3425573ff2b7cacae3dd085e11dfc23bf0c60be51b7da0658cca10178c8
 4c6f72656d20697073756d20646f6c6f722073697420616d65742c20636f6e73656
 374657475722061646970697363696e6720656c69742e204e756e63207365642074
 696e636964756e7420616e74652c206120736f64616c6573206c6967756c612e205
 0686173656c6c757320756c6c616d636f72706572206f64696f20636f6d6d6f646f
 20697073756d20656765737461732c207669746165206c6163696e6961206c656f2
 06f726e6172652e2053757370656e646973736520706f7375657265207365642e02
 58b9a60101020203a10182820150fa6b4a53d5ad5fdfbe9de663e4d41ffe8202506
 e04d3c2488759e4a597b5e7cd4976530581a301814130021825038444a1011829a0
 f658208caf9283b13666ca4e50f7a1eee86ba40b5e6a1d2ca39f7498b6a6a7be8d8
 d6706a10181a2018141300281a20182010103820076687474703a2f2f666f6f2e62
 61722f62617a2e62696e088444a1011829a0f658204e2714598479d8b6634805df5
 019ef3420edff0329894acc91de8c8de16fb0cf

 Text severed (textInfoExt deleted from OuterWrapper): 315 bytes

 a201d8628444a103182aa0f6818343a10126a1045820537ac93ac909e79990914ca
 a00fe87eeea637ef89b5512e5cb6e558a136ff98d58473045022100830cf142cc4a
 df563392dc7e0430000158bf3720b28b7cea388b0f1a5f8918a802201def2df34d6
 abd3b17c3425573ff2b7cacae3dd085e11dfc23bf0c60be51b7da0258b9a6010102
 0203a10182820150fa6b4a53d5ad5fdfbe9de663e4d41ffe8202506e04d3c248875
 9e4a597b5e7cd4976530581a301814130021825038444a1011829a0f658208caf92
 83b13666ca4e50f7a1eee86ba40b5e6a1d2ca39f7498b6a6a7be8d8d6706a10181a
 2018141300281a20182010103820076687474703a2f2f666f6f2e6261722f62617a

Moran & Tschofenig Expires April 25, 2019 [Page 39]

Internet-Draft SUIT Firmware Manifest Format October 2018

 2e62696e088444a1011829a0f658204e2714598479d8b6634805df5019ef3420edf
 f0329894acc91de8c8de16fb0cf

10. IANA Considerations

 Several registries will be required for:

 - standard Conditions

 - standard Directives

 - standard Processors

 - standard text values

 Editor's Note: A few registries would be good to allow easier
 allocation of new features.

11. Security Considerations

 This document is about a manifest format describing and protecting
 firmware images and as such it is part of a larger solution for
 offering a standardized way of delivering firmware updates to IoT
 devices. A more detailed discussion about security can be found in
 the architecture document [Architecture].

12. Mailing List Information

 The discussion list for this document is located at the e-mail
 address suit@ietf.org [1]. Information on the group and information
 on how to subscribe to the list is at

https://www1.ietf.org/mailman/listinfo/suit [2]

 Archives of the list can be found at: https://www.ietf.org/mail-
archive/web/suit/current/index.html [3]

13. Acknowledgements

 We would like to thank the following persons for their support in
 designing this mechanism:

 - Milosch Meriac

 - Geraint Luff

 - Dan Ros

 - John-Paul Stanford

https://www1.ietf.org/mailman/listinfo/suit
https://www.ietf.org/mail-archive/web/suit/current/index.html
https://www.ietf.org/mail-archive/web/suit/current/index.html

Moran & Tschofenig Expires April 25, 2019 [Page 40]

Internet-Draft SUIT Firmware Manifest Format October 2018

 - Carsten Bormann

 - Henk Birkholz

 - Oyvind Ronningstad

 - Frank Audun Kvamtro

 - Krzysztof Chruscinski

 - Andrzej Puzdrowski

 - Michael Richardson

 - David Brown

 Finally, we would like to thank the IETF SUIT working group chairs,
 Dave Thaler, David Waltermire, and Russ Housley, for their support.

14. References

14.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
RFC 8152, DOI 10.17487/RFC8152, July 2017,

 <https://www.rfc-editor.org/info/rfc8152>.

14.2. Informative References

 [Architecture]
 Moran, B., Meriac, M., Tschofenig, H., and D. Brown, "A
 Firmware Update Architecture for Internet of Things
 Devices", draft-ietf-suit-architecture-01 (work in
 progress), July 2018.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://datatracker.ietf.org/doc/html/draft-ietf-suit-architecture-01

Moran & Tschofenig Expires April 25, 2019 [Page 41]

Internet-Draft SUIT Firmware Manifest Format October 2018

 [Information]
 Moran, B., Tschofenig, H., and H. Birkholz, "Firmware
 Updates for Internet of Things Devices - An Information
 Model for Manifests", draft-ietf-suit-information-model-01
 (work in progress), July 2018.

14.3. URIs

 [1] mailto:suit@ietf.org

 [2] https://www1.ietf.org/mailman/listinfo/suit

 [3] https://www.ietf.org/mail-archive/web/suit/current/index.html

Authors' Addresses

 Brendan Moran
 Arm Limited

 EMail: Brendan.Moran@arm.com

 Hannes Tschofenig
 Arm Limited

 EMail: hannes.tschofenig@gmx.net

https://datatracker.ietf.org/doc/html/draft-ietf-suit-information-model-01
https://www1.ietf.org/mailman/listinfo/suit
https://www.ietf.org/mail-archive/web/suit/current/index.html

Moran & Tschofenig Expires April 25, 2019 [Page 42]

