
Workgroup: wg TBD

Internet-Draft: draft-moskowitz-eddsa-pki-06

Published: 10 July 2023

Intended Status: Informational

Expires: 11 January 2024

Authors: R. Moskowitz

HTT Consulting

H. Birkholz

Fraunhofer SIT

M. Richardson

Sandelman

Guide for building an EdDSA PKI

Abstract

This memo provides a guide for building a PKI (Public Key

Infrastructure) using openSSL. Certificates in this guide can be

either ED25519 or ED448 certificates. Along with common End Entity

certificates, this guide provides instructions for creating IEEE

802.1AR iDevID Secure Device certificates.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 January 2024.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Terms and Definitions

2.1. Requirements Terminology

2.2. Notations

2.3. Definitions

3. Comparing ECDSA and EdDSA certificates

4. The Basic PKI feature set

5. Getting started and the Root level

5.1. Setting up the Environment

5.2. Create the Root Certificate

6. The Intermediate level

6.1. Setting up the Intermediate Certificate Environment

6.2. Create the Intermediate Certificate

6.3. Create a Server EE Certificate

6.4. Create a Client EE Certificate

7. The 802.1AR Intermediate level

7.1. Setting up the 802.1AR Intermediate Certificate Environment

7.2. Create an 802.1AR iDevID Certificate

8. Setting up a CRL for an Intermediate CA

8.1. Create (or recreate) the CRL

8.2. Revoke a Certificate

9. Setting up OCSP for an Intermediate CA

9.1. Create the OCSP Certificate

9.2. Revoke a Certificate

9.3. Testing OCSP with Openssl

10. Footnotes

10.1. Certificate Serial Number

10.2. Some OpenSSL config file limitations

10.3. subjectAltName support now works

10.4. Certificates with only subjectAltName

10.5. DER support, or lack thereof

11. IANA Considerations

12. Security Considerations

12.1. Adequate Randomness

12.2. Key pair Theft

13. Acknowledgments

14. References

14.1. Normative References

14.2. Informative References

Appendix A. OpenSSL config file

Authors' Addresses

1. Introduction

The IETF has adopted the Edwards Elliptic Curve and related

algorithms. These algorithms hold out the promise of greater

efficiency and better understood security risks. This efficiency

could make that critical difference to allow them to be used in some

constrained IoT devices.

The IETF has a plethora of security solutions targeted at IoT. Yet

all too many IoT products are tested and deployed with no or

improperly configured security. In particular resource constrained

IoT devices and non-IP IoT networks have not been well served in the

IETF.

Additionally, more IETF (e.g. DOTS, NETCONF) efforts are requiring

secure identities, but are vague on the nature of these identities

other than to recommend use of X.509 digital certificates and

perhaps TLS.

This effort provides the steps, using the openSSL application, to

create such a PKI of ED25519 or ED448 certificates [RFC8032]. The

goal is that any developer or tester can follow these steps, create

the basic objects needed and establish the validity of the standard/

program design. This guide can even be used to create a production

PKI, though additional steps need to be taken. This could be very

useful to a small vendor needing to include 802.1AR [IEEE 802.1AR]

that references [RFC4108] iDevIDs in their product (Note: EdDSA

certificates are not supported in even the forthcoming 802.1AR-2018;

this is for future work).

This guide was originally developed with openSSL 1.1.1; it is

updated using openSSL 3.0.9 on Fedora 38 and creates PEM-based

certificates. It closely follows [ecdsa-pki]. Current updates follow

some lessons learned in developing [drip-dki]

Previous versions had multiple openssl config files. This version

has a single config file to support all the openssl commands used

herein.

2. Terms and Definitions

2.1. Requirements Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2.2. Notations

This section will contain notations

¶

¶

¶

¶

¶

¶

¶

¶

2.3. Definitions

There are no draft specific definitions at this time

3. Comparing ECDSA and EdDSA certificates

There are two differences between ECDSA and EdDSA certificates that

impact the use of openSSL. There are no options with EdDSA, and thus

the pkeyopt variable is not used.

Likewise there are no hash options. The hashes used by EdDSA are

preset and not selectable. As such, none of the hash options should

be needed.

It should be noted here that ED25519 certificates can be ~100 bytes

smaller than corresponding ECDSA certificates not using ECDSA point-

compression. This size difference may be critical in some devices

and communication technologies. ED448 certificates are similar in

size with ECDSA p256 certificates yet with a stronger security

claim.

4. The Basic PKI feature set

A basic PKI has two levels of hierarchy: Root and Intermediate. The

Root level has the greatest risk, and is the least used. It only

signs the Intermediate level signing certificate. As such, once the

Root level is created and signs the Intermediate level certificate

it can be locked up. In fact, the Root level could exist completely

on a uSD boot card for an ARM small computer like a RaspberryPi. A

copy of this card can be made and securely stored in a different

location.

The Root level contains the Root certificate private key, a database

of all root signed certificates, and the public root certificate. It

can also contain the Intermediate level public certificate and a

Root level CRL.

The Intermediate level contains the Intermediate certificate private

key, the public certificate, a database of all its signed

certificates, the certificate trust chain, and Intermediate level

CRL. It can also contain the End Entity public certificates. The

private key file needs to be keep securely. For example as with the

Root level, a mSD image for an ARM computer could contain the

complete Intermediate level. This image is kept offline. The End

Entity CSR is copied to it, signed, and then the signed certificate

and updated database are moved to the public image that lacks the

private key.

For a simple test PKI, all files can be kept on a single system that

is managed by the tester.

¶

¶

¶

¶

¶

¶

¶

¶

End Entities create a key pair and a Certificate Signing Request

(CSR). The private key is stored securely. The CSR is delivered to

the Intermediate level which uses the CSR to create the End Entity

certificate. This certificate, along with the trust chain back to

the root, is then returned to the End Entity.

There is more to a PKI, but this suffices for most development and

testing needs.

5. Getting started and the Root level

This guide was originally developed on a Fedora 29-beta armv7hl

system (Cubieboard2 SoC). It should work on most Linux and similar

systems that support openSSL 1.1.1. Current work has been on with

openSSL 3.0.9 on Fedora 38. All work was done in a terminal window

with extensive "cutting and pasting" from this draft guide into the

terminal window. Users of this guide may find different behaviors

based on their system.

5.1. Setting up the Environment

The first step is to create the PKI environment. Modify the

variables to suit your needs.

¶

¶

¶

¶

export dir=/root/ca

export cadir=/root/ca

export format=pem

export algorithm=ed25519 # or ed448

mkdir $dir

cd $dir

mkdir certs crl csr newcerts private

chmod 700 private

touch index.txt

touch serial

sn=8

countryName="/C=US"

stateOrProvinceName="/ST=MI"

localityName="/L=Oak Park"

organizationName="/O=HTT Consulting"

#organizationalUnitName="/OU="

organizationalUnitName=

commonName="/CN=Root CA"

DN=$countryName$stateOrProvinceName$localityName

DN=DNorganizationName$organizationalUnitName$commonName

echo $DN

export subjectAltName=email:postmaster@htt-consult.com

¶

The Serial Number length for a public PKI ranges from 8 to 19 bytes.

The use of 19 rather than 20 is to accommodate the hex

representation of the Serial Number. If it has a one in the high

order bit, DER encoding rules will place a 0x00 in front.

The DN and SAN fields are examples. Change them to appropriate

values. If you leave one blank, it will be left out of the

Certificate. "OU" above is an example of an empty DN object.

Create the file, $dir/openssl.cnf from the contents in Appendix A.

5.2. Create the Root Certificate

Next are the openssl commands to create the Root certificate

keypair, and the Root certificate. Included are commands to view the

file contents.

Environment variables are used to provide considerable flexibility

in the certificate contents. One change is to move from certificate

life in days to validity notBefore and notAfter days. This is not

supported in the standard self-sign root certificate creation, so a

"through-away" self-signed certificate is created first which is

used to sign a certificate with the same key and proper validity

dates which is then the root certificate.

It is not uncommon to get warning messages in "openssl ca" commands

on not including some value it expects. For example a warning of not

having "default_days", as we are using actual validity dates. These

can be ignored.

where:

dir : Directory for certificate files

cadir : Directory for Root certificate files

format : File encoding: PEM or DER

 At this time only PEM works

sn : Serial Number length in bytes

 For a public CA the range is 8 to 19

DN : Distinguished Name

 Policy is LOOSE; Recommended at least

 providing Common Name

¶

¶

¶

¶

¶

¶

¶

OpenSSL does not allow empty variables in the config file. So in the

example below, certextkeyusage is empty. There are a few req_ext

sections (e.g. req_ext_bkes, bke, bks, and bk) to cover the more

common sets of extensions used. If a different set is needed, add it

to the config file.

It is not uncommon to get warning messages in "openssl ca" commands

on not including some value it expects. For example a warning of not

having "default_days", as we are using actual validity dates. These

can be ignored.

¶

¶

Create passworded keypair file

export encryptkey=""

#export encryptkey="-aes256" # use to password protect private key

openssl genpkey $encryptkey -algorithm $algorithm\

 -outform $format -out $dir/private/ca.key.$format

chmod 400 $dir/private/ca.key.$format

openssl pkey -inform $format -in $dir/private/ca.key.$format\

 -text -noout

¶

Create Self-signed Throw-away Certificate file

export signprv="ca"

export signcert="cabase"

export basicConstraints="critical, CA:true"

export certkeyusage="critical, keyCertSign"

export certextkeyusage=""

export hwType="place holder" # all ENV in config must

export hwSerialNum="place holder" # be define

export startdate=20230801000000Z # YYYYMMDDHHMMSSZ

export enddate=20430731000000Z # YYYYMMDDHHMMSSZ

openssl req -config $dir/openssl.cnf\

 -set_serial 0x$(openssl rand -hex $sn)\

 -keyform $format -outform $format\

 -key $dir/private/ca.key.$format -subj "$DN"\

 -new -x509 -extensions v3_ca\

 -out $dir/certs/$signcert.cert.$format

openssl x509 -in $dir/certs/$signcert.cert.$format\

 -inform $format -text -noout

openssl x509 -purpose -inform $format\

 -in $dir/certs/$signcert.cert.$format -inform $format

¶

6. The Intermediate level

6.1. Setting up the Intermediate Certificate Environment

The next part is to create the Intermediate PKI environment. Modify

the variables to suit your needs. In particular, set the variables

for CRL and/or OCSP support.

Create Self-signed Root Certificate file

openssl req -config $dir/openssl.cnf -reqexts req_ext_bk\

 -key $dir/private/ca.key.$format \

 -subj "$DN" -new -out $dir/csr/ca.csr.$format

openssl req -text -noout -verify\

 -in $dir/csr/ca.csr.$format

openssl rand -hex $sn > $dir/serial # hex 8 is minimum, 19 is maximum

openssl ca -config $dir/openssl.cnf\

 -extensions v3_ca -notext \

 -in $dir/csr/ca.csr.$format\

 -out $dir/certs/ca.cert.$format

chmod 444 $dir/certs/ca.cert.$format

openssl x509 -inform $format -in $dir/certs/ca.cert.$format\

 -text -noout

openssl x509 -purpose -inform $format\

 -in $dir/certs/ca.cert.$format -inform $format

openssl x509 -in $dir/certs/ca.cert.$format\

 -out $dir/certs/ca.cert.der -outform der

¶

¶

export dir=$cadir/intermediate

mkdir $dir

cd $dir

mkdir certs crl csr newcerts private

chmod 700 private

touch index.txt

sn=8 # hex 8 is minimum, 19 is maximum

echo 1000 > $dir/crlnumber

¶

The Intermediate level CA now uses the same openssl config file as

the root. Just copy it from the main directory into the

Intermediate.

6.2. Create the Intermediate Certificate

Here are the openssl commands to create the Intermediate certificate

keypair, Intermediate certificate signed request (CSR), and the

Intermediate certificate. Included are commands to view the file

contents.

cd $dir

export crlDP=

For CRL support use uncomment these:

#crl=intermediate.crl.pem

#crlurl=www.htt-consult.com/pki/$crl

#export crlDP="URI:http://$crlurl"

export default_crl_days=30

export ocspIAI=

For OCSP support use uncomment these:

#ocspurl=ocsp.htt-consult.com

#export ocspIAI="OCSP;URI:http://$ocspurl"

export signprv="ca"

export signcert="ca"

export basicConstraints="critical, CA:true, pathlen:0"

export certkeyusage="critical, cRLSign, keyCertSign"

export certextkeyusage=""

commonName="/CN=Signing CA"

DN=$countryName$stateOrProvinceName$localityName$organizationName

DN=DNorganizationalUnitName$commonName

echo $DN

¶

¶

¶

Create passworded keypair file

export encryptkey=""

#export encryptkey="-aes256" # use to password protect private key

openssl genpkey $encryptkey -algorithm $algorithm\

 -outform $format -out $dir/private/intermediate.key.$format

chmod 400 $dir/private/intermediate.key.$format

openssl pkey -inform $format\

 -in $dir/private/intermediate.key.$format -text -noout

¶

6.3. Create a Server EE Certificate

Here are the openssl commands to create a Server End Entity

certificate keypair, Server certificate signed request (CSR), and

the Server certificate. Included are commands to view the file

contents.

If EE certificates are created at a different time than the

Intermediate signing certificate, care needs to be taken that all

variables are properly reset.

Create the CSR

openssl req -config $cadir/openssl.cnf -reqexts req_ext_bk\

 -key $dir/private/intermediate.key.$format \

 -keyform $format -outform $format -subj "$DN" -new\

 -out $dir/csr/intermediate.csr.$format

openssl req -text -noout -verify -inform $format\

 -in $dir/csr/intermediate.csr.$format

¶

Create Intermediate Certificate file

export startdate=230801000000Z # YYMMDDHHMMSSZ

export enddate=20340731000000Z # YYYYMMDDHHMMSSZ

openssl rand -hex $sn > $dir/serial # hex 8 is minimum, 19 is maximum

Note 'openssl ca' does not support DER format

openssl ca -config $cadir/openssl.cnf\

 -extensions v3_intermediate_ca -notext \

 -in $dir/csr/intermediate.csr.$format\

 -out $dir/certs/intermediate.cert.pem

chmod 444 $dir/certs/intermediate.cert.$format

openssl verify -CAfile $cadir/certs/ca.cert.$format\

 $dir/certs/intermediate.cert.$format

openssl x509 -noout -text -in $dir/certs/intermediate.cert.$format

openssl x509 -in $dir/certs/intermediate.cert.$format\

 -out $dir/certs/intermediate.cert.der -outform der

Create the certificate chain file

cat $dir/certs/intermediate.cert.$format\

 $cadir/certs/ca.cert.$format > $dir/certs/ca-chain.cert.$format

chmod 444 $dir/certs/ca-chain.cert.$format

¶

¶

¶

export cadir=$cadir/intermediate

commonName="/CN=Web Services"

DN=$countryName$stateOrProvinceName$localityName

DN=DNorganizationName$organizationalUnitName$commonName

echo $DN

serverfqdn=www.example.com

emailaddr=postmaster@htt-consult.com

export subjectAltName="DNS:$serverfqdn, email:$emailaddr"

echo $subjectAltName

export signprv="intermediate"

export signcert="intermediate"

export basicConstraints="CA:FALSE"

export certkeyusage="critical, digitalSignature, keyEncipherment"

export certextkeyusage="serverAuth"

export encryptkey=""

#export encryptkey="-aes256" # use to password protect private key

openssl genpkey $encryptkey -algorithm $algorithm\

 -out $dir/private/$serverfqdn.key.$format

chmod 400 $dir/private/$serverfqdn.key.$format

openssl pkey -in $dir/private/$serverfqdn.key.$format -text -noout

openssl req -config $cadir/openssl.cnf -reqexts req_ext_bkes\

 -key $dir/private/$serverfqdn.key.$format \

 -subj "$DN" -new -out $dir/csr/$serverfqdn.csr.$format

openssl req -text -noout -verify -in $dir/csr/$serverfqdn.csr.$format

¶

export startdate=230801000000Z # YYMMDDHHMMSSZ

export enddate=240731000000Z # YYMMDDHHMMSSZ

openssl rand -hex $sn > $dir/serial # hex 8 is minimum, 19 is maximum

Note 'openssl ca' does not support DER format

openssl ca -config $cadir/openssl.cnf\

 -extensions server_cert -notext \

 -in $dir/csr/$serverfqdn.csr.$format\

 -out $dir/certs/$serverfqdn.cert.$format

chmod 444 $dir/certs/$serverfqdn.cert.$format

openssl verify -CAfile $dir/certs/ca-chain.cert.$format\

 $dir/certs/$serverfqdn.cert.$format

openssl x509 -noout -text -in $dir/certs/$serverfqdn.cert.$format

openssl x509 -in $dir/certs/$serverfqdn.cert.$format\

 -out $dir/certs/$serverfqdn.cert.der -outform der

¶

6.4. Create a Client EE Certificate

Here are the openssl commands to create a Client End Entity

certificate keypair, Client certificate signed request (CSR), and

the Client certificate. Included are commands to view the file

contents.

For a Client certificate with "no" subject and only a

subjectAltName, set the variable DN to "/". Also the subjectAltName

MUST be marked "critical".

¶

¶

commonName=

UserID="/UID=rgm"

DN=$countryName$stateOrProvinceName$localityName

DN=DNorganizationName$organizationalUnitName$commonName$UserID

echo $DN

clientemail=rgm@example.com

export subjectAltName="email:$clientemail"

echo $subjectAltName

export basicConstraints="CA:FALSE"

export certkeyusage="critical, digitalSignature, keyEncipherment"

export certextkeyusage=""

export encryptkey=""

#export encryptkey="-aes256" # use to password protect private key

openssl genpkey $encryptkey -algorithm $algorithm\

 -out $dir/private/$clientemail.key.$format

chmod 400 $dir/private/$clientemail.key.$format

openssl pkey -in $dir/private/$clientemail.key.$format -text -noout

openssl req -config $dir/openssl.cnf -reqexts req_ext_bks\

 -key $dir/private/$clientemail.key.$format \

 -subj "$DN" -new -out $dir/csr/$clientemail.csr.$format

openssl req -text -noout -verify\

 -in $dir/csr/$clientemail.csr.$format

¶

7. The 802.1AR Intermediate level

7.1. Setting up the 802.1AR Intermediate Certificate Environment

There is no longer a need for a special 802.1AR Intermediate

Certificate CA. The regular Intermediate Certificate CA may be used

for 802.1AR iDevID certificates. A special CA may be set up by

following the steps outlined in Section 6, but into a special

intermediate8021AR directory.

The difference with 802.1AR device certificates may be in including

in the subject the device serial number. These certificates MUST

have an afterDate of forever and a specific subjectAltName. Details

for these follow.

7.2. Create an 802.1AR iDevID Certificate

Here are the openssl commands to create a 802.1AR iDevID certificate

keypair, iDevID certificate signed request (CSR), and the iDevID

certificate. Included are commands to view the file contents.

export startdate=230801000000Z # YYMMDDHHMMSSZ

export enddate=240731000000Z # YYMMDDHHMMSSZ

openssl rand -hex $sn > $dir/serial # hex 8 is minimum, 19 is maximum

Note 'openssl ca' does not support DER format

openssl ca -config $dir/openssl.cnf\

 -extensions usr_cert -notext \

 -in $dir/csr/$clientemail.csr.$format\

 -out $dir/certs/$clientemail.cert.$format

chmod 444 $dir/certs/$clientemail.cert.$format

openssl verify -CAfile $dir/certs/ca-chain.cert.$format\

 $dir/certs/$clientemail.cert.$format

openssl x509 -noout -text -in $dir/certs/$clientemail.cert.$format

openssl x509 -in $dir/certs/$clientemail.cert.$format\

 -out $dir/certs/$clientemail.cert.der -outform der

¶

¶

¶

¶

DevID=Wt1234

countryName=

stateOrProvinceName=

localityName=

organizationName="/O=HTT Consulting"

organizationalUnitName="/OU=Devices"

commonName=

serialNumber="/serialNumber=$DevID"

DN=$countryName$stateOrProvinceName$localityName

DN=DNorganizationName$organizationalUnitName$commonName

DN=DNserialNumber

echo $DN

hwType is OID for HTT Consulting, devices, sensor widgets

export hwType=1.3.6.1.4.1.6715.10.1

export hwSerialNum=01020304 # Some hex

export subjectAltName="otherName:1.3.6.1.5.5.7.8.4;SEQ:hmodname"

echo $hwType - $hwSerialNum

openssl genpkey -algorithm $algorithm\

 -out $dir/private/$DevID.key.$format

chmod 400 $dir/private/$DevID.key.$format

openssl pkey -in $dir/private/$DevID.key.$format -text -noout

openssl req -config $dir/openssl.cnf -reqexts req_ext_8021AR \

 -key $dir/private/$DevID.key.$format \

 -subj "$DN" -new -out $dir/csr/$DevID.csr.$format

openssl req -text -noout -verify\

 -in $dir/csr/$DevID.csr.$format

openssl asn1parse -i -in $dir/csr/$DevID.csr.pem

offset of start of hardwareModuleName and use that in place of 169

openssl asn1parse -i -strparse 169 -in $dir/csr/$DevID.csr.pem

¶

8. Setting up a CRL for an Intermediate CA

This part provides CRL support to an Intermediate CA. In this memo

it applies to both Intermediate CAs. Set the crlDistributionPoints

as provided via the environment variables.

8.1. Create (or recreate) the CRL

It is simple to create the CRL. The CRL consists of the certificates

flagged with an R (Revoked) in index.txt:

export startdate=230801000000Z # YYMMDDHHMMSSZ

export enddate=99991231235959Z # per IEEE 802.1AR

openssl rand -hex $sn > $dir/serial # hex 8 is minimum, 19 is maximum

Note 'openssl ca' does not support DER format

openssl ca -config $dir/openssl.cnf\

 -extensions 8021ar_idevid -notext \

 -in $dir/csr/$DevID.csr.$format\

 -out $dir/certs/$DevID.cert.$format

chmod 444 $dir/certs/$DevID.cert.$format

openssl verify -CAfile $dir/certs/ca-chain.cert.$format\

 $dir/certs/$DevID.cert.$format

openssl x509 -noout -text -in $dir/certs/$DevID.cert.$format

openssl asn1parse -i -in $dir/certs/$DevID.cert.pem

offset of start of hardwareModuleName and use that in place of 367

openssl asn1parse -i -strparse 367 -in $dir/certs/$DevID.cert.pem

openssl x509 -in $dir/certs/$DevID.cert.$format\

 -out $dir/certs/$DevID.cert.der -outform der

¶

¶

¶

Select which Intermediate level

intermediate=intermediate

#intermediate=8021ARintermediate

dir=$cadir/$intermediate

crl=$intermediate.crl.pem

cd $dir

Create CRL file

openssl ca -config $dir/openssl.cnf \

 -gencrl -out $dir/crl/$crl

chmod 444 $dir/crl/$crl

openssl crl -in $dir/crl/$crl -noout -text

¶

8.2. Revoke a Certificate

Revoking a certificate is a two step process. First identify the

target certificate, examples are listed below. Revoke it then

publish a new CRL.

Recreate the CRL using Section 8.1.

9. Setting up OCSP for an Intermediate CA

This part provides OCSP support to an Intermediate CA. In this memo

it applies to both Intermediate CAs. Set the authorityInfoAccess as

provided via the environment variables.

9.1. Create the OCSP Certificate

OCSP needs a signing certificate. This certificate must be signed by

the CA that signed the certificate being checked. The steps to

create this certificate is the similar to a Server certificate for

the CA:

¶

targetcert=$serverfqdn

#targetcert=$clientemail

#targetcert=$DevID

openssl ca -config $dir/openssl.cnf\

 -revoke $dir/certs/$targetcert.cert.$format

¶

¶

¶

¶

Select which Intermediate level

intermediate=intermediate

#intermediate=8021ARintermediate

Optionally, password encrypt key pair

encryptkey=

#encryptkey=-aes256

Create the key pair in Intermediate level $intermediate

cd $dir

openssl genpkey -algorithm $algorithm\

 $encryptkey -out $dir/private/$ocspurl.key.$format

chmod 400 $dir/private/$ocspurl.key.$format

openssl pkey -in $dir/private/$ocspurl.key.$format -text -noout

Create CSR

commonName="/CN=ocsp"

DN=$countryName$stateOrProvinceName$localityName

DN=DNorganizationName$organizationalUnitName$commonName

echo $DN

emailaddr=postmaster@htt-consult.com

export subjectAltName="DNS:$ocspurl, email:$emailaddr"

echo $subjectAltName

openssl req -config $dir/openssl.cnf -reqexts req_ext_bks \

 -key $dir/private/$ocspurl.key.$format \

 -subj "$DN" -new -out $dir/csr/$ocspurl.csr.$format

openssl req -text -noout -verify -in $dir/csr/$ocspurl.csr.$format

¶

Create Certificate

export startdate=230801000000Z # YYMMDDHHMMSSZ

export enddate=99991231235959Z # per IEEE 802.1AR

openssl rand -hex $sn > $dir/serial # hex 8 is minimum, 19 is maximum

Note 'openssl ca' does not support DER format

openssl ca -config $dir/openssl.cnf\

 -extensions ocsp -notext \

 -in $dir/csr/$ocspurl.csr.$format\

 -out $dir/certs/$ocspurl.cert.$format

chmod 444 $dir/certs/$ocspurl.cert.$format

openssl verify -CAfile $dir/certs/ca-chain.cert.$format\

 $dir/certs/$ocspurl.cert.$format

openssl x509 -noout -text -in $dir/certs/$ocspurl.cert.$format

¶

9.2. Revoke a Certificate

Revoke the certificate as in Section 8.2. The OCSP responder SHOULD

detect the flag change in index.txt and, when queried respond

appropriately.

9.3. Testing OCSP with Openssl

OpenSSL provides a simple OCSP service that can be used to test the

OCSP certificate and revocation process (Note that this only reads

the index.txt to get the certificate status at startup).

In a terminal window, set variables dir and ocspurl (examples

below), then run the simple OCSP service:

In another window, test out a certificate status with:

Revoke the certificate, Section 8.2, restart the test Responder

again as above, then check the certificate status.

10. Footnotes

Creating this document was a real education in the state of openSSL,

X.509 certificate guidance, and just general level of certificate

awareness. Here are a few short notes.

¶

¶

¶

dir=/root/ca/intermediate

ocspurl=ocsp.htt-consult.com

openssl ocsp -port 2560 -text\

 -index $dir/index.txt \

 -CA $dir/certs/ca-chain.cert.pem \

 -rkey $dir/private/$ocspurl.key.pem \

 -rsigner $dir/certs/$ocspurl.cert.pem \

 -nrequest 1

¶

¶

targetcert=$serverfqdn

#targetcert=$clientemail

#targetcert=$DevID

openssl ocsp -CAfile $dir/certs/ca-chain.cert.pem \

 -url http://127.0.0.1:2560 -resp_text\

 -issuer $dir/certs/intermediate.cert.pem \

 -cert $dir/certs/$targetcert.cert.pem

¶

¶

¶

10.1. Certificate Serial Number

The certificate serial number's role is to provide yet another way

to maintain uniqueness of certificates within a PKI as well as a way

to index them in a data store. It has taken on other roles, most

notably as a defense.

The CABForum guideline for a public CA is for the serial number to

be a random number at least 8 octets long and no longer than 20

bytes. By default, openssl makes self-signed certificates with 8

octet serial numbers. This guide uses openssl's RAND function to

generate the random value and pipe it into the -set_serial option.

This number MAY have the first bit as a ONE; the DER encoding rules

prepend such numbers with 0x00. Thus the limit of '19' for the

variable 'ns'.

A private CA need not follow the CABForum rules and can use anything

number for the serial number. For example, the root CA (which has no

security risks mitigated by using a random value) could use '1' as

its serial number. Intermediate and End Entity certificate serial

numbers can also be of any value if a strong hash, like SHA256 used

here. A value of 4 for ns would provide a sufficient population so

that a CA of 10,000 EE certificates will have only a 1.2%

probability of a collision. For only 1,000 certificates the

probability drops to 0.012%.

The following was proposed on the openssl-user list as an

alternative to using the RAND function:

Keep k bits (k/8 octets) long serial numbers for all your

certificates, chose a block cipher operating on blocks of k bits,

and operate this block cipher in CTR mode, with a proper secret key

and secret starting counter. That way, no collision detection is

necessary, you’ll be able to generate 2^(k/2) unique k bits longs

serial numbers (in fact, you can generate 2^k unique serial numbers,

but after 2^(k/2) you lose some security guarantees).

With 3DES, k=64, and with AES, k=128.

10.2. Some OpenSSL config file limitations

There is a bit of inconsistency in how different parts and fields in

the config file are used. Environment variables can only be used as

values. Some fields can have null values, others cannot. The lack of

allowing null fields means a script cannot feed in an environment

variable with value null. In such a case, the field has to be

removed from the config file.

The expectation is each CA within a PKI has its own config file,

customized to the certificates supported by that CA.

¶

¶

¶

¶

¶

¶

¶

¶

10.3. subjectAltName support now works

Older versions of openSSL had limitations in support for

subjectAltName (SAN). This is no longer the case. This document sets

up the SAN in the config file. Alternatively, the "-addext" option

can be used directly in the command line.

10.4. Certificates with only subjectAltName

In RFC 5280 [RFC5280] (sec 4.2.1.6): if the only subject identity in

the certificate is in subjectAltName, then Subject MUST be empty and

subjectAltName MUST be marked as critical.

This can be achieved with the variable DN=/ and subjectAltName

(example given):

10.5. DER support, or lack thereof

The long, hard-fought battle with openssl to create a full DER PKI

failed. There is no facility to create a DER certificate from a DER

CSR. It just is not there in the 'openssl ca' command. Even the

'openssl x509 -req' command cannot do this for a simple certificate.

Further, there is no 'hack' for making a certificate chain as there

is with PEM. With PEM a simple concatenation of the certificates

create a usable certificate chain. For DER, some recommend using

PKCS#7 [RFC2315], where others point out that this format is poorly

support 'in the field', whereas PKCS#12 [RFC7292] works for them.

Finally, openssl does support converting a PEM certificate to DER:

This should also work for the keypair. However, in a highly

constrained device it may make more sense to just store the raw

keypair in the device's very limited secure storage.

11. IANA Considerations

TBD. May be nothing for IANA.

¶

¶

¶

DN=/

export subjectAltName=critical,email:postmaster@htt-consult.com

¶

¶

¶

¶

openssl x509 -outform der -in certificate.pem -out certificate.der
¶

¶

¶

[RFC2119]

12. Security Considerations

This section is a complete copy of [ecdsa-pki]. Changes will be made

if anything is found specific to either ECDSA or EdDSA.

12.1. Adequate Randomness

Creating certificates takes a lot of random numbers. A good source

of random numbers is critical. Studies [WeakKeys] have found

excessive amount of certificates, all with the same keys due to bad

randomness on the generating systems. The amount of entropy

available for these random numbers can be tested. On Fedora/Centos

use:

If the value is low (below 1000) check your system's randomness

source. Is rng-tools installed? Consider adding an entropy

collection service like haveged from issihosts.com/haveged.

12.2. Key pair Theft

During the certificate creation, particularly during keypair

generation, the files are vulnerable to theft. This can be mitigate

using umask. Before using openssl, set umask:

Afterwards, restore it with:

13. Acknowledgments

This work is possible because of the availability of openSSL 1.1.1.

As in [ecdsa-pki], the openssl-user mailing list, with its many

supportive experts, was of immense help in the nuance differences

between ECDSA and EdDSA.

14. References

14.1. Normative References

¶

¶

cat /proc/sys/kernel/random/entropy_avail
¶

¶

¶

restore_mask=$(umask -p)

umask 077

¶

¶

$restore_mask
¶

¶

[RFC8174]

[drip-dki]

[ecdsa-pki]

[IEEE 802.1AR]

[RFC2315]

[RFC4108]

[RFC5280]

[RFC7292]

[RFC8032]

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

14.2. Informative References

Moskowitz, R. and S. W. Card, "The DRIP DET public Key

Infrastructure", Work in Progress, Internet-Draft, draft-

moskowitz-drip-dki-06, 27 June 2023, <https://

datatracker.ietf.org/doc/html/draft-moskowitz-drip-

dki-06>.

Moskowitz, R., Birkholz, H., Xia, L., and M. Richardson,

"Guide for building an ECC pki", Work in Progress,

Internet-Draft, draft-moskowitz-ecdsa-pki-10, 31 January

2021, <https://datatracker.ietf.org/doc/html/draft-

moskowitz-ecdsa-pki-10>.

IEEE, "IEEE Standard for Local and Metropolitan Area

Networks - Secure Device Identity", DOI 10.1109/ieeestd.

2018.8423794, 31 July 2018, <http://dx.doi.org/10.1109/

ieeestd.2018.8423794>.

Kaliski, B., "PKCS #7: Cryptographic Message Syntax

Version 1.5", RFC 2315, DOI 10.17487/RFC2315, March 1998,

<https://www.rfc-editor.org/info/rfc2315>.

Housley, R., "Using Cryptographic Message Syntax (CMS) to

Protect Firmware Packages", RFC 4108, DOI 10.17487/

RFC4108, August 2005, <https://www.rfc-editor.org/info/

rfc4108>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Moriarty, K., Ed., Nystrom, M., Parkinson, S., Rusch, A.,

and M. Scott, "PKCS #12: Personal Information Exchange

Syntax v1.1", RFC 7292, DOI 10.17487/RFC7292, July 2014,

<https://www.rfc-editor.org/info/rfc7292>.

Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital

Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-moskowitz-drip-dki-06
https://datatracker.ietf.org/doc/html/draft-moskowitz-drip-dki-06
https://datatracker.ietf.org/doc/html/draft-moskowitz-drip-dki-06
https://datatracker.ietf.org/doc/html/draft-moskowitz-ecdsa-pki-10
https://datatracker.ietf.org/doc/html/draft-moskowitz-ecdsa-pki-10
http://dx.doi.org/10.1109/ieeestd.2018.8423794
http://dx.doi.org/10.1109/ieeestd.2018.8423794
https://www.rfc-editor.org/info/rfc2315
https://www.rfc-editor.org/info/rfc4108
https://www.rfc-editor.org/info/rfc4108
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc7292

[WeakKeys]

RFC8032, January 2017, <https://www.rfc-editor.org/info/

rfc8032>.

Heninger, N.H., Durumeric, Z.D., Wustrow, E.W., and

J.A.H. Halderman, "Detection of Widespread Weak Keys in

Network Devices", July 2011, <https://www.usenix.org/

system/files/conference/usenixsecurity12/sec12-

final228.pdf>.

Appendix A. OpenSSL config file

The following is the openssl.cnf file contents¶

https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final228.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final228.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final228.pdf

OpenSSL CA configuration file.

Copy to `$dir/openssl.cnf`.

[ca]

`man ca`

default_ca = CA_default

[CA_default]

Directory and file locations.

dir = $ENV::dir

cadir = $ENV::cadir

format = $ENV::format

signprv = $ENV::signprv

signcert = $ENV::signcert

certkeyusage = $ENV::certkeyusage

certextkeyusage = $ENV::certextkeyusage

basicConstraints = $ENV::basicConstraints

certs = $dir/certs

crl_dir = $dir/crl

new_certs_dir = $dir/newcerts

database = $dir/index.txt

serial = $dir/serial

RANDFILE = $dir/private/.rand

The signing key and signing certificate.

private_key = $cadir/private/$signprv.key.$format

certificate = $cadir/certs/$signcert.cert.$format

For certificate revocation lists.

crlnumber = $dir/crlnumber

crl = $dir/crl/ca.crl.pem

crl_extensions = crl_ext

default_crl_days = 30

SHA-1 is deprecated, so use SHA-2 instead.

default_md = sha256

name_opt = ca_default

cert_opt = ca_default

default_startdate = $ENV::startdate

default_enddate = $ENV::enddate

preserve = no

policy = policy_loose

copy_extensions = copy

[policy_loose]

Allow the intermediate CA to sign a more

diverse range of certificates.

See the POLICY FORMAT section of the `ca` man page.

countryName = optional

stateOrProvinceName = optional

localityName = optional

organizationName = optional

organizationalUnitName = optional

commonName = optional

UID = optional

serialNumber = optional

[req]

Options for the `req` tool (`man req`).

distinguished_name = req_distinguished_name

string_mask = utf8only

#req_extensions = req_ext

default_crl_days = 30

SHA-1 is deprecated, so use SHA-2 instead.

default_md = sha256

Extension to add when the -x509 option is used.

x509_extensions = v3_ca

[req_distinguished_name]

See <https://en.wikipedia.org/wiki/Certificate_signing_request>.

#countryName = Country Name (2 letter code)

#stateOrProvinceName = State or Province Name

#localityName = Locality Name

#0.organizationName = Organization Name

#organizationalUnitName = Organizational Unit Name

commonName = Common Name

[req_ext]

[req_ext_bkes]

basicConstraints = $ENV::basicConstraints

keyUsage = $ENV::certkeyusage

extendedKeyUsage = $ENV::certextkeyusage

subjectAltName = $ENV::subjectAltName

[req_ext_bke]

basicConstraints = $ENV::basicConstraints

keyUsage = $ENV::certkeyusage

extendedKeyUsage = $ENV::certextkeyusage

[req_ext_bks]

basicConstraints = $ENV::basicConstraints

keyUsage = $ENV::certkeyusage

subjectAltName = $ENV::subjectAltName

[req_ext_bk]

basicConstraints = $ENV::basicConstraints

keyUsage = $ENV::certkeyusage

[req_ext_8021AR]

basicConstraints = $ENV::basicConstraints

keyUsage = $ENV::certkeyusage

subjectAltName = $ENV::subjectAltName

[hmodname]

hwType = OID:$ENV::hwType

hwSerialNum = FORMAT:HEX,OCT:$ENV::hwSerialNum

[v3_ca]

Extensions for a typical CA (`man x509v3_config`).

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always

basicConstraints = $ENV::basicConstraints

keyUsage = $ENV::certkeyusage

[v3_intermediate_ca]

Extensions for a typical intermediate CA (`man x509v3_config`).

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always

basicConstraints = $ENV::basicConstraints

keyUsage = $ENV::certkeyusage

subjectAltName = $ENV::subjectAltName

[usr_cert]

Extensions for client certificates (`man x509v3_config`).

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always

uncomment the following if the ENV variables set

crlDistributionPoints = $ENV::crlDP

authorityInfoAccess = $ENV::ocspIAI

[usr_req]

Extensions for client certificates (`man x509v3_config`).

subjectAltName = critical, $ENV::subjectAltName

[server_cert]

Extensions for server certificates (`man x509v3_config`).

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always

uncomment the following if the ENV variables set

crlDistributionPoints = $ENV::crlDP

authorityInfoAccess = $ENV::ocspIAI

[8021ar_idevid]

Extensions for IEEE 802.1AR iDevID

certificates (`man x509v3_config`).

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always

uncomment the following if the ENV variables set

crlDistributionPoints = $ENV::crlDP

authorityInfoAccess = $ENV::ocspIAI

[crl_ext]

Extension for CRLs (`man x509v3_config`).

authorityKeyIdentifier=keyid:always

[ocsp]

Extension for OCSP signing certificates (`man ocsp`).

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always

¶

Authors' Addresses

Robert Moskowitz

HTT Consulting

Oak Park

Email: rgm@labs.htt-consult.com

Henk Birkholz

Fraunhofer SIT

Rheinstrasse 75

64295 Darmstadt

Germany

Email: henk.birkholz@sit.fraunhofer.de

Michael C. Richardson

Sandelman Software Works

Email: mcr+ietf@sandelman.ca

URI: http://www.sandelman.ca/

mailto:rgm@labs.htt-consult.com
mailto:henk.birkholz@sit.fraunhofer.de
mailto:mcr+ietf@sandelman.ca
http://www.sandelman.ca/

	Guide for building an EdDSA PKI
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terms and Definitions
	2.1. Requirements Terminology
	2.2. Notations
	2.3. Definitions

	3. Comparing ECDSA and EdDSA certificates
	4. The Basic PKI feature set
	5. Getting started and the Root level
	5.1. Setting up the Environment
	5.2. Create the Root Certificate

	6. The Intermediate level
	6.1. Setting up the Intermediate Certificate Environment
	6.2. Create the Intermediate Certificate
	6.3. Create a Server EE Certificate
	6.4. Create a Client EE Certificate

	7. The 802.1AR Intermediate level
	7.1. Setting up the 802.1AR Intermediate Certificate Environment
	7.2. Create an 802.1AR iDevID Certificate

	8. Setting up a CRL for an Intermediate CA
	8.1. Create (or recreate) the CRL
	8.2. Revoke a Certificate

	9. Setting up OCSP for an Intermediate CA
	9.1. Create the OCSP Certificate
	9.2. Revoke a Certificate
	9.3. Testing OCSP with Openssl

	10. Footnotes
	10.1. Certificate Serial Number
	10.2. Some OpenSSL config file limitations
	10.3. subjectAltName support now works
	10.4. Certificates with only subjectAltName
	10.5. DER support, or lack thereof

	11. IANA Considerations
	12. Security Considerations
	12.1. Adequate Randomness
	12.2. Key pair Theft

	13. Acknowledgments
	14. References
	14.1. Normative References
	14.2. Informative References

	Appendix A. OpenSSL config file
	Authors' Addresses

