
DTN Research Group                                            W. Moreira
Internet-Draft                                                 P. Mendes
Expires: April 25, 2013                      SITI, Universidade Lusofona
                                                             R. Ferreira
                                                            E. Cerqueira
                                      ITEC, Universidade Federal do Para
                                                        October 22, 2012

Opportunistic Routing based on Users Daily Life Routine
draft-moreira-dlife-01

Abstract

   This document is written in the context of the Delay Tolerant
   Networking Research Group and will be presented for reviewing by that
   group. This document defines dLife, an opportunistic routing protocol
   that takes advantage of time-evolving social structures. dLife
   belongs to the family of social-aware opportunistic routing protocols
   for intermittently connected networks. dLife operates based on a
   representation of the dynamics of social structures as a weighted
   contact graph, where the weights (i.e., social strengths) express how
   long a pair of nodes is in contact over different period of times. It
   considers two complementary utility functions: Time-Evolving Contact
   Duration (TECD) that captures the evolution of social interaction
   among pairs of users in the same daily period of time, over
   consecutive days; and TECD Importance (TECDi) that captures the
   evolution of user's importance, based on its node degree and the
   social strength towards its neighbors, in different periods of time.
   It is intended for use in wireless networks where there is no
   guarantee that a fully connected path between any source -
   destination pair exists at any time, a scenario where traditional
   routing protocols are unable to deliver bundles. Such networks can be
   sparse mesh, in which case intermittent connectivity is due to lack
   of physical connections, or dense mesh, in which case intermittent
   connectivity may be due to high interference or shadowing. In any
   case, intermittent connectivity can also be due to the availability
   of devices (e.g., unavailable due to power saving rules). The
   document presents an architectural overview followed by the protocol
   specification.

Status of this Memo

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.

Moreira, et al.          Expires April 25, 2013                 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79


Internet-Draft                   dLife                  October 22, 2012

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 25, 2012.

Copyright and License Notice

   Copyright (c) 2012 IETF Trust and the persons identified as the
   document authors. All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document. Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document. Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

1. Introduction  . . . . . . . . . . . . . . . . . . . . . . . . .  4
1.1. Applicability of the Protocol . . . . . . . . . . . . . . .  5
1.1.1. Protocol Stack  . . . . . . . . . . . . . . . . . . . .  5
1.1.2. Applicability scenarios . . . . . . . . . . . . . . . .  6
1.1.2.1. Urban Areas Networks  . . . . . . . . . . . . . . .  6
1.1.2.2. Mission-critical Networks . . . . . . . . . . . . .  7

1.2. Relation with the DTN Architecture and Networking Model . .  7
1.3. Differentiation to other Opportunistic Routing Proposal . .  9
1.4. Requirements notation . . . . . . . . . . . . . . . . . . . 10

2. Node Architecture . . . . . . . . . . . . . . . . . . . . . . . 10
2.1. dLife Components  . . . . . . . . . . . . . . . . . . . . . 11
2.2. Routing Algorithm . . . . . . . . . . . . . . . . . . . . . 12
2.2.1. Time-Evolving Contact Duration (TECD) . . . . . . . . . 13
2.2.2. TECD Importance (TECDi) . . . . . . . . . . . . . . . . 14

2.3. Forwarding strategy . . . . . . . . . . . . . . . . . . . . 15
2.3.1. Basic Strategy  . . . . . . . . . . . . . . . . . . . . 15
2.3.2. Prioritized Strategy  . . . . . . . . . . . . . . . . . 15

http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info


Moreira, et al.          Expires April 25, 2013                 [Page 2]



Internet-Draft                   dLife                  October 22, 2012

2.4. Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1. Bundle Agent  . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Lower Layers . . . . . . . . . . . . . . . . . . . . . . 16

3. Protocol Overview . . . . . . . . . . . . . . . . . . . . . . . 17
3.1. Neighbor Sensing Phase  . . . . . . . . . . . . . . . . . . 18
3.2. Information Exchange Phase  . . . . . . . . . . . . . . . . 19
3.2.1. EID Dictionary  . . . . . . . . . . . . . . . . . . . . 20
3.2.2. Operation in the presence of multiples neighbors  . . . 21

3.3. Bundle Reception Policies . . . . . . . . . . . . . . . . . 21
3.3.1. Queueing policy . . . . . . . . . . . . . . . . . . . . 21
3.3.2. Custody Policy  . . . . . . . . . . . . . . . . . . . . 22
3.3.3. Destination Policy  . . . . . . . . . . . . . . . . . . 23

4. Message Formats . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1. Header  . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2. TLV Structure . . . . . . . . . . . . . . . . . . . . . . . 27
4.3. TLVs  . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.1. Hello TLV . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2. ACK TLV . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.3. EID Dictionary TLV  . . . . . . . . . . . . . . . . . . 31
4.3.4. Social TLV  . . . . . . . . . . . . . . . . . . . . . . 33

5. Detailed Operation  . . . . . . . . . . . . . . . . . . . . . . 35
5.1. High Level State Tables . . . . . . . . . . . . . . . . . . 35
5.2. High Level Meta-Data Table  . . . . . . . . . . . . . . . . 38
5.3 Hello Procedure  . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Information Exchange Phase . . . . . . . . . . . . . . . . . 42

6. Security Considerations . . . . . . . . . . . . . . . . . . . . 43
7. Implementation Experience . . . . . . . . . . . . . . . . . . . 45
8. Deployment Experience . . . . . . . . . . . . . . . . . . . . . 47
9.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.1  Normative References  . . . . . . . . . . . . . . . . . . . 48
9.2  Informative References  . . . . . . . . . . . . . . . . . . 49

   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 50



Moreira, et al.          Expires April 25, 2013                 [Page 3]



Internet-Draft                   dLife                  October 22, 2012

1. Introduction

   The pervasive deployment of wireless personal devices is creating the
   opportunity for the development of novel applications. The
   exploitation of such applications with a good performance-cost
   tradeoff is possible by allowing devices to use free spectrum to
   exchange data whenever they are within wireless range, specially in
   scenarios where it is difficult to find an end-to-end path between
   any pair of nodes at any moment. In such scenarios every contact is
   an opportunity to forward data. Hence, there is the need to develop
   networking solutions able to buffer messages at intermediate nodes
   for a longer time than normally occurs in the queues of conventional
   routers (cf. Delay-Tolerant Networking [RFC4838]), and routing
   algorithms able to bring such messages close to a destination, with
   high probability, low delay and costs.

   Most of the proposed routing solutions focus on inter-contact times
   alone [Chaintreau06], while there is still significant investigation
   to understand the nature of such statistics (e.g., power-law,
   behavior dependent on node context). Moreover, the major drawback of
   such approaches is the instability of the created proximity graphs
   [Hui11], which changes with users' mobility.

   A recent trend is investigating the impact that more stable social
   structures (inferred from the social nature of human mobility) have
   on opportunistic routing [Hui11], [Daly07]. Such social structures
   are created based on social similarity metrics that allow the
   identification of the centrality that nodes have in a
   cluster/community. This allows forwarders to use the identified hub
   nodes to increase the probability of delivering messages inside
   (local centrality) or outside (global centrality) a community, based
   on the assumption that the probability of nodes to meet each other is
   proportional to the strength of their social connection.

   A major limitation of approaches that identify social structures,
   such as communities, is the lack of consideration about the dynamics
   of networks, which refers to the evolving structure of the network
   itself, the making and braking of network ties: over a day a user
   meets different people at every moment. Thus, the user's personal
   network changes, and so does the global structure of the social
   network to which he/she belongs.

   When considering dynamic social similarity, it is imperative to
   accurately represent the actual daily interaction among users: it has
   been shown [Hossmann10] that social interactions extracted from
   proximity graphs must be mapped into a cleaner social connectivity
   representation (i.e., comprising only stable social contacts) to
   improve forwarding. This motivates us to specify a routing protocol

https://datatracker.ietf.org/doc/html/rfc4838


Moreira, et al.          Expires April 25, 2013                 [Page 4]



Internet-Draft                   dLife                  October 22, 2012

   aware of the network dynamics, represented by users' daily life
   routine. We focus on the representation of daily routines, since
   routines can be used to identify future interaction among users
   sharing similar movement patterns, interests, and communities
   [Eagle09].

   Existing proposals [Costa08], [Hui11], [Daly07] succeed in
   identifying similarities (e.g., interests) among users, but their
   performance is affected as dynamism derived from users' daily
   routines is not considered. To address this challenge, we propose
   dLife that uses time-evolving social structures to reflect the
   different behavior that users have in different daily periods of
   time: dLife represents the dynamics of social structures as a
   weighted contact graph, where the weights (i.e., social strengths)
   express how long a pair of nodes is in contact over different period
   of times.

   dLife considers two complementary utility functions: Time-Evolving
   Contact Duration (TECD) that captures the evolution of social
   interaction among pairs of users in the same daily period of time,
   over consecutive days; and TECD Importance (TECDi) that captures the
   evolution of user's importance, based on its node degree and the
   social strength towards its neighbors, in different periods of time.

1.1. Applicability of the Protocol

   This section describes the applicability of the dLife protocol in
   terms of the networking protocol stack and in terms of the usage
   scenarios that are representative of the daily life experience of
   most people. The latter aims to check which are the communication
   challenges that can be mitigated by deploying a delay-tolerant
   routing protocol. The focus goes to scenarios involving mission-
   critical environments that represent sporadic situations that require
   a spontaneous and efficient exchange of information, as well as
   communications in urban environments, which can also benefit from the
   existence of a DTN.

   This document does not focus on scenarios such as space networks and
   rural area networks, since space networks rely on the usage of single
   links with extreme long delay, while most of the potential rural area
   scenarios will require a store-and-carry system (ferry type) and not
   so much a store-carry-forward system.

1.1.1. Protocol Stack

   The dLife protocol is expected to interact with the Bundle Protocol
   agent for retrieving information about available bundles and for
   requesting bundles to be sent to another node (cf. section 2.4.1). It



Moreira, et al.          Expires April 25, 2013                 [Page 5]



Internet-Draft                   dLife                  October 22, 2012

   is expected that the associated bundle agents are then able to
   establish a link, over the TCP convergence layer [I-D.irtf-dtnrg-tcp-
   clayer]) or the UDP convergence layer [I-D.irtf-dtnrg-udp-clayer]) to
   perform this bundle transfer.

   In what concerns information needed for the operation of dLife, dLife
   does not impose any requirements for data reliability transfer to
   avoid restricting its applicability. Hence, data exchange may take
   place over transport protocols that do not provide neither message
   segmentation or reliability, nor in order delivery. Hence, dLife
   provides itself the capability to segment protocol messages into
   submessages. Submessages are provided with sequence numbers, and
   this, together with the capability for positive acknowledgements
   allows dLife to operate over an unreliable protocol such as UDP or
   potentially directly over IP. As said for the bundle agent, the
   communication medium used to send dLife messaged can include
   different technologies such as Bluetooth and Wi-Fi.

   Moreover, dLife expects to be able to use bidirectional links for
   information exchange; this allows information exchange to take place
   in both directions over the same link, avoiding the need to establish
   a second link for information exchange in the reverse direction.

1.1.2. Applicability scenarios

   The identified scenarios aim to illustrate the applicability of dLife
   in real scenarios. In technical terms, dLife aims to target networks
   where we may not find any end-to-end path between any pair of nodes
   at some moment in time. The lack of end-to-end path may be due to
   node mobility and availability (e.g., switching off radios), aspects
   that create connectivity patterns that are correlated with the daily
   habits of citizens. Human behavior patterns (often containing daily
   or weekly periodic activities) provide one example where dLife is
   expected to be applicable, independently of the type of personal
   device: it can be of explicit usage (e.g., smartphones) or of
   implicit usage (e.g., embedded devices).

   Scientific results [Moreira12a] [Moreira12b] show that dLife is able
   to benefit from the predictability of human behavior in daily periods
   of time even in the presence of few contacts. However, the behavior
   predictability can be estimated more accurately with a higher number
   of events.

1.1.2.1. Urban Areas Networks

   This seems to be the most challenging scenario to analyze the
   applicability of DTN employing dLife as the store-carry-forward
   routing protocol. A study of DTN routing for urban scenarios may



Moreira, et al.          Expires April 25, 2013                 [Page 6]



Internet-Draft                   dLife                  October 22, 2012

   bring a coherent understanding about the advantages and challenges of
   using a DTN system in the daily life of millions of people. A study
   of the applicability of DTN routing in urban scenarios may benefit
   from a good understanding of the per-person bit density (available
   capacity per second/hour/day) in a major metropolitan area.

   In a urban area there are several examples of networking scenario
   that can gain from the applicability of dLife, such as: Urban " dark"
   places due to high mobility (e.g., fast trains), indoors (e.g.,
   subway systems, in-building) and outdoor (e.g., areas with closed
   APs, areas with significant interference); Off-load of cellular
   networks, since cellular operators do not like to have data traffic
   unrelated to services provided in their networks; The cost of
   cellular wireless data, which decreases the relation quality/price of
   cellular data communications; Networks of embedded objects, which
   will require delay-tolerant communications over short-distance
   wireless interfaces and not over cellular ones.

1.1.2.2. Mission-critical Networks

   At any point, natural catastrophes can happen and such type of
   network can be deployed in order to facilitate rescue and medical
   operations. Another type of situation that a mission-critical network
   may be formed is in hostile environment such as war scenarios.
   Independently of the scenario for its application, this type of
   networks must be readily available through any sort of Wi-Fi enabled
   equipment (PDAs, cell phones, laptops, APs) which are expected to
   cooperate with the aim of helping the dissemination of information.
   Information must reach the interested parties as quickly as possible
   to achieve fast results for the actions being taken.

   In mission-critical networks there are several examples of networking
   scenario that can gain from the applicability of dLife, such as:
   Disaster networks where no (maybe very few) infrastructure is
   available since it may have been destroyed; Military networks, where
   communications can be established using devices carried by soldiers
   as well as other military vehicles and easily deployed equipments.

1.2. Relation with the DTN Architecture and Networking Model

   The DTN architecture introduces the bundle protocol [RFC5050], which
   provides a way for applications to "bundle" an entire session,
   including both data and meta-data, into a single message, or bundle,
   that can be sent as a unit. The bundle protocol provides end-to-end
   addressing and acknowledgments. Hence, dLife is intended to provide
   routing services in a network environment that uses bundles as its
   data transfer mechanism, but could also be used in other intermittent
   environments.

https://datatracker.ietf.org/doc/html/rfc5050


Moreira, et al.          Expires April 25, 2013                 [Page 7]



Internet-Draft                   dLife                  October 22, 2012

   From a networking model perspective, a DTN is a network of self-
   organizing wireless nodes connected by multiple time-varying links,
   and where end-to-end connectivity is intermittent. Even in urban
   scenarios, it is possible to face intermittent connectivity due to
   dark areas, such as inside buildings and metropolitan systems, as
   well as public areas with closed access points or even places
   overcrowded with wireless access points. Unavailability of wireless
   connectivity can be also a result of power-constrained nodes that
   frequently shut down their wireless cards to save energy.

   From a conceptual point of view, a DTN consists of a node meeting
   schedule and workload. A node meeting schedule is a directed
   multigraph where each direct edge between two nodes represents a
   meeting opportunity between them, and it is annotated with a starting
   time of the meeting, the ending time of the meeting, if known, the
   size of the transfer opportunity (i.e., contact capacity), and the
   contact type. The workload is a set of messages. Each message can be
   represented by the source, destination, size, time of creation at the
   source, and priority. In dLife, a contact is defined by the tuple
   <starting time, end time, contact duration> and a message by the
   tuple <source, destination, size>.

   A DTN model encompasses the notion of type of contact or
   connectivity. In current networks, the connectivity of a link or path
   is generally given as a binary state (i.e., connected or
   disconnected). In DTNs, a richer set of connectivity options is
   required to make efficient routing decisions. Most importantly, links
   (and paths, by extension) may provide a scheduled, predicted or
   opportunistic communication.

   Scheduled contacts imply some a priori knowledge about adjacent nodes
   regarding future availability of links for message forwarding.
   Scheduled links are the most typical cases for today's Internet and
   satellite networks. Predicted contacts correspond to communication
   opportunities wherein the probability of knowing whether a link will
   be available at a future point in time is strictly above zero and
   below one. Such links are the result of observed behavior (e.g., a
   person may use its home Internet connection with significant
   probability for any given time period) being characterized using
   statistical estimation. Predicted links are only becoming of serious
   concern recently, namely in ad-hoc wireless networks where node
   mobility may be significant.

   In more challenging environments, such as mission-critical networks
   for instance, the future location of communicating entities may be
   neither known nor predictable. These types of contacts are known as
   opportunistic. Such opportunistic contacts are defined as a chance to
   forward messages towards a specific destination or a group of



Moreira, et al.          Expires April 25, 2013                 [Page 8]



Internet-Draft                   dLife                  October 22, 2012

   destinations. In such unpredictable scenario, it is important to take
   into account the time that a node must wait until it meets another
   node again (i.e., inter-contact time), the duration of these contacts
   (i.e., contact duration), and the quality of the contact in terms of
   the set of information that can be transferred (i.e., contact
   volume).

   Independently of the type of connectivity, a contact in a DTN is
   direction-specific. For example, a dial-up connection originating at
   a customer's home to an Internet Service Provider (ISP) may be
   scheduled from the point of view of the customer but unscheduled from
   the point of view of the ISP. In what concerns contacts, dLife
   assumes direction-specific opportunistic contacts (starting time, end
   time, contact duration) which occur with some probability in pre-
   defined daily time periods.

   Another concept that must be introduced is that of network behavior.
   As networks can be formed on-the-fly, their behavior can either be
   deterministic or stochastic, depending on the type of used links. In
   this draft, we focus on dynamic scenarios where the behavior of the
   network is described in stochastic terms, based on users' mobility
   and social behavior. In a dynamic scenario, users move around
   carrying their personal devices, which opportunistically come into
   contact with each other, resulting in topology changes.

1.3. Differentiation to other Opportunistic Routing Proposal

   Due to intermittent connectivity, routing protocols based on the
   knowledge of end-to-end paths perform poorly, and numerous
   opportunistic routing algorithms have been proposed instead. Some
   opportunistic routing protocols use replicas of the same message to
   combat the inherent uncertainty of future communication opportunities
   between nodes. In order to carefully use the available resources and
   reach short delays, many protocols perform forwarding decisions using
   locally collected knowledge about node behavior to predict which
   nodes are likely to deliver a content or bring it closer to the
   destination.

   We previously identified [Moreira11] that most of the opportunistic
   routing prior-art considered the replication-based forwarding scheme,
   while only 15% were based on single-copy and flooding-based
   forwarding schemes. Among the replication based solutions,
   approximately 69% consider a contact-based approach (e.g., frequency
   of encounters) and 31% (the latest ones) investigate a new trend
   based on social similarity metrics (e.g., community detection).
   Contact-based proposals consider every contact among nodes to update
   the proximity graph and implement metrics such as the number of times
   nodes meet, contact frequency and the last time a contact occurs.



Moreira, et al.          Expires April 25, 2013                 [Page 9]



Internet-Draft                   dLife                  October 22, 2012

   Besides PROPHET [Lindgren04], the most cited replication-based
   proposal, other examples based on contact metric are Prediction
   [Song07], and Encounter -Based Routing [Nelson09].

   Most of the existing opportunistic routing solutions are based on
   some level of replication. Among these proposals, emerge solutions
   based on different representations of social similarity: i) labeling
   users according to their social groups (e.g., Label [Hui07]); ii)
   looking at the importance (i.e., popularity) of nodes (e.g.,
   PeopleRank [Mtibaa10]); iii) combining the notion of community and
   centrality (e.g., SimBet [Daly07] and Bubble Rap [Hui11]); iv)
   considering interests that users have in common (e.g., SocialCast
   [Costa08]). Such prior-art shows that social-based solutions are more
   stable than those which only consider node mobility. However, they do
   not consider the dynamism of users' behavior (i.e., social daily
   routines) and use centrality metrics, which may create bottlenecks in
   the network. Moreover, such approaches assume that communities remain
   static after creation, which is not a realistic assumption. On the
   other hand, prior-art also shows that users have routines that can be
   used to derive future behavior. It has been proven that mapping real
   social interactions to a clean (i.e., more stable) connectivity
   representation is rather useful to improve delivery. With dLife,
   users' daily routines are considered to quantify the time-evolving
   strength of social interactions and so to foresee more accurately
   future social contacts than with proximity graphs inferred directly
   from inter-contact times.

1.4. Requirements notation

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

2. Node Architecture

   In this section we describe the architecture of a dLife node, which
   performs its routing decisions based on two utility functions: TECD
   to forward messages to nodes that have a stronger social relationship
   with the destination than the carrier; TECDi to forward messages to
   nodes that have a higher importance than the carrier.

   With TECD each node computes the average of its contact duration with
   other nodes during the same set of daily time periods over
   consecutive days. Our assumptions is that contact duration can
   provide more reliable information than contact history, or frequency
   when it comes to identifying the strength of social relationships.
   The reason for considering different daily time periods relates to

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119


Moreira, et al.          Expires April 25, 2013                [Page 10]



Internet-Draft                   dLife                  October 22, 2012

   the fact that users present different behavior during their daily
   routines. If the carrier and encountered node have no social
   information towards the destination, forwarding takes place based on
   a second utility function, TECDi.

   We start this section by describing the different components of the
   node architecture, followed by an explanation of how to route
   information based on the dynamics of the network that dLife is able
   to capture by computing TECD and TECDi. Finally, we describe the
   implemented forwarding strategy and the needed interfaces.

2.1. dLife Components

   In order to perform forwarding based on the social daily behavior of
   users, dLife comprises the following main computational elements:

   Social Information Gatherer (SIG) - responsible for: i) keeping
   track of the contact duration of each encounter between nodes;   and,
   ii) obtaining the social weights and importance of   encountered
   nodes (i.e., potential next forwarders). As dLife   considers
   different daily samples, corresponding to different   periods of
   time, it is imperative to keep track of nodes'   contacts in each
   sample. Thus, the contact duration tracker   maintains a list of the
   encountered nodes in every daily   sample. Additionally, upon the
   need to replicate a bundle, SIG   will obtain the social weight
   between the encountered node and   nodes it has met as well as the
   importance of such node.

   Social Weighter (SW) - responsible for determining the social
   weight between nodes according to their social interaction
   throughout their daily routines. At the end of every daily   sample,
   SW will interact with SIG to determine the total   contact time nodes
   spent together and the average duration of   contacts in order to
   compute the social weight between nodes.

   Importance Assigner (IA) - responsible for computing the   importance
   of a node taking into account the importance of   encountered nodes
   and its social weight to such nodes. At the   end of every daily
   sample, IA will interact with SW and SIG in   order to compute the
   importance of a node in the system.

   Social Information Repository (SIR) - responsible for storing a
   list with encountered nodes and contact duration to such nodes.   At
   the end of every daily sample, SIR will also store social   weights
   and importance of the encountered nodes computed by SW   and IA.
   Additionally, SIR will temporarily store the social   weight and
   importance of an encountered node when the need for   replicating a
   bundle arises.



Moreira, et al.          Expires April 25, 2013                [Page 11]



Internet-Draft                   dLife                  October 22, 2012

   Decision Maker (DM) - responsible for deciding whether   replication
   should occur. DM will interact with SIR to obtain   relevant
   information in order to take decisions.

2.2. Routing Algorithm

   The dLife protocol applies the social opportunistic contact paradigm
   to decider whether bundle replication is feasible. Its decision is
   based on social weight (w_(x,y)) towards the bundle's destination or
   on the importance (I(x)) of the encountered node (i.e., potential
   next forwarder) in the system.

   If the encountered node has better relationship with the bundle
   destination than the carrier in a given daily sample, it receives a
   bundle copy, since there is a much greater chance for the encountered
   node to meet the destination in the future. If relationship to the
   bundle destination is unknown, replication happens only if the
   encountered node has higher importance than the carrier.

   In order to compute the social weight between nodes and their
   importance, dLife uses parameters that are determined as nodes
   interact in the system. A brief explanation of the parameters is
   given below.

   CD_(x,y)
        Refers to the contact duration between nodes, i.e., time nodes
        spent in the range of one another, which would allow them to
        exchange information. Within a given daily sample, there could
        happen different contacts with varied lengths.

   TCT_(x,y)
        Refers to the total contact time between nodes within a given
        daily sample. It is given by the sum of all CD_(x,y) in that
        specific daily sample.

   AD_(x,y)
        Refers to the average duration of contacts for the same daily
        sample over different days. It is a Cumulative Moving Average
        (CMA) of the average duration, considering the TCT_(x,y) of the
        current daily sample and average duration in the same daily
        sample of the previous day, AD_(x,y)_old.

   w_(x,y)
        Refers to the social weight between nodes at a given daily
        sample. It reflects the level of social interaction among such
        nodes throughout their daily routines.



Moreira, et al.          Expires April 25, 2013                [Page 12]



Internet-Draft                   dLife                  October 22, 2012

   I_(x)
        Refers to the importance of a node in the system. The importance
        is influenced by how well a node is socially related to other
        important nodes.

   N_(x)
        Refers to the neighbor set of a node x, which it encountered in
        the current daily sample.

   dumping factor (d)
        Refers the level of randomness considered by the forwarding
        algorithm.

   daily sample (Ti)
        Refers to the time period in which the contact duration will be
        measured to determine social weight and node importance.

   As nodes interact, their CD_(x,y) is collected and then used to
   determine TCT_(x,y), AD_(x,y), w_(x,y), and I_(x) at the end of every
   daily sample. The more samples, the more refined the social weight
   and node importance will be. Thus, it is recommended the usage of
   twenty-four (24) daily samples representing each hour of the day.

2.2.1. Time-Evolving Contact Duration (TECD)

   The TECD utility function considers the duration of contacts
   (representing the intensity of social ties among users) and time-
   evolving interactions (reflecting users' habits over different daily
   samples).

   Regarding the notations used in the equations presented in this sub-
   section: sumk(...) denotes summation for k from 1 to n; sumj(...)
   denotes summation for j from i to i+t-1; sumy denotes summation from
   all y belonging to N(x).

   Two nodes may have a social weight, w_(x,y), that depends on the
   average total contact duration they have in that same period of time
   over different days. Within a specific daily sample Ti, node x has n
   contacts with node y, having each contact k a certain contact
   duration, CD_(x,y). At the end of each daily sample, the total
   contact time, TCT_(x,y), between nodes x and y is given by the
   equation below where n is the total number of contacts between the
   two nodes.

   TCT_(x,y) = sumk(CD_(x,y))                                        (1)

   The Total Contact Time between users in the same daily sample over
   consecutive days can be used to estimate the average duration of



Moreira, et al.          Expires April 25, 2013                [Page 13]



Internet-Draft                   dLife                  October 22, 2012

   their contacts for that specific daily sample: the average duration
   of contacts between users x and y during a daily sample Ti in a day
   j, denoted by AD_(x,y) is given by a cumulative moving average of
   their TCT in that same daily sample, TCT_(x,y), and the average
   duration of their contacts during the same daily sample Ti on the
   previous day, denoted by AD_(x,y)_old, as shown in the equation
   below.

   AD_(x,y) = (TCT_(x,y) + (j-1)*AD(x,y)_old)/j                  (2)

   The social strength between users in a specific daily sample Ti may
   also provide some insight about their social strength in consecutive
   k samples in the same day, i+k. This is what we call Time Transitive
   Property. This property increases the probability of nodes being
   capable of transmitting large data chunks, since transmission can be
   resumed in the next daily sample with high probability.

   TECD is able to capture the social strength w_(x,y) between any pair
   of users x and y in a daily sample Ti based on the average duration
   AD_(x,y) of contacts between them in such daily sample and in
   consecutive t-1 samples, where t represents the total number of daily
   samples. When k>t, the corresponding AD_(x,y) value refers to the
   daily sample k-t. In the equation below the time transitive property
   is given by the weight t/(t+k-i), where the highest weight is
   associated to the average contact duration in the current daily
   sample, being it reduced in consecutive samples.

   TECD = w_(x,y) = sumj(t/(t+k-i)*AD_(x,y))                  (3)

2.2.2. TECD Importance (TECDi)

   As social interaction may also be modeled to consider the node
   importance, TECDi computes the importance, I_(x), of a node x (cf.
   equation below), considering the weights of the edges between x and
   all the nodes y in its neighbor set, N_(x), at a specific daily
   sample Ti along with their importance.

   TECDi = I_(x) = (1-d)+d*sumy(w_(x,y) * I_(y) / N_(x))             (4)

   TECDi is based on the PeopleRank function. However, TECDi considers
   not only node importance, but also the strength of social ties
   between bundle holder and potential next hops. Another difference is
   that with TECDi the neighbor set of a node x only includes the nodes
   which have been in contact with node x within a specific daily sample
   Ti, whereas in PeopleRank the neighbor set of a node includes all the
   nodes that ever had a link to node x. Note that the dumping factor
   (d) in the formula is the same used in PeopleRank and represents the
   level of randomness considered by the forwarding algorithm.



Moreira, et al.          Expires April 25, 2013                [Page 14]



Internet-Draft                   dLife                  October 22, 2012

2.3. Forwarding strategy

   Independently of application scenario, each node MUST employ a
   forwarding strategy. However, if the encountered node is the final
   destination of a bundle, the carrier SHOULD prioritize such bundles
   by employing the prioritized forwarding strategy, described below.

   We use the following notation in our descriptions below. Nodes A and
   B are the nodes that encounter each other, and the strategies are
   described as they would be applied by node A.

2.3.1. Basic Strategy

   Forward the bundle only if w_(B,D) > w_(A,D) or I_(B) > I_(A)

   When two nodes A and B meet in any daily sample Ti, node A gets from
   node B the latest list of all neighbors of B, with the weights that B
   has towards each neighbor, as well as the importance of B. To avoid
   unwanted replication, node B also sends a list of the bundles it
   already carries (bundle identifier, plus EID of the destination) in
   addition to a second list of the BUNDLE_DELIVERED set of the latest
   delivered bundles, where BUNDLE_DELIVERED is a threshold configured
   accordingly with the node storage capacity. The information about the
   social weight, importance, bundle list, and acknowledged bundles,
   received from node B are referenced in node A as w_(B,x)_recv,
   I_(B)_recv, bundleList(IDn, destinationEIDx)_recv, and
   ackedBundleList(IDn, destinationEIDx)_recv, respectively.

   For every bundle that A carries in its buffer, and are neither
   carried by B nor previously acknowledged by B, node A sends a copy to
   B if B has already encountered the bundle's destination D and its
   weight in w_(B,D)_recv is greater than A's weight towards this same
   destination D. Otherwise, bundles are replicated if I_(B)_recv is
   greater than A's importance in the current daily sample Ti.

   Finally, node A will update its own ackedBundleList and discard
   bundles which have already been acknowledged as described in Section

3.3.3.

2.3.2. Prioritized Strategy

   Similar to the basic forwarding strategy, being the only difference
   the fact that prior to sending bundles, node A will first send those
   bundles that have node B has destination.

2.4. Interfaces

   This section provides a specification of the two major interfaces



Moreira, et al.          Expires April 25, 2013                [Page 15]



Internet-Draft                   dLife                  October 22, 2012

   required for dLife operation: the interface between the dLife routing
   agent and the bundle agent, and the interface between dLife and the
   lower layers.

2.4.1. Bundle Agent

   The bundle protocol [RFC5050] introduces the concept of a "bundle
   agent" that manages the interface between applications and the
   "convergence layers" that provide the transport of bundles between
   nodes during communication opportunities. This draft extends the
   bundle agent with a routing agent that controls the actions of the
   bundle agent during communication opportunities.

   This section defines the interface to be implemented between the
   bundle agent and the dLife routing agent. The defined interface
   follows the general definition that was defined for the PRoPHET
   proposal.

   In this document we assume that functions in a complete bundle agent
   supporting dLife are distributed in such a way that reception and
   delivery of bundles are not carried out directly by the dLife agent,
   being the bundles placed in a queue available and managed by the
   dLife agent. In this case this interface allows the dLife routing
   agent to be aware of the bundles placed at the node, and allows it to
   inform the bundle agent about the bundles to be sent to a neighbor
   node. Therefore, the bundle agent needs to provide the following
   interface/functionality to the routing agent:

   Get Bundle List
        Returns a list of the stored bundles and their attributes to the
        routing agent.
   Send Bundle
        Makes the bundle agent send a specified bundle.
   Drop Bundle Advice
        Advises the bundle agent that a specified bundle may be dropped
        by the bundle agent if appropriate.

2.4.2 Lower Layers

   To accommodate dLife operation on different types of wireless
   technology, the lower layers SHOULD provide the following
   functionality and interfaces.

   Neighbor discovery and maintenance
        A dLife node needs to: i) know the identity of its neighbors;
        ii) when new neighbors appear; iii) when old neighbors
        disappear. Some wireless networking technologies might already
        contain mechanisms for detecting neighbors and maintaining state

https://datatracker.ietf.org/doc/html/rfc5050


Moreira, et al.          Expires April 25, 2013                [Page 16]



Internet-Draft                   dLife                  October 22, 2012

        about them. Hence, neighbor discovery is not included as a part
        of dLife. The lower layers MUST provide the two functions listed
        below.

   New Neighbor
        Signals the dLife agent that a new node has become a neighbor (a
        node that is currently within communication range of the current
        node, based on the used wireless networking technology). At this
        point dLife should start the Neighbor Sensing procedure as
        mentioned in section 3.1.

   Neighbor Gone
        Signals the dLife agent that one of its neighbors has left.

   Local Address
        An address used by the underlying communication layer (e.g., an
        IP or MAC address) that identifies the address of the sender of
        the current bundle. This address and its format is dependent on
        the communication layer that is being used by the dLife layer.

        If the underlying networking technology does not support
        neighbor discovery and maintenance services, a simple neighbor
        discovery scheme using local broadcasts of beacon messages COULD
        be used, assuming that the underlying layer supports broadcast
        messages. The operation of the protocol is as follows:

          1. Periodically a dLife node does a local broadcast of a
          beacon that contains its identity and address.

          2. Upon reception of a beacon, the following can happen:

            o The sending node is already in the list of active
            neighbors.   Update its entry in the list with the current
            time. At this   point dLife should start the Neighbor
            Sensing procedure as   mentioned in section 3.1.

            o The sending node is not in the list of active neighbors.
            Add   the node to the list of active neighbors and record
            the current   time.

          3. If a beacon has not been received from a node in the list
          of active neighbors within a predefined time period, it should
          be assumed that this node is no longer a neighbor. The entry
          for this node should be removed from the list of active
          neighbors.

3. Protocol Overview



Moreira, et al.          Expires April 25, 2013                [Page 17]



Internet-Draft                   dLife                  October 22, 2012

   This section provides a description of the three operational phases
   of dLife, namely: neighbor sensing, information exchange, and bundle
   reception policies

3.1. Neighbor Sensing Phase

   The operation of dLife depends on how nodes interact, i.e.,
   considering all the potential contact opportunities to exchange
   information. Thus, all nodes running dLife MUST employ a mechanism
   for neighbor discovery (cf. section 2.4.2) and neighbor sensing.

   If the underlying networking technology does not support neighbor
   discovery and maintenance services, a simple neighbor discovery
   scheme using local broadcasts of beacon messages CAN be activated
   during the Neighbor Sensing phase, assuming that the underlying layer
   supports broadcast messages.

   When a node (new or already met) is discovered, dLife performs the
   following operation:

   Start Contact Duration Counting
        dLife starts counting the contact duration for the purpose of
        later computing social weights and importance.

   Hello Procedure
        dLife sets up a link with the neighbor node through the Hello
        message exchange as described in Section 5.3. The Hello message
        exchange allows nodes to exchange information about their End
        Point Identifier (EID) and storage capacity. Once the link has
        been set up the protocol may continue to the Information
        Exchange Phase (cf. Section 3.2), where Hello SYN messages
        should be sent periodically to allow peering nodes to detect
        broken links.

   Stop Contact Duration Counting
        dLife stops counting the contact duration after detecting that
        the neighbor is gone, due to the lack of periodic Hello SYN
        messages.

   In order to make use of this time dependence, dLife maintains a list
   of recently encountered nodes identified by the Endpoint Identifier
   (EID), as described in section 5.2. Each entry of such list includes
   information that the node uses to update the status of the current
   communication session and to gather information about previous
   contacts. The size of this list is controlled, because due to low
   storage capacity of nodes, the information related to neighbors that
   are not in contact and towards which the current node has a social
   weight lower than a predefined threshold SOCIAL_DROP can be dropped



Moreira, et al.          Expires April 25, 2013                [Page 18]



Internet-Draft                   dLife                  October 22, 2012

   from the list.

3.2. Information Exchange Phase

   The Information Exchange phase comprises the transfer of two types of
   meta-data between connected nodes, through different messages
   described in Section 4:

        o EID Dictionary
        o Social Weights and Node Importance (SWNI)

   Upon a communication opportunity, different sets of each type of
   meta-data must be sent in each direction as explained further in this
   section. Each set may be transferred in one or more messages. In case
   a set of meta-data needs more than one message to be completely
   transferred, it may be partitioned by the dLife protocol engine. The
   specification of dLife provides a sub-message mechanism and
   retransmission that allows large messages to be transmitted in
   smaller chunks.

   Each node running dLife is responsible for computing and updating
   their social weights towards previously encountered nodes as well as
   their own importance. Thus, in this operational phase, Social TLVs
   (Type-Length-Value messages), as defined in section 4.3.4, are
   expected to reflect the latest updates regarding SWNI meta-data, as
   well as to include the list of bundles carried by the peering node
   (bundleList) and the list of the latest bundles delivered by the
   peering node (ackedBundleList). Social TLVs are generated throughout
   the information exchange phase upon updates of the SWNI information
   at the end of a daily sample.

   As first step in the Information Exchange Phase one or more messages
   containing EID Dictionary meta-data, EID Dictionary TLVs as defined
   in section 4.3.3, MUST be sent to the peering node, if the list of
   encountered nodes in not empty. Such meta-data contains a dictionary
   of the EIDs of the nodes that will be listed in the Social TLVs (cf.

Section 3.2.1 for more information about this dictionary).

   As a second step, one or more messages containing social meta-data,
   Social TLVs, MUST be sent to the peering node, if the list of
   encountered nodes in not empty. This set of messages contains: i) a
   list with the EIDs of the nodes that the peering nodes have
   encountered so far and their respective social weights towards these
   nodes; ii) the importance of the peering nodes; iii) a list with the
   identifiers of the bundles that the node currently carries and
   respective destinations EIDs; and iv) a list with the latest
   acknowledged bundles identifiers and respective destinations EIDs.



Moreira, et al.          Expires April 25, 2013                [Page 19]



Internet-Draft                   dLife                  October 22, 2012

   As a third step, upon reception and acknowledgment of the complete
   set of these messages, nodes MUST use one of the defined forwarding
   strategies (see Section 2.3) to decide which of the stored bundles
   (cf. Get Bundle List on section 2.4.1) will be transferred to the
   peer, assuming that there are stored bundles.

   The bundles to be sent to the peering node MUST be selected based
   upon the exchanged SWNI, bundleList and ackedBundleList information,
   as well as the available storage capacity on the receiving peering
   node. The bundles to be send by the Bundle Agent (cf. Send Bundle on

section 2.4.1) SHOULD NOT exceed the peering node capacity that MUST
   be indicated by the peer during the Hello procedure. The information
   to be passed to the Bundle Agent includes the number of bundles to be
   send, where each bundle has an ID to be used for acknowledging their
   receipt.

3.2.1. EID Dictionary

   The EID Dictionary, as used in PRoPHET, is a mapping between variable
   length EIDs [RFC4838] and String IDs coded as Self-Delimiting Numeric
   Values (SDNVs - see Section 4.1. of RFC 5050 [RFC5050]).

   This dictionary is used by peering nodes to synchronize the EIDs of
   the nodes that they have encountered before. Each peer MAY add to the
   dictionary by sending a EID Dictionary TLV to its peer. To allow
   either peer to add to the dictionary at any time, the identifiers
   used by each peer are taken from disjoint sets: identifiers
   originated by the node that started the Hello procedure have the
   least significant bit set to 0 (i.e., are even numbers) whereas those
   originated by the other peer have the least significant bit set to 1
   (i.e., are odd numbers). This means that the dictionary can be
   expanded by either node at any point of the information exchange
   phase and the new identifiers can then be used in subsequent TLVs
   until the dictionary is reinitialized.

   The dictionary that is established only persists through a single
   encounter with a node (i.e., while the same link set up by the Hello
   procedure, with the same instance numbers, remains open).

   Having more than one identifier for the same EID does not cause any
   problems. This means that it is possible for the peers to create
   their dictionary entries independently if required by an
   implementation, but this may be inefficient as a dictionary entry for
   an EID might be sent in both directions between the peers. It may be
   required to inspect entries sent by the node that started the Hello
   procedure and thereby eliminate any duplicates before sending the
   dictionary entries from the other peer. Whether postponing sending
   the other peer's entries is more efficient depends on the nature of

https://datatracker.ietf.org/doc/html/rfc4838
https://datatracker.ietf.org/doc/html/rfc5050#section-4.1
https://datatracker.ietf.org/doc/html/rfc5050


Moreira, et al.          Expires April 25, 2013                [Page 20]



Internet-Draft                   dLife                  October 22, 2012

   the physical link technology and the transport protocol used. With a
   genuinely full duplex link it may be faster to accept possible
   duplication and send dictionary entries concurrently in both
   directions. If the link is effectively half-duplex (e.g., Wi-Fi),
   then it will generally be more efficient to wait and eliminate
   duplicates.

   If a node receives EID Dictionary meta-data containing an identifier
   that is already in use, the node MUST confirm that the corresponding
   EID is identical to the EID in the existing entry. Otherwise, the
   node MUST send an ACK TLV (i.e., EID ACK - identifier/EID
   discrepancy) and ignore the EID Dictionary TLV containing the error.
   If a node receives EID Dictionary meta-data that uses an unknown
   identifier (i.e., not in the dictionary), the node MUST send an ACK
   TLV (i.e., EID ACK - unknown EID) message and ignore the TLV
   containing the error.

3.2.2. Operation in the presence of multiples neighbors

   As a node may find itself in the range of more than one potential
   next forwarder, the neighbor sensing mechanism may establish multiple
   information exchanges with each of them.

   If these simultaneous contacts persist for some time, then the
   information exchange process will be periodically rerun for each
   contact according to the configured timer interval, which means that
   different Hello TLVs will be exchanged at different times.

   Based on the receipt time of these Hello TLVs at the sending node, it
   will establish the order for sending out the bundles, considering the
   storage capacity of the different neighbors.

3.3. Bundle Reception Policies

3.3.1. Queueing policy

   Because of limited buffer resources, bundles may need to be dropped
   at some nodes. Although dLife evaluation based on simulations have
   shown little consumption due to limiting replication based on social
   strength, a scheme MUST be used upon an exhaustion of buffer space.
   Hence, each node MUST operate a queueing policy that determines which
   bundles should be available for forwarding.

   This section defines a few basic queueing policies, inline with what
   was proposed for PRoPHET. However, nodes MAY use other policies if
   desired. If not chosen differently due to the characteristics of the
   deployment scenario, nodes SHOULD choose FIFO as the default queueing
   policy.



Moreira, et al.          Expires April 25, 2013                [Page 21]



Internet-Draft                   dLife                  October 22, 2012

   FIFO
        Handle the queue in a First In First Out (FIFO) order. The
        bundle that was first entered into the queue is the first bundle
        to be dropped.

   FLNT
        The bundle that has been forwarded the largest number of times
        is the first to be dropped. For this effect, dLife keeps track
        of the number of times each bundle has been forwarded to other
        nodes.

   STTL
        The bundle that has shortest time-to-live is dropped first. As
        described in [RFC5050], each bundle has a timeout value
        specifying when it no longer is meaningful to its application
        and should be deleted. Since bundles with short remaining time
        to live will soon be dropped anyway, this policy decides to drop
        the bundle with the shortest remaining life time first. To
        successfully use a policy like this, there needs to be some form
        of time synchronization between nodes so that it is possible to
        know the exact lifetimes of bundles.

   DLSW
        The bundle that has a destination with low social weight is
        dropped first. A low social weight means that the carrier may
        not be the best forwarder to this bundle. However, such bundle
        can only be dropped if it was already forwarded for at least a
        Minimum Bundle Forward (MBF) times, which is a minimum number of
        forwards that a bundle must have been forwarded before being
        dropped (if such a bundle exists).

   More than one queueing policy MAY be combined in an ordered set,
   where the first policy is used primarily, the second only being used
   if there is a need to tie-break between bundles given the same
   eviction priority by the primary policy, and so on. It is worth
   noting that obviously nodes MUST NOT drop bundles for which it has
   custody unless the lifetime expires.

3.3.2. Custody Policy

   The concept of custody transfer can be found in [RFC4838]. In general
   terms, the transmission of bundles with the Custody Transfer
   Requested option involves moving bundles "closer" (in terms of some
   routing metric) to their ultimate destination(s) with reliability.
   The nodes receiving these bundles along the way (and agreeing to
   accept the reliable delivery responsibility) are called "custodians".
   The movement of a bundle (and its delivery responsibility) from one
   node to another is called a "custody transfer".

https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc4838


Moreira, et al.          Expires April 25, 2013                [Page 22]



Internet-Draft                   dLife                  October 22, 2012

   The reliability requirement that a custodian accepts can be
   instantiated in different ways: i) deleting the bundle after getting
   a confirmation of a successful custody transfer, which may require
   retransmissions over a reliable transport protocol, such as TCP. In
   this case a bundle has normally one custodian in a moment in time;
   ii) deleting the bundle only after getting an acknowledgment that the
   bundle was delivered to the destination. In this case a bundle can
   have more than one custodian, being the bundle replicated among
   custodians over a non-reliable transport protocol, such as UDP.

   dLife takes no responsibilities for making custody decisions. Such
   decisions should be made by a higher layer. However, dLife insures
   that custodian nodes do not drop bundles for which it has custody
   unless the lifetime expires, or an acknowledge message is received
   for that bundle.

3.3.3. Destination Policy

   When a bundle reaches its destination, a Bundle ACK for that bundle
   is issued. A Bundle ACK is a confirmation that a bundle has been
   delivered to its destination, being that information stored in the
   local bundle queue manageable by the routing agent. When nodes
   exchange Social message TLVs, bundles that have been ACKed are also
   listed. The node that receives this list updates its own list of
   ACKed bundles to be the union of its previous list and the received
   list. To prevent the list of ACKed bundles growing indefinitely, each
   Bundle ACK should have a timeout that MUST NOT be longer than the
   timeout of the bundle to which the ACK corresponds. When a node
   receives a Bundle ACK for a bundle it is carrying, it MUST delete
   that bundle from its queue, since the Bundle ACK indicates that a
   bundle has been delivered to its destination.

   Nodes MAY keep track of which nodes they have sent Bundle ACKs for
   certain bundles to, and MAY in that case refrain from sending
   multiple Bundle ACKs for the same bundle to the same node.

4. Message Formats

   This section defines the message formats of the dLife routing
   protocol. In order to allow for variable length fields, many numeric
   fields are encoded as SDNVs, defined in [RFC5050], as in PRoPHET.
   Since many of the fields are coded as SDNVs, the size and alignment
   of fields indicated in many of the specification diagrams below are
   indicative rather than prescriptive.

   The basic message format shown in Figure 1 consists of a header (see
Section 4.1) followed by a sequence of one or more Type-Length-Value

   components (TLVs) taken from the specifications in Section 4.2.

https://datatracker.ietf.org/doc/html/rfc5050


Moreira, et al.          Expires April 25, 2013                [Page 23]



Internet-Draft                   dLife                  October 22, 2012

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                            Header                             ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                             TLV 1                             ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                .                              |
   ~                                .                              ~
   |                                .                              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                             TLV n                             ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Figure 1: Basic message format

4.1. Header

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Prot_Number  |Version| Flags |    Result     |     Code      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Sender            |           Receiver            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Message Identifier                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |S|      SubMessage Number      |        Length (SDNV)          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      ~                          Message Body                         ~
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Figure 2: dLife Message Header

   Prot_Number (Protocol Number)
        The DTN Routing Protocol Number encoded as 8-bit unsigned
        integer in network bit order. The value of this field is 0. The
        dLife header is organized in this way so that dLife messages MAY
        be sent as the Protocol Data Unit of an IP packet if an IP
        protocol number was allocated for dLife. In its current version



Moreira, et al.          Expires April 25, 2013                [Page 24]



Internet-Draft                   dLife                  October 22, 2012

        dLife is only specified to use UDP transport for dLife messages
        so that the protocol number serves only to identify the dLife
        protocol within DTN. Transmitting dLife packets directly as an
        IP protocol on a public IP network such as the Internet would
        generally not work well because middle boxes such as firewalls
        and NAT boxes would be unlikely to allow the protocol to pass
        through and the protocol does not provide any congestion
        control. However, it could be so used on opportunistic wireless
        networks, which is the goal of dLife. The use of a light
        transport protocol such as UDP, in opposition to TCP, ensures a
        better exploitation of the presumable short contact
        opportunities between peers in a DTN. Due to the lack of
        reliability of UDP, dLife specify an acknowledgement procedure
        to transmit meta-data.

   Version
        The Version of the dLife Protocol. Encoded as a 4-bit unsigned
        integer in network bit order. This document defines version 1.

   Flags
        Reserved field of 4 bits.

   Result
        Since the exchange of dLife messages does not rely on the a
        reliable link (e.g., based on TCP), as a default behavior, the
        controller will acknowledge responses. Hence, dLife messages
        implement the result field that in a response message can have
        two values: "Success," and "Failure". The former indicates a
        success response that may be contained in a single message or
        the final message of a success response spanning multiple
        messages.

        The result field is encoded as a 8-bit unsigned integer in
        network bit order with 7 unused and reserved bits, which were
        included to allow future extension of the protocol . The
        following values are currently defined:

            o Success: Result = 1
            o Failure: Result = 2

   Code
        This field gives further information concerning the result in a
        response message. It is mostly used to pass an error code in a
        failure response, but can also be used to give further
        information in a success response message. In a request message,
        the code field is not used and is set to zero.

        If the Code field indicates that the ACK TLV is included in the



Moreira, et al.          Expires April 25, 2013                [Page 25]



Internet-Draft                   dLife                  October 22, 2012

        message, further information on the successful or failure of the
        message will be found in the ACK TLV, which MUST be the first
        TLV after the header.

        The Code field is encoded as an 8-bit unsigned integer in
        network bit order with 6 unused and reserved bits, which were
        included to allow future extension of the protocol . The
        following values are defined:

            o Generic Response 0x00
            o Submessage Received 0x01
            o ACK TLV in message 0x02

   The "generic response" and the "submessage receiver" values tell us
   that the success or failure indicated in the Result field is related
   to the all message or a submessage, respectively.

   Sender
        This field is the instance number for the link of the sender of
        the dLife message. This instance number identifies a link
        between peering nodes and lasts until the link goes down or when
        the identity of the entity at the other end of the link changes.
        It is randomly generated. This number is a 16-bit number that is
        guaranteed to be unique within the recent past and to change
        when the link or node comes back up after going down. Zero is
        not a valid instance number. Messages sent after the Hello phase
        should use the sender's instance number. The Sender Instance is
        encoded as a 16-bit unsigned integer in network bit order.

   Receiver
        This field is the instance number for the link of the receiver
        of the dLife message. If the sender of the message does not know
        the current number of the receiver, this field MUST be set to
        zero. Messages sent after the Hello procedure should use the
        receiver's instance number. The receiver number is encoded as a
        16-bit unsigned integer in network bit order.

   Message Identifier
        Used to associate a message with its response message. This
        should be set in request messages to a value that is unique for
        the sending host within the recent past. Response messages
        contain the Message Identifier of the request they are
        responding to. The Message Identifier is a 32 bit pattern.

   S-flag
        If S is set (value 1) then the SubMessage Number field indicates
        the total number of SubMessage segments that compose the entire
        message. If it is not set (value 0) then the SubMessage Number



Moreira, et al.          Expires April 25, 2013                [Page 26]



Internet-Draft                   dLife                  October 22, 2012

        field indicates the sequence number of this SubMessage segment
        within the whole message. The S field will only be set in the
        first sub-message of a sequence.

   SubMessage Number
        When a message is segmented because it exceeds the MTU of the
        link layer or otherwise, each segment will include a SubMessage
        Number to indicate its position. Alternatively, if it is the
        first sub-message in a sequence of sub-messages, the S flag will
        be set and this field will contain the total count of SubMessage
        segments. The SubMessage Number is encoded as a 15-bit unsigned
        integer in network bit order. The SubMessage number is
        zerobased, i.e., for a message divided into n sub-messages, they
        are numbered from 0 to (n - 1). For a message that it is not
        divided into sub-messages the single message has the S-flag
        cleared (0) and the SubMessage Number is set to 0 (zero).

   Length
        Length in octets of this message including headers and message
        body. If the message is fragmented, this field contains the
        length of this SubMessage. The Length is encoded as an SDNV.

   Message Body
        The Message Body consists of a sequence of one or more of the
        TLVs specified in Section 4.2.

        The protocol requires information about the link that the
        underlying communication layer MUST provide. This information is
        used in the Hello procedure. Since this information is available
        from the underlying layer, there is no need to carry it in dLife
        messages. The following values are defined to be provided by the
        underlying layer:

   Sender Local Address
        An address used by the underlying communication layer that
        identifies the sender address of the current message. This
        address must be unique among the nodes that can currently
        communicate.

   Receiver Local Address
        An address used by the underlying communication layer that
        identifies the receiver address of the current message. This
        address must be unique among the nodes that can currently
        communicate.

4.2. TLV Structure

   All TLVs have the following format, and can be nested.



Moreira, et al.          Expires April 25, 2013                [Page 27]



Internet-Draft                   dLife                  October 22, 2012

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    TLV Type   |    TLV Flags  |       TLV Length (SDNV)       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      ~                           TLV Data                            ~
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Figure 3: TLV Format

   Type
        Specific TLVs are defined in Section 4.3. The TLV Type is
        encoded as an 8-bit unsigned integer in network bit order.

   TLV Flags
        These are defined per TLV type. Any flags which are specified as
        reserved in specific TLVs SHOULD be transmitted as 0 and ignored
        on receipt.

   TLV Length
        Length of the TLV in octets, including the TLV header and any
        nested TLVs. Encoded as an SDNV.

4.3. TLVs

   This section describes the various TLVs that can be used in dLife
   messages.

4.3.1. Hello TLV

   The Hello TLV is used to set up and maintain a link between two dLife
   nodes. Hello messages are the first TLVs exchanged between nodes when
   they are within range of communication and are used to inform
   neighbors about the EID and storage capacity of the node.

   The Hello sequence must be completed so other TLVs can be exchanged.
   Then, dLife nodes will store the information about each other
   capacities and acknowledge such action, signaling that the
   communication has been established. If during the Hello procedure, an
   ACK is failed to be received, disconnection occurred and link should
   be assumed broken.

   Once a communication link is established between two dLife nodes, the
   Hello TLV will be sent once for each interval with the SYN function
   as defined in the interval timer. If a node experiences the lapse of



Moreira, et al.          Expires April 25, 2013                [Page 28]



Internet-Draft                   dLife                  October 22, 2012

   Hello intervals without receiving a Hello TLV on a connection in the
   EXCHANGE state (cf. Section 5), the connection SHOULD be assumed
   broken.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | TLV type=0x01 |Flags|               TLV Length (SDNV)         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |EIDLength(SDNV)|        Sender EID (SDNV)      | Timer (SDNV)  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Storage  (SDNV)                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Figure 4: Hello TLV Format

   TLV Flags
        The TLV Flags field contains a three bit Hello Function (HF)
        number that specifies one of three functions for the Hello TLV.
        The encoding of the Hello Function is:

            o HEL: HF = 1
            o SYN: HF = 2
            o ACK: HF = 3

   The HEL function is used by a node to send meta-data needed for the
   dLife operation, namely the storage capacity of the node and its EID.
   The SYN function is used to inform both devices that the
   communication link is still up. The ACK function in used by a node to
   acknowledge the reception of an HEL Hello TLV.

   TLV Data

        EID Length
            The EID Length field is used to specify the length of the
            Sender EID field in octets. If the EID has already been sent
            at least once in a message with the current Sender Instance,
            a node MAY choose to set this field to zero, omitting the
            Sender EID from the Hello TLV. The EID Length is encoded as
            an SDNV and the field is thus of variable length.

        Sender EID
            The Sender EID field specifies the EID of the sender that is
            to be used in updating routing information and making
            forwarding decisions. If a node has multiple EIDs, one
            should be chosen for dLife routing. This field is of
            variable length.



Moreira, et al.          Expires April 25, 2013                [Page 29]



Internet-Draft                   dLife                  October 22, 2012

        Timer
            The Timer field is used to inform the receiver of the timer
            value used in the Hello processing of the sender. The timer
            specifies the nominal time between periodic Hello messages.
            It is a constant for the duration of a session. The timer
            field is specified in units of 100 ms and is encoded as an
            SDNV.

        Storage
            This field indicated what is the node's storage capacity.
            Used to inform the potential senders of the node's
            limitations in terms of successful reception of bundles.
            This field is encoded as an SDNV.

4.3.2. ACK TLV

   This ACK TLV can be used by itself or nested in Hello TLV.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | TLV type=0x02 |     Flags     |       TLV Length (SDNV)       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                             ACK Data                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Figure 5: ACK TLV Format

   TLV Flags
        The TLV Flags field carries an identifier for the ACK TLV type
        as an 8-bit unsigned integer encoded in network bit order. A
        range of values is available for private and experimental use in
        addition to the values defined here. The following ACK TLV types
        are defined:
            o Break ACK 0x00
                Used when a node wants to break the connection due to
                the fact that the neighbor has a storage capacity lower
                that its threshold to send bundles.
            o Social ACK 0x01
                Report on the reception of Social TLVs (SWNI, bundleList
                and ackedBundleList).
            o EID ACK (identifier/EID discrepancy) 0x02
                Report on the identifier/EID discrepancy error as
                mentioned in Section 3.2.1.
            o EID ACK (unknown EID) 0x03
                Report on the unknown EID error as mentioned in Section

3.2.1.
            o Reserved 0x04 - 0x7F



Moreira, et al.          Expires April 25, 2013                [Page 30]



Internet-Draft                   dLife                  October 22, 2012

            o Private/Experimental Use 0x80 - 0xFF

   TLV Data
        The contents and interpretation of the TLV Data field are
        specific to the type of ACK TLV. The ACK Type is defined as
        follows:

            EID ACK (identifier/EID discrepancy)
              o String ID causing the discrepancy. o EID string that
              differs the previous value.

            EID ACK (unknown EID)
              o String ID not found in the dictionary.

4.3.3. EID Dictionary TLV

   The EID Dictionary TLV includes the list of EIDs used in making
   routing decisions and is a shared resource (cf. Section 3.2.1) built
   in each of the paired peers. The dictionary can be updated as more
   EID Dictionary TLVs are received.



Moreira, et al.          Expires April 25, 2013                [Page 31]



Internet-Draft                   dLife                  October 22, 2012

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | TLV type=0xA0 |    Reserved   |       TLV Length (SDNV)       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                    String/EID Count (SDNV)                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                                                               ~
      ~           Variable Length Routing Address Strings             ~
      ~                                                               ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                   Routing Address String 1                    ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |        String ID 1 (SDNV)     |         Length (SDNV)         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~            Endpoint Identifier 1 (variable length)            ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                               .                               |
      ~                               .                               ~
      |                               .                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                   Routing Address String n                    ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |        String ID n (SDNV)     |         Length (SDNV)         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~            Endpoint Identifier n (variable length)            ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Figure 6: EID Dictionary TLV Format

   Reserved
        8 unused and reserved bits, which were included to allow future
        extension of the protocol

   String/EID Count
        Number of strings corresponding to the nodes' EIDs the sender
        node has encountered so far. Encoded as SDNV.

   String ID n
        SDNV identifier that is constant for the duration of a session.
        String ID zero is predefined as the node initiating the session
        through sending the Hello message, and String ID one is
        predefined as the node responding with the Hello ACK message.
        These entries do not need to be sent explicitly as the EIDs are
        exchanged during the Hello procedure.

        In order to ensure that the String IDs originated by the two
        peers do not conflict, the String IDs generated in the node that



Moreira, et al.          Expires April 25, 2013                [Page 32]



Internet-Draft                   dLife                  October 22, 2012

        sent the Hello SYN message MUST have their least significant bit
        set to 0 (i.e., are even numbers) and the String IDs generated
        in the node that responded with the Hello ACK message must have
        their least significant bit set to 1 (i.e., they are odd
        numbers).

   Length
        Length of Endpoint Identifier in this entry. Encoded as SDNV.

   Endpoint Identifier n
        Text string representing the Endpoint Identifier. Note that it
        is NOT null terminated as the entry contains the length of the
        identifier.

4.3.4. Social TLV

   This TLV provides the SWNI, bundleList and ackedBundleList
   information, i.e., a list of the nodes that the neighbor node has
   encountered up to that moment along with its social weight towards
   them, the importance of the neighbor node, as well as the lists
   containing bundles being carried by the peering nodes and
   acknowledgements for already delivered bundles (limited to the latest
   BUNDLE_DELIVERED number of bundles). This TLV allows dLife nodes to
   choose the bundles to be sent according to the forwarding strategies
   explained in Section 2.3.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | TLV type=0xA1 |      Flags    |        TLV Length (SDNV)      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Importance Value                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   SWNI String Count (SDNV)                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       String ID 1 (SDNV)      |           Reserved            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           SW value 1                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                               .                               ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       String ID n (SDNV)      |           Reserved            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           SW value n                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Carried Bundle Count (SDNV)                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Moreira, et al.          Expires April 25, 2013                [Page 33]



Internet-Draft                   dLife                  October 22, 2012

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      Carried Bundle ID 1      |       Dest String  ID 1       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                               .                               ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      Carried Bundle ID n      |       Dest String ID n        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                    Acked Bundle Count (SDNV)                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |        Acked Bundle ID 1      |       Dest String ID 1        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                               .                               ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |        Acked Bundle ID n      |       Dest String ID n        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   Figure 7: Social message TLV Format

   TLV Flags
        The encoding of the Header flag field relates to the
        capabilities of the Source node sending the Social message.
              Flag 0: More Social TLVs
              Flag 1 - 7: Reserved

            The "More Social TLVs" flag is set to 1 if the Social
            message requires more TLVs to be sent in order to be fully
            transferred. This flag is set to 0 if this is the final TLV.

   TLV Data
            Importance
              Importance of the node sending the Social message as a 32-
              bit unsigned integer encoded in network bit order.

            SWNI String Count
              Number of entries regarding the SWNI information in the
              TLV. Encoded as SDNV.

            String ID
              String ID of the endpoint identifier of the encountered
              node for which this entry specifies the social weight as
              predefined in a dictionary TLV. This field is of variable
              length. This field is followed by 16 unused and reserved
              bits, which were included to allow future extension of the
              protocol

            SW value
              Social weight between peering node and that specific
              encountered node n as a 32-bit unsigned integer encoded in
              network bit order.



Moreira, et al.          Expires April 25, 2013                [Page 34]



Internet-Draft                   dLife                  October 22, 2012

            Carried Bundle Count
              Number of entries regarding the carried bundle information
              in the TLV. Encoded as SDNV.

            Carried Bundle ID
              Identifiers of the bundles that the sender is currently
              carrying.

            Acked Bundle Count
              Number of entries regarding the acknowledged bundle
              information in the TLV. Encoded as SDNV.

            Acked Bundle ID
              Identifiers of the bundles that the sender has received
              acknowledgements for. This field is of variable length.

            Dest String ID
              String ID of the endpoint identifier of the destination
              for a carried or acknowledged bundle. This field is of
              variable length.

5. Detailed Operation

   This section provides further details about the operation of dLife,
   including state tables . As explained before dLife aims to release
   any assumption about the reliability of the transport protocol, and
   so positive acknowledgements would be necessary to signal successful
   delivery of (sub)messages. In this section the phrase "send a
   message" should be read as *successful* sending of a message,
   signaled by receipt of the appropriate "Success" response. Hence the
   state descriptions below do not explicitly mention positive
   acknowledgements, whether they are being sent or not.

5.1. High Level State Tables

   This section provides the high level state tables for the operation
   of dLife. The next section provides a more detailed view of each part
   of the protocol's operation. The following states are used to define
   the dLife operation:

   SENSING
        This is the state all nodes start in. Nodes remain in this state
        until a new contact opportunity arises. Once a node has sensed
        the presence of a peer (through the Service Discovery Protocol
        (SDP) implemented in the BCL in the current implementation as
        mentioned in Section 7), it will trigger the Hello procedure by
        switching to the HELLO state. Since multiple contacts may
        happen, the node should also remain in the SENSING state in



Moreira, et al.          Expires April 25, 2013                [Page 35]



Internet-Draft                   dLife                  October 22, 2012

        order to detect new contact opportunities. This is handled by
        creating a new thread or process during the transition to the
        HELLO state, which then takes care of the communication with the
        new peer while the parent process remains in state SENSING
        waiting for additional peer to communicate with. In this case
        when the neighbor is no longer available (described as
        'disconnected' in the tables below), the thread or process
        created is destroyed.

   HELLO
        Nodes remain in the HELLO state from when a new contact
        opportunity arises until the Hello procedure is done and nodes
        are connected (which happens when the Hello procedure reaches
        the LINK_UP state as described in Section 5.3 - during this
        procedure, the state LINK_UP and WAIT_HELLO_HEL are used, but
        are not presented here since they are internal to the Hello
        procedure). Once the Hello procedure is done, the node starts
        the information exchange phase and transitions to the EXCHANGE
        state. If while in the HELLO state the node is notified that the
        neighbor is no longer in range, it returns to the SENSING state
        and, if appropriate, MAY destroys any additional process or
        thread created to handle the neighbor.

   EXCHANGE
        With the communication link set, nodes enter the EXCHANGE state
        in which the transmission of dLife meta-data between peers is
        done. The node remains in this state as long as Information
        Exchange Phase TLVs (EID Dictionary, Social, ACK, Hello) are
        being sent and received. If the node is notified that the
        neighbor is no longer in range (through the Service Discovery
        Protocol (SDP) implemented in the BCL (cf. Section 7)  before
        all information have been exchanged, the node returns to the
        SENSING state to await new neighbors.

        In the EXCHANGE state both nodes are able to exchange their EID
        dictionaries and SWNI information. With dLife the exchange of
        information about dictionary, social weight and node importance
        MAY be carried out independently but concurrently with the
        messages multiplexed on a single bidirectional link, or
        alternatively, the exchanges MAY be carried out partially or
        wholly sequentially if appropriate for the implementation. The
        information exchange process is explained in more detail in

Section 3.2.

        When a Social TLV is received the node MUST notify the Bundle
        Agent about the bundles that SHOULD be forwarded to the peer
        node. If the "More Social TLV" flag is set to zero (i.e., no
        more bundles to send), the node restarts the exchange timer.



Moreira, et al.          Expires April 25, 2013                [Page 36]



Internet-Draft                   dLife                  October 22, 2012

        When this timer expires, the node checks if the neighbor is
        still connected by sending a Hello message with the SYN flag.
        Otherwise (i.e., disconnection), the node switches to the
        SENSING state and, if appropriate, MAY destroy any additional
        process or thread created to handle the neighbor.

        If the neighbor is still connected after the exchange timer
        expires, the next information exchange phase MAY have the effect
        of further increasing the probability of selecting this node as
        a forwarder (based on the TECD and TECDi update). If there is
        more than one neighbor connected or other communication
        opportunities have happened since the previous information
        exchange occurred, then the SWNI information changes resulting
        from these other encounters SHALL be passed to the connected
        peer after upon the end of new daily sample. The exchange timer
        is restarted once the information exchange has completed again.

        If one or more new bundles are received by this node while
        waiting for the exchange timer to expire and the TECD and TECDi
        metrics indicate that it would be appropriate to forward some or
        all of the bundles to the connected node, the bundles SHOULD be
        immediately transferred to the connected neighbor.

State: SENSING
    +======================================================================+
    |   Condition  |               Action                    | New State   |
    +==============+=========================================+=============+
    |              | Start Hello procedure for new contact   |   HELLO     |
    + New Contact  +-----------------------------------------+-------------+
    |              | Keep sensing for more contacts          |   SENSING   |
    +======================================================================+

State: HELLO
    +======================================================================+
    |     Condition        |               Action              | New State |
    +======================+===================================+===========+
    | Hello TLV rcvd       |                                   |   HELLO   |
    +----------------------+-----------------------------------+-----------+
    | Hello procedure done |  Start Information Exchange Phase | EXCHANGE  |
    +----------------------+-----------------------------------+-----------+
    | Disconnected         |                                   |  SENSING  |
    +======================================================================+



Moreira, et al.          Expires April 25, 2013                [Page 37]



Internet-Draft                   dLife                  October 22, 2012

State: EXCHANGE
    +===================================================================+
    |    Condition      |               Action              | New State |
    +===================+===================================+===========+
    | On entry          | Start exchange timer              | EXCHANGE  |
    |                   |   Use Hello Timer interval        |           |
    +-------------------+-----------------------------------+-----------+
    | Disconnected      |                                   | SENSING   |
    +-------------------+-----------------------------------+-----------+
    | EID Dict TLV rcvd | Update local EID Dictionary       | EXCHANGE  |
    +-------------------+-----------------------------------+-----------+
    | Social TLV rcvd   | Inform Bundle Agent               | EXCHANGE  |
    +-------------------+-----------------------------------+-----------+
    | More Social TLV   | Restart exchange timer            | EXCHANGE  |
    |    flag = 0       |                                   |           |
    +-------------------+-----------------------------------+-----------+
    | Exchange timer    | Send Hello with SYN flag          | EXCHANGE  |
    |     expires       |                                   |           |
    +-------------------+-----------------------------------+-----------+
    |    New bundle     |                                   | EXCHANGE  |
    +===================================================================+

5.2. High Level Meta-Data Table

   During its operation, dLife makes use of metadata locally stored as a
   consequence of the the exchange of Social TLVs, Hello TLVs and local
   operations. The stored meta-data is used in the computation of social
   weight towards other nodes and its own importance as well as to
   identify itself (cf. Section 2.2). Metadata can be persistent or
   temporary: the former MUST be kept for longer times and the latter is
   replaced as a new daily sample starts.

   Persistent metadata includes the node's own EID, storage capacity
   (StoCap), importance (Imp), EID Dictionary , Average Duration
   (AD_peer) of contacts to peers, and social weight to peer (w_peer).
   Since nodes receive information from neighbors, they must also store
   the peer's EID (EID_peer), peer's storage capacity (StoCap_peer), the
   social weight list of that peer towards other nodes (SocList_peer),
   and the importance of that peer (Imp_peer). Additionally, nodes must
   keep track of number of times the bundles were forwarded (fwd_times)
   as to employ the queueing FLNT policy describe in section 3.3.1.

   The temporary metadata includes contact duration (CD_peer) and total



Moreira, et al.          Expires April 25, 2013                [Page 38]



Internet-Draft                   dLife                  October 22, 2012

   contact time (TCT_peer) for a given peer. This two variables are
   needed since two nodes can be in contact more than once in the same
   daily sample, being CD used to count the duration of the active
   contact, and TCT used to add the time of all contacts in the same
   daily sample.

   In the SENSING state, each node MUST have its own EID and storage
   capacity ready for exchange in the case of a contact. When a contact
   is sensed, a node creates an entry for this potential peer (EID_peer)
   in meta-data table and start counting the duration of this contact
   (CD_peer). Note that the peer EID will only be known in the HELLO
   state.

   If the HELLO state is successfully concluded, the EID_peer is now
   known and new entries for the encountered peer are created (TCT_peer,
   AD_peer, w_peer, and StoCap_peer) in the meta-data table.

   When the EXCHANGE state starts, a node will receive from its peer its
   EID Dictionary, SocList_peer and Imp_peer, which must be stored for
   later deciding in bundle forwarding.

    +------------------------+----------------+
    | EID_own | StoCap | Imp | EID Dictionary |
    +------------------------+----------------+
         |
         +----------+---------+----------+---------+--------+
         | EID_peer | CD_peer | TCT_peer | AD_peer | w_peer |
         +----------+---------+----------+---------+--------+
         |            |                    |
         |            +-----+-----+-----+  +------+------+------+
         |            | CD1 | ... | CDn |  | AD11 | ...  | AD1i |
         |            +-----+-----+-----+  +------+------+------+
         |
         +-------------+--------------+----------+-----------+
         | StoCap_peer | SocList_peer | Imp_peer | fwd_times |
         +-------------+--------------+----------+-----------+
   Figure 8: Meta-data Information

   This meta-data varies in size according to the type of information it
   stores:
      o EID and EID_peer are coded as strings of variable size.

      o StoCap, Stop_peer, Imp, Imp_peer and w_peer are coded as floats
      (32 bits).

      o CD_peer, TCT_peer and AD_peer are coded as long (64 bits).

      o Fwd_times are coded as int (32 bits).

      o EID Dictionary is coded as a HashMap tuple with String ID



Moreira, et al.          Expires April 25, 2013                [Page 39]



Internet-Draft                   dLife                  October 22, 2012

      encoded as SDNV (16 bits) and its equivalent EID of variable
      length (up to 32 bits).

5.3 Hello Procedure

   The hello procedure consists of the exchange of messages comprising
   the header TLV and a single Hello TLV (see Section 4.3.1) with the HF
   (Hello Function) field set to the specified value (HEL, SYN or ACK).

   The rules and state tables for this procedure are shown below with
   the main states and actions to be taken upon the receipt of the
   required information:

      o A timer is required for the periodic generation of Hello SYN and
      ACK messages. The value for this timer is obtained from the timer
      field in the Hello message.

      o The link between peers is only considered available when the
      LINK_UP state is reached.

      o No more than one Hello message with the SYN flag SHOULD be sent
      within the time period specified in the Hello message with the HEL
      flag.

      o Hello messages MAY be exchanged concurrently, but also in a
      sequential manner, depending on the nature of the communication
      medium (full- or half-duplex). In the case of the latter, the
      process MUST be completed in one direction prior to initiating in
      the other one.

   Upon a contact, nodes exchange a Hello HEL message. At this point
   nodes will have information about each other's EID and storage
   capacity. Additionally, a timer value is exchanged so nodes know the
   periodicity of next hello messages in order to signal the arrival of
   the Hello HEL message and to keep the link active.

   At this moment, nodes MUST start counting the duration of contact
   between them. This also implies creating entries for the peer
   (EID_peer) where the contact duration (CD_peer), total connected time
   (TCT_peer), average duration (AD_peer), social weight (w_peer),
   storage capacity (StoCap_peer), social weight list (SocList_peer),
   and the importance (Imp_peer) towards this specific peer are going to
   be maintained and updated. Additionally, a timer for receiving the
   Hello ACK message MUST be started. Up to this point, nodes are in the
   WAIT_HELLO_HEL state.

   A second hello message with the ACK flag MUST be issued to inform
   nodes of the successful receipt of the Hello HEL message. If Hello



Moreira, et al.          Expires April 25, 2013                [Page 40]



Internet-Draft                   dLife                  October 22, 2012

   ACK message does not arrive within the specified time (Hello ACK
   timeout), the link is assumed lost, nodes are disconnected, contact
   duration count MUST stop and variables SHOULD be saved. After this,
   the start of a new hello procedure is required and the nodes remain
   at the WAIT_HELLO_HEL state.

   The link is assumed active upon the receipt of the Hello ACK message.
   This means nodes are connected and ready to shift to the exchange
   information phase. At this point values should be saved in created
   entries and nodes move to the LINK_UP state.

   The Hello SYN message is exchanged in order to keep track of the
   activity in the link, and as long as this message is being received
   the nodes will remain at the LINK_UP state. If the Hello SYN message
   is not received within the specified time (Hello SYN timeout), the
   link is assumed lost and nodes are disconnected. At this point nodes
   MUST stop the contact duration count with the value being saved to
   CD_peer (CD1 ... CDn) variables of each disconnected peer.

   State: WAIT_HELLO_HEL

    +====================================================================+
    | Condition     |               Action              | New State      |
    +===============+===================================+================+
    |               | Start contact duration count      |                |
    +               +-----------------------------------+                +
    | Hello HEL     | Start timer for Hello ACK receipt | WAIT_HELLO_HEL |
    +     rcvd      +-----------------------------------+                +
    |               | Initialize variables              |                |
    +---------------+-----------------------------------+----------------+
    | Hello ACK rcvd| Save variables                    | LINK_UP        |
    +---------------+-----------------------------------+----------------+
    | Hello ACK     | Stop contact duration count       | WAIT_HELLO_HEL |
    +   timeout     +-----------------------------------+                +
    |               | Save variables                    |                |
    +===============+===================================+================+



Moreira, et al.          Expires April 25, 2013                [Page 41]



Internet-Draft                   dLife                  October 22, 2012

   State: LINK_UP

+===========================================================================+
    |     Condition        |               Action              | New State      
|

+======================+===================================+================+
    | Hello SYN timeout    | Stop contact duration count       | WAIT_HELLO_HEL 
|
    +                      +-----------------------------------+                
+
    |                      | Save variables                    |                
|
    +----------------------+-----------------------------------
+----------------+
    | Hello SYN rcvd       |                                   | LINK_UP        
|

+======================+===================================+================+

5.4 Information Exchange Phase

   After the exchange of hello messages, the nodes are in the LINK_UP
   state which will allow the exchange of information. dLife is
   bidirectional and the information exchange processes between a pair
   of nodes (from A to B and vice-versa) are independent and expected to
   run almost entirely concurrently. This is because EID Dictionaries
   MUST be synchronized to allow better performance of the protocol.

   The information exchange phase consists of messages comprising the
   dLife header and EID Dictionary and Social TLVs (see Sections 4.3.3
   and 4.3.4). The rules and state tables are shown below with the main
   states and actions to be taken upon the receipt of the required
   information.

      o No information SHALL be exchanged prior to the hello procedure.

      o An exchange timer MUST be set to keep track whether the link is
      still active for information exchange.

      o Information messages MAY be exchanged concurrently, but also in
      a sequential manner, depending on the nature of the communication
      medium (full- or half-duplex). In the case of the latter, the
      process MUST be completed in one direction prior to initiating in
      the other one.



   Once in the information exchange phase, as soon as nodes enter the
   WAIT_INFO state and they MUST set an information exchange timer and
   send the EID Dictionary in order to synchronize the mapping between
   their identifiers (String ID) and EIDs of nodes they have
   encountered. As the EID dictionary is received, the node will shift
   to the BUILD_SOCIAL_TLV state whether or not problems with the

Moreira, et al.          Expires April 25, 2013                [Page 42]



Internet-Draft                   dLife                  October 22, 2012

   mapping are detected. In the case of EID errors, an ACK TLV with EID
   ACK flag MUST be sent to inform the peer node about problems (cf.
   Sections 3.2.1 and 4.3.2) with the received identifiers (String ID).

   Still in the WAIT_INFO state, if a node gets a Social TLV, it will
   obtain the SWNI, bundleList and ackedBundleList information from its
   peer node. With such information, the node will decide which bundles
   SHOULD be exchanged based on the forwarding strategies (cf. Section

2.3) and will inform the Bundle Agent about the list of bundles that
   SHOULD be forwarded to its peering node.

   The node will remain in the WAIT_INFO state after receiving an ACK
   TLV with the Bundle ACK flag, which means that the bundles forwarded
   by the Bundle Agent arrived at the peer node, and the sending node
   can wait until new bundles are ready to be sent; and also when
   receiving an ACK TLV with the Break ACK flag, which signals that the
   peering node decided to disconnect given its lack of storage
   capacity, and the sending node will wait for information coming from
   other peers.

   As soon as entering the BUILD_SOCIAL_TLV state, the node MUST build
   and send its Social TLV to the peering node and will remain in this
   state until it receives an ACK TLV with the Social ACK flag. The node
   will shift to the WAIT_INFO state upon the receipt of the Social ACK.

   Since dLife updates SWNI information at every daily sample, this can
   influence in the next forwarding decisions. Thus, the node should
   report such updates to its peering node and shift to the
   BUILD_SOCIAL_TLV state.

State: WAIT_INFO

+==============================================================================+
    |     Condition        |               Action              | New 
State         |

+======================+===================================+===================+
    | On entry             | Send EID Dictionary TLV           | 
WAIT_INFO         |
    +                      +-----------------------------------
+                   +
    |                      | Set exchange timer                
|                   |
    +----------------------+-----------------------------------
+-------------------+
    | EID Dictionary rcvd  | Check identifier/EID mapping      | 
BUILD_SOCIAL_TLV  |
    +----------------------+-----------------------------------



+-------------------+
    | EID error            | Report problem                    | 
BUILD_SOCIAL_TLV  |
    |                      | ACK TLV flag EID ACK              
|                   |
    +----------------------+-----------------------------------
+-------------------+
    |                      | Get SWNI, bundleList              
|                   |
    | Social TLV rcvd      | and ackedBundleList information   | 
WAIT_INFO         |
    +                      +-----------------------------------
+                   +
    |                      | Inform Bundle Agent               
|                   |

Moreira, et al.          Expires April 25, 2013                [Page 43]



Internet-Draft                   dLife                  October 22, 2012

    +----------------------+-----------------------------------
+-------------------+
    | Bundle ACK rcvd      | Wait for new bundles              | 
WAIT_INFO         |
    +----------------------+-----------------------------------
+-------------------+
    | Break ACK rcvd       | Disconnect                        | 
WAIT_INFO         |
    +----------------------+-----------------------------------
+-------------------+
    | SWNI updated         | Report peer                       | 
BUILD_SOCIAL_TLV  |

+======================+===================================+===================+

State: BUILD_SOCIAL_TLV

+==============================================================================+
    |     Condition        |               Action              | New 
State         |

+======================+===================================+===================+
    | On entry             | Build and send Social TLV         | 
BUILD_SOCIAL_TLV  |
    +----------------------+-----------------------------------
+-------------------+
    | Social ACK rcvd      |                                   | 
WAIT_INFO         |

+======================+===================================+===================+

6. Security Considerations

   Currently, dLife does not specify any special security measures.
   However, as a routing protocol for opportunistic networks, dLife may
   be a target for various attacks. Such attacks may not be problematic
   if all nodes in the network can be trusted and are working towards a
   common goal. If there is such a set of nodes, but there are also



   malicious nodes, consequent security problems can be solved by
   introducing an authentication mechanism when two nodes meet, for
   example using a Pretty Good Privacy (PGP) system. Thus, only nodes
   that are known to be members of the trusted group of nodes are
   allowed to participate in the dLife routing. This of course
   introduces the additional problem of key distribution, which is out-
   of-scope of this document.

   Examples of possible vulnerabilities are:

        Black Hole Attack
            A malicious node sets its social weights for all

Moreira, et al.          Expires April 25, 2013                [Page 44]



Internet-Draft                   dLife                  October 22, 2012

            destinations to a very high value. This has two effects,
            both causing messages to be drawn towards the black hole,
            instead of to its correct destination: i) depending on
            queueing policy, this might lead to premature dropping of
            the bundle; ii) the social weights reported by the malicious
            node will affect the computation of the node importance.
            This could place the malicious use as the center of any
            communication.

            In this case, a node should raise alert if the social
            weights and node importance that it receives from a new
            neighbor is much higher than the cumulative moving average
            of the information received from all previous nodes. This
            situation can be handle by implementing a trustworthy
            authentication mechanism for pervasive computing, allowing a
            node to get extra confidence that a neighbor will handle
            social weights and node importance in a trustworthy manner.

        Identity Spoofing
            With identity spoofing, a malicious node claims to be
            someone else. This could be used to "steal" the data that
            should be going to a particular node. This will cause these
            bundles to be removed from the network, reducing the chance
            that they will reach their real destination.

            This can be prevented by using authentication between
            pervasive nodes.

        Bundle Store Overflow
            After encountering and receiving the social weights and node
            importance information from the victim, a malicious node may
            generate a large number of fake bundles to the destination
            for which the victim has the social weights. This will cause
            the victim to fill up its bundle storage, possibly at the
            expense of other, legitimate, bundles. This problem is
            transient as the messages will be removed when the victim
            meets the destination and delivers the messages.

            This attack can be prevented by requiring sending nodes to
            sign all bundles they originate. This will allow
            intermediate nodes to verify the integrity of the messages
            before accepting them.

            There are some typical vulnerabilities that are not
            potential problems with dLife such as:

        Fake ACKS
            In this typical situation a malicious node may issue fake



Moreira, et al.          Expires April 25, 2013                [Page 45]



Internet-Draft                   dLife                  October 22, 2012

            ACKs for all bundles (or only bundles for a certain
            destination if the attack is targeted at a single node)
            carried by nodes it meets. The affected bundles will be
            deleted from the network, greatly reducing their probability
            of being delivered to the destination.

            This situation does not occur with dLife since a node can
            only send an ACK to bundles that the current carrier decided
            to forward to it (based on local forwarding policies) and
            not for bundles that the potential malicious node asked to
            be forwarded.

7. Implementation Experience

   The initial implementation of dLife is written in Java for the
   version 1.4.1 of the Opportunistic Network Emulator (ONE), named
   Dlife.java [Moreira12d], which implements the RoutingDecisionEngine
   interface to be used with the DecisionEngineRouter class. The
   implementation contains all the major mechanisms described in this
   document to ensure proper protocol operation. There are however some
   parts that are only specified, such as the queuing policies, and
   other that still need specification, such as the security
   considerations. The implementation considered nodes with limited
   storage resources (2 MB) and restricted communication: WiFi and
   Bluetooth.By running on ONE, the goal of this first implementation
   wast to enable dLife to be tested in different scalable large
   pervasive scenarios (some based on real traces such as the one from
   Cambridge University) with other protocols: PRoPHET and Bubble Rap.
   The three key performance indicators that were studied were average
   message delay, probability of message delivery and protocol cost
   (number of duplicate messages in the network at the time of
   delivery). Experience and feedback from the implementers on early
   versions of the protocol have been incorporated into the current
   version.

   A second implementation of dLife was done in Java using the Android
   API development. The class responsible for routing is known as
   dLifeRouter.java, responsible for making routing decisions based on
   information from other components, such as Social Information
   Gatherer (GIS), Social Weighter (SW), Importance Assigner (IA),
   Social Information Repository (SIR), and Decision Maker (DM),
   abstracted as methods and data structures. The goal was to construct
   a modular design, since its inception, for operation over multiple
   platforms. So far this implementation comprises Android devices.

   Additionally, other classes have been implemented to provide nodes
   with DTN core functionality, direct wireless communication, generic



Moreira, et al.          Expires April 25, 2013                [Page 46]



Internet-Draft                   dLife                  October 22, 2012

   routing capabilities, and secure communications. To implement the
   core of the DTN architecture, a Bundle class was implemented as in

RFC 5050, based on the DTN2, IBR-DTN  and Bytewalla frameworks for
   Linux and Android devices. To allow direct wireless communication a
   common communication medium, Bluetooth Convergence Layer (BCL), was
   created and implemented allowing direct exchange of bundles through
   the Bluetooth interface without the need of a structured WiFi
   network. Generic routing functionalities are provided by the
   implementation of a generic routing class, GenericRouting, that can
   be extended to represent a specific protocol. Secure communications
   are supported by the implementation of a security layer,
   BundleSecurity, implemented according to RFC 6257 Bundle security
   Protocol Specification.

   Regarding the new BCL, which is not present in the current DTN
   available architectures, it was implemented as general as possible to
   allow the interfacing between the Bundle Agent and the communication
   medium regardless of the used routing protocol and operational system
   running on the the devices. However, the current implementation was
   first developed for Android devices and thus the BCL takes advantages
   of some native Bluetooth functionality already implemented in this
   platform, such as the discovery of neighbors and the possibility of
   storing information about them. The implemented BCL
   (BluetoothConvergenceLayer.java) includes the Service Discovery
   Protocol (SDP) for sensing the medium and the Serial Port Profile
   (SPP) for data exchange. It has the RFCOMM as transport protocol and
   run on top on the Logical link control and adaptation protocol
   (L2CAP) which interfaces with the Host Controller Interface (HCI).
   Additionally, the BCL provides a simple reliable data stream and
   supports multiple connections as this is expected to happen in the
   real world. Hence, in the current dLife implementation, messages are
   not transported based on UDP, mas mentioned in Section 4.1, but via
   an interface with the RFCOMM and L2CAP protocol.

   The goal of having two implementations of dLife (for the ONE
   simulator and for the Android platform) is to compare the real-world
   behavior of dLife implemented in real-world devices running a DTN
   implementation regarding the same performance metrics used in the
   simulation settings in ONE. The envisioned scenario refers to a
   collection of mobile wireless nodes carried by people who move
   throughout their daily routines.

   For further details regarding the DTN platform implementation are
   under way, which describes the DTN2, IBR-DTN and Bytewalla
   implementations, together with the extra classes that were
   implemented to provide nodes with DTN core functionality, direct
   wireless communication, generic routing capabilities, and secure
   communications, as well as details on the implementation of BCL and

https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc6257


Moreira, et al.          Expires April 25, 2013                [Page 47]



Internet-Draft                   dLife                  October 22, 2012

   the social-aware opportunistic routing protocol, dLife.

8. Deployment Experience

   Since the beginning of 2012, a DTN test-bed is being created in the
   Amazon region for testing of DTN routing solutions, in the context of
   the DTN-Amazon project, having the University Lusofona and University
   Federal of Para as current partners. The test-bed has currently 10
   devices (3 personal computers with Ubuntu 10.10 Maverick, 3
   smartphones Android 2.3.6 Gingerbread, 4 wireless routers with
   OpenWrt 10.03.1) and will grow until 16 devices (5 WiFi tablets, 5
   smartphones, 2 personal computers and 4 wireless routers).

   The test-bed was initially used to test two different DTN
   implementations: IBR-DTN, organized in a modular form, with a focus
   on embedded systems for easy portability; DTN2, incorporating all
   components of the DTN architecture, divided into modules such as
   Convergence Layers Persistent Store, Bundle Router and more.
   Communication between the modules is based on IPC mechanism (Inter
   Process Communication). DTN2 also has some concern with the issue of
   multi-platform, although its organization is not as modular.

   The two DTN implementations were tested with two applications that
   were able to communicate based on two different routing protocols via
   WiFi interfaces configured in infrastructured mode: i) whisper chat
   application over PRoPHET (IBR-DTN test-bed); and the DTN-AMAZON
   Android security application for surveillance of university campus
   over Epidemic and PRoPHET routing (DTN2).

   The DTN2 implementation was also used to analyze the behavior of a
   network environment with mobility, while the mules were carried by a
   vehicle to enable the exchange of information between two hosts,
   information that was also accessed by an application on a Smartphone
   at one of sides. There were also attempts to deliver the message at a
   speed of 60 km/h, the limit considered by the scientific community so
   that the communication Wi-Fi still works.

   Bytewalla was also deployed to allow the understanding of its
   functionalities. For this, version 3 (version 5 was not yet fully
   functional with sporadic crashes) was installed in the Android
   devices with communication happening through a wireless router among
   such devices. It is important to mention that the bundle would only
   be sent from one device to another, if both were connected to the
   same router. At this moment, the wireless router could not interpret
   bundles, being only used to relay information.

   Then, IBR-DTN was loaded into a wireless router to check whether the



Moreira, et al.          Expires April 25, 2013                [Page 48]



Internet-Draft                   dLife                  October 22, 2012

   bundle would only be sent to the router if the second device were
   also connected. The same behavior was detected showing no
   interoperability whatsoever between the different implementations.

   At the moment the DTN module is fully functional on Android 2.3.6
   Gingerbread (kernel version 2.6.35.7) devices which are able to
   exchange information through their Bluetooth interfaces and based on
   the dLife implementation. For a proof of concept and basic
   operations, initial tests of the dLife implementation are being
   carried out in a controlled test-bed with Android devices  using a
   text messaging application for operation testing, where each node
   sent messages alternating destinations. These tests aim to analyze
   the performance of the dLife, when compared to behavior of other
   social-oblivious opportunistic routing solutions such as Epidemic and
   PROPHET, based on the following metrics: average message delay,
   probability of message delivery and the number of duplicate messages
   in the network at the time of delivery.

   In a later phase, the DTN module with routing functionality will be
   made available for download, allowing its deployment in personal
   devices. In terms operating systems, the intention is to later extend
   the module to Linux nodes and wireless routers.

9.  References

9.1  Normative References

   [Moreira12a] Moreira, W., Mendes, P., and Sargento, S.,
              "Opportunistic Routing Based on Daily Routines," in
              Proceedings of the Sixth IEEE WoWMoM Workshop on Autonomic
              and Opportunistic Communications (AOC 2012), (San
              Francisco, California, USA), June, 2012.

   [Moreira12b] Moreira, W., Souza, M., Mendes, P., and Sargento, S.,
              "Study on the Effect of Network Dynamics on Opportunistic
              Routing" in Proceedings of the Eleventh International
              Conference on Ad-Hoc Networks and Wireless (AdHoc Now
              2012), (Belgrade, Serbia), July, 2012.

   [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC4838] Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst,
              R., Scott, K., Fall, K., and H. Weiss, "Delay-Tolerant
              Networking Architecture", RFC 4838, April 2007.

   [RFC5050] Scott, K. and S. Burleigh, "Bundle Protocol Specification",
RFC 5050, November 2007.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4838
https://datatracker.ietf.org/doc/html/rfc5050


Moreira, et al.          Expires April 25, 2013                [Page 49]



Internet-Draft                   dLife                  October 22, 2012

9.2  Informative References

   [Chaintreau06] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass,
              and J. Scott, "Impact of human mobility on the design of
              opportunistic forwarding algorithms," in Proceedings of
              INFOCOM, (Barcelona, Spain), April, 2006.

   [Costa08] P. Costa, C. Mascolo, M. Musolesi, and G. P. Picco,
              "Socially-aware routing for publish-subscribe in delay-
              tolerant mobile ad hoc networks," Selected Areas in
              Communications, IEEE Journal on, vol. 26, pp. 748- 760,
              June, 2008.

   [Daly07] E. M. Daly and M. Haahr, "Social network analysis for
              routing in disconnected delay-tolerant manets," in
              Proceedings of ACM MobiHoc, (Montreal, Canada), September,
              2007.

   [Eagle09] N. Eagle and A. Pentland, "Eigenbehaviors: identifying
              structure in routine," Behavioral Ecology and
              Sociobiology, vol. 63, pp. 1057-1066, May, 2009.

   [Hossmann10] T. Hossmann, T. Spyropoulos, and F. Legendre, "Know thy
              neighbor: Towards optimal mapping of contacts to social
              graphs for dtn routing," in Proceedings of IEEE INFOCOM,
              (San Diego, USA), March, 2010.

   [Hui07] P. Hui and J. Crowcroft, "How small labels create big
              improvements," in Proceedings of IEEE PERCOM Workshops,
              (White Plains, USA), March, 2007.

   [Hui11] P. Hui, J. Crowcroft, and E. Yoneki, "Bubble rap: social-
              based forward- ing in delay tolerant networks," Mobile
              Computing, IEEE Transactions on, vol. 10, pp. 1576-1589,
              November, 2011.

   [I-D.irtf-dtnrg-tcp-clayer] Demmer, M. and J. Ott, "Delay Tolerant
              Networking TCP Convergence Layer Protocol", draft-irtf-

dtnrg-tcp-clayer-02 (work in progress), November 2008.

   [I-D.irtf-dtnrg-udp-clayer] H. Kruse, S. Ostermann, "UDP Convergence
              Layers for the DTN Bundle and LTP Protocols", draft-irtf-

dtnrg-udp-clayer-00 (work in progress), November 2008.

   [Lindgren04] A. Lindgren, A. Doria, and O. Schelen, "Probabilistic
              routing in intermittently connected networks," in Service
              Assurance with Partial and Intermittent Resources, vol.
              3126 of Lecture Notes in Computer Science, pp. 239--254,

https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-tcp-clayer-02
https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-tcp-clayer-02
https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-udp-clayer-00
https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-udp-clayer-00


Moreira, et al.          Expires April 25, 2013                [Page 50]



Internet-Draft                   dLife                  October 22, 2012

              Springer Berlin / Heidelberg, 2004.

   [Lindgren06] Lindgren, A. and K. Phanse, "Evaluation of Queueing
              Policies and Forwarding Strategies for Routing in
              Intermittently Connected Networks", Proceedings of
              COMSWARE 2006 , January 2006.

   [Moreira11] W. Moreira and P. Mendes, "Survey on Opportunistic
              Routing for Delay/Disruption Tolerant Networks ," Tech.
              Rep. SITI-TR-11-02, SITI, University Lusofona, February
              2011.

   [Moreira_12c] Waldir Moreira, Paulo Mendes, Susana Sargento,
              "Assessment Model for Opportunistic Routing", IEEE Latin
              America Transactions, Vol 10 Issue 3 April 2012

   [Mtibaa10] A. Mtibaa, M. May, M. Ammar, and C. Diot, "Peoplerank:
              Combining social and contact information for opportunistic
              forwarding," in Proceedings of INFOCOM, (San Diego, USA),
              March, 2010.

   [Nelson09] S. Nelson, M. Bakht, and R. Kravets, "Encounter-based
              routing in DTNs," in Proceedings of INFOCOM, (Rio de
              Janeiro, Brazil), April, 2009.

   [RFC6257] Symington, S., Farrell, S., Weiss, H., and P. Lovell,
              "Bundle Security Protocol Specification", RFC 6257, May
              2011.

   [Song07] L. Song and D. F. Kotz, "Evaluating opportunistic routing
              protocols with large realistic contact traces," in
              Proceedings of ACM MobiCom CHANTS, (Montreal, Canada),
              September, 2007.

   [Vahdat00] Vahdat, A. and D. Becker, "Epidemic Routing for Partially
              Connected Ad Hoc Networks", Duke University Technical
              Report CS-200006, April 2000..in 3

Authors' Addresses

              Waldir Moreira
              SITI, Universidade Lusofona
              Campo Grande, 376, Ed. U
              1749-024 Lisboa
              Portugal

              Phone:
              Email: waldir.junior@ulusofona.pt

https://datatracker.ietf.org/doc/html/rfc6257


Moreira, et al.          Expires April 25, 2013                [Page 51]



Internet-Draft                   dLife                  October 22, 2012

              URI: http://siti2.ulusofona.pt/~wjunior

              Paulo Mendes
              SITI, Universidade Lusofona
              Campo Grande, 376, Ed. U
              1749-024 Lisboa
              Portugal

              Phone:
              Email: paulo.mendes@ulusofona.pt
              URI: http://siti2.ulusofona.pt/~pmendes

              Ronedo Ferreira
              ITEC, Universidade Federal do Para
              Rua Augusto Correa, 01, Guama
              66075-110 Belem-PA
              Brasil

              Phone:
              Email: ronedo@aitinet.com
              URI:

              Eduardo Cerqueira
              ITEC, Universidade Federal do Para
              Rua Augusto Correa, 01, Guama
              66075-110 Belem-PA
              Brasil

              Phone:
              Email: cerqueira@ufpa.br
              URI: http://www.gercom.ufpa.br/eduardo/

http://siti2.ulusofona.pt/~wjunior
http://siti2.ulusofona.pt/~pmendes
http://www.gercom.ufpa.br/eduardo/


Moreira, et al.          Expires April 25, 2013                [Page 52]


