
Transport Working Group                                        J. Morton
Internet-Draft                                                  P. Heist
Intended status: Informational                              22 July 2019
Expires: 23 January 2020

Cheap Nasty Queueing
draft-morton-tsvwg-cheap-nasty-queueing-00

Abstract

   This note presents Cheap Nasty Queueing (CNQ), a queueing algorithm
   intended as a bare-minimum functionality standard for hardware
   implementations.  It provides stateless or single-instance AQM and
   basic sparse-flow prioritisation.
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1.  Introduction

   Flow isolation is a powerful tool for congestion management in
   today's Internet.  Unfortunately, the relatively complex algorithms
   and considerable dynamic state of a DRR++ queue set with individual
   AQM (Active Queue Management) [RFC7567] instances has proved
   disheartening to hardware implementors, and thus to deployment on
   high-capacity links and in consumer-grade hardware.

   This note therefore presents CNQ, a queueing algorithm suitable for
   implementation in low-cost hardware, providing the absolute minimum
   functionality to improve perceived network performance over that of a
   dumb FIFO.

2.  Background

   CNQ is inspired by DRR++'s facility for identifying "sparse" flows
   and giving them strict priority over "saturating" flows.  DRR++ does
   this by maintaining separate lists of queues (each queue containing
   one flow) meeting "sparseness" criteria or not.

   Queues are first placed into the sparse list when they become non-
   empty, then moved to the saturating list when their deficit exceeds a
   threshold called "quantum".  Every queue's deficit is incremented by
   the packet size when packets are delivered from it, and decremented
   by the quantum when they come up in the list rotation.  Queues are
   removed from the saturating list only when they are found empty for a
   full rotation.

   This "sparseness" heuristic over observed per-flow queue occupancy
   characteristics is relatively robust, compared to relying on the
   correct behaviour of each source's congestion control algorithms and/
   or explicit traffic marking.  This is especially relevant with the
   recent development of high-fidelity congestion signalling schemes,
   such as DCTCP [RFC8257] and SCE (Some Congestion Experienced), whose
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   expected congestion-signal response is markedly different from
   previous standards.

   In fq_codel [RFC8290] and Cake [CAKE], AQM is applied individually to
   each DRR++ flow, thus avoiding unnecessary leakage of AQM action from
   flows requiring it to well-behaved traffic which does not.  This
   arrangement has been shown to work well in practice, and is widely
   deployed as part of the Linux kernel, including in many CPE devices.
   However the per-queue AQM state dominates the memory requirements of
   DRR++.

   CNQ attempts to retain some of these characteristics while
   simplifying implementation requirements considerably.  This still
   requires identifying individual traffic flows and keeping some per-
   flow state, but there is no longer an individual queue per state nor
   any lists of such queues.  Instead there are only two queues and at
   most one set of AQM state.  The operations required are believed to
   be amenable to low-cost hardware implementation.

3.  The Algorithm

3.1.  Overview

   Unlike conventional fair queueing, with Cheap Nasty Queueing, packets
   are not distributed to queues by a flow mapping, but by a sparseness
   metric associated with that mapping.  Thus, the number of queues is
   reduced to two.

   The number of flows which can be handled is far greater, however,
   being limited by the number of flow buckets indexed by the flow hash.
   An implementation might define a flow as traffic to one subscriber,
   and provide a perfect mapping between subscribers and buckets.
   Alternatively it might provide a stochastic mapping based on the
   traditional 5-tuple of addresses, port numbers, and protocol number.
   The latter would be appropriate for low-cost consumer hardware, in
   which the notion of a "subscriber" is neither well-defined nor
   useful.

   The per-flow state is just one unsigned integer, in contrast to DRR++
   which requires a whole queue and a set of AQM state per flow.  This
   integer is B, tracking the backlog of the flow in packets.  This
   small per-flow state makes tracking a large number of flows
   practical.

   The two queues provided are SQ and BQ:

   SQ is the "sparse queue" which handles flows classed as sparse,
   including the first packets in newly active flows.  This queue tends

https://datatracker.ietf.org/doc/html/rfc8290
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   to remain short and drain quickly, which are ideal characteristics
   for latency-sensitive traffic, and young flows still establishing
   connections or probing for capacity.  This queue does not maintain
   AQM state nor apply AQM signals.

   BQ is the "bulk queue" which handles all traffic not classed as
   sparse, including at least the second and subsequent packets in a
   burst.  An AQM algorithm is applied to all traffic delivered from it.

   To prevent well-paced traffic from dominating the queue by keeping
   exactly one packet in SQ at all times, a dummy packet is sent into BQ
   in parallel with every packet enqueued in SQ, and the B value for the
   flow is double-incremented to match.  A flow is therefore considered
   sparse IFF the interval between its packets is longer than the
   sojourn time of packets in BQ.  This can be a much stricter criterion
   than for true derivatives of DRR++ such as LFQ.

   In case of queue overflow, packets are removed from the "head" of BQ
   to make room for the new arrivals; this head-dropping behaviour
   minimises the delay before the lost packets can be retransmitted.

   This simplification of state and algorithm has some drawbacks in
   terms of resultant behaviour.  The sharing of link capacity between
   flows is dependent mainly on the RTT-fair properties of the flows'
   own congestion control, in response to congestion signalling from the
   single AQM.

3.2.  Declarations

   The following queues are defined:

    -------------------------------
   -->                  | | | |  -->
    -------------------------------
    SQ: the Sparse Queue, containing packets from flows with no more
    than one packet in the queue at a time (no AQM for this queue).

    -------------------------------
   -->    | | | | | | | | | | |  -->
    -------------------------------
    BQ: the Bulk Queue, containing packets from flows that build up a
    multi-packet backlog (AQM managed queue).

   The following constants and variables are defined:

   *  B: the flow backlog, in packets
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   *  N: the number of flow buckets (each bucket containing a value of
      B)

   *  S: the size of a packet

   *  T: the packet's timestamp, for later use by AQM

   *  H: the packet's flow hash, cached

   *  MAXSIZE: the maximum size for all packets in the queue

   *  NOW: the current timestamp

   Finally, the hash function FH() maps a packet to a flow bucket:

                                        +---+
                                   /--- | B |
                                  /     +---+
                                 /
                       +------+ /       +---+
   ----- Packet -----> | FH() | ------- | B |
                       +------+ \       +---+
                                 \
                                  \
                                   \--- ... N

3.3.  Pseudo-code

   In the following pseudo-code:

   *  Lowercase is used for internal variables, and uppercase for
      constants, variables and queues defined in Section 3.2.

   *  The send() function transmits the packet.

   *  The aqm_action() function updates the AQM state (if any) based on
      the current sojourn time, and returns an action code indicating
      whether a CE or SCE mark (or no mark) should be applied.  This
      function may be stateless and merely return results from a
      threshold function or probability ramp, or it may implement Codel
      or similar stateful AQMs, or a hybrid of the two for separate CE
      and SCE marking strategies.

   The following functions and variables are defined for both the sparse
   and bulk queues:

   *  The push() function adds a packet to the tail of the specified
      queue.
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   *  The pop() function removes and returns the packet from the head of
      the specified queue.

   *  The .size variable (BQ.size and SQ.size) refers to the sum of the
      sizes of all packets in the queue, and may be maintained during
      push(), pop().

   *  The .head variable is the current head pointer for the queue.

   The logic for the enqueue operation is as follows:

   enqueue(packet p) {
       while (SQ.size + BQ.size + S > MAXSIZE) {
           ; Queue overflow - drop from BQ head, then from SQ
           dp := pop(BQ)
           if (!dp)
               dp := pop(SQ)
           bkt := dp.H
           bkt.B -= 1
       }

       bkt := FH(p)
       p.T = NOW
       p.H = bkt
       if (bkt.B == 0) {
           push(SQ, p)
           dp := zero-length dummy packet
           dp.T = NOW
           dp.H = bkt
           push(BQ, dp)
           bkt.B += 2
       } else {
           push(BQ, p)
           bkt.B += 1
       }
   }

   The logic for the dequeue operation is as follows:

   dequeue() {
       ; SQ gets strict priority
       p := pop(SQ)
       if (p) {
           send(p)
           bkt := p.H
           bkt.B -= 1
           return
       }
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       ; Process BQ if SQ was empty
       repeat {
           p := pop(BQ)
           if (!p) {
               ; Queue is empty
               return
           }

           bkt := p.H
           bkt.B -= 1

           if (p.S == 0) {
               ; Dummy packet for sparseness metric - drop
               continue
           }

           ; Apply AQM logic based on sojourn time
           t := NOW - p.T

           ; drop unresponsive traffic
           if (t > 500ms)
               continue

           switch(aqm_action(t)) {
           case MARK_CE:
               ; legacy congestion signalling
               if (t.ECN == Not-ECT)
                   continue
               ; RFC-3168
               if (t.ECN == ECT || t.ECN == SCE)
                   t.ECN = CE  ; and update IP header checksum
               break

           case MARK_SCE:
               ; Some Congestion Experienced
               if (t.ECN == ECT)
                   t.ECN = SCE ; and update IP header checksum
               break

           default:
               ; no marking request
               break
           }

           send(p)
           return
       }
   }

https://datatracker.ietf.org/doc/html/rfc3168
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4.  Security Considerations

   This is a very weak FQ algorithm, not much better than a dumb FIFO -
   but still better.

5.  IANA Considerations

   There are no IANA considerations.
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