
Transport Working Group J. Morton
Internet-Draft P. Heist
Intended status: Informational 22 July 2019
Expires: 23 January 2020

Cheap Nasty Queueing
draft-morton-tsvwg-cheap-nasty-queueing-00

Abstract

 This note presents Cheap Nasty Queueing (CNQ), a queueing algorithm
 intended as a bare-minimum functionality standard for hardware
 implementations. It provides stateless or single-instance AQM and
 basic sparse-flow prioritisation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 23 January 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Morton & Heist Expires 23 January 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Internet-Draft cheapnastyq July 2019

Table of Contents

1. Introduction . 2
2. Background . 2
3. The Algorithm . 3
3.1. Overview . 3
3.2. Declarations . 4
3.3. Pseudo-code . 5

4. Security Considerations 8
5. IANA Considerations . 8
6. Informative References 8

 Authors' Addresses . 8

1. Introduction

 Flow isolation is a powerful tool for congestion management in
 today's Internet. Unfortunately, the relatively complex algorithms
 and considerable dynamic state of a DRR++ queue set with individual
 AQM (Active Queue Management) [RFC7567] instances has proved
 disheartening to hardware implementors, and thus to deployment on
 high-capacity links and in consumer-grade hardware.

 This note therefore presents CNQ, a queueing algorithm suitable for
 implementation in low-cost hardware, providing the absolute minimum
 functionality to improve perceived network performance over that of a
 dumb FIFO.

2. Background

 CNQ is inspired by DRR++'s facility for identifying "sparse" flows
 and giving them strict priority over "saturating" flows. DRR++ does
 this by maintaining separate lists of queues (each queue containing
 one flow) meeting "sparseness" criteria or not.

 Queues are first placed into the sparse list when they become non-
 empty, then moved to the saturating list when their deficit exceeds a
 threshold called "quantum". Every queue's deficit is incremented by
 the packet size when packets are delivered from it, and decremented
 by the quantum when they come up in the list rotation. Queues are
 removed from the saturating list only when they are found empty for a
 full rotation.

 This "sparseness" heuristic over observed per-flow queue occupancy
 characteristics is relatively robust, compared to relying on the
 correct behaviour of each source's congestion control algorithms and/
 or explicit traffic marking. This is especially relevant with the
 recent development of high-fidelity congestion signalling schemes,
 such as DCTCP [RFC8257] and SCE (Some Congestion Experienced), whose

https://datatracker.ietf.org/doc/html/rfc7567
https://datatracker.ietf.org/doc/html/rfc8257

Morton & Heist Expires 23 January 2020 [Page 2]

Internet-Draft cheapnastyq July 2019

 expected congestion-signal response is markedly different from
 previous standards.

 In fq_codel [RFC8290] and Cake [CAKE], AQM is applied individually to
 each DRR++ flow, thus avoiding unnecessary leakage of AQM action from
 flows requiring it to well-behaved traffic which does not. This
 arrangement has been shown to work well in practice, and is widely
 deployed as part of the Linux kernel, including in many CPE devices.
 However the per-queue AQM state dominates the memory requirements of
 DRR++.

 CNQ attempts to retain some of these characteristics while
 simplifying implementation requirements considerably. This still
 requires identifying individual traffic flows and keeping some per-
 flow state, but there is no longer an individual queue per state nor
 any lists of such queues. Instead there are only two queues and at
 most one set of AQM state. The operations required are believed to
 be amenable to low-cost hardware implementation.

3. The Algorithm

3.1. Overview

 Unlike conventional fair queueing, with Cheap Nasty Queueing, packets
 are not distributed to queues by a flow mapping, but by a sparseness
 metric associated with that mapping. Thus, the number of queues is
 reduced to two.

 The number of flows which can be handled is far greater, however,
 being limited by the number of flow buckets indexed by the flow hash.
 An implementation might define a flow as traffic to one subscriber,
 and provide a perfect mapping between subscribers and buckets.
 Alternatively it might provide a stochastic mapping based on the
 traditional 5-tuple of addresses, port numbers, and protocol number.
 The latter would be appropriate for low-cost consumer hardware, in
 which the notion of a "subscriber" is neither well-defined nor
 useful.

 The per-flow state is just one unsigned integer, in contrast to DRR++
 which requires a whole queue and a set of AQM state per flow. This
 integer is B, tracking the backlog of the flow in packets. This
 small per-flow state makes tracking a large number of flows
 practical.

 The two queues provided are SQ and BQ:

 SQ is the "sparse queue" which handles flows classed as sparse,
 including the first packets in newly active flows. This queue tends

https://datatracker.ietf.org/doc/html/rfc8290

Morton & Heist Expires 23 January 2020 [Page 3]

Internet-Draft cheapnastyq July 2019

 to remain short and drain quickly, which are ideal characteristics
 for latency-sensitive traffic, and young flows still establishing
 connections or probing for capacity. This queue does not maintain
 AQM state nor apply AQM signals.

 BQ is the "bulk queue" which handles all traffic not classed as
 sparse, including at least the second and subsequent packets in a
 burst. An AQM algorithm is applied to all traffic delivered from it.

 To prevent well-paced traffic from dominating the queue by keeping
 exactly one packet in SQ at all times, a dummy packet is sent into BQ
 in parallel with every packet enqueued in SQ, and the B value for the
 flow is double-incremented to match. A flow is therefore considered
 sparse IFF the interval between its packets is longer than the
 sojourn time of packets in BQ. This can be a much stricter criterion
 than for true derivatives of DRR++ such as LFQ.

 In case of queue overflow, packets are removed from the "head" of BQ
 to make room for the new arrivals; this head-dropping behaviour
 minimises the delay before the lost packets can be retransmitted.

 This simplification of state and algorithm has some drawbacks in
 terms of resultant behaviour. The sharing of link capacity between
 flows is dependent mainly on the RTT-fair properties of the flows'
 own congestion control, in response to congestion signalling from the
 single AQM.

3.2. Declarations

 The following queues are defined:

 --> | | | | -->

 SQ: the Sparse Queue, containing packets from flows with no more
 than one packet in the queue at a time (no AQM for this queue).

 --> | | | | | | | | | | | -->

 BQ: the Bulk Queue, containing packets from flows that build up a
 multi-packet backlog (AQM managed queue).

 The following constants and variables are defined:

 * B: the flow backlog, in packets

Morton & Heist Expires 23 January 2020 [Page 4]

Internet-Draft cheapnastyq July 2019

 * N: the number of flow buckets (each bucket containing a value of
 B)

 * S: the size of a packet

 * T: the packet's timestamp, for later use by AQM

 * H: the packet's flow hash, cached

 * MAXSIZE: the maximum size for all packets in the queue

 * NOW: the current timestamp

 Finally, the hash function FH() maps a packet to a flow bucket:

 +---+
 /--- | B |
 / +---+
 /
 +------+ / +---+
 ----- Packet -----> | FH() | ------- | B |
 +------+ \ +---+
 \
 \
 \--- ... N

3.3. Pseudo-code

 In the following pseudo-code:

 * Lowercase is used for internal variables, and uppercase for
 constants, variables and queues defined in Section 3.2.

 * The send() function transmits the packet.

 * The aqm_action() function updates the AQM state (if any) based on
 the current sojourn time, and returns an action code indicating
 whether a CE or SCE mark (or no mark) should be applied. This
 function may be stateless and merely return results from a
 threshold function or probability ramp, or it may implement Codel
 or similar stateful AQMs, or a hybrid of the two for separate CE
 and SCE marking strategies.

 The following functions and variables are defined for both the sparse
 and bulk queues:

 * The push() function adds a packet to the tail of the specified
 queue.

Morton & Heist Expires 23 January 2020 [Page 5]

Internet-Draft cheapnastyq July 2019

 * The pop() function removes and returns the packet from the head of
 the specified queue.

 * The .size variable (BQ.size and SQ.size) refers to the sum of the
 sizes of all packets in the queue, and may be maintained during
 push(), pop().

 * The .head variable is the current head pointer for the queue.

 The logic for the enqueue operation is as follows:

 enqueue(packet p) {
 while (SQ.size + BQ.size + S > MAXSIZE) {
 ; Queue overflow - drop from BQ head, then from SQ
 dp := pop(BQ)
 if (!dp)
 dp := pop(SQ)
 bkt := dp.H
 bkt.B -= 1
 }

 bkt := FH(p)
 p.T = NOW
 p.H = bkt
 if (bkt.B == 0) {
 push(SQ, p)
 dp := zero-length dummy packet
 dp.T = NOW
 dp.H = bkt
 push(BQ, dp)
 bkt.B += 2
 } else {
 push(BQ, p)
 bkt.B += 1
 }
 }

 The logic for the dequeue operation is as follows:

 dequeue() {
 ; SQ gets strict priority
 p := pop(SQ)
 if (p) {
 send(p)
 bkt := p.H
 bkt.B -= 1
 return
 }

Morton & Heist Expires 23 January 2020 [Page 6]

Internet-Draft cheapnastyq July 2019

 ; Process BQ if SQ was empty
 repeat {
 p := pop(BQ)
 if (!p) {
 ; Queue is empty
 return
 }

 bkt := p.H
 bkt.B -= 1

 if (p.S == 0) {
 ; Dummy packet for sparseness metric - drop
 continue
 }

 ; Apply AQM logic based on sojourn time
 t := NOW - p.T

 ; drop unresponsive traffic
 if (t > 500ms)
 continue

 switch(aqm_action(t)) {
 case MARK_CE:
 ; legacy congestion signalling
 if (t.ECN == Not-ECT)
 continue
 ; RFC-3168
 if (t.ECN == ECT || t.ECN == SCE)
 t.ECN = CE ; and update IP header checksum
 break

 case MARK_SCE:
 ; Some Congestion Experienced
 if (t.ECN == ECT)
 t.ECN = SCE ; and update IP header checksum
 break

 default:
 ; no marking request
 break
 }

 send(p)
 return
 }
 }

https://datatracker.ietf.org/doc/html/rfc3168

Morton & Heist Expires 23 January 2020 [Page 7]

Internet-Draft cheapnastyq July 2019

4. Security Considerations

 This is a very weak FQ algorithm, not much better than a dumb FIFO -
 but still better.

5. IANA Considerations

 There are no IANA considerations.

6. Informative References

 [CAKE] Hoiland-Jorgensen, T., Taht, D., and J. Morton, "Piece of
 CAKE: A Comprehensive Queue Management Solution for Home
 Gateways", May 2018, <https://arxiv.org/abs/1804.07617>.

 [RFC7567] Baker, F., Ed. and G. Fairhurst, Ed., "IETF
 Recommendations Regarding Active Queue Management",

BCP 197, RFC 7567, DOI 10.17487/RFC7567, July 2015,
 <https://www.rfc-editor.org/info/rfc7567>.

 [RFC8257] Bensley, S., Thaler, D., Balasubramanian, P., Eggert, L.,
 and G. Judd, "Data Center TCP (DCTCP): TCP Congestion
 Control for Data Centers", RFC 8257, DOI 10.17487/RFC8257,
 October 2017, <https://www.rfc-editor.org/info/rfc8257>.

 [RFC8290] Hoeiland-Joergensen, T., McKenney, P., Taht, D., Gettys,
 J., and E. Dumazet, "The Flow Queue CoDel Packet Scheduler
 and Active Queue Management Algorithm", RFC 8290,
 DOI 10.17487/RFC8290, January 2018,
 <https://www.rfc-editor.org/info/rfc8290>.

Authors' Addresses

 Jonathan Morton
 Kokkonranta 21
 FI-31520 Pitkajarvi
 Finland

 Phone: +358 44 927 2377
 Email: chromatix99@gmail.com

 Peter G. Heist
 Redacted
 463 11 Liberec 30
 Czech Republic

 Email: pete@heistp.net

https://arxiv.org/abs/1804.07617
https://datatracker.ietf.org/doc/html/bcp197
https://datatracker.ietf.org/doc/html/rfc7567
https://www.rfc-editor.org/info/rfc7567
https://datatracker.ietf.org/doc/html/rfc8257
https://www.rfc-editor.org/info/rfc8257
https://datatracker.ietf.org/doc/html/rfc8290
https://www.rfc-editor.org/info/rfc8290

Morton & Heist Expires 23 January 2020 [Page 8]

