
DTN Research Group W. Moreira
Internet-Draft P. Mendes
Expires: October 27, 2013 SITILabs, Universidade Lusofona
 R. Ferreira
 D. Cirqueira
 E. Cerqueira
 ITEC, Universidade Federal do Para
 April 25, 2013

Opportunistic Routing based on Users Daily Life Routine
draft-moreira-dlife-02

Abstract

 This document is written in the context of the Delay Tolerant
 Networking Research Group and will be presented for reviewing by that
 group. This document defines dLife, an opportunistic routing protocol
 that takes advantage of time-evolving social structures. dLife
 belongs to the family of social-aware opportunistic routing protocols
 for intermittently connected networks. dLife operates based on a
 representation of the dynamics of social structures as a weighted
 contact graph, where the weights (i.e., social strengths) express how
 long a pair of nodes is in contact over different period of times. It
 considers two complementary utility functions: Time-Evolving Contact
 Duration (TECD) that captures the evolution of social interaction
 among pairs of users in the same daily period of time, over
 consecutive days; and TECD Importance (TECDi) that captures the
 evolution of user's importance, based on its node degree and the
 social strength towards its neighbors, in different periods of time.
 It is intended for use in wireless networks where there is no
 guarantee that a fully connected path between any source -
 destination pair exists at any time, a scenario where traditional
 routing protocols are unable to deliver bundles. Such networks can be
 sparse mesh, in which case intermittent connectivity is due to lack
 of physical connections, or dense mesh, in which case intermittent
 connectivity may be due to high interference or shadowing. In any
 case, intermittent connectivity can also be due to the availability
 of devices (e.g., unavailable due to power saving rules). The
 document presents an architectural overview followed by the protocol
 specification.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

Moreira, et al. Expires October 27, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Internet-Draft dLife April 25, 2013

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 27, 2013.

Copyright and License Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Moreira, et al. Expires October 27, 2013 [Page 2]

Internet-Draft dLife April 25, 2013

1. Introduction . 5
1.1. Applicability of the Protocol 6
1.1.1. Protocol Stack . 6
1.1.2. Applicability scenarios 7
1.1.2.1. Urban Areas Networks 7
1.1.2.2. Mission-critical Networks 8

1.2. Relation with the DTN Architecture and Networking Model . . 8
1.3. Differentiation to other Opportunistic Routing Proposal . . 10
1.4. Requirements notation 11

2. Node Architecture . 11
2.1. dLife Components . 12
2.2. Routing Algorithm . 13
2.2.1. Time-Evolving Contact Duration (TECD) 15
2.2.2. TECD Importance (TECDi) 16

2.3. Forwarding strategy . 16
2.3.1. Basic Strategy . 16
2.3.2. Prioritized Strategy 17

2.4. Interfaces . 17
2.4.1. Bundle Agent . 17
2.4.2. Lower Layers and Interface 18

3. Protocol Overview . 19
3.1. Neighbor Sensing Phase 19
3.2. Information Exchange Phase 21
3.2.1. EID Dictionary . 22
3.2.2. Operation in the presence of multiples neighbors . . . 23

3.3. Bundle Reception Policies 23
3.3.1. Queueing policy . 23
3.3.2. Custody Policy . 24
3.3.3. Destination Policy 25

4. Message Formats . 25
4.1. Header . 26
4.2. TLV Structure . 29
4.3. TLVs . 30
4.3.1. Hello TLV . 30
4.3.2. ACK TLV . 31
4.3.3. EID Dictionary TLV 32
4.3.4. Social TLV . 34

5. Detailed Operation . 37
5.1. High Level State Tables 37
5.2. High Level Meta-Data Table 40
5.3 Hello Procedure . 42
5.4 Information Exchange Phase 43

6. Security Considerations . 46
7. Implementation Experience 47
8. Deployment Experience . 50
9. Differences from Previous Version 51
10. References . 52
10.1 Normative References 52

Moreira, et al. Expires October 27, 2013 [Page 3]

Internet-Draft dLife April 25, 2013

10.2 Informative References 52
 Authors' Addresses . 54

Moreira, et al. Expires October 27, 2013 [Page 4]

Internet-Draft dLife April 25, 2013

1. Introduction

 The pervasive deployment of wireless personal devices is creating the
 opportunity for the development of novel applications. The
 exploitation of such applications with a good performance-cost
 tradeoff is possible by allowing devices to use free spectrum to
 exchange data whenever they are within wireless range, specially in
 scenarios where it is difficult to find an end-to-end path between
 any pair of nodes at any moment. In such scenarios every contact is
 an opportunity to forward data. Hence, there is the need to develop
 networking solutions able to buffer messages at intermediate nodes
 for a longer time than normally occurs in the queues of conventional
 routers (cf. Delay-Tolerant Networking [RFC4838]), and routing
 algorithms able to bring such messages close to a destination, with
 high probability, low delay and costs.

 Most of the proposed routing solutions focus on inter-contact times
 alone [Chaintreau06], while there is still significant investigation
 to understand the nature of such statistics (e.g., power-law,
 behavior dependent on node context). Moreover, the major drawback of
 such approaches is the instability of the created proximity graphs
 [Hui11], which changes with users' mobility.

 A trend is investigating the impact that more stable social
 structures (inferred from the social nature of human mobility) have
 on opportunistic routing [Hui11], [Daly07]. Such social structures
 are created based on social similarity metrics that allow the
 identification of the centrality that nodes have in a
 cluster/community. This allows forwarders to use the identified hub
 nodes to increase the probability of delivering messages inside
 (local centrality) or outside (global centrality) a community, based
 on the assumption that the probability of nodes to meet each other is
 proportional to the strength of their social connection.

 A major limitation of approaches that identify social structures,
 such as communities, is the lack of consideration about the dynamics
 of networks, which refers to the evolving structure of the network
 itself, the making and braking of network ties: over a day a user
 meets different people at every moment. Thus, the user's personal
 network changes, and so does the global structure of the social
 network to which he/she belongs.

 When considering dynamic social similarity, it is imperative to
 accurately represent the actual daily interaction among users: it has
 been shown [Hossmann10] that social interactions extracted from
 proximity graphs must be mapped into a cleaner social connectivity
 representation (i.e., comprising only stable social contacts) to
 improve forwarding. This motivates us to specify a routing protocol

https://datatracker.ietf.org/doc/html/rfc4838

Moreira, et al. Expires October 27, 2013 [Page 5]

Internet-Draft dLife April 25, 2013

 aware of the network dynamics, represented by users' daily life
 routine. We focus on the representation of daily routines, since
 routines can be used to identify future interaction among users
 sharing similar movement patterns, interests, and communities
 [Eagle09].

 Existing proposals [Costa08], [Hui11], [Daly07] succeed in
 identifying similarities (e.g., interests) among users, but their
 performance is affected as dynamism derived from users' daily
 routines is not considered. To address this challenge, we propose
 dLife that uses time-evolving social structures to reflect the
 different behavior that users have in different daily periods of
 time: dLife represents the dynamics of social structures as a
 weighted contact graph, where the weights (i.e., social strengths)
 express how long a pair of nodes is in contact over different period
 of times.

 dLife considers two complementary utility functions: Time-Evolving
 Contact Duration (TECD) that captures the evolution of social
 interaction among pairs of users in the same daily period of time,
 over consecutive days; and TECD Importance (TECDi) that captures the
 evolution of user's importance, based on its node degree and the
 social strength towards its neighbors, in different periods of time.

1.1. Applicability of the Protocol

 This section describes the applicability of the dLife protocol in
 terms of the networking protocol stack and in terms of the usage
 scenarios that are representative of the daily life experience of
 most people. The latter aims to check which are the communication
 challenges that can be mitigated by deploying a delay-tolerant
 routing protocol. The focus goes to scenarios involving mission-
 critical environments that represent sporadic situations that require
 a spontaneous and efficient exchange of information, as well as
 communications in urban environments, which can also benefit from the
 existence of a DTN.

 This document does not focus on scenarios such as space networks and
 rural area networks, since space networks rely on the usage of single
 links with extreme long delay, while most of the potential rural area
 scenarios will require a store-and-carry system (ferry type) and not
 so much a store-carry-forward system.

1.1.1. Protocol Stack

 The dLife protocol is expected to interact with the Bundle Protocol
 agent for retrieving information about available bundles and for
 requesting bundles to be sent to another node (cf. Section 2.4.1). It

Moreira, et al. Expires October 27, 2013 [Page 6]

Internet-Draft dLife April 25, 2013

 is expected that the associated bundle agents are then able to
 establish a link, over the TCP convergence layer [I-D.irtf-dtnrg-tcp-
 clayer]) or the UDP convergence layer [I-D.irtf-dtnrg-udp-clayer]) to
 perform this bundle transfer.

 In what concerns information needed for the operation of dLife, dLife
 does not impose any requirements for data reliability transfer to
 avoid restricting its applicability. Hence, data exchange may take
 place over transport protocols that do not provide neither message
 segmentation or reliability, nor in order delivery. Hence, dLife
 provides itself the capability to segment protocol messages into
 submessages. Submessages are provided with sequence numbers, and
 this, together with the capability for positive acknowledgements
 allows dLife to operate over an unreliable protocol such as UDP or
 potentially directly over IP. As said for the bundle agent, the
 communication medium used to send dLife messages can include
 different technologies such as Bluetooth and Wi-Fi.

 Moreover, dLife expects to be able to use bidirectional links for
 information exchange; this allows information exchange to take place
 in both directions over the same link, avoiding the need to establish
 a second link for information exchange in the reverse direction.

1.1.2. Applicability scenarios

 The identified scenarios aim to illustrate the applicability of dLife
 in real scenarios. In technical terms, dLife aims to target networks
 where we may not find any end-to-end path between any pair of nodes
 at some moment in time. The lack of end-to-end path may be due to
 node mobility and availability (e.g., switching off radios), aspects
 that create connectivity patterns that are correlated with the daily
 habits of citizens. Human behavior patterns (often containing daily
 or weekly periodic activities) provide one example where dLife is
 expected to be applicable, independently of the type of personal
 device: it can be of explicit usage (e.g., smartphones) or of
 implicit usage (e.g., embedded devices).

 Scientific results [Moreira12a] [Moreira12b] show that dLife is able
 to benefit from the predictability of human behavior in daily periods
 of time even in the presence of few contacts. However, the behavior
 predictability can be estimated more accurately with a higher number
 of events.

1.1.2.1. Urban Areas Networks

 This seems to be the most challenging scenario to analyze the
 applicability of DTN employing dLife as the store-carry-forward
 routing protocol. A study of DTN routing for urban scenarios may

Moreira, et al. Expires October 27, 2013 [Page 7]

Internet-Draft dLife April 25, 2013

 bring a coherent understanding about the advantages and challenges of
 using a DTN system in the daily life of millions of people. A study
 of the applicability of DTN routing in urban scenarios may benefit
 from a good understanding of the per-person bit density (available
 capacity per second/hour/day) in a major metropolitan area.

 In a urban area there are several examples of networking scenario
 that can gain from the applicability of dLife, such as: Urban "dark"
 places due to high mobility (e.g., fast trains), indoors (e.g.,
 subway systems, in-building) and outdoor (e.g., areas with closed
 APs, areas with significant interference); Off-load of cellular
 networks, since cellular operators do not like to have data traffic
 unrelated to services provided in their networks; The cost of
 cellular wireless data, which decreases the relation quality/price of
 cellular data communications; Networks of embedded objects, which
 will require delay-tolerant communications over short-distance
 wireless interfaces and not over cellular ones.

1.1.2.2. Mission-critical Networks

 At any point, natural catastrophes can happen and such type of
 network can be deployed in order to facilitate rescue and medical
 operations. Another type of situation that a mission-critical network
 may be formed is in hostile environment such as war scenarios.
 Independently of the scenario for its application, this type of
 networks must be readily available through any sort of Wi-Fi enabled
 equipment (PDAs, cell phones, laptops, APs) which are expected to
 cooperate with the aim of helping the dissemination of information.
 Information must reach the interested parties as quickly as possible
 to achieve fast results for the actions being taken.

 In mission-critical networks there are several examples of networking
 scenario that can gain from the applicability of dLife, such as:
 Disaster networks where no (maybe very few) infrastructure is
 available since it may have been destroyed; Military networks, where
 communications can be established using devices carried by soldiers
 as well as other military vehicles and easily deployed equipments.

1.2. Relation with the DTN Architecture and Networking Model

 The DTN architecture introduces the bundle protocol [RFC5050], which
 provides a way for applications to "bundle" an entire session,
 including both data and metadata, into a single message, or bundle,
 that can be sent as a unit. The bundle protocol provides end-to-end
 addressing and acknowledgments. Hence, dLife is intended to provide
 routing services in a network environment that uses bundles as its
 data transfer mechanism, but could also be used in other intermittent
 environments.

https://datatracker.ietf.org/doc/html/rfc5050

Moreira, et al. Expires October 27, 2013 [Page 8]

Internet-Draft dLife April 25, 2013

 From a networking model perspective, a DTN is a network of self-
 organizing wireless nodes connected by multiple time-varying links,
 and where end-to-end connectivity is intermittent. Even in urban
 scenarios, it is possible to face intermittent connectivity due to
 dark areas, such as inside buildings and metropolitan systems, as
 well as public areas with closed access points or even places
 overcrowded with wireless access points. Unavailability of wireless
 connectivity can be also a result of power-constrained nodes that
 frequently shut down their wireless cards to save energy.

 From a conceptual point of view, a DTN consists of a node meeting
 schedule and workload. A node meeting schedule is a directed
 multigraph where each direct edge between two nodes represents a
 meeting opportunity between them, and it is annotated with a starting
 time of the meeting, the ending time of the meeting, if known, the
 size of the transfer opportunity (i.e., contact capacity), and the
 contact type. The workload is a set of messages. Each message can be
 represented by the source, destination, size, time of creation at the
 source, and priority. In dLife, a contact is defined by the tuple
 <starting time, end time, contact duration> and a message by the
 tuple <source, destination, size>.

 A DTN model encompasses the notion of type of contact or
 connectivity. In current networks, the connectivity of a link or path
 is generally given as a binary state (i.e., connected or
 disconnected). In DTNs, a richer set of connectivity options is
 required to make efficient routing decisions. Most importantly, links
 (and paths, by extension) may provide a scheduled, predicted or
 opportunistic communication.

 Scheduled contacts imply some a priori knowledge about adjacent nodes
 regarding future availability of links for message forwarding.
 Scheduled links are the most typical cases for today's Internet and
 satellite networks. Predicted contacts correspond to communication
 opportunities wherein the probability of knowing whether a link will
 be available at a future point in time is strictly above zero and
 below one. Such links are the result of observed behavior (e.g., a
 person may use its home Internet connection with significant
 probability for any given time period) being characterized using
 statistical estimation. Predicted links are only becoming of serious
 concern recently, namely in ad-hoc wireless networks where node
 mobility may be significant.

 In more challenging environments, such as mission-critical networks
 for instance, the future location of communicating entities may be
 neither known nor predictable. These types of contacts are known as
 opportunistic. Such opportunistic contacts are defined as a chance to
 forward messages towards a specific destination or a group of

Moreira, et al. Expires October 27, 2013 [Page 9]

Internet-Draft dLife April 25, 2013

 destinations. In such unpredictable scenario, it is important to take
 into account the time that a node must wait until it meets another
 node again (i.e., inter-contact time), the duration of these contacts
 (i.e., contact duration), and the quality of the contact in terms of
 the set of information that can be transferred (i.e., contact
 volume).

 Independently of the type of connectivity, a contact in a DTN is
 direction-specific. For example, a dial-up connection originating at
 a customer's home to an Internet Service Provider (ISP) may be
 scheduled from the point of view of the customer but unscheduled from
 the point of view of the ISP. In what concerns contacts, dLife
 assumes direction-specific opportunistic contacts (starting time, end
 time, contact duration) which occur with some probability in pre-
 defined daily time periods.

 Another concept that must be introduced is that of network behavior.
 As networks can be formed on-the-fly, their behavior can either be
 deterministic or stochastic, depending on the type of used links. In
 this draft, we focus on dynamic scenarios where the behavior of the
 network is described in stochastic terms, based on users' mobility
 and social behavior. In a dynamic scenario, users move around
 carrying their personal devices, which opportunistically come into
 contact with each other, resulting in topology changes.

1.3. Differentiation to other Opportunistic Routing Proposal

 Due to intermittent connectivity, routing protocols based on the
 knowledge of end-to-end paths perform poorly, and numerous
 opportunistic routing algorithms have been proposed instead. Some
 opportunistic routing protocols use replicas of the same message to
 combat the inherent uncertainty of future communication opportunities
 between nodes. In order to carefully use the available resources and
 reach short delays, many protocols perform forwarding decisions using
 locally collected knowledge about node behavior to predict which
 nodes are likely to deliver a content or bring it closer to the
 destination.

 We previously identified [Moreira11] that most of the opportunistic
 routing prior-art considered the replication-based forwarding scheme,
 while only 15% were based on single-copy and flooding-based
 forwarding schemes. Among the replication based solutions,
 approximately 69% consider a contact-based approach (e.g., frequency
 of encounters) and 31% (the latest ones) investigate the trend based
 on social similarity metrics (e.g., community detection). Contact-
 based proposals consider every contact among nodes to update the
 proximity graph and implement metrics such as the number of times
 nodes meet, contact frequency and the last time a contact occurs.

Moreira, et al. Expires October 27, 2013 [Page 10]

Internet-Draft dLife April 25, 2013

 Besides PROPHET [Lindgren04], the most cited replication-based
 proposal, other examples based on contact metric are Prediction
 [Song07], and Encounter -Based Routing [Nelson09].

 Most of the existing opportunistic routing solutions are based on
 some level of replication. Among these proposals, emerge solutions
 based on different representations of social similarity: i) labeling
 users according to their social groups (e.g., Label [Hui07]); ii)
 looking at the importance (i.e., popularity) of nodes (e.g.,
 PeopleRank [Mtibaa10]); iii) combining the notion of community and
 centrality (e.g., SimBet [Daly07] and Bubble Rap [Hui11]); iv)
 considering interests that users have in common (e.g., SocialCast
 [Costa08]). Such prior-art shows that social-based solutions are more
 stable than those which only consider node mobility. However, they do
 not consider the dynamism of users' behavior (i.e., social daily
 routines) and use centrality metrics, which may create bottlenecks in
 the network. Moreover, such approaches assume that communities remain
 static after creation, which is not a realistic assumption. On the
 other hand, prior-art also shows that users have routines that can be
 used to derive future behavior. It has been proven that mapping real
 social interactions to a clean (i.e., more stable) connectivity
 representation is rather useful to improve delivery. With dLife,
 users' daily routines are considered to quantify the time-evolving
 strength of social interactions and so to foresee more accurately
 future social contacts than with proximity graphs inferred directly
 from inter-contact times.

1.4. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Node Architecture

 In this section we describe the architecture of a dLife node, which
 performs its routing decisions based on two utility functions: TECD
 to forward messages to nodes that have a stronger social relationship
 with the destination than the carrier; TECDi to forward messages to
 nodes that have a higher importance than the carrier.

 With TECD each node computes the average of its contact duration with
 other nodes during the same set of daily time periods over
 consecutive days. Our assumptions is that contact duration can
 provide more reliable information than contact history, or frequency
 when it comes to identifying the strength of social relationships.
 The reason for considering different daily time periods relates to

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Moreira, et al. Expires October 27, 2013 [Page 11]

Internet-Draft dLife April 25, 2013

 the fact that users present different behavior during their daily
 routines. If the carrier and encountered node have no social
 information towards the destination, forwarding takes place based on
 a second utility function, TECDi.

 We start this section by describing the different components of the
 node architecture, followed by an explanation of how to route
 information based on the dynamics of the network that dLife is able
 to capture by computing TECD and TECDi. Finally, we describe the
 implemented forwarding strategy and the needed interfaces.

2.1. dLife Components

 In order to perform forwarding based on the social daily behavior of
 users, dLife comprises the following main computational elements:

 o Social Information Gatherer (SIG) - responsible for: i) keeping
 track of the contact duration of each encounter between nodes; and,
 ii) obtaining the social weights and importance of encountered nodes
 (i.e., potential next forwarders). As dLife considers different daily
 samples, corresponding to different periods of time, it is imperative
 to keep track of nodes' contacts in each sample. Additionally, upon
 the need to replicate a bundle, SIG will obtain the social weight
 between the encountered node and nodes it has met as well as the
 importance of such node.

 o Social Information Repository (SIR) - responsible for storing a
 list with encountered nodes and contact duration to such nodes. At
 the end of every daily sample, SIR will also store social weights and
 importance of the encountered nodes computed by SW and IA (see
 below). Additionally, SIR will temporarily store the social weight
 and importance of an encountered node when the need for replicating a
 bundle arises.

 o Social Weighter (SW) - responsible for determining the social
 weight between nodes according to their social interaction throughout
 their daily routines. At the end of every daily sample, SW will
 interact with SIR to determine the total contact time nodes spent
 together and the average duration of contacts in order to compute the
 social weight between nodes.

 o Importance Assigner (IA) - responsible for computing the importance
 of a node taking into account the importance of encountered nodes and
 its social weight to such nodes. At the end of every daily sample, IA
 will interact with SIR in order to compute the importance of a node
 in the system.

 o Decision Maker (DM) - responsible for deciding whether replication

Moreira, et al. Expires October 27, 2013 [Page 12]

Internet-Draft dLife April 25, 2013

 should occur. DM will interact with SIR to obtain relevant
 information in order to take decisions.

2.2. Routing Algorithm

 The dLife protocol applies the social opportunistic contact paradigm
 to decide whether bundle replication is feasible. Its decision is
 based on social weight (w_(x,y)) towards the bundle's destination or
 on the importance (I(x)) of the encountered node (i.e., potential
 next forwarder) in the system.

 If the encountered node has better relationship with the bundle
 destination than the carrier in a given daily sample, it receives a
 bundle copy, since there is a much greater chance for the encountered
 node to meet the destination in the future. If relationship to the
 bundle destination is unknown, replication happens only if the
 encountered node has higher importance than the carrier.

 In order to compute the social weight between nodes and their
 importance, dLife uses parameters that are determined as nodes
 interact in the system. A brief explanation of the parameters is
 given below:

 CD_(x,y)
 Refers to the contact duration between nodes, i.e., time nodes
 spent in the range of one another, which would allow them to
 exchange information. Within a given daily sample, there could
 happen different contacts with varied lengths.

 TCT_(x,y)
 Refers to the total contact time between nodes within a given
 daily sample. It is given by the sum of all CD_(x,y) in that
 specific daily sample.

 AD_(x,y)
 Refers to the average duration of contacts for the same daily
 sample over different days. It is a Cumulative Moving Average
 (CMA) of the average duration, considering the TCT_(x,y) of the
 current daily sample and average duration in the same daily sample
 of the previous day, AD_(x,y)_old.

 w_(x,y)
 Refers to the social weight between nodes at a given daily sample.
 It reflects the level of social interaction among such nodes
 throughout their daily routines.

 I_(x)
 Refers to the importance of a node in the system. The importance

Moreira, et al. Expires October 27, 2013 [Page 13]

Internet-Draft dLife April 25, 2013

 is influenced by how well a node is socially related to other
 important nodes.

 N_(x)
 Refers to the neighbor set of a node x, which it encountered in
 the current daily sample.

 dumping factor (d)
 Refers the level of randomness considered by the forwarding
 algorithm.

 daily sample (Ti)
 Refers to the time period in which the contact duration will be
 measured to determine social weight and node importance.

 As nodes interact, their CD_(x,y) is collected and used to determine
 TCT_(x,y), AD_(x,y), w_(x,y), and I_(x) at the end of every daily
 sample. If dLife is configured with a high number of daily samples,
 the social weight and node importance will be more refined. Thus, it
 is recommended the usage of twenty-four (24) daily samples
 representing each hour of the day: the first daily sample refers
 always to the zero hour of the day when the node is started.

 Being able to identify the current daily sample allows a proper
 computation of social weights and importance. Hence, in the case of
 node failure (e.g., node crash) or node shutdown (e.g., lack of
 battery), nodes need to know exactly in which daily sample they
 stopped interaction, and more importantly how many daily samples have
 elapsed since then (elapsed_ds). To guarantee that, the equation
 below is used:

 elapsed_ds = cnds * (ed - 1) + (cds - 1) + (cnds - lds) (1)

 where:

 cnds
 is the configured number of daily samples.

 ed
 refers to the number of elapsed days.

 cds
 refers to the current daily sample (the one in which the node came
 back on).

 lds
 refers to last daily sample (in which the node failed or shut
 down).

Moreira, et al. Expires October 27, 2013 [Page 14]

Internet-Draft dLife April 25, 2013

 With this, the node knows how many daily samples have elapsed and can
 proceed with the update of social weights and importance to reflect
 the lack of interaction that happen in reality.

2.2.1. Time-Evolving Contact Duration (TECD)

 The TECD utility function considers the duration of contacts
 (representing the intensity of social ties among users) and time-
 evolving interactions (reflecting users' habits over different daily
 samples).

 Regarding the notations used in the equations presented in this sub-
 section: sumk(...) denotes summation for k from 1 to n; sumj(...)
 denotes summation for j from i to i+t-1; sumy denotes summation from
 all y belonging to N(x).

 Two nodes may have a social weight, w_(x,y), that depends on the
 average total contact duration they have in that same period of time
 over different days. Within a specific daily sample Ti, node x has n
 contacts with node y, having each contact k a certain contact
 duration, CD_(x,y). At the end of each daily sample, the total
 contact time, TCT_(x,y), between nodes x and y is given by the
 equation below where n is the total number of contacts between the
 two nodes.

 TCT_(x,y) = sumk(CD_(x,y)) (2)

 The Total Contact Time between users in the same daily sample over
 consecutive days can be used to estimate the average duration of
 their contacts for that specific daily sample: the average duration
 of contacts between users x and y during a daily sample Ti in a day
 j, denoted by AD_(x,y) is given by a cumulative moving average of
 their TCT in that same daily sample, TCT_(x,y), and the average
 duration of their contacts during the same daily sample Ti on the
 previous day, denoted by AD_(x,y)_old, as shown in the equation
 below.

 AD_(x,y) = (TCT_(x,y)+(j-1)*AD(x,y)_old)/j (3)

 The social strength between users in a specific daily sample Ti may
 also provide some insight about their social strength in consecutive
 k samples in the same day, i+k. This is what we call Time Transitive
 Property. This property increases the probability of nodes being
 capable of transmitting large data chunks, since transmission can be
 resumed in the next daily sample with high probability.

 TECD is able to capture the social strength w_(x,y) between any pair
 of users x and y in a daily sample Ti based on the average duration

Moreira, et al. Expires October 27, 2013 [Page 15]

Internet-Draft dLife April 25, 2013

 AD_(x,y) of contacts between them in such daily sample and in
 consecutive t-1 samples, where t represents the total number of daily
 samples. When k>t, the corresponding AD_(x,y) value refers to the
 daily sample k-t. In the equation below the time transitive property
 is given by the weight t/(t+k-i), where the highest weight is
 associated to the average contact duration in the current daily
 sample, being it reduced in consecutive samples.

 TECD = w_(x,y) = sumj(t/(t+k-i)*AD_(x,y)) (4)

2.2.2. TECD Importance (TECDi)

 As social interaction may also be modeled to consider the node
 importance, TECDi computes the importance, I_(x), of a node x (cf.
 equation below), considering the weights of the edges between x and
 all the nodes y in its neighbor set, N_(x), at a specific daily
 sample Ti along with their importance.

 TECDi = I_(x) = (1-d)+d*sumy(w_(x,y)*I_(y)/N_(x)) (5)

 TECDi is based on the PeopleRank function [Mtibaa10]. However, TECDi
 considers not only node importance, but also the strength of social
 ties between bundle holder and potential next hops. Another
 difference is that with TECDi the neighbor set of a node x only
 includes the nodes which have been in contact with node x within a
 specific daily sample Ti, whereas in PeopleRank the neighbor set of a
 node includes all the nodes that ever had a link to node x. Note that
 the level of randomness may vary with the application scenario.
 Unless previously experimented, it is suggested that dumping factor
 is set to 0.8.

2.3. Forwarding strategy

 Independently of the application scenario, each node MUST employ a
 forwarding strategy. The first rule is that if the encountered node
 is the final destination of a bundle, the carrier SHOULD prioritize
 such bundles by employing the prioritized forwarding strategy,
 described below.

 We use the following notation for the description provided in this
 section. Nodes A and B are the nodes that encounter each other, and
 the strategies are described as they would be applied by node A.

2.3.1. Basic Strategy

 Forward the bundle only if w_(B,D) > w_(A,D) or I_(B) > I_(A)

 When two nodes A and B meet in any daily sample Ti, node A gets from

Moreira, et al. Expires October 27, 2013 [Page 16]

Internet-Draft dLife April 25, 2013

 node B: a) the updated list of all neighbors of B, including the
 social weights that B has towards each of its neighbors, as well as
 the importance of B; b) the list of the bundles that B is carrying
 (bundle identifier, plus Endpoint Identifier (EID) of the
 destination); c) the list of the latest set of bundles acknowledged
 to B (the size of the list of acknowledged bundles returned by B
 depends on the local cache size and policy). The information about
 the social weight, importance, bundle list, and acknowledged bundles
 received from node B are referenced in node A as w_(B,x)_recv,
 I_(B)_recv, bundleList(IDn, destinationEIDx)_recv, and
 ackedBundleList(IDn, destinationEIDx)_recv, respectively.

 For every bundle that A carries in its buffer, and i) is not carried
 by B, ii) has not been previously acknowledged to B, and iii) B has
 enough buffer space to store it, node A sends a copy to B if B has
 already encountered the bundle's destination D and its weight in
 w_(B,D)_recv is greater than A's weight towards this same destination
 D. Otherwise, bundles are replicated if I_(B)_recv is greater than
 A's importance in the current daily sample Ti.

 Finally, node A will update its own ackedBundleList and discard
 bundles that have already been acknowledged to node B as described in

Section 3.3.3.

2.3.2. Prioritized Strategy

 Similar to the basic forwarding strategy, being the only difference
 the fact that prior to sending bundles, node A will first send those
 bundles that have node B as destination.

2.4. Interfaces

 This section provides a specification of the two major interfaces
 required for dLife operation: a) the interface between the dLife
 routing agent and the bundle agent; b) the interface between the
 dLife routing agent and the lower layers.

2.4.1. Bundle Agent

 The bundle protocol [RFC5050] introduces the concept of a "bundle
 agent" that manages the interface between applications and the
 "convergence layers" that provide the transport of bundles between
 nodes during communication opportunities. This draft extends the
 bundle agent with a routing agent that controls the actions of the
 bundle agent during communication opportunities.

 This section defines the interfaces to be implemented between the
 bundle agent and the dLife routing agent. The defined interfaces

https://datatracker.ietf.org/doc/html/rfc5050

Moreira, et al. Expires October 27, 2013 [Page 17]

Internet-Draft dLife April 25, 2013

 follow the general definition that was defined for the PRoPHET
 proposal.

 In this document, we assume that functions in a complete bundle agent
 supporting dLife are distributed in such a way that reception and
 delivery of bundles are not carried out directly by the dLife agent,
 being the bundles placed in a queue available and managed by the
 dLife agent. In this case, this interface allows the dLife routing
 agent to be aware of the bundles placed at the node, and allows it to
 inform the bundle agent about the bundles to be sent to a neighbor
 node. Therefore, the bundle agent needs to provide the following
 interface/functionality to the routing agent:

 Get Bundle List
 Returns a list of the stored bundles and their attributes to the
 routing agent.

 Send Bundle
 Notifies the bundle agent to send a specified bundle.

 Drop Bundle Advice
 Advises the bundle agent that a specified bundle may be dropped by
 the bundle agent if appropriate.

 Acked Bundle Notification
 Bundle agent informs routing agent whether a bundle has been
 delivered to its final destination and time of delivery.

2.4.2. Lower Layers and Interface

 To accommodate dLife operation on different types of wireless
 technology, the lower layers SHOULD provide the following
 functionality and interfaces.

 Neighbor discovery and maintenance
 A dLife node needs to: i) know the identity of its neighbors; ii)
 when new neighbors appear; iii) when old neighbors disappear. Some
 wireless networking technologies might already contain mechanisms
 for detecting neighbors and maintaining state about them. Hence,
 neighbor discovery is not mandatory as a part of dLife. However,
 if the underlying networking technology does not support neighbor
 discovery and maintenance services, a simple neighbor discovery
 scheme using local broadcasts of beacon messages COULD be used,
 assuming that the underlying layer supports broadcast messages.
 The operation of the protocol is as follows:

 1. Periodically a dLife node does a local broadcast of a
 beacon that contains its identity and address.

Moreira, et al. Expires October 27, 2013 [Page 18]

Internet-Draft dLife April 25, 2013

 2. Upon reception of a beacon, the following can happen:

 o The sending node is already in the list of active neighbors.
 Update its entry in the list with the current time. At this
 point dLife should start the Neighbor Sensing procedure as
 mentioned in Section 3.1.

 o The sending node is not in the list of active neighbors. Add
 the node to the list of active neighbors and record the
 current time.

 3. If a beacon has not been received from a node in the list
 of active neighbors within a predefined time period, it should
 be assumed that this node is no longer a neighbor. The entry
 for this node should be removed from the list of active
 neighbors.

 The lower layers MUST provide the two functions listed below:

 New Neighbor
 Signals the dLife agent that a new node has become a neighbor
 (a node that is currently within communication range of the
 current node, based on the used wireless networking
 technology). At this point dLife should start the Neighbor
 Sensing procedure as mentioned in Section 3.1.

 Neighbor Gone
 Signals the dLife agent that one of its neighbors has left.

 Sender/Receiver Local Address
 An address used by the underlying communication layer (e.g., an IP
 or MAC address) that identifies the address of the sender and
 receiver nodes. This address and its format is dependent on the
 communication layer that is being used by the dLife layer. This
 address must be unique among the nodes that can currently
 communicate.

3. Protocol Overview

 This section provides a description of the three operational phases
 of dLife, namely: neighbor sensing, information exchange, and bundle
 reception policies

3.1. Neighbor Sensing Phase

 The operation of dLife depends on how nodes interact, i.e.,
 considering all the potential contact opportunities to exchange

Moreira, et al. Expires October 27, 2013 [Page 19]

Internet-Draft dLife April 25, 2013

 information. Thus, nodes running dLife MUST employ a mechanism for
 neighbor discovery (cf. Section 2.4.2) and neighbor sensing.

 If the underlying networking technology does not support neighbor
 discovery and maintenance services, a mechanism as described in

Section 2.4.2 can be provided.

 When a node (new or already met) is discovered, dLife performs the
 following operation:

 Start Contact Duration Counting
 dLife starts counting the contact duration for the purpose of
 later computing social weights and importance. In the case the
 peer node has been encountered before within the same daily
 sample, dLife checks if there were any changes in the metadata
 (e.g., Social Weights and Node Importance list, ackedBundleList)
 of the current node since the last encounter. If so, the current
 node will start the Hello Procedure.

 Hello Procedure
 dLife sets up a link with the neighbor node through the Hello
 message exchange as described in Section 5.3. The Hello message
 exchange allows nodes to exchange information about their EID,
 storage capacity, current time, and timer value. Once the link has
 been set up the protocol may continue to the Information Exchange
 Phase (cf. Section 3.2) during which the lower layer is
 responsible for detecting broken links.

 Stop Contact Duration Counting
 dLife stops counting the contact duration after detecting that the
 neighbor is gone, through the notification received from the lower
 layer (cf. Section 2.4.2).

 In order to make use of this time dependence, dLife maintains a list
 of recently encountered nodes identified by the EID, as described in

Section 5.2. Each entry of such list includes information that the
 node uses to update the status of the current communication session
 and to gather information about previous contacts. The size of this
 list is controlled, because due to low storage capacity of nodes, the
 information related to neighbors that are not in contact and towards
 which the current node has a social weight lower than a predefined
 threshold SOCIAL_DROP can be dropped from the list.

 In order to make use of this time dependence, dLife maintains a list
 of recently encountered nodes identified by the Endpoint Identifier
 (EID), as described in section 5.2. Each entry of such list includes
 information that the node uses to update the status of the current
 communication session and to gather information about previous

Moreira, et al. Expires October 27, 2013 [Page 20]

Internet-Draft dLife April 25, 2013

 contacts. The size of this list is controlled, because due to low
 storage capacity of nodes, the information related to neighbors that
 are not in contact and towards which the current node has a social
 weight lower than a predefined threshold SOCIAL_DROP can be dropped
 from the list.

3.2. Information Exchange Phase

 The Information Exchange phase comprises the transfer of two types of
 metadata between connected nodes, through different messages
 described in Section 4:

 o EID Dictionary
 o Social Weights and Node Importance (SWNI)

 Upon a communication opportunity, different sets of each type of
 metadata must be sent in each direction as explained further in this
 section. Each set may be transferred in one or more messages. In case
 a set of metadata needs more than one message to be completely
 transferred, it may be partitioned by the dLife protocol engine. The
 specification of dLife provides a submessage mechanism and
 retransmission that allows large messages to be transmitted in
 smaller chunks.

 Each node running dLife is responsible for computing and updating
 their social weights towards previously encountered nodes as well as
 their own importance. Thus, in this operational phase, Social TLVs
 (Type-Length-Value messages), as defined in Section 4.3.4, are
 expected to reflect the latest updates regarding SWNI metadata, as
 well as to include the list of bundles carried by the peering node
 (bundleList) and the list of the latest bundles with acknowledged
 delivery (ackedBundleList). Social TLVs are generated throughout the
 information exchange phase upon updates of the SWNI information at
 the end of a daily sample.

 As first step in the Information Exchange Phase one or more messages
 containing EID Dictionary metadata, EID Dictionary TLVs as defined in

Section 4.3.3, MUST be sent to the peering node, if the list of
 encountered nodes is not empty. Such metadata contains a dictionary
 of the EIDs of the nodes that will be listed in the Social TLVs (cf.

Section 3.2.1 for more information about this dictionary).

 As a second step, one or more messages containing social metadata,
 Social TLVs, MUST be sent to the peering node, if the list of
 encountered nodes is not empty. This set of messages contains: i) a
 list with the EIDs of the nodes that the peering node has encountered
 so far and its social weights towards these nodes; ii) the importance
 of the peering node; iii) a list with the identifiers of the bundles

Moreira, et al. Expires October 27, 2013 [Page 21]

Internet-Draft dLife April 25, 2013

 that the node currently carries and respective destinations EIDs; and
 iv) a list with the latest acknowledged bundles identifiers and
 respective destinations EIDs.

 As a third step, upon reception and acknowledgment of the complete
 set of these messages, nodes MUST use one of the defined forwarding
 strategies (see Section 2.3) to decide which of the stored bundles
 (cf. Get Bundle List on Section 2.4.1) will be transferred to the
 peer, assuming that there are stored bundles.

 The bundles to be sent to the peering node MUST be selected based
 upon the exchanged SWNI, bundleList and ackedBundleList information,
 as well as the available storage capacity on the receiving peering
 node. The bundles to be sent by the Bundle Agent (cf. Send Bundle on

Section 2.4.1) SHOULD NOT exceed the peering node's capacity that
 MUST be indicated by the peer during the Hello procedure. The
 information to be passed to the Bundle Agent includes the number of
 bundles to be sent, where each bundle has an ID to be used for
 acknowledging their receipt.

3.2.1. EID Dictionary

 The EID Dictionary, as used in PRoPHET, is a mapping between variable
 length EIDs [RFC4838] and String IDs coded as Self-Delimiting Numeric
 Values (SDNVs - see Section 4.1. of RFC 5050 [RFC5050]).

 This dictionary is used by peering nodes to synchronize the EIDs of
 the nodes that they have encountered before. Each peer MAY add to the
 dictionary by sending a EID Dictionary TLV to its peer. To allow
 either peer to add to the dictionary at any time, the identifiers
 used by each peer are taken from disjoint sets: identifiers
 originated by the node that started the Hello procedure have the
 least significant bit set to 0 (i.e., are even numbers) whereas those
 originated by the other peer have the least significant bit set to 1
 (i.e., are odd numbers). This means that the dictionary can be
 expanded by either node at any point of the information exchange
 phase and the new identifiers can then be used in subsequent TLVs
 until the dictionary is reinitialized.

 The dictionary that is established only persists through a single
 encounter with a node (i.e., while the same link set up by the Hello
 procedure, with the same instance numbers, remains open).

 Having more than one identifier for the same EID does not cause any
 problems. This means that it is possible for the peers to create
 their dictionary entries independently if required by an
 implementation, but this may be inefficient as a dictionary entry for
 an EID might be sent in both directions between the peers. It may be

https://datatracker.ietf.org/doc/html/rfc4838
https://datatracker.ietf.org/doc/html/rfc5050#section-4.1
https://datatracker.ietf.org/doc/html/rfc5050

Moreira, et al. Expires October 27, 2013 [Page 22]

Internet-Draft dLife April 25, 2013

 required to inspect entries sent by the node that started the Hello
 procedure and thereby eliminate any duplicates before sending the
 dictionary entries from the other peer. Whether postponing sending
 the other peer's entries is more efficient depends on the nature of
 the physical link technology and the transport protocol used. With a
 genuinely full duplex link it may be faster to accept possible
 duplication and send dictionary entries concurrently in both
 directions. If the link is effectively half-duplex (e.g., Wi-Fi),
 then it will generally be more efficient to wait and eliminate
 duplicates.

 If a node receives EID Dictionary metadata containing an identifier
 that is already in use, the node MUST confirm that the corresponding
 EID is identical to the EID in the existing entry. Otherwise, the
 node MUST send an ACK TLV (i.e., EID ACK - identifier/EID
 discrepancy) and ignore the EID Dictionary TLV containing the error.
 If a node receives EID Dictionary metadata that uses an unknown
 identifier (i.e., not in the dictionary), the node MUST send an ACK
 TLV (i.e., EID ACK - unknown EID) message and ignore the TLV
 containing the error.

3.2.2. Operation in the presence of multiples neighbors

 As a node may find itself in the range of more than one potential
 next forwarder, the neighbor sensing mechanism may establish multiple
 information exchanges with each of them.

 If these simultaneous contacts persist for some time, then the
 information exchange process will be periodically rerun for each
 contact according to the configured timer interval, which means that
 different Hello TLVs will be exchanged at different times.

 Based on the receipt time of these Hello TLVs at the sending node, it
 will establish the order for sending out the bundles, considering the
 storage capacity of the different neighbors.

3.3. Bundle Reception Policies

3.3.1. Queueing policy

 Because of limited buffer resources, bundles may need to be dropped
 at some nodes. Although dLife evaluation based on simulations have
 shown little consumption due to limiting replication based on social
 strength, a scheme MUST be used upon an exhaustion of buffer space.
 Hence, each node MUST operate a queueing policy that determines which
 bundles should be available for forwarding.

 This section defines a few basic queueing policies, inline with what

Moreira, et al. Expires October 27, 2013 [Page 23]

Internet-Draft dLife April 25, 2013

 was proposed for PRoPHET. However, nodes MAY use other policies if
 desired. If not chosen differently due to the characteristics of the
 deployment scenario, nodes SHOULD choose FIFO as the default queueing
 policy.

 FIFO
 Handle the queue in a First In First Out (FIFO) order. The bundle
 that was first entered into the queue is the first bundle to be
 dropped.

 FLNT
 The bundle that has been forwarded the largest number of times is
 the first to be dropped. For this effect, dLife SHOULD keep track
 of the number of times each bundle has been forwarded to other
 nodes.

 STTL
 The bundle that has shortest time-to-live is dropped first. As
 described in [RFC5050], each bundle has a timeout value specifying
 when it no longer is meaningful to its application and should be
 deleted. Since bundles with short remaining time to live will soon
 be dropped anyway, this policy decides to drop the bundle with the
 shortest remaining life time first. To successfully use a policy
 like this, there needs to be some form of time synchronization
 between nodes so that it is possible to know the exact lifetimes
 of bundles.

 DLSW
 The bundle that has a destination with low social weight is
 dropped first. A low social weight means that the carrier may not
 be the best forwarder to this bundle. However, such bundle can
 only be dropped if it was already forwarded for at least a Minimum
 Bundle Forward (MBF) times, which is a minimum number of forwards
 that a bundle must have been forwarded before being dropped (if
 such a bundle exists).

 More than one queueing policy MAY be combined in an ordered set,
 where the first policy is used primarily, the second only being used
 if there is a need to tie-break between bundles given the same
 eviction priority by the primary policy, and so on. It is worth
 noting that obviously nodes MUST NOT drop bundles for which it has
 custody unless the lifetime expires.

3.3.2. Custody Policy

 The concept of custody transfer can be found in [RFC4838]. In general
 terms, the transmission of bundles with the Custody Transfer
 Requested option involves moving bundles "closer" (in terms of some

https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc4838

Moreira, et al. Expires October 27, 2013 [Page 24]

Internet-Draft dLife April 25, 2013

 routing metric) to their ultimate destination(s) with reliability.
 The nodes receiving these bundles along the way (and agreeing to
 accept the reliable delivery responsibility) are called "custodians".
 The movement of a bundle (and its delivery responsibility) from one
 node to another is called a "custody transfer".

 The reliability requirement that a custodian accepts can be
 instantiated in different ways: i) deleting the bundle after getting
 a confirmation of a successful custody transfer, which may require
 retransmissions over a reliable transport protocol, such as TCP. In
 this case, a bundle has normally one custodian in a moment in time;
 ii) deleting the bundle only after getting an acknowledgment that the
 bundle was delivered to the destination. In this case, a bundle can
 have more than one custodian, being the bundle replicated among
 custodians over a non-reliable transport protocol, such as UDP.

 dLife takes no responsibilities for making custody decisions. Such
 decisions should be made by a higher layer. However, dLife insures
 that custodian nodes do not drop bundles for which it has custody
 unless the lifetime expires, or an acknowledge message is received
 for that bundle.

3.3.3. Destination Policy

 When a bundle reaches its final destination, the Bundle Agent sends a
 notification to the routing agent (cf. Acked Bundle Notification in

Section 2.4.1), being that information (e.g., Bundle, deliveryTime)
 stored in the ackedBundleList by the routing agent. When nodes
 exchange Social message TLVs, bundles that have been ACKed are also
 listed. The node that receives this list updates its own list of
 ACKed bundles to be the union of its previous list and the received
 list. To prevent the list of ACKed bundles growing indefinitely, the
 ackedBundleList is periodically checked and bundles are removed
 following the configured queueing policy (c.f. Section 3.3.1) if the
 size of the list is bigger than a predefined threshold.When a node
 receives a notification for a bundle it is carrying, it MUST delete
 that bundle from its queue, since the notification indicates that a
 bundle has been delivered to its final destination.

 Nodes MAY keep track of which nodes they have sent Bundle ACKs for
 certain bundles to, and MAY in that case refrain from sending
 multiple Bundle ACKs for the same bundle to the same node.

4. Message Formats

 This section defines the message formats of the dLife routing
 protocol. In order to allow for variable length fields, many numeric

Moreira, et al. Expires October 27, 2013 [Page 25]

Internet-Draft dLife April 25, 2013

 fields are encoded as SDNVs, defined in [RFC5050], as in PRoPHET.
 Since many of the fields are coded as SDNVs, the size and alignment
 of fields indicated in many of the specification diagrams below are
 indicative rather than prescriptive.

 The basic message format shown in Figure 1 consists of a header (see
Section 4.1) followed by a sequence of one or more Type-Length-Value

 components (TLVs) taken from the specifications in Section 4.2.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 ~ Header ~
 | |
 +-+
 | |
 ~ TLV 1 ~
 | |
 +-+
 | . |
 ~ . ~
 | . |
 +-+
 | |
 ~ TLV n ~
 | |
 +-+
 Figure 1: Basic dLife Message Format

4.1. Header

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Prot_Number |Version| Flags | Code |
 +-+
 | Sender | Receiver |
 +-+
 | Message Identifier |
 +-+
 |S| SubMessage Number | Length (SDNV) |
 +-+
 | |
 ~ Message Body ~
 | |
 +-+
 Figure 2: dLife Message Header

https://datatracker.ietf.org/doc/html/rfc5050

Moreira, et al. Expires October 27, 2013 [Page 26]

Internet-Draft dLife April 25, 2013

 Prot_Number (Protocol Number)
 The DTN Routing Protocol Number is encoded as 8-bit unsigned
 integer in network bit order. The value of this field is 0. The
 dLife header is organized in this way so that dLife messages MAY
 be sent as the Protocol Data Unit of an IP packet if an IP
 protocol number was allocated for dLife. Transmitting dLife
 packets directly as an IP protocol on a public IP network such as
 the Internet would generally not work well because middle boxes
 such as firewalls and NAT boxes would be unlikely to allow the
 protocol to pass through and the protocol does not provide any
 congestion control. However, it could be so used on opportunistic
 wireless networks, which is the goal of dLife. The use of a light
 transport protocol such as UDP, in opposition to TCP, ensures a
 better exploitation of the presumable short contact opportunities
 between peers in a DTN. Due to the lack of reliability of UDP,
 dLife specify an acknowledgement procedure to transmit metadata.
 Hence, dLife is prepared to use UDP over Wi-Fi, while over
 Bluetooth dLife uses the RFCOMM and L2CAP protocols. In both cases
 message acknowledgement is made by the dLife mechanism.

 Version
 The Version of the dLife Protocol. Encoded as a 4-bit unsigned
 integer in network bit order. This document defines version 1.

 Flags
 The flags field is encoded as a 4-bit unsigned integer in network
 bit order. The following values are currently defined:

 o Success 0
 o Failure 1

 Code
 This field gives further information concerning the flag in a
 response message. It is mostly used to pass an error code in a
 failure response, but can also be used to give further information
 in a success response message. In a request message, the code
 field is not used and is set to zero.

 If the Code field indicates that the ACK TLV is included in the
 message, further information on the successful or failure of the
 message will be found in the ACK TLV, which MUST be the first TLV
 after the header.

 The Code field is encoded as an 8-bit unsigned integer in network
 bit order with 5 unused and reserved bits, which were included to
 allow future extension of the protocol. The following values are
 defined:

Moreira, et al. Expires October 27, 2013 [Page 27]

Internet-Draft dLife April 25, 2013

 o Generic Response 0x00
 o Submessage Received 0x01
 o ACK TLV in message 0x02
 o Unexpected Error 0x03

 The "generic response" and the "submessage receiver" values tell
 us that the success or failure indicated in the Flag field is
 related to the all message or a submessage, respectively.

 Sender
 This field is the instance number for the link of the sender of
 the dLife message. This instance number identifies a link between
 peering nodes and lasts until the link goes down or when the
 identity of the entity at the other end of the link changes. It is
 randomly generated. This number is a 16-bit number that is
 guaranteed to be unique within the recent past and to change when
 the link or node comes back up after going down. Zero is not a
 valid instance number. Messages sent throughout all the
 communication phases (i.e., Sensing, Hello, Information exchange)
 should use the sender's instance number. The Sender Instance is
 encoded as a 16-bit unsigned integer in network bit order.

 Receiver
 This field is the instance number for the link of the receiver of
 the dLife message. If the sender of the message does not know the
 current number of the receiver, this field MUST be set to zero.
 Messages sent throughout all the communication phases (i.e.,
 Sensing, Hello, Information exchange) should use the receiver's
 instance number. The receiver number is encoded as a 16-bit
 unsigned integer in network bit order.

 Message Identifier
 Used to associate a message with its response message. This should
 be set in request messages to a value that is unique for the
 sending host within the recent past. Response messages contain the
 Message Identifier of the request they are responding to. The
 Message Identifier is a 32 bit pattern.

 S-flag
 If S is set (value 1) then the SubMessage Number field indicates
 the total number of SubMessage segments that compose the entire
 message. If it is not set (value 0) then the SubMessage Number
 field indicates the sequence number of this SubMessage segment
 within the whole message. The S field will only be set in the
 first sub-message of a sequence.

 SubMessage Number
 When a message is segmented because it exceeds the MTU of the link

Moreira, et al. Expires October 27, 2013 [Page 28]

Internet-Draft dLife April 25, 2013

 layer or otherwise, each segment will include a SubMessage Number
 to indicate its position. Alternatively, if it is the first sub-
 message in a sequence of sub-messages, the S flag will be set and
 this field will contain the total count of SubMessage segments.
 The SubMessage Number is encoded as a 15-bit unsigned integer in
 network bit order. The SubMessage number is zerobased, i.e., for a
 message divided into n sub-messages, they are numbered from 0 to
 (n - 1). For a message that it is not divided into sub-messages
 the single message has the S-flag cleared (0) and the SubMessage
 Number is set to 0 (zero).

 Length
 Length in octets of this message including headers and message
 body. If the message is fragmented, this field contains the length
 of this SubMessage. The Length is encoded as an SDNV.

 Message Body
 The Message Body consists of a sequence of one or more of the TLVs
 specified in Section 4.2.

4.2. TLV Structure

 All TLVs have the following format, and can be nested.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | TLV Type | TLV Flags | TLV Length (SDNV) |
 +-+
 | |
 ~ TLV Data ~
 | |
 +-+

 Figure 3: TLV Format

 Type
 Specific TLVs are defined in Section 4.3. The TLV Type is encoded
 as an 8-bit unsigned integer in network bit order.

 TLV Flags
 These are defined per TLV type. Any flags which are specified as
 reserved in specific TLVs SHOULD be transmitted as 0 and ignored
 on receipt.

 TLV Length
 Length of the TLV in octets, including the TLV header and any
 nested TLVs. Encoded as an SDNV.

Moreira, et al. Expires October 27, 2013 [Page 29]

Internet-Draft dLife April 25, 2013

4.3. TLVs

 This section describes the various TLVs that can be used in dLife
 messages.

4.3.1. Hello TLV

 The Hello TLV is used to set up and maintain a link between two dLife
 nodes. Hello messages are the first TLVs exchanged between nodes when
 they are within range of communication and are used to inform
 neighbors about the EID, storage capacity, and current time of the
 node and a timer value.

 The Hello sequence must be completed so other TLVs can be exchanged.
 After the Hello procedure dLife nodes will store the information
 about each other EIDs, capacities and considered timer. Such action
 is acknowledged by signaling that the communication has been
 established. If during the Hello procedure, an ACK is failed to be
 received, disconnection occurred and link should be assumed broken.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | TLV type=0x01 |Flags| TLV Length (SDNV) |
 +-+
 |EIDLength(SDNV)| Sender EID (SDNV) | Timer (SDNV) |
 +-+
 | Storage (SDNV) |
 +-+
 | Current time (SDNV) |
 +-+

 Figure 4: Hello TLV Format

 TLV Flags
 The TLV Flags field contains a three bit Hello Function (HF)
 number that specifies one of three functions for the Hello TLV.
 The encoding of the Hello Function is:

 o HEL: HF = 1
 o ACK: HF = 2

 The HEL function is used by a node to send metadata needed for the
 dLife operation, namely the storage capacity of the node, its EID,
 current time, and a timer value. The ACK function in used by a
 node to acknowledge the reception of an HEL Hello TLV.

Moreira, et al. Expires October 27, 2013 [Page 30]

Internet-Draft dLife April 25, 2013

 TLV Data
 EID Length
 The EID Length field is used to specify the length of the
 Sender EID field in octets. If the EID has already been sent at
 least once in a message, a node MAY choose to set this field to
 zero, omitting the Sender EID from the Hello TLV. The EID
 Length is encoded as an SDNV and the field is thus of variable
 length.

 Sender EID
 The Sender EID field specifies the EID of the sender that is to
 be used in updating routing information and making forwarding
 decisions. If a node has multiple EIDs, one should be chosen
 for dLife routing. This field is of variable length.

 Timer
 The Timer field is used to inform the receiver of the timer
 value used in the Hello processing of the sender. The timer
 specifies the nominal time between periodic Hello messages. It
 is a constant for the duration of a session. The timer field is
 specified in units of 100 ms and is encoded as an SDNV.

 Storage
 This field indicates the node's storage capacity. Used to
 inform the potential senders of the node's limitations in terms
 of successful reception of bundles. This field is encoded as an
 SDNV.

 Current Time
 This field specifies the current time in the peering node. It
 is given in seconds and counting starts in the year 2000. This
 field is encoded as an SDNV.

4.3.2. ACK TLV

 This ACK TLV can be used by itself or nested in Hello TLV.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | TLV type=0x02 | Flags | TLV Length (SDNV) |
 +-+
 | ACK Data |
 +-+

 Figure 5: ACK TLV Format

Moreira, et al. Expires October 27, 2013 [Page 31]

Internet-Draft dLife April 25, 2013

 TLV Flags
 The TLV Flags field carries an identifier for the ACK TLV type as
 an 8-bit unsigned integer encoded in network bit order. A range of
 values is available for private and experimental use in addition
 to the values defined here. The following ACK TLV types are
 defined:

 o Break ACK 0x00
 Used when a node wants to break the connection due to the fact
 that the neighbor has a storage capacity lower that its
 threshold to send bundles.

 o Social ACK 0x01
 Report on the reception of Social TLVs (SWNI, bundleList and
 ackedBundleList).

 o EID ACK (identifier/EID discrepancy) 0x02
 Report on the identifier/EID discrepancy error as mentioned in

Section 3.2.1.

 o EID ACK (unknown EID) 0x03
 Report on the unknown EID error as mentioned in Section 3.2.1.

 o Reserved 0x04 - 0x7F

 o Private/Experimental Use 0x80 - 0xFF

 TLV Data
 The contents and interpretation of the TLV Data field are specific
 to the type of ACK TLV. The ACK Type is defined as follows:

 Break ACK
 This field is set to zero.

 Social ACK
 This field is set to zero.

 EID ACK (identifier/EID discrepancy)
 String ID causing the discrepancy and the EID string that
 differs the previous value.

 EID ACK (unknown EID)
 String ID not found in the dictionary.

4.3.3. EID Dictionary TLV

 The EID Dictionary TLV includes the list of EIDs used in making
 routing decisions and is a shared resource (cf. Section 3.2.1) built

Moreira, et al. Expires October 27, 2013 [Page 32]

Internet-Draft dLife April 25, 2013

 in each of the paired peers. The dictionary can be updated as more
 EID Dictionary TLVs are received.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | TLV type=0xA0 | Reserved | TLV Length (SDNV) |
 +-+
 | String/EID Count (SDNV) |
 +-+
 | |
 ~ Variable Length Routing Address Strings ~
 | |
 +-+
 | Routing Address String 1 |
 +-+
 | String ID 1 (SDNV) | Length (SDNV) |
 +-+
 | Endpoint Identifier 1 (variable length) |
 +-+
 ~ ... ~
 +-+
 | Routing Address String n |
 +-+
 | String ID n (SDNV) | Length (SDNV) |
 +-+
 | Endpoint Identifier n (variable length) |
 +-+

 Figure 6: EID Dictionary TLV Format

 Reserved
 8 unused and reserved bits, which were included to allow future
 extension of the protocol

 TLV Data
 String/EID Count
 Number of strings corresponding to the nodes' EIDs the sender
 node has encountered so far. Encoded as SDNV.

 String ID n
 SDNV identifier that is constant for the duration of a session.
 String ID zero is predefined as the node initiating the session
 through sending the Hello message, and String ID one is
 predefined as the node responding with the Hello ACK message.
 These entries do not need to be sent explicitly as the EIDs are
 exchanged during the Hello procedure.

Moreira, et al. Expires October 27, 2013 [Page 33]

Internet-Draft dLife April 25, 2013

 In order to ensure that the String IDs originated by the two
 peers do not conflict, the String IDs generated in the node
 that sent the Hello HEL message MUST have their least
 significant bit set to 0 (i.e., are even numbers) and the
 String IDs generated in the node that responded with the Hello
 ACK message must have their least significant bit set to 1
 (i.e., they are odd numbers).

 Length
 Length of Endpoint Identifier in this entry. Encoded as SDNV.

 Endpoint Identifier n
 Text string representing the Endpoint Identifier. Note that it
 is NOT null terminated as the entry contains the length of the
 identifier.

4.3.4. Social TLV

 This TLV provides the SWNI, bundleList and ackedBundleList
 information, i.e., a list of the nodes that the peer node has
 encountered up to that moment along with its social weight towards
 them, the importance of the peer node, as well as the lists
 containing bundles being carried by the peering node and
 acknowledgements for already delivered bundles (limited to the latest
 BUNDLE_DELIVERED number of bundles). This TLV allows dLife nodes to
 choose the bundles to be sent according to the forwarding strategies
 explained in Section 2.3.

Moreira, et al. Expires October 27, 2013 [Page 34]

Internet-Draft dLife April 25, 2013

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | TLV type=0xA1 | Flags | TLV Length (SDNV) |
 +-+
 | Importance Value |
 +-+
 | SWNI String Count (SDNV) |
 +-+
 | String ID 1 (SDNV) | Reserved |
 +-+
 | SW value 1 |
 +-+
 ~ ... ~
 +-+
 | String ID n (SDNV) | Reserved |
 +-+
 | SW value n |
 +-+
 | Carried Bundle Count (SDNV) |
 +-+
 | Carried Bundle ID 1 |
 +-+
 | Dest String ID 1 |
 +-+
 ~ ... ~
 +-+
 | Carried Bundle ID n |
 +-+
 | Dest String ID n |
 +-+
 | Acked Bundle Count (SDNV) |
 +-+
 | Acked Bundle ID 1 |
 +-+
 | Dest String ID 1 |
 +-+
 ~ ... ~
 +-+
 | Acked Bundle ID n |
 +-+
 | Dest String ID n |
 +-+

 Figure 7: Social message TLV Format

 TLV Flags
 The encoding of the Header flag field relates to the capabilities

Moreira, et al. Expires October 27, 2013 [Page 35]

Internet-Draft dLife April 25, 2013

 of the Source node sending the Social message.

 o Flag 0: More Social TLVs
 o Flag 1: Reserved
 o Flag 2: Reserved
 o Flag 3: Reserved
 o Flag 4: Reserved
 o Flag 5: Reserved
 o Flag 6: Reserved
 o Flag 7: Reserved

 The "More Social TLVs" flag is set to 1 if the Social message
 requires more TLVs to be sent in order to be fully transferred.
 This flag is set to 0 if this is the final TLV.

 TLV Data
 Importance
 Importance of the node sending the Social message as a 32-bit
 unsigned integer encoded in network bit order.

 SWNI String Count
 Number of entries regarding the SWNI information in the TLV.
 Encoded as SDNV.

 String ID
 String ID of the endpoint identifier of the encountered node
 for which this entry specifies the social weight as predefined
 in a dictionary TLV. This field is of variable length. This
 field is followed by 16 unused and reserved bits, which were
 included to allow future extension of the protocol (e.g., use
 of another metric such as contact volume or signal strength to
 improve the forwarding choice). Encoded as SDNV.

 SW value
 Social weight between peering node and that specific
 encountered node n as a 32-bit unsigned integer encoded in
 network bit order.

 Carried Bundle Count
 Number of entries regarding the carried bundle information in
 the TLV. Encoded as SDNV.

 Carried Bundle ID
 Identifiers of the bundles that the sender is currently
 carrying as a 32-bit unsigned integer.

 Acked Bundle Count
 Number of entries regarding the acknowledged bundle information

Moreira, et al. Expires October 27, 2013 [Page 36]

Internet-Draft dLife April 25, 2013

 in the TLV. Encoded as SDNV.

 Acked Bundle ID
 Identifiers of the bundles that the sender has received
 acknowledgements for as a 32-bit unsigned integer.

 Dest String ID
 String ID of the endpoint identifier of the destination for a
 carried or acknowledged bundle. This field is of variable
 length. Encoded as SDNV.

5. Detailed Operation

 This section provides further details about the operation of dLife,
 including state tables. As explained before dLife aims to release any
 assumption about the reliability of the transport protocol, and so
 positive acknowledgements would be necessary to signal successful
 delivery of (sub)messages. In this section the phrase "send a
 message" should be read as *successful* sending of a message,
 signaled by receipt of the appropriate "Success" response. Hence the
 state descriptions below do not explicitly mention positive
 acknowledgements, whether they are being sent or not.

5.1. High Level State Tables

 This section provides the high level state tables for the operation
 of dLife. The next section provides a more detailed view of each part
 of the protocol's operation. The following states are used to define
 the dLife operation:

 SENSING
 This is the state all nodes start in. Nodes remain in this state
 until a new contact opportunity arises. Once the routing agent has
 sensed the presence of a peer, via notification of the lower
 layer, it will start counting the contact duration. The Hello
 procedure will be triggered depending if the peer is a new contact
 or an already encountered peer (as explained in Section 3.1) by
 switching to the HELLO state. Since multiple contacts may happen,
 the node should also remain in the SENSING state in order to
 detect new contact opportunities. This is handled by creating a
 new thread or process during the transition to the HELLO state,
 which then takes care of the communication with the new peer while
 the parent process remains in state SENSING waiting for additional
 peer to communicate with. In the case when the neighbor is no
 longer available (described as 'neighbor gone notification rcvd'
 in the tables below), the thread or process created is destroyed.

Moreira, et al. Expires October 27, 2013 [Page 37]

Internet-Draft dLife April 25, 2013

 HELLO
 Nodes remain in the HELLO state from when a new contact
 opportunity arises until the Hello procedure is done and nodes are
 connected (which happens when the Hello procedure reaches the
 LINK_UP state as described in Section 5.3 - during this procedure,
 the state LINK_UP and WAIT_HELLO_HEL are used, but are not
 presented here since they are internal to the Hello procedure).
 Once the Hello procedure is done, the node starts the information
 exchange phase and transitions to the EXCHANGE state. If while in
 the HELLO state the node is notified that the neighbor is no
 longer in range by the lower layer, it returns to the SENSING
 state and, if appropriate, MAY destroys any additional process or
 thread created to handle the neighbor.

 EXCHANGE
 With the communication link set, nodes enter the EXCHANGE state in
 which the transmission of dLife metadata between peers is done.
 The node remains in this state as long as Information Exchange
 Phase TLVs (EID Dictionary, Social and ACK) are being exchanged.

 In the EXCHANGE state both nodes are able to exchange their EID
 dictionaries and SWNI information. With dLife the exchange of
 information about dictionary, social weight and node importance
 MAY be carried out independently but concurrently with the
 messages multiplexed on a single bidirectional link, or
 alternatively, the exchanges MAY be carried out partially or
 wholly sequentially if appropriate for the implementation. The
 information exchange process is explained in more detail in

Section 3.2.

 When a Social TLV is received the node MUST notify the Bundle
 Agent about the bundles that SHOULD be forwarded to the peer node.
 If the "More Social TLV" flag is set to zero (i.e., no more
 bundles to send), the node returns to the SENSING state. If the
 routing agent is notified by the lower layer that the neighbor is
 no longer in range, the node switches to the SENSING state and, if
 appropriate, MAY destroy any additional process or thread created
 to handle the neighbor.

 If one or more new bundles are received by this node and the TECD
 and TECDi metrics indicate that it would be appropriate to forward
 some or all of the bundles to the connected node(s), the bundles
 SHOULD be immediately transferred to the connected peer(s). As
 mentioned earlier, the lower layer is responsible in notifying the
 routing agent whether peers are still within communication range
 (cf. Section 2.4.2).

Moreira, et al. Expires October 27, 2013 [Page 38]

Internet-Draft dLife April 25, 2013

 State: SENSING
 +==+
 | Condition | Action | New State |
 +=================+================================+===========+
 | | Start contact duration count | |
 + +--------------------------------+ HELLO |
 | New Contact | Start Hello procedure | |
 + +--------------------------------+-----------+
 | | Keep sensing for more contacts | SENSING |
 +-----------------+--------------------------------+-----------+
 | Neighbor gone | | |
 | notification | | SENSING |
 | rcvd | | |
 +==+

 State: HELLO
 +==+
 | Condition | Action | New State |
 +=================+================================+===========+
 | Hello TLV rcvd | | HELLO |
 +-----------------+--------------------------------+-----------+
 | Hello procedure | Start Information | EXCHANGE |
 | done | Exchange Phase | |
 +-----------------+--------------------------------+-----------+
 | Neighbor gone | | |
 | notification | | SENSING |
 | rcvd | | |
 +==+

 State: EXCHANGE
 +==+
 | Condition | Action | New State |
 +=================+================================+===========+
 | On entry | Send metadata | EXCHANGE |
 +-----------------+--------------------------------+-----------+
 |EID Dict TLV rcvd| Update local EID Dictionary | EXCHANGE |
 +-----------------+--------------------------------+-----------+
 | Social TLV rcvd | Inform Bundle Agent | EXCHANGE |
 +-----------------+--------------------------------+-----------+
 | More Social TLV | | SENSING |
 | flag = 0 | | |
 +-----------------+--------------------------------+-----------+
 | New bundle | | EXCHANGE |
 +-----------------+--------------------------------+-----------+
 | Neighbor gone | | |
 | notification | | SENSING |
 | rcvd | | |
 +==+

Moreira, et al. Expires October 27, 2013 [Page 39]

Internet-Draft dLife April 25, 2013

5.2. High Level Meta-Data Table

 During its operation, dLife makes use of metadata locally stored as a
 consequence of the exchange of Social TLVs, Hello TLVs and local
 operations. The stored metadata is used in the computation of social
 weight towards other nodes and its own importance as well as to
 identify itself (cf. Section 2.2). Metadata can be persistent or
 temporary: the former MUST be kept for longer times and the latter is
 replaced as a new daily sample starts.

 Persistent metadata includes the node's own importance (Imp), Average
 Duration (AD_peer) of contacts to peers, social weight to peer
 (w_peer), and last daily sample in the case of failure/shutdown (see

Section 2.2). Since nodes receive information from neighbors, they
 must also store the peer's EID (EID_peer), importance of that peer
 (Imp_peer), and peer's current time (currTime_peer) (cf. Section

4.3.1). Additionally, nodes must keep track of number of times the
 bundles were forwarded (fwd_times) as to employ the queueing FLNT
 policy describe in Section 3.3.1.

 The temporary metadata includes the node's own EID, storage capacity
 (StoCap), current time (currTime), EID Dictionary (EIDDict), contact
 duration (CD_peer) and total contact time (TCT_peer) for a given
 peer, and Last Encounter (LastEnc_peer). Temporary metadata received
 from peers are storage capacity (StoCap_peer), EID Dictionary
 (EIDDict_peer), and social weight list of that peer towards other
 nodes (SocList_peer).

 In the SENSING state, each node MUST have its own EID, storage
 capacity, and current time ready for exchange in the case of a
 contact. When a contact is sensed, a node creates an entry for this
 potential peer (EID_peer) in metadata table and start counting the
 duration of this contact (CD_peer). Note that the peer EID will only
 be known in the HELLO state.

 If the HELLO state is successfully concluded, the EID_peer is now
 known and new entries for the encountered peer are created (TCT_peer,
 AD_peer, w_peer, StoCap_peer, and currTime_peer) in the metadata
 table. LastEnc_peer is also initialized in the HELLO state and
 receives the time nodes encountered. This variable will tell a node
 if the social information to be exchanged is up-to-date.

 When the EXCHANGE state starts, a node will receive from its peer its
 EIDDict_peer, SocList_peer and Imp_peer, which must be stored for
 later deciding in bundle forwarding.

Moreira, et al. Expires October 27, 2013 [Page 40]

Internet-Draft dLife April 25, 2013

 +------------------------+---------+----------+
 | EID_own | StoCap | Imp | EIDDict | currTime |
 +------------------------+---------+----------+
 | |
 | +----------+---------+----------+---------+--------+--------------+
 | | EID_peer | CD_peer | TCT_peer | AD_peer | w_peer | LastEnc_peer |
 | +----------+---------+----------+---------+--------+--------------+
 | | | |
 | | +-----+-----+-----+ +------+------+------+
 | | | CD1 | ... | CDn | | AD11 | ... | AD1i |
 | | +-----+-----+-----+ +------+------+------+
 | |
 | +-----------+------------+--------+-------------+------------+
 | |StoCap_peer|SocList_peer|Imp_peer|currTime_peer|EIDDict_peer|
 | +-----------+------------+--------+-------------+------------+
 |
 +--------------------+
 | Bundle n fwd_times |
 +--------------------+

 Figure 8: Meta-data Information

 This metadata varies in size according to the type of information it
 stores:

 o EID and EID_peer are coded as strings of variable size.

 o StoCap and StoCap_peer are coded as int (32 bits).

 o currTime, currTime_peer and LastEnc_peer are coded as int (32
 bits).

 o Imp, Imp_peer, AD_peer and w_peer are coded as floats (32 bits).

 o CD_peer and TCT_peer are coded as long (64 bits).

 o Fwd_times are coded as int (32 bits).

 o EIDDict and EIDDict_peer are coded as a HashMap tuple with
 String ID encoded as SDNV and its equivalent EID of variable
 length (up to 32 bits).

 o SocList_peer is coded as a HashMap tuple with String ID of the
 encountered nodes, encoded as SDNV, and the social weight of the
 peer towards these nodes.

Moreira, et al. Expires October 27, 2013 [Page 41]

Internet-Draft dLife April 25, 2013

5.3 Hello Procedure

 The hello procedure consists of the exchange of messages comprising
 the header TLV and a single Hello TLV (see Section 4.3.1) with the HF
 (Hello Function) field set to the specified value (HEL or ACK).

 The rules and state tables for this procedure are shown below with
 the main states and actions to be taken upon the receipt of the
 required information:

 o Hello HEL messages MUST always issued first, and SHOULD be
 followed by a Hello ACK.

 o The link between peers is only considered available when the
 LINK_UP state is reached.

 o Hello messages MAY be exchanged concurrently, but also in a
 sequential manner, depending on the nature of the communication
 medium (full- or half-duplex). In the case of the latter, the
 process MUST be completed in one direction prior to initiating in
 the other one.

 Upon a contact, nodes exchange a Hello HEL message. After that nodes
 will have information about each other's EID, storage capacity, and
 current time. The current time is used to determine in which daily
 sample the peer is in order to facilitate any required updates
 concerning social weights and importances that may have happened
 since last encounter between them. Additionally, a timer value is
 exchanged so nodes know the periodicity of next hello messages in
 order to signal the arrival of the Hello HEL message.

 At this moment, nodes MUST create entries for the peer (EID_peer)
 where the contact duration (CD_peer), total connected time
 (TCT_peer), average duration (AD_peer), social weight (w_peer),
 storage capacity (StoCap_peer), current time (currTime_peer),
 LastEnc_peer (initialized with currTime_peer), social weight list
 (SocList_peer), and the importance (Imp_peer) towards this specific
 peer are going to be maintained and updated. Additionally, a timer
 for receiving the Hello ACK message MUST be started. Up to this
 point, nodes are in the WAIT_HELLO_HEL state.

 A second hello message with the ACK flag MUST be issued to inform
 nodes about the successful reception of the Hello HEL message. If
 Hello ACK message does not arrive within the specified time (Hello
 ACK timeout), the link is assumed lost, nodes are disconnected,
 contact duration count MUST stop and variables SHOULD be saved. After
 this, the start of a new hello procedure is required and the nodes
 remain at the WAIT_HELLO_HEL state.

Moreira, et al. Expires October 27, 2013 [Page 42]

Internet-Draft dLife April 25, 2013

 The link is assumed active upon the receipt of the Hello ACK message.
 This means nodes are connected and ready to shift to the exchange
 information phase. At this point values should be saved in created
 entries and nodes move to the LINK_UP state.

 Nodes will remain at the LINK_UP state until the routing agent
 receive a notification from the lower layer reporting that the peer
 is no more within communication range (cf. neighbor gone in Section

2.4.2). At this point nodes MUST stop the contact duration count with
 the value being saved to CD_peer (CD1 ... CDn) variables of each
 disconnected peer.

 State: WAIT_HELLO_HEL
 +===+
 | Condition | Action | New State |
 +================+=================================+================+
 | | Start timer for | |
 | Hello HEL | Hello ACK receipt | |
 + rcvd +---------------------------------+ WAIT_HELLO_HEL +
 | | Initialize variables | |
 +----------------+---------------------------------+----------------+
 | Hello ACK rcvd | Save variables | LINK_UP |
 +----------------+---------------------------------+----------------+
 | Hello ACK | | |
 + timeout + + +
 | | Stop contact duration count | |
 +----------------+---------------------------------+ WAIT_HELLO_HEL +
 | Neighbor gone | Save variables | |
 + notification + + +
 | rcvd | | |
 +================+=================================+================+

 State: LINK_UP
 +===+
 | Condition | Action | New State |
 +================+=================================+================+
 | Neighbor gone | Stop contact duration count | |
 + notification +---------------------------------+ WAIT_HELLO_HEL +
 | rcvd | Save variables | |
 +================+=================================+================+

5.4 Information Exchange Phase

 After the exchange of hello messages, the nodes are in the LINK_UP
 state, which allows the exchange of information. dLife is
 bidirectional and the information exchange processes between a pair
 of nodes (from A to B and vice-versa) are independent and expected to
 run almost entirely concurrently. This is because EID Dictionaries

Moreira, et al. Expires October 27, 2013 [Page 43]

Internet-Draft dLife April 25, 2013

 SHOULD be synchronized to allow better performance of the protocol.

 The information exchange phase consists of messages comprising the
 dLife header and EID Dictionary and Social TLVs (see Sections 4.3.3
 and 4.3.4). The rules and state tables are shown below with the main
 states and actions to be taken upon the receipt of the required
 information.

 o No information SHALL be exchanged prior to the hello procedure.

 o Information messages MAY be exchanged concurrently, but also in
 a sequential manner, depending on the nature of the communication
 medium (full- or half-duplex). In the case of the latter, the
 process MUST be completed in one direction prior to initiating in
 the other one.

 Once in the information exchange phase, as soon as nodes enter the
 WAIT_INFO state, they SHOULD send the EID Dictionary in order to
 synchronize the mapping between their identifiers (String ID) and
 EIDs of nodes they have encountered. As the EID dictionary is
 received, the node will shift to the BUILD_SOCIAL_TLV state and check
 whether or not problems with the mapping are detected. In the case of
 EID errors, an ACK TLV with EID ACK flag MUST be sent to inform the
 peer node about problems (cf. Sections 3.2.1 and 4.3.2) with the
 received identifiers (String ID).

 Still in the WAIT_INFO state, if a node gets a Social TLV, it will
 obtain the SWNI, bundleList and ackedBundleList information from its
 peer node. With such information, the node will decide which bundles
 SHOULD be exchanged based on the forwarding strategies (cf. Section

2.3), will update its ackedBundleList, and will inform the Bundle
 Agent (cf. Send Bundle in Section 2.4.1) about the list of bundles
 that SHOULD be forwarded to its peering node.

 The node will remain in the WAIT_INFO state after receiving an Acked
 Bundle Notification (cf. Section 2.4.1), which means that the bundles
 forwarded by the Bundle Agent arrived at the destination node, and
 the sending node can update its ackedBundleList; and also when
 receiving an ACK TLV with the Break ACK flag, which signals that the
 peering node decided to disconnect given its lack of storage
 capacity, and the sending node will stop the contact duration count
 and wait for information coming from other peers.

 As soon as entering the BUILD_SOCIAL_TLV state, the node MUST build
 and send its Social TLV to the peering node and will remain in this
 state until it receives an ACK TLV with the Social ACK flag. The node
 will shift to the WAIT_INFO state upon the receipt of the Social ACK.

Moreira, et al. Expires October 27, 2013 [Page 44]

Internet-Draft dLife April 25, 2013

 Since dLife updates SWNI information at every daily sample, this can
 influence in the next forwarding decisions. Thus, the node should
 report such updates to its peering node and shift to the
 BUILD_SOCIAL_TLV state.

 Independently of the state the node finds itself, if receiving a
 notification from the lower layer reporting that the peer is no
 longer within communication range (cf. neighbor gone in Section

2.4.2), it MUST stop the contact duration count and wait for
 information coming from other peers.

 State: WAIT_INFO
 +===+
 | Condition | Action | New State |
 +================+==============================+===================+
 | On entry | Send EID Dictionary TLV | WAIT_INFO |
 +----------------+------------------------------+-------------------+
 | EID Dictionary | Check identifier/EID mapping | BUILD_SOCIAL_TLV |
 | rcvd | | |
 +----------------+------------------------------+-------------------+
 | EID error | Report problem | BUILD_SOCIAL_TLV |
 | | ACK TLV flag EID ACK | |
 +----------------+------------------------------+-------------------+
	Get SWNI, bundleList	
	and ackedBundleList	
Social TLV	information	WAIT_INFO
 + rcvd +------------------------------+ +
 | | Inform Bundle Agent | |
 | | (Send Bundle) | |
 + +------------------------------+ +
 | | Update ackedBundleList | |
 +----------------+------------------------------+-------------------+
Acked Bundle		
Notification	Update ackedBundleList	WAIT_INFO
rcvd		
+----------------+------------------------------+-------------------+		
Break ACK	Disconnect	WAIT_INFO
 + rcvd +------------------------------+ +
 | | Stop contact duration count | |
 +----------------+------------------------------+-------------------+
 | SWNI updated | Report peer | BUILD_SOCIAL_TLV |
 +----------------+------------------------------+-------------------+
 | Neighbor gone | | |
 | notification | Stop contact duration count | WAIT_INFO |
 | rcvd | | |
 +================+==============================+===================+

Moreira, et al. Expires October 27, 2013 [Page 45]

Internet-Draft dLife April 25, 2013

 State: BUILD_SOCIAL_TLV
 +===+
 | Condition | Action | New State |
 +================+==============================+===================+
 | On entry | Build and send Social TLV | BUILD_SOCIAL_TLV |
 +----------------+------------------------------+-------------------+
 | Social ACK | | WAIT_INFO |
 | rcvd | | |
 +----------------+------------------------------+-------------------+
Neighbor gone		
notification	Stop contact duration count	WAIT_INFO
rcvd		
 +================+==============================+===================+

6. Security Considerations

 Currently, dLife does not specify any special security measures.
 However, as a routing protocol for opportunistic networks, dLife may
 be a target for various attacks. Such attacks may not be problematic
 if all nodes in the network can be trusted and are working towards a
 common goal. If there is such a set of nodes, but there are also
 malicious nodes, consequent security problems can be solved by
 introducing an authentication mechanism when two nodes meet, for
 example using a Pretty Good Privacy (PGP) system. Thus, only nodes
 that are known to be members of the trusted group of nodes are
 allowed to participate in the dLife routing. This of course
 introduces the additional problem of key distribution, which is out-
 of-scope of this document.Examples of possible vulnerabilities are:

 Black Hole Attack
 A malicious node sets its social weights for all destinations to a
 very high value. This has two effects, both causing messages to be
 drawn towards the black hole, instead of to its correct
 destination: i) depending on queueing policy, this might lead to
 premature dropping of the bundle; ii) the social weights reported
 by the malicious node will affect the computation of the node
 importance. This could place the malicious use as the center of
 any communication.

 In this case, a node should raise alert if the social weights and
 node importance that it receives from a new neighbor is much
 higher than the cumulative moving average of the information
 received from all previous nodes. This situation can be handle by
 implementing a trustworthy authentication mechanism for pervasive
 computing, allowing a node to get extra confidence that a neighbor
 will handle social weights and node importance in a trustworthy
 manner.

Moreira, et al. Expires October 27, 2013 [Page 46]

Internet-Draft dLife April 25, 2013

 Identity Spoofing
 With identity spoofing, a malicious node claims to be someone
 else. This could be used to "steal" the data that should be going
 to a particular node. This will cause these bundles to be removed
 from the network, reducing the chance that they will reach their
 real destination.

 This can be prevented by using authentication between pervasive
 nodes.

 Bundle Store Overflow
 After encountering and receiving the social weights and node
 importance information from the victim, a malicious node may
 generate a large number of fake bundles to the destination for
 which the victim has the social weights. This will cause the
 victim to fill up its bundle storage, possibly at the expense of
 other, legitimate, bundles. This problem is transient as the
 messages will be removed when the victim meets the destination and
 delivers the messages.

 This attack can be prevented by requiring sending nodes to sign
 all bundles they originate. This will allow intermediate nodes to
 verify the integrity of the messages before accepting them.

 There are some typical vulnerabilities that are not potential
 problems with dLife such as:

 Fake ACKS
 In this typical situation a malicious node may issue fake ACKs for
 all bundles (or only bundles for a certain destination if the
 attack is targeted at a single node) carried by nodes it meets.
 The affected bundles will be deleted from the network, greatly
 reducing their probability of being delivered to the destination.

 This situation does not occur with dLife since a node can only
 send an ACK to bundles that the current carrier decided to forward
 to it (based on local forwarding policies) and not for bundles
 that the potential malicious node asked to be forwarded.

7. Implementation Experience

 The initial implementation of dLife is written in Java for the
 version 1.4.1 of the Opportunistic Network Emulator (ONE), named
 Dlife.java [Moreira12a], which implements the RoutingDecisionEngine
 interface to be used with the DecisionEngineRouter class. This
 implementation, which can be downloaded from the ONE web site,
 contains all the major mechanisms described in this document to

Moreira, et al. Expires October 27, 2013 [Page 47]

Internet-Draft dLife April 25, 2013

 ensure proper protocol operation. There are however some parts that
 are only specified, such as the queuing policies, and other that
 still need specification, such as the security considerations. The
 implementation considered nodes with limited storage resources (2 MB)
 and restricted communication: WiFi and Bluetooth. By running on ONE,
 the goal of this first implementation wast to enable dLife to be
 tested in different scalable large pervasive scenarios (some based on
 real traces such as the one from Cambridge University) with other
 protocols: PRoPHET and Bubble Rap. The three key performance
 indicators that were studied were average message delay, probability
 of message delivery and protocol cost (number of duplicate messages
 in the network at the time of delivery). Experience and feedback from
 the implementers on early versions of the protocol have been
 incorporated into the current version.

 A second implementation of dLife was done in Java using the Android
 API development. The class responsible for routing is known as
 dLifeRouter.java. This implementation follows a modular design to
 allow operation over multiple platforms. For that, a dLife library is
 being developed in Java (version 1.6+). This library comprises
 different classes that in turn include the components, messages,
 interfaces, and functionalities specified in this draft. The
 implemented classes are:

 The SocialInformation class
 Comprises the SIG, SW, and IA components which are responsible for
 keeping track of the different contact between devices, computing
 the social weight among them and determining their importance.

 The DlifeNeighbor class
 Include peer-specific information (e.g., EID_peer, Imp_peer,
 SocList_peer).

 The DlifeTLV class
 Provides all TLVs and methods used by dLife to create and
 interpret such TLVs.

 The main class (dLifeRouter)
 Includes the DM component that works along with other classes
 (i.e., components) based on the exchanged metadata and computed
 information to take routing decisions.

 The dLifeRouter class includes the interfaces to the DTN
 architecture/Bundle Agent (e.g., get bundle list, send bundle) and to
 the Bluetooth Convergence Layer (e.g., neighbor sensing). The
 implementation of the Bundle Agent, Bluetooth Convergence Layer and
 dLife are presented as an Opportunistic Networking Module to the DTN
 architecture.

Moreira, et al. Expires October 27, 2013 [Page 48]

Internet-Draft dLife April 25, 2013

 The DTN architecture/Bundle Agent class was implemented based on RFCs
 4838 and 5050. Currently available implementations for Linux and
 Android devices such as DTN2, IBR-DTN and Bytewalla were studied to
 obtain enough implementation background.This class provides nodes
 with DTN core functionality, direct wireless communication, generic
 routing capabilities, and secure communications. Generic routing
 functionalities are provided by the implementation of a generic
 routing class, GenericRouting, which was extended to represent the
 dLife protocol. Secure communications are supported by the
 implementation of a security layer, BundleSecurity, implemented
 according to RFC 6257 - Bundle security Protocol Specification.

 To allow direct wireless communication a common communication medium,
 the Bluetooth Convergence Layer (BCL), was created and implemented
 allowing direct exchange of bundles through the Bluetooth interface
 without the need of a structured WiFi network. The BCL class, which
 is not present in the available DTN architecture implementations, was
 implemented as general as possible to allow the interfacing between
 the Bundle Agent and the communication medium regardless of the used
 routing protocol and operational system running on the the devices.
 However, the current implementation was first developed for Android
 devices and thus the BCL takes advantages of some native Bluetooth
 functionality already implemented in this platform, such as the
 discovery of neighbors and the possibility of storing information
 about them. The implemented BCL (BluetoothConvergenceLayer.java)
 includes the Service Discovery Protocol (SDP) for sensing the medium
 and the Serial Port Profile (SPP) for data exchange. The BCL class
 uses the RFCOMM as transport protocol and run on top on the Logical
 link control and adaptation protocol (L2CAP), which interfaces with
 the Host Controller Interface (HCI). Additionally, the BCL provides a
 simple reliable data stream and supports multiple connections as this
 is expected to happen in the real world.

 At the moment the Opportunistic Networking Module is partially
 functional on Android 2.3.6 Gingerbread (kernel version 2.6.35.7)
 devices, which are able to exchange information through their
 Bluetooth interfaces based on the current dLife specification.
 Currently devices can only manage one simultaneous Bluetooth
 connection. Actually the code is under revision to be improved in
 order to support multiple connections, as this is a common situation
 in urban scenarios. Version 1.0 of the Opportunistic Networking
 Module for Android devices will be made available for download once
 concluded.

https://datatracker.ietf.org/doc/html/rfc6257

Moreira, et al. Expires October 27, 2013 [Page 49]

Internet-Draft dLife April 25, 2013

8. Deployment Experience

 In order perform implementation tests of the dLife protocol, a DTN
 testbed was created in the context of the DTN-Amazon project, having
 SITILabs/University Lusofona and Federal University of Para as
 current partners. The testbed has currently 10 devices (3 personal
 computers with Ubuntu 10.10 Maverick, 3 smartphones Android 2.3.6
 Gingerbread, 4 wireless routers with OpenWrt 10.03.1).

 The testbed was initially used to test three different DTN
 implementations: IBR-DTN, organized in a modular form, with a focus
 on embedded systems for easy portability; DTN2, incorporating all
 components of the DTN architecture, divided into modules such as
 Convergence Layers, Persistent Store, Bundle Router and more;
 Bytewalla (version 3, since version 5 was not yet fully functional
 with sporadic crashes).

 This initial set of tests aimed to identify which implementation
 could be adopted in the DTN-Amazon project.

 Both IBR-DTN and DTN2 were tested with two applications that were
 able to communicate based on two different routing protocols via WiFi
 interfaces configured in infrastructured mode: i) whisper chat
 application over PRoPHET (IBR-DTN testbed); and ii) the DTN-Amazon
 Android security application for surveillance of university campus
 over Epidemic and PRoPHET routing (DTN2).

 Bytewalla was also deployed to allow the understanding of its
 functionalities. It was installed in Android devices with
 communication taking place through a wireless router, which could not
 interpret bundles and was only used to relay information.

 Additionally, The DTN2 implementation was also used to analyze the
 behavior of a network environment with mobility, while the mule
 (wireless router) were carried by a vehicle to enable the exchange of
 information between two hosts. There were also attempts to deliver
 the message at a speed of 60 km/h, the limit considered by the
 scientific community so that the communication Wi-Fi still works.

 As the idea was to exploit physical proximity (key aspect of dLife to
 determine different levels of social interaction among devices)
 between DTN-Amazon nodes, this initial set of tests showed that none
 of these available implementations were enough for the scenario of
 the project. Thus, they were studied to provide enough implementation
 knowledge to the project's designers resulting in the Opportunistic
 Networking Module.

 For a proof of concept, initial deployment tests of the stable dLife

Moreira, et al. Expires October 27, 2013 [Page 50]

Internet-Draft dLife April 25, 2013

 implementation over the Opportunistic Networking Module were carried
 out based on seven Android devices carried by students during their
 daily routine activities in the Federal University of Para campus for
 five days. A traffic generator was installed in each device to create
 a load of 6 messages/hour, towards the other six nodes used in the
 experience. Node storage was defined at 10MB and message size varied
 between 1KB and 1MB.

 These tests aimed to: i)evaluate the BCL implementation and
 successfully generate the first contact traces based on it; and ii)
 test the behavior of dLife in terms of calculating the social weights
 between nodes and their importances.

 Currently, the Opportunistic Networking Module is being finetuned and
 the next set of tests will analyze the performance of the dLife, when
 compared to behavior of other social-oblivious opportunistic routing
 solutions such as Epidemic and PROPHET, based on the following
 metrics: average message delay, probability of message delivery and
 the number of duplicate messages in the network at the time of
 delivery.

9. Differences from Previous Version

 o Formula to determine the number of elapsed daily samples introduced
 (Section 2.2)

 o Basic forwarding strategy updated (Section 2.3)

 o New bundle agent functionality added (Section 2.4.1)

 o Neighbor sensing phase updated (Section 3.1)

 o Destination policy updated (Section 3.3.3)

 o Message formats reviewed with fields being removed/added/updated
 (Section 4)

 o Detailed operation reviewed and state charts updated (Section 5)

 o Implementation and Deployment experiences updated (Sections 7 and
 8)

 o Section 9 included to summarize updates

Moreira, et al. Expires October 27, 2013 [Page 51]

Internet-Draft dLife April 25, 2013

10. References

10.1 Normative References

 [Moreira12a] Moreira, W., Mendes, P., and Sargento, S.,
 "Opportunistic Routing Based on Daily Routines," in
 Proceedings of the Sixth IEEE WoWMoM Workshop on Autonomic
 and Opportunistic Communications (AOC 2012), (San
 Francisco, California, USA), June, 2012.

 [Moreira12b] Moreira, W., Souza, M., Mendes, P., and Sargento, S.,
 "Study on the Effect of Network Dynamics on Opportunistic
 Routing" in Proceedings of the Eleventh International
 Conference on Ad-Hoc Networks and Wireless (AdHoc Now
 2012), (Belgrade, Serbia), July, 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4838] Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst,
 R., Scott, K., Fall, K., and H. Weiss, "Delay-Tolerant
 Networking Architecture", RFC 4838, April 2007.

 [RFC5050] Scott, K. and S. Burleigh, "Bundle Protocol Specification",
RFC 5050, November 2007.

10.2 Informative References

 [Chaintreau06] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass,
 and J. Scott, "Impact of human mobility on the design of
 opportunistic forwarding algorithms," in Proceedings of
 INFOCOM, (Barcelona, Spain), April, 2006.

 [Costa08] P. Costa, C. Mascolo, M. Musolesi, and G. P. Picco,
 "Socially-aware routing for publish-subscribe in delay-
 tolerant mobile ad hoc networks," Selected Areas in
 Communications, IEEE Journal on, vol. 26, pp. 748- 760,
 June, 2008.

 [Daly07] E. M. Daly and M. Haahr, "Social network analysis for
 routing in disconnected delay-tolerant manets," in
 Proceedings of ACM MobiHoc, (Montreal, Canada), September,
 2007.

 [Eagle09] N. Eagle and A. Pentland, "Eigenbehaviors: identifying
 structure in routine," Behavioral Ecology and
 Sociobiology, vol. 63, pp. 1057-1066, May, 2009.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4838
https://datatracker.ietf.org/doc/html/rfc5050

Moreira, et al. Expires October 27, 2013 [Page 52]

Internet-Draft dLife April 25, 2013

 [Hossmann10] T. Hossmann, T. Spyropoulos, and F. Legendre, "Know thy
 neighbor: Towards optimal mapping of contacts to social
 graphs for dtn routing," in Proceedings of IEEE INFOCOM,
 (San Diego, USA), March, 2010.

 [Hui07] P. Hui and J. Crowcroft, "How small labels create big
 improvements," in Proceedings of IEEE PERCOM Workshops,
 (White Plains, USA), March, 2007.

 [Hui11] P. Hui, J. Crowcroft, and E. Yoneki, "Bubble rap: social-
 based forward- ing in delay tolerant networks," Mobile
 Computing, IEEE Transactions on, vol. 10, pp. 1576-1589,
 November, 2011.

 [I-D.irtf-dtnrg-tcp-clayer] Demmer, M. and J. Ott, "Delay Tolerant
 Networking TCP Convergence Layer Protocol", draft-irtf-

dtnrg-tcp-clayer-02 (work in progress), November 2008.

 [I-D.irtf-dtnrg-udp-clayer] H. Kruse, S. Ostermann, "UDP Convergence
 Layers for the DTN Bundle and LTP Protocols", draft-irtf-

dtnrg-udp-clayer-00 (work in progress), November 2008.

 [Lindgren04] A. Lindgren, A. Doria, and O. Schelen, "Probabilistic
 routing in intermittently connected networks," in Service
 Assurance with Partial and Intermittent Resources, vol.
 3126 of Lecture Notes in Computer Science, pp. 239--254,
 Springer Berlin / Heidelberg, 2004.

 [Lindgren06] Lindgren, A. and K. Phanse, "Evaluation of Queueing
 Policies and Forwarding Strategies for Routing in
 Intermittently Connected Networks", Proceedings of
 COMSWARE 2006 , January 2006.

 [Moreira11] W. Moreira and P. Mendes, "Survey on Opportunistic
 Routing for Delay/Disruption Tolerant Networks ," Tech.
 Rep. SITI-TR-11-02, SITI, University Lusofona, February
 2011.

 [Moreira_12c] Waldir Moreira, Paulo Mendes, Susana Sargento,
 "Assessment Model for Opportunistic Routing", IEEE Latin
 America Transactions, Vol 10 Issue 3 April 2012

 [Mtibaa10] A. Mtibaa, M. May, M. Ammar, and C. Diot, "Peoplerank:
 Combining social and contact information for opportunistic
 forwarding," in Proceedings of INFOCOM, (San Diego, USA),
 March, 2010.

 [Nelson09] S. Nelson, M. Bakht, and R. Kravets, "Encounter-based

https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-tcp-clayer-02
https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-tcp-clayer-02
https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-udp-clayer-00
https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-udp-clayer-00

Moreira, et al. Expires October 27, 2013 [Page 53]

Internet-Draft dLife April 25, 2013

 routing in DTNs," in Proceedings of INFOCOM, (Rio de
 Janeiro, Brazil), April, 2009.

 [RFC6257] Symington, S., Farrell, S., Weiss, H., and P. Lovell,
 "Bundle Security Protocol Specification", RFC 6257, May
 2011.

 [Song07] L. Song and D. F. Kotz, "Evaluating opportunistic routing
 protocols with large realistic contact traces," in
 Proceedings of ACM MobiCom CHANTS, (Montreal, Canada),
 September, 2007.

 [Vahdat00] Vahdat, A. and D. Becker, "Epidemic Routing for Partially
 Connected Ad Hoc Networks", Duke University Technical
 Report CS-200006, April 2000..in 3

Authors' Addresses

 Waldir Moreira
 SITILabs, Universidade Lusofona
 Campo Grande, 376
 1749-024 Lisboa
 Portugal
 Phone:
 Email: waldir.junior@ulusofona.pt
 URI: http://siti2.ulusofona.pt/~wjunior

 Paulo Mendes
 SITILabs, Universidade Lusofona
 Campo Grande, 376
 1749-024 Lisboa
 Portugal
 Phone:
 Email: paulo.mendes@ulusofona.pt
 URI: http://siti.ulusofona.pt/~pmendes

 Ronedo Ferreira
 ITEC, Universidade Federal do Para
 Rua Augusto Correa, 01, Guama
 66075-110 Belem-PA
 Brasil
 Phone:
 Email: ronedo@aitinet.com
 URI:

 Douglas Cirqueira
 ITEC, Universidade Federal do Para
 Rua Augusto Correa, 01, Guama

https://datatracker.ietf.org/doc/html/rfc6257
http://siti2.ulusofona.pt/~wjunior
http://siti.ulusofona.pt/~pmendes

Moreira, et al. Expires October 27, 2013 [Page 54]

Internet-Draft dLife April 25, 2013

 66075-110 Belem-PA
 Brasil
 Phone:
 Email: douglas.cirqueira@gmail.com
 URI:

 Eduardo Cerqueira
 ITEC, Universidade Federal do Para
 Rua Augusto Correa, 01, Guama
 66075-110 Belem-PA
 Brasil
 Phone:
 Email: cerqueira@ufpa.br
 URI: http://www.gercom.ufpa.br/eduardo/

http://www.gercom.ufpa.br/eduardo/

Moreira, et al. Expires October 27, 2013 [Page 55]

