
ICNRG M. Mosko
Internet-Draft PARC, Inc.
Intended status: Experimental May 8, 2019
Expires: November 9, 2019

CCNx Selector Based Discovery
draft-mosko-icnrg-selectors-01

Abstract

 CCNx selector based discovery uses exclusions and interest name
 suffix matching to discover content in the network. Participating
 nodes may respond with matching Content Objects from cache using an
 encapsulation protocol. This document specifies the available
 selectors, their encoding in a name segment, and the encapsulation
 protocol.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 9, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Mosko Expires November 9, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft CCNx Selectors May 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Requirements Language 3

2. Protocol Description . 3
3. Name Labels and TLV types 5
3.1. Child Selector . 7
3.2. Interest Min(Max)SuffixComponents 7
3.3. Name Excludes . 7
3.3.1. Exclude Singleton 9
3.3.2. Exclude Range . 9
3.3.3. Examples . 9

4. Content Store and Caching 10
5. Annex A: Examples . 11
6. IANA Considerations . 12
7. Security Considerations 12
8. References . 13
8.1. Normative References 13
8.2. Informative References 13

 Author's Address . 14

1. Introduction

 Content Discovery is an important feature of CCNx [CCNxSemantics].
 This document specifies a discovery mechanism that uses a name
 segment to encode a discovery query in an Interest. Nodes that
 participate in discovery may reply with a Content Object if it
 matches the encoded query. The query uses exclusions to work around
 incorrect responses.

 This document updates CCNx Messages [CCNxMessages] with a new name
 TLV type, T_SELECTOR, for selector query. It also specifies a new
 Content Object PayloadType that encapsulates another Content Object.
 The inner Content Object is used to return a Content Object with a
 longer name than in an interest. The inner object's signature should
 verify as normal.

 Not all nodes along the Interest path need to participate in the
 discovery process. A non-participating node should forward the
 Interest and encapsulating Content Object as normal. A participating
 node should verify that the inner Content Object matches the selector
 query in the PIT entry befor returning it and erasing the PIT entry.

Mosko Expires November 9, 2019 [Page 2]

Internet-Draft CCNx Selectors May 2019

 Note that Selector discovery is not needed when asking for a Content
 Object by its Content-Object Hash, as there should only ever be one
 match for that.

 Selector discovery in CCNx 1.0 differs in three ways from the prior
 CCNx 0.x selector discovery. First, CCNx 1.0 uses a distinguished
 field for the Content-Object Hash restriction. It is not appended to
 the name to form the so-called "full name." This means that there is
 no implicit digest name segment. Thus, using a MinSuffixComponents
 and MaxSuffixComponents of 0 will match the exact name in the
 Interest without needing to add one extra component to account for
 the implicit digest. Second, there is a HashExcludes field that
 lists Content-Object Hash restrictions to exclude instead of
 appending them as an implicit name component. Third, the encoding of
 Excludes differs from prior encodings and uses a simpler formulation
 with the same expressiveness that also takes in to consideration that
 name segments in CCNx 1.0 have TLV types associated with them.

 CCNx 1.0 allows Content Objects to have no name and be retrieved by
 hash only. As they have no name, they are not discoverable via name-
 based selector discovery.

 Packets are represented as 32-bit wide words using ASCII art.
 Because of the TLV encoding and optional fields or sizes, there is no
 concise way to represent all possibilities. We use the convention
 that ASCII art fields enclosed by vertical bars "|" represent exact
 bit widths. Fields with a forward slash "/" are variable bitwidths,
 which we typically pad out to word alignment for picture readability.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Protocol Description

 Selector based discovery uses seven query variables to discover
 content. These selectors are encoded as a single name segment
 affixed to an Interest name. The selectors operate on the prefix up
 to, but not including the selector name segment. The selector name
 segment should be the last name segment.

 The selectors are:

 o MinSuffixComponents: the minimum number of additional name
 segments a matching Content Object must have in its name. The
 default value is 0.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Mosko Expires November 9, 2019 [Page 3]

Internet-Draft CCNx Selectors May 2019

 o MaxSuffixComponents: The maximum number of additional name
 segments a matching Content Object may have in its name. The
 default value is unlimited.

 o ChildSelector: Answer with the left-most or right-most child.

 o NameExcludes: A set of range and singleton exclusions to eliminate
 Content Objects. The exclusions match against the name segment
 that would immediately follow the Interest name prefix up to but
 not including the Selector name segment.

 o InnerKeyId: Matches the KeyId of the encapsulated object.

 o HashExcludes: A list of ContentObjectHashRestrictions to exclude.

 o SelectorNonce: A number to make the query unique.

 A node using Selector discovery appends a Selector name segment to
 the end of the Interest name. Even if no selectors are used, the
 Selector name segment is added to the end, which indicates to a
 participating node that it should apply Selector based matching to
 the Interest. In this case, the default values -- if any -- of each
 selector are used.

 A node receiving a Selector Interest should match against the Content
 Store using the selector rules. Based on the sort order, it should
 pick the appropriate Content Object, if any, and return it in an
 Encapsulation Object. If no Content Objects match, the Interest
 should be forwarded or NACKed as normal.

 An Encapsulation Object is a Content Object that matches the Selector
 Interest and whose payload is the discovered Content Object. The
 ContentType of an Encapsulation Object is "ENCAP". The outer name
 matches the Selector Interest name. The inner Content Object name
 matches the Selector discovery.

 The KeyIdRestriction of the Interest matches the outer KeyId of the
 outer Content Object, as normal. This allows a responding cache or
 producer to sign (or MAC or MIC) the response. The InnerKeyId of the
 Selector matches the inner ContentObject in the same way. This
 allows the selector to discriminate discovery including the inner
 KeyId.

 The HashExcludes eliminate any Content Objects whose
 ContentObjectHash matches any of the listed values. It should not
 matter if matching objects are discarded before name prefix selector
 matching or after. A Content Object must always pass both the
 HashExcludes filter and the name prefix selector filters, wether it

Mosko Expires November 9, 2019 [Page 4]

Internet-Draft CCNx Selectors May 2019

 is done first or last does not matter. HashExcludes are encoded the
 same way as a ContentObjectHashRestriction value in an Interest.
 Note that this Selector does not exist in NDN or CCNx 0.x. We use an
 explicit set of HashExcludes rather than constructing a full name
 with the implicit digest component at the end.

 A consumer MAY include a SelectorNonce. This nonce is to make the
 query unqiue to bypass cached reponses to the same Selectors at non-
 participating nodes. A conumser SHOULD use this field if it receives
 an non-conforming response in an encapsulated ContentObject and
 cannot further exclude that response. If an attacker were able to
 inject an incorrect response into a non-participating cache then that
 non-participating node cannot determine that the response it is
 serving from cache is correct or not. Therefore, a consumer can use
 the SelectorNonce to make its requrest name different from the cached
 name. Note that if all nodes are participating, then this field has
 no effect as it is not processed by them. The SelectorNone is not
 used for loop detection and may be as few bytes as needed to avoid a
 cached response.

 If an authoritative producer receives a Selector discovery, it SHOULD
 generate the inner Content Object as normal and encapsulate it as
 normal. It MAY also respond with an Interest Return or not respond
 at all. At the present, responding directly to the Selector Interest
 with data without encapsulating it is not supported. Note that an
 application is NOT REQUIRED to implement Selector discovery; if the
 application wishes to make use of this mechanism, then it must
 implement it, if it does not use this mechanism then it does not need
 to implement it.

 Normally, the outer Content Object does not have a Validation
 section. A responding node MAY include a CRC32C or other integrity
 check. Signing or MACing an outer Content Object is possible, but
 should only be used in environments where that degree of trust is
 necessary. Signing the outer Content Object in no way replaces the
 signature (if any) of the inner Content Object. The outer signature
 only identifies the responding cache (or producer).

3. Name Labels and TLV types

 The Selector name segment type T_SELECTOR has type %x0010.

 The PayloadType of T_PAYLOADTYPE_ENCAP has the value 8.

Mosko Expires November 9, 2019 [Page 5]

Internet-Draft CCNx Selectors May 2019

 +------+-----------------+------------+-----------------------------+
 | Type | Symbol | Name | Description |
 +------+-----------------+------------+-----------------------------+
1	T_MINSUFFIX	Selectors:	Minimum number of
		Min Suffix	additional name components
		Components	after given name to match
			(0 default if missing).
2	T_MAXSUFFIX	Selectors:	Maximum number of
		Max Suffix	additional name components
		Components	after given name to match
			(unlimited default is
			missing).
3	T_CHILD	Selectors:	0 = left, 1 = right
		Child	(default)
		Selector	
4	T_NAME_EXCLUDES	Name	Encloses ExcludeComponents
		Excludes	
1	T_EX_SINGLE	Exclude	Exclude a single name
		Singleton	segment.
2	T_EX_RANGE	Exclude	Exclude an half-open range,
		Range	beginning at this value and
			continuing up to the next
			Singleton, or to infinity
			if omitted on the last
			entry.
5	T_INNER_KEYID	Inner	A restriction on the inner
		KeyId	keyid. If present, it must
			match the KeyId of the
			inner Content Object in the
			encapsulated response.
6	T_HASH_EXCLUDES	Hash	Excludes a set of
		Excludes	ContentObjectHash from the
			allowed responses. Each
			restriction is encoded
			using its Hash Function
			Type Registry type (e.g.
			T_SHA-256) from
			[CCNxMessages].
 +------+-----------------+------------+-----------------------------+

 Table 1: Selector Types

Mosko Expires November 9, 2019 [Page 6]

Internet-Draft CCNx Selectors May 2019

3.1. Child Selector

 If there are multiple choices to answer an Interest, the Child
 Selector specifies the desired ordering of responses. %x00 =
 leftmost, %x01 = rightmost.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+
 | T_CHILD | 1 | selector |
 +---------------+---------------+---------------+

3.2. Interest Min(Max)SuffixComponents

 The Min and Max suffix components are encoded as a minimum-length
 unsigned integer in network byte order number inside the value. A
 "0" is represented as a single byte %0x00. A length 0 value is
 interpreted the same as the type not being present.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | type | length | /
 +---------------+---------------+ /
 / Min(Max)SuffixComponents /
 +---------------+---------------+---------------+---------------+
 type = T_MINSUFFIX or T_MAXSUFFIX

3.3. Name Excludes

 Interest Excludes specify a set of singletons and ranges to exclude
 when matching Content Object names to an Interest. They match the
 name component immediately following the last component of the
 Interest name (not including the Selector TLV). The excludes must be
 sorted in ascending order, using the Exclude sorting rules below.

 A name exclusion is the full TLV expression of a name component, not
 just it's value.

 Exclude Sorting: An exclusion value A is less than B iff the TLV type
 of A is less than the TLV type of B, or being equal, the TLV value of
 A is shortlex less than the TLV value of B. A shortlex comparison
 means that X is less than Y is X is shorter than Y or the lengths
 being equal, X lexicagraphically sorts before Y.

 Using the normal 2+2 TLV encoding of [CCNxMessages], the Exclude
 Sorting can be done by a byte-by-byte memcmp() of two TLVs. This is
 because the fixed length Type ensures correct type sorting and fixed

Mosko Expires November 9, 2019 [Page 7]

Internet-Draft CCNx Selectors May 2019

 length Length ensures correct shortlex length sorting. This will not
 necessarily be true of other encodings.

 A zero-length exclusion is the minimum exclusion and must appear
 before any other exclusion. Note that a zero-length exlcusion has no
 TLV type for the name component, so it will match any name segment
 TLV type. It is equivalent to minus infinity.

 The zero-length name component is the minimum name component of that
 name component type (e.g.T_NAMESEGMENT).

 An exclude may contain either an Exclude Range type or an Exclude
 Singleton type. An Exclude Range type means the given value starts a
 half-open exclusion range that begins inclusive of the Range value
 and ends open at the next Singleton or at infinity if it is the last
 exclude component. An Exclude Singleton means to exclude the exact
 value given.

 Note that this syntax does not require the "ANY" exclude component
 that is part of the NDN and CCNx 0.x syntax.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_EXCLUDES | length |
 +---------------+---------------+---------------+---------------+
 / Zero or more exclude-components /
 +---+

 exclude-components = *component [start-range-tlv]
 component = (start-range-tlv singleton-tlv) / singleton-tlv

 The ABNF of the exclude-component allows for zero or more components
 followed by an option start-range-tlv. A component is either a half-
 open range (start-range-tlv singleton-tlv) or a singleton-tlv.

 The optional final start-range-tlv has no terminating singleton-tlv.
 This means it extends out to plus infinity.

 Note that to exclude from negative infinity to some value "foo", we
 do not need to include an ANY element because the zero-length name
 component is, by definition, the minimum element and we use inclusive
 range start. Therefore, begining an exlcusion with the zero-length
 range effectively excludes from minus infinity.

Mosko Expires November 9, 2019 [Page 8]

Internet-Draft CCNx Selectors May 2019

3.3.1. Exclude Singleton

 A singleton exclude component means to exclude a name segment exactly
 matching the given value.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_EX_SINGLE | length |
 +---------------+---------------+---------------+---------------+
 / TLV name segment /
 +---------------+---------------+---------------+---------------+

3.3.2. Exclude Range

 A Range exclude means to exclude the from the given value up to but
 not including the next Singleton. If the Range is the last component
 in the Exclude, it means to exclude to infinity.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | T_EX_RANGE | length |
 +---------------+---------------+---------------+---------------+
 / TLV name segment /
 +---------------+---------------+---------------+---------------+

3.3.3. Examples

 In these examples, we will use the notation S[foo] to represent a
 singleton exclusion "foo" and R[foo] to represent a range exclusion
 beginning at "foo." In the column Range, we use standard open
 (parenthesis) and closed (square bracket) interval notation. We
 assume all TLV name types of T_NAMESEGMENT if there is no explicit
 name segment type given. In our notation, something like S[VER=bar]
 would exclude a TLV type Version and value "bar".

Mosko Expires November 9, 2019 [Page 9]

Internet-Draft CCNx Selectors May 2019

 +---------------+---+
 | Exclude | Range |
 | Pattern | |
 +---------------+---+
S[ace]	NAME=ace
S[ace] R[bat]	NAME=ace, [NAME=bat, infty)
R[ace] S[bat]	[NAME=ace, NAME=bat)
R[CHUNK=0]	[CHUNK=0, CHUNK=20)
S[CHUNK=20]	
R[] S[ace]	(-infty, NAME=ace), matches any preceeding TLV
	types using a zero-length Range exclude
R[NAME=]	[NAME=, NAME=ace)
S[ace]	
R[]	(-infty, +infty)
S[zoo] S[ape]	Invalid range, not sorted
R[NAME=ace]	[NAME=ace, CHUNK=0), this will span TLV ranges
S[CHUNK=0]	type between T_NAMESEGMENT and T_CHUNK
R[CHUNK=]	[CHUNK=, CHUNK+1=), excludes all CHUNK TLV
S[CHUNK+1=]	possibilities
 +---------------+---+

 Table 2: CCNx Name Types

4. Content Store and Caching

 The encapsulated responses to discovery are cachable, like all
 Content Objects. A participating forwarder MAY cache the inner
 Content Object separately from the outer Content Object assuming it
 passes the selector tests. A non-participating forwarder MAY only
 cache the outer Content Object (encapsulating the inner).

 A participating content store MUST obey both the outer and inner
 cache control directives: ExpiryTime and RecommendedCacheTime. At a
 participating node, the outer and inner Content Objects are
 independent and cached independently. This is allowed because a
 participating node has verified that the inner ContentObject comes
 from an on-path direction of the routing prefix, so it cannot be an
 off-path injection of bad content.

Mosko Expires November 9, 2019 [Page 10]

Internet-Draft CCNx Selectors May 2019

 A non-participating content store must obey the outer cache control
 directives, as normal. The inner content object is opaque data to
 it.

 It is RECOMMENDED that a participating node creating the encapsulated
 response set a short ExpiryTime and MAY set a 0 ExpiryTime (to
 prevent all caching). This is desirable because non-participating
 nodes only look at the outer ExpiryTime and cannot determine if the
 inner ContentObject actually satisfies the Selector query. Note that
 a consumer can also use a SelectorNonce to avoid bad cache entries at
 non-participating nodes, so it is not necessary for correctness to
 use a 0 ExpiryTime.

 Note that cached respones are, in general, not a problem for the
 discovery process. Participating nodes will always do a full
 selector match, so a consumer can work around incorrect responses as
 normal. Because Selector interests with differnent Exclude blocks
 will result in different names, prior responses will not match in the
 caches of non-participating nodes, esepcially if the ExpiryTime is
 set to 0.

5. Annex A: Examples

 We use the CCNx URI scheme [ccnx-uri], CCNx Chunking [ccnx-chunking],
 and CCNx versioning [ccnx-version]. For example purposes, will use
 content stored under the name ccnx://example.com/protocol.pdf. The
 names stored in a repository are, in sorted order:

 o ccnx:/example/file.txt/Serial=%00/Chunk=%00

 o ccnx:/example/file.txt/Serial=%01/Chunk=%00

 o ccnx:/example/file.txt/Serial=%02/annotations/Serial=%00/Chunk=%00

 o ccnx:/example/file.txt/Serial=%02/Chunk=%00

 o ccnx:/example/file.txt/Serial=%02/Chunk=%01

 o ccnx:/example/file.txt/Serial=%02/%f001=foo

 o ccnx:/example/file.txt/Serial=%02/%f001=foo/%f002=bar

 Remember that name segments without an explicit type have type Name
 Segment, which is normalized to %x0001. Chunk is %x0010 and Serial
 is %x0013. This means the sort order is as above.

 To discovery the latest version of file.txt, we would issue an
 Interest with a name of "ccnx:/example/file.txt/

Mosko Expires November 9, 2019 [Page 11]

Internet-Draft CCNx Selectors May 2019

 Selector={MINSUFFIX=1}." We use the notation {...} to indicate that
 the enclosed selectors are encoded as a single TLV name segment.
 This query ensures that there is at least 1 additional name segment
 beyond "file.txt." The default is to return the right-most child,
 which in this case is the Content Object corresponding to
 "ccnx:/example/file.txt/Serial=%02/%f001=foo/%f002=bar."

 By parsing the returned name, we know that Serial 2 is the latest
 version and could begin retrieving the content by asking for chunk 0.
 If we wished to discovery the ending chunk number of Serial 2, we
 could use an Interest like "ccnx:/example/file.txt/Serial=%02/
 Selector={MINSUFFIX=1, MAXSUFFIX=1}" to try and find a response with
 only a Chunk number. Unfortunately, there is more junk content with
 the name "ccnx:/example/file.txt/Serial=%02/%f001=foo."

 Once we recieve the junk content, we need to exclude it and try
 again. This could be done by including a hash exclusion. Assuing
 the SHA256 hash of the returned junk is %x0101...abc, we would re-
 issue the discovery Interest with name
 "ccnx:/example/file.txt/Serial=%02/Selector={MINSUFFIX=1,
 MAXSUFFIX=1, HASH_EXCLUDE=%x0101...abc}." We would now recieve the
 desired content for chunk 1 of Serial 2.

 A better way to discover structured names is to use exclusions so we
 only find objects with a Chunk segment after the serial number. In
 this case, the discovery Interest would be name
 "ccnx:/example/file.txt/Serial=%02/Selector={MINSUFFIX=1,
 MAXSUFFIX=1, EXCLUDES=R[] S[Chunk=0] R[CHUNK+1=]}." This exclusion
 eliminates everything from -infinity up to, but not including,
 Chunk=0 and also excludes everything from Chunk+1 (%x0011) to
 +infinity.

6. IANA Considerations

 This memo includes no request to IANA. TODO: If this document is
 submitted as an official draft, this section must be updated to
 reflect the IANA registries described in [CCNxMessages]

7. Security Considerations

 Because respones use encapsulation, there is size expansion in the
 response from the original Content Object. The expansion will be the
 length of the encapsulating Selector name plus the size of any
 validation uses on the outer Content Object (e.g. a CRC32C), plus
 framing overhead. This means that one cannot respond with a Content
 Object that is too close to the maximum packet size.

Mosko Expires November 9, 2019 [Page 12]

Internet-Draft CCNx Selectors May 2019

 Participating nodes should be able to filter incorrect responses just
 as they do in NDN or CCNx 0.x. If all node participate, then one has
 equivalent in-network filtering behavior as those other protocols.

 If the outer Content Object is signed, the consumer should, as
 normal, verify the signature for accuracy. However, the trust of the
 outer signature is normally not important and usually reflects
 operation in a specific environment. An outer Validation section is
 usually used only for integrity checks.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

editor.org/info/rfc2119>.

8.2. Informative References

 [ccnx-chunking]
 Mosko, M., "CCNx Content Object Chunking", Work in
 Progress, draft-mosko-icnrg-ccnxchunking-02, June 2016.

 [ccnx-uri]
 Mosko, M. and C. Wood, "The CCNx URI Scheme", Work in
 Progress, draft-mosko-icnrg-ccnxurischeme-01, April 2016.

 [ccnx-version]
 Mosko, M., "CCNx Publisher Serial Versioning", Work in
 Progress, draft-mosko-icnrg-ccnxserialversion-00, January
 2015.

 [CCNxMessages]
 Mosko, M., Solis, I., and C. Wood, "CCNx Messages in TLV
 Format (Internet draft)", 2019,
 <http://tools.ietf.org/html/

draft-irtf-icnrg-ccnxmessages-09>.

 [CCNxSemantics]
 Mosko, M., Solis, I., and C. Wood, "CCNx Semantics
 (Internet draft)", 2019, <https://tools.ietf.org/html/

draft-irtf-icnrg-ccnxsemantics-10>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/draft-mosko-icnrg-ccnxchunking-02
https://datatracker.ietf.org/doc/html/draft-mosko-icnrg-ccnxurischeme-01
https://datatracker.ietf.org/doc/html/draft-mosko-icnrg-ccnxserialversion-00
http://tools.ietf.org/html/draft-irtf-icnrg-ccnxmessages-09
http://tools.ietf.org/html/draft-irtf-icnrg-ccnxmessages-09
https://tools.ietf.org/html/draft-irtf-icnrg-ccnxsemantics-10
https://tools.ietf.org/html/draft-irtf-icnrg-ccnxsemantics-10

Mosko Expires November 9, 2019 [Page 13]

Internet-Draft CCNx Selectors May 2019

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 DOI 10.17487/RFC3552, July 2003, <https://www.rfc-

editor.org/info/rfc3552>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 5226,
 DOI 10.17487/RFC5226, May 2008, <https://www.rfc-

editor.org/info/rfc5226>.

Author's Address

 Marc Mosko
 PARC, Inc.
 Palo Alto, California 94304
 USA

 Phone: +01 650-812-4405
 Email: marc.mosko@parc.com

https://datatracker.ietf.org/doc/html/bcp72
https://datatracker.ietf.org/doc/html/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://datatracker.ietf.org/doc/html/rfc5226
https://www.rfc-editor.org/info/rfc5226
https://www.rfc-editor.org/info/rfc5226

Mosko Expires November 9, 2019 [Page 14]

