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   all provisions of Section 10 of RFC2026.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups. Note that other
   groups may also distribute working documents as Internet-Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time. It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on December 18, 2003.

Copyright Notice

   Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

   This memo specifies the details of the Host Identity Protocol (HIP).
   The overall description of protocol and the underlying architectural
   thinking is available in the separate HIP architecture specification.
   The Host Identity Protocol is used to establish a rapid
   authentication between two hosts and to provide continuity of
   communications between those hosts independent of the networking
   layer.

   The various forms of the Host Identity (HI), Host Identity Tag (HIT),
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   and Local Scope Identifier (LSI), are covered in detail.  It is
   described how they are used to support authentication and the
   establishment of keying material, which is then used by IPsec
   Encapsulated Security payload (ESP) to establish a two-way secured
   communication channel between the hosts.  The basic state machine for
   HIP provides a HIP compliant host with the resiliency to avoid many
   denial-of-service (DoS) attacks.  The basic HIP exchange for two
   public hosts shows the actual packet flow.  Other HIP exchanges,
   including those that work across NATs are covered elsewhere.
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1. Introduction

   The Host Identity Protocol (HIP) provides a rapid exchange of Host
   Identities (HI) between two hosts.  The exchange also establishes a
   pair IPsec Security Associations (SA), to be used with IPsec
   Encapsulated Security Payload (ESP) [5].  The HIP protocol is
   designed to be resistant to Denial-of-Service (DoS) and
   Man-in-the-middle (MitM) attacks, and when used to enable ESP,
   provides DoS and MitM protection to upper layer protocols, such as
   TCP and UDP.

1.1 A new name space and identifiers

   The Host Identity Protocol introduces a new namespace, the Host
   Identity.  The affects of this change are explained in the companion
   document, the HIP architecture [18] specification.

   There are three representations of the Host Identity, the full Host
   Identifier (HI), the Host Identity Tag (HIT), and the Local Scope
   Identity (LSI).  Three representations are used, as each meets a
   different design goal of HIP, and none of them can be removed and
   meet these goals.  The HI represents directly the Identity, a public
   key.  Since there are different public key algorithms that can be
   used with different key lengths, the HI is not good for using as the
   HIP packet identifier, or as a index into the various operational
   tables needed to support HIP.

   A hash of the HI, the Host Identity Tag (HIT), thus becomes the
   operational representation.  It is 128 bits long.  It is used in the
   HIP payloads, and it is intended be used to index the corresponding
   state in the end hosts.

   In many environments, 128 bits is still considered large. For
   example, currently used IPv4 based applications are constrained with
   32 bit API fields.  Thus, the third representation, the 32 bit LSI,
   is needed.  The LSI provides a compression of the HIT with only a
   local scope so that it can be carried efficiently in any application
   level packet and used in API calls.

1.2 The HIP protocol

   The base HIP exchange consists of four packets.  The four-packet
   design helps to make HIP DoS resilient. The protocol exchanges
   Diffie-Hellman keys in the 2nd and 3rd packets, and authenticates the
   parties in the 3rd and 4th packets.  Additionally, it starts the
   cookie exchange in the 2nd packet, completing it with the 3rd packet.

   The exchange uses the Diffie-Hellman exchange to hide the Host
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   Identity of the Initiator in packet 3.  The Responder's Host Identity
   is not protected.  It should be noted, however, that both the
   Initiator and the Responder HITs are transported as such (in
   cleartext) in the packets, allowing an eavesdropper with a priori
   knowledge about the parties to verify their identies.

   Data packets start after the 4th packet.  The 3rd and 4th HIP packets
   may carry a data payload in the future.  However, the details of this
   are to be defined later as more implementation experience is gained.

   Finally, HIP is designed as an end-to-end authentication and key
   establishment protocol.  It lacks much of the fine-grain policy
   control found in IKE that allows IKE to support complex gateway
   policies.  Thus, HIP is not a complete replacement for IKE.



Moskowitz, et al.      Expires December 18, 2003                [Page 5]



Internet-Draft           Host Identity Protocol                June 2003

2. Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC2119 [2].

Moskowitz, et al.      Expires December 18, 2003                [Page 6]
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3. Host Identifiers

   The structure of the Host Identifier is the public key of an
   asymmetric key pair.  Correspondingly, the host itself is entity that
   holds the private key from the key pair.  See the HIP architecture
   specification [18] for more details about the difference between an
   identity and the corresponding identifier.

   DSA is the MUST implement algorithm for all HIP implementations,
   other algorithms MAY be supported.  DSA was chosen as the default
   algorithm due to its small signature size.

   A Host Identity Tag (HIT) is used in protocols to represent the Host
   Identity.  Another representation of the Host Identity, the Local
   Scope Identity (LSI), can also be used in protocols and APIs.  LSI's
   advantage over HIT is its size; its disadvantage is its local scope.

3.1 Host Identity Tag (HIT)

   The Host Identity Tag is a 128 bit entity.  There are two advantages
   of using a hash over the actual Identity in protocols.  Firstly, its
   fix length makes for easier protocol coding and also better manages
   the packet size cost of this technology.  Secondly, it presents a
   consistent format to the protocol whatever underlying identity
   technology is used.

   There are two types of HITs.  HITs of the first type, called *type 1
   HIT*, consist of an initial 2 bit prefix of 01, followed by 126 bits
   of the SHA-1 hash of the public key.  HITs of the second type consist
   of a Host Assigning Authority (HAA) field, and only the last 64 bits
   come from a SHA-1 hash of the Host Identity.  This latter format for
   HIT is recommended for 'well known' systems.  It is possible to
   support a resolution mechanism for these names in hierarchical
   directories, like the DNS.  Another use of HAA is in policy controls,
   see Section 12.

   This document fully specifies only type 1 HITs.  HITs that consists
   of the HAA field and the hash are specified in [19].

   Any conforming implementation MUST be able to deal with HITs that are
   not type 1 ones.  However, in that case the implementation must
   explicitly learn and record the binding between the Host Identifier
   and the HIT, and it may not be able form such HITs from Host
   Identifiers.

3.1.1 Generating a HIT from a HI

   The 126 or 64 hash bits in a HIT MUST be generated by taking the



Moskowitz, et al.      Expires December 18, 2003                [Page 7]



Internet-Draft           Host Identity Protocol                June 2003

   least significant 126 or 64 bits of the SHA-1 [17] hash of the Host
   Identifier as it is represented in the Host Identity field in a HIP
   payload packet.

   For Identities that are DSA public keys, the HIT is formed as
   follows.

   1.  The DSA public key is encoded as defined in RFC2536 [12] Section
2, taking the fields T, Q, P, G, and Y, concatenated.  Thus, the

       length of the data to be hashed is 1 + 20 + 3 * 64 + 3 * 8 * T
       octets long, where T is the size parameter as defined in RFC2536
       [12]. The size parameter T, affecting the field lengths, MUST be
       selected as the minimum value that is long enough to accomodate
       P, G, and Y.  The fields MUST be encoded in network byte order,
       as defined in RFC2536 [12].

   2.  A SHA-1 hash [17] is calculated over the encoded key.

   3.  The least signification 126 or 64 bits of the hash result are
       used to create the HIT, as defined above.

   The following pseudo-code illustrates the process.  The symbol :=
   denotes assignment; the symbol += denotes appending.  The
   pseudo-function encode_in_network_byte_order takes two parameters, an
   integer (bignum) and length, and returns the integer encoded into a
   byte string of the given length.

    buffer := encode_in_network_byte_order ( DSA.T , 1 )
    buffer += encode_in_network_byte_order ( DSA.Q , 20 )
    buffer += encode_in_network_byte_order ( DSA.P , 64 + 8 * T )
    buffer += encode_in_network_byte_order ( DSA.G , 64 + 8 * T )
    buffer += encode_in_network_byte_order ( DSA.Y , 64 + 8 * T )

    digest := SHA-1 ( buffer )

    hit_126 := concatenate ( 01 ,      low_order_bits ( digest, 126 ) )
    hit_haa := concatenate ( 10 , HAA, low_order_bits ( digest,  64 ) )

3.2 Local Scope Identity (LSI)

   LSIs are 32-bit localized representations of a Host Identity.  The
   purpose of an LSI is to facilitate using Host Identities in existing
   IPv4 based protocols and APIs.  The owner of the Host Identity does
   not set its own LSI; each host selects its partner's 32 bit
   representation for a Host Identity.

   A *local LSI* is an LSI that a remote host has assigned to a host.

https://datatracker.ietf.org/doc/html/rfc2536
https://datatracker.ietf.org/doc/html/rfc2536
https://datatracker.ietf.org/doc/html/rfc2536
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   In some implementations, local LSIs may be assigned to some interface
   as an IP address.  A *remote LSI* is an LSI that the host has
   assigned to represent some remote host (and that the remote host has
   accepted).

   The LSIs MUST be allocated from the 1.0.0.0/8 subnet.  That makes it
   easier to differentiate between LSIs and IPv4 addresses at the API
   level.  By default, the low order 24 bits SHOULD be equal with the
   low order 24 bits of the corresponding HIT.  That allows easier
   mapping between LSIs and HITs, and makes the LSI assigned to a host
   to be a fixed one.

   It is possible that the HITs of two remote hosts have equal low order
   24 bits.  Since HITs are basically random, if a host is communicating
   with 1000 other hosts, the risk of such collision is roughly 0.006%,
   and for a host communicating with 10000 other hosts, the risk is
   about 0.06%.  However, given a population of 100000 hosts, each
   communicating with 1000 other hosts, the probability that there was
   no collisions at all is only about 2%.  In other words, even though
   collisions are fairly rare events for any given host, they will
   happen, and the hosts MUST be able to cope with them.

   If a host is forming a remote LSI for a HIT whose low order 24 bits
   are equal with another already existing remote LSI, the host MUST
   select another LSI to represent that host.  It may also be hard for a
   host to use a remote LSI that is equal to its own local LSI.  Thus,
   if the low order 24 bits of a remote HIT are equal to the low order
   24 bits of a local LSI, the host MAY select a different LSI to
   represent the remote host.  In either case, the host SHOULD assing
   the low order 24 bits of the LSI randomly.  All hosts MUST be
   prepared to handle local LSIs whose low order 24 bits do not match
   with any of their own HITs.

   If the LSI assigned by a peer to represent a host is unacceptable,
   the host MAY terminate the HIP four-way handshake and start anew.

3.3 Security Parameter Index (SPI)

   SPIs are used in ESP to find the right security association for
   received packets.  The ESP SPIs have added significance when used
   with HIP; they are a compressed representation of the HIT in every
   packet.  Thus they MAY be used by intermediary systems in providing
   services like address mapping.  Note that since the SPI has
   significance at the receiver, only the < DST, SPI >, where DST is a
   destination IP address, uniquely identifies the receiver HIT at every
   given point of time.  The same SPI value may be used by several
   hosts.  The same < DST, SPI > may denote different hosts at different
   points of time, depending on which host is currently reachable at the
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   DST.

   Each host selects for itself the SPI it wants to see in packets
   received from its peer.  This allows it to select different SPIs for
   different peers.  The SPI selection SHOULD be random.  A different
   SPI SHOULD be used for each HIP exchange with a particular host; this
   is to avoid a replay attack.  Additionally, when a host rekeys, the
   SPI MUST change.  Furthermore, if a host changes over to use a
   different IP address, it MAY change the SPI used.

   One method for SPI creation that meets these criteria, would be to
   concatenate the HIT with a 32 bit random or sequential number, hash
   this (using SHA1), and then use the high order 32 bits as the SPI.

   The selected SPI is communicated to the peer in the third (I2) and
   fourth (R2) packets of the base HIP exchange. Changes in SPI are
   signalled with NES packets.

3.4 Difference between an LSI and the SPI

   There is a subtle difference between an LSI and a SPI.

   The LSI is relatively longed lived.  A system selects the LSI it
   locally uses to represent its peer, it SHOULD reuse a previous LSI
   for a HIT during a HIP exchange.  This COULD be important in a
   timeout recovery situation.  The LSI ONLY appears in the 3rd and 4th
   HIP packets (each system providing the other with its LSI). The LSI
   is used anywhere in system processes where IP addresses have
   traditionally have been used, like in TCBs and FTP port commands.

   The SPI is short-lived.  It changes with each HIP exchange and with a
   HIP rekey and/or movement.  A system notifies its peer of the SPI to
   use in ESP packets sent to it.  Since the SPI is in all but the first
   two HIP packets, it can be used in intermediary systems to assist in
   address remapping.

3.5 TCP and UDP pseudoheader computation

   When computing TCP and UDP checksums on sockets bound to HITs or
   LSIs, the IPv6 pseudo-header format [10] is used.  Additionally, the
   HITs MUST be used in the place of the IPv6 addresses in the IPv6
   pseudoheader.  Note that the pseudo-header for actual HIP payloads is
   computed differently; see Section 6.1.2.
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4. The Host Identity Protocol

   The Host Identity Protocol is IP protocol TBD.  The HIP payload could
   be carried in every datagram.  However, since HIP datagrams are
   relatively large (at least 40 bytes), and ESP already has all of the
   functionality to maintain and protect state, the HIP payload is
   'compressed' into an ESP payload after the HIP exchange.  Thus in
   practice, HIP packets only occur in datagrams to establish or change
   HIP state.

4.1 Base HIP exchange

   The base HIP exchange serves to manage the establishment of state
   between an Initiator and a Responder.  The Initiator first sends a
   trigger packet, I1, to the responder.  The second packet, R1, starts
   the actual exchange.  In contains a puzzle, a cryptographic challenge
   that the Initiator must solve before continuing the exchange.  In its
   reply, I2, the Initiator must display the solution.  Without a
   solution the I2 message is simply discarded.

   The last three packets of the exchange, R1, I2, and R2, constitute a
   standard authenticated Diffie-Hellman key exchange.  The base
   exchange is illustrated below.

       Initiator                              Responder

                    I1: trigger exchange
                  -------------------------->
                                              select pre-computed R1
                     R1: puzzle, D-H, sig
                  <-------------------------
    check sig                                 remain stateless
    solve puzzle
                    I2: solution, D-H, sig
                  -------------------------->
    compute D-H                               check cookie
                                              check puzzle
                                              check sig
                            R2: sig
                  <--------------------------
    check sig                                 compute D-H

4.1.1 HIP Cookie Mechanism

   The purpose of the HIP cookie mechanism is to protect the Responder
   from a number of denial-of-service threats.  It allows the Responder
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   to delay state creation until receiving I2. Furthermore, the puzzle
   included in the cookie allows the Responder to use a fairly cheap
   calculation to check that the Initiator is "sincere" in the sense
   that it has churned CPU cycles in solving the puzzle.

   The Cookie mechanism has been explicitly designed to give space for
   various implementation options.  It allows a responder implementation
   to completely delay session specific state creation until a valid I2
   is received.  In such a case a validly formatted I2 can be rejected
   earliest only once the responder has checked its validity by
   computing one hash function.  On the other hand, the design also
   allows a responder implementation to keep state about received I1s,
   and match the received I2s against the state, thereby allowing the
   implementation to avoid the computational cost of the hash function.
   The drawback of this latter approach is the requirement of creating
   state.  Finally, it also allows an implementation to use any
   combination of the space-saving and computation-saving mechanism.

   One possible way how a Responder can remain stateless but drop most
   spoofed I2s is to base the selection of the cookie on some function
   over the Initiator's identity.  The idea is that the Responder has a
   (perhaps varying) number of pre-calculated R1 packets, and it selects
   one of these based on the information carried in I1.  When the
   Responder then later receives I2, it checks that the cookie in the I2
   matches with the cookie send in the R1, thereby making it impractical
   for the attacker to first exchange one I1/R1, and then generate a
   large number of spoofed I2s that seemingly come from different IP
   addresses or use different HITs.  The method does not protect from an
   attacker that uses fixed IP addresses and HITs, though.  Against such
   an attacker it is probably best to create a piece of local state, and
   remember that the puzzle check has previously failed.  See Appendix D
   for one possible implementation.  Note, however, that the
   implementations MUST NOT use the exact implementation given in the
   appendix, and SHOULD include sufficient randomness to the algorithm
   so that algorithm complexity attacks become impossible [21].

   The Responder can set the difficulty for Initiator, based on its
   concern of trust of the Initiator.  The Responder SHOULD use
   heuristics to determine when it is under a denial-of-service attack,
   and set the difficulty value K appropriately.

   The Responder starts the cookie exchange when it receives an I1. The
   Responder supplies a random number I, and requires the Initiator to
   find a number J.  To select a proper J, the Initator must create the
   concatenation of I, the HITs of the parties, and J, and take a SHA-1
   hash over this concatenation.  The lowest order K bits of the result
   MUST be zeros.  To accomplish this, the Initiator will have to
   generate a number of Js until one produces the hash target.  The
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   Initiator SHOULD give up after trying 2^(K+2) times, and start over
   the exchange.  (See Appendix C.)  The Responder needs to re-create
   the contactenation of I, the HITs, and the provided J, and compute
   the hash once to prove that the Initiator did its assigned task.

   To prevent pre-computation attacks, the Responder MUST select I in
   such a way that the Inititiator cannot guess it.  Furthermore, the
   construction MUST allow the Responder to verify that the value were
   indeed selected by it and not by the Initiator.  See Appendix D for
   an example on how to implement this.

   It is RECOMMENDED that the Responder generates a new cookie and a new
   R1 once every few minutes.  Furthermore, it is RECOMMENDED that the
   responder remembers an old cookie at least 60 seconds after it has
   been deprecated.  These time values allow a slower Initiator to solve
   the cookie puzzle while limiting the usability that an old, solved
   cookie has to an attacker.

   In R1, the values I and K are sent in network byte order. Similarily,
   in I2 the values I and J are sent in network byte order.  The SHA-1
   hash is created by concatenating, in network byte order, the
   following data, in the following order:

      64-bit random value I, in network byte order, as appearing in R1
      and I2.

      128-bit Initiator HIT, in network byte order, as appearing in the
      HIP Payload in R1 and I2.

      128-bit Responder HIT, in network byte order, as appearing in the
      HIP Payload in R1 and I2.

      64-bit random value J, in network byte order, as appearing in I2.

   In order to be a valid response cookie, the K low-order bits of the
   resulting SHA-1 digest must be zero.

   Notes:

      The length of the data to be hashed is 48 bytes.

      All the data in the hash input MUST be in network byte order.

      The order of the Initiator and Responder HITs are different in the
      R1 and I2 packets, See Section 6.1. Care must be taken to copy the
      values in right order to the hash input.
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   Precomputation by the Responder Sets up the challenge difficulty K.

      Generates a random number I.
      Creates a signed R1 and caches it.

   Responder Sends I and K in a HIP Cookie in an R1.

      Saves I and K for a Delta time.

   Initiator Generates repeated attempts to solve the challenge until a
      matching J is found:

      Ltrunc( SHA-1( I | HIT-I | HIT-R | J ), K ) == 0
      Send I and J in HIP Cookie in I2.

   Responder Verify that the received I is a saved one.

      Match the Response with a K based on I.
      Compute V := Ltrunc( SHA-1( I | HIT-I | HIT-R | J ), K )
      Reject if V != 0
      Accept if V == 0

4.1.2 Authenticated Diffie-Hellman protocol

4.1.3 HIP Birthday

   The Birthday is a reboot count used to manage state reestablishment
   when one peer rebooted or timed out its SA.  The Birthday is
   increased every time the system boots.  The Birthday also has to be
   increased in accordance with the system's SA timeout parameter.  If
   the system has open SAs, it MUST increase its Birthday.  This impacts
   a system's approach to precomputing R1 packets.

   Birthday SHOULD be a counter.  It cannot be reset by the user and a
   system is unlikely to need a birthday larger than 2^64.  Date-time in
   GMT can be used if a cross-boot counter is not possible, but it has a
   potential problem if the system time is set back by the user.

4.2 Sending data on HIP packets

   A future version of this document may define how to send ESP
   protected data on various HIP packets.  However, currently the HIP
   header is a terminal header, and not followed by any other headers.

4.3 Distributing certificates

   Certificates MAY be distributed using the CERT packet. [XXX: This
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   section needs more text.].
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5. The Host Identity Protocol packet flow and state machine

   A typical HIP packet flow is shown below.

    I --> Directory: lookup of R
    I <-- Directory: return R's addresses, HI, and HIT
    I1      I --> R (Hi. Here is my I1, let's talk HIP)
    R1      I <-- R (OK.  Here is my R1, handle this HIP cookie)
    I2      I --> R (Compute, compute, here is my counter I2)
    R2      I <-- R (OK.  Let's finish HIP with my R2)
    I --> R (ESP protected data)
    I <-- R (ESP protected data)

5.1 HIP Scenarios

   The HIP protocol and state machine is designed to recover from one of
   the parties crashing and losing its state.  The following scenarios
   describe the main use cases covered by the design.

      No prior state between the two systems.

         The system with data to send is the Initiator.  The process
         follows standard 4 packet exchange, establishing the SAs.

      The system with data to send has no state with receiver, but
      receiver has a residual SA.

         Intiator acts as in no prior state, sending I1 and getting R1.
         When Receiver gets I2, the old SA is 'discovered' and deleted;
         the new SAs are established.

      System with data to send has an SA, but receiver does not.

         Receiver 'detects' when it receives an unknown SPI.  Receiver
         sends an R1 with a NULL Initiator HIT.  Sender gets the R1 with
         a later birthdate, discards old SA and continues exchange to
         establish new SAs for sending data.

      A peer determines that it needs to reset Sequence number or rekey.

         It sends NES. Receiver sends NES response, establishes new SAs
         for peers.

5.2 Refusing a HIP exchange

   A HIP aware host may choose not to accept a HIP exchange.  If the
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   host's policy is to only be an initiator, it should begin its own HIP
   exchange.  A host MAY choose to have such a policy since only the
   Initiator HI is protected in the exchange.  There is a risk of a race
   condition if each host's policy is to only be an initiator, at which
   point the HIP exchange will fail.

   If the host's policy does not permit it to enter into a HIP exchange
   with the Initiator, it should send an ICMP Protocol Unreachable,
   Administratively Prohibited message.  A more complex HIP packet is
   not used here as it actually opens up more potential DoS attacks than
   a simple ICMP message.

5.3 Reboot and SA timeout restart of HIP

   Simulating a loss of state is a potential DoS attack.  The following
   process has been crafted to manage state recovery without presenting
   a DoS opportunity.

   If a host reboots or times out, it has lost its HIP state.  If the
   system that lost state has a datagram to deliver to its peer, it
   simply restarts the HIP exchange.  The peer sends an R1 HIP packet,
   but does not reset its state until it receives the I2 HIP packet.
   The I2 packet MUST have a Birthday greater than the current SA's
   Birthday.  This is to handle DoS attacks that simulate a reboot of a
   peer.  Note that either the original Initiator or the Responder could
   end up restarting the exchange, becoming the new Initiator.  An
   example of the initial Responder needing to send a datagram but not
   having state occurs when the SAs timed out and a server on the
   Responder sends a keep-alive to the Initiator.

   If a system receives an ESP packet for an unknown SPI, the assumption
   is that it has lost the state and its peer did not.  In this case,
   the system treats the ESP packet like an I1 packet and sends an R1
   packet.  The Initiator HIT is typically NULL in the R1, since the
   system usually does not know the peer's HIT any more.

   The system receiving the R1 packet first checks to see if it has an
   established and recently used SA with the party sending the R1. If
   such an SA exists, the system checks the Birthday, if the Birthday is
   greater than the current SA's Birthday, it processes the R1 packet
   and resends the ESP packet (along with or) after the I2 packet.  The
   peer system processes the I2 in the normal manner, and replies with
   an R2.  This will reestablish state between the two peers.  [XXX:
   Potential DoS attack if hundreds of peers 'loose' their state and all
   send R1 packets at once to a server.  However, that would require the
   attacker having specific knowledge about the SAs used, and an ability
   to trigger R1s as the SAs are used.]
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5.4 HIP State Machine

   HIP has very little state.  In the base HIP exchange, there is an
   Initiator and a Responder.  Once the SAs are established, this
   distinction is lost.  If the HIP state needs to be re-established,
   the controlling parameters are which peer still has state and which
   has a datagram to send to its peer.  The following state machine
   attempts to capture these processes.

   The state machine is presented in a single system view, reresenting
   either an Initiator or a Responder.  There is not a complete overlap
   of processing logic here and in the packet definitions.  Both are
   needed to completely implement HIP.

5.4.1 HIP States

   E0 State machine start

   E1 Initiating HIP

   E2 Waiting to finish HIP

   E3 HIP SA established

   E-FAILED HIP SA establishment failed

5.4.2 HIP State Processes

   +---------+
   |    E0   |  Start state
   +---------+

   Datagram to send, send I1 and go to E1
   Receive I1, send R1 and stay at E0
   Receive I2, process
        if successful, send R2 and go to E3
        if fail, stay at E0
   Receive ESP for unknown SA, send R1 and stay at E0
   Receive ANYOTHER, drop and stay at E0

   +---------+
   |    E1   |  Initiating HIP
   +---------+

   Receive I1, send R1 and stay at E1
   Receive I2, process
        if successful, send R2 and go to E3
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        if fail, stay at E1
   Receive R1, process
        if successful, send I2 and go to E2
        if fail, go to E-FAILED
   Receive ANYOTHER, drop and stay at E1
   Timeout, increment timeout counter
        If counter is less than N1, send I1 and stay at E1
        If counter is greater than N1, go to E-FAILED

   +---------+
   |    E2   | Waiting to finish HIP
   +---------+

   Receive I1, send R1 and stay at E2
   Receive I2, process
        if successful, send R2 and go to E3
        if fail, stay at E2
   Receive R2, process
        if successful, go to E3
        if fail, go to E-FAILED
   Receive ANYOTHER, drop and stay at E2
   Timeout, increment timeout counter
        If counter is less than N2, send I2 and stay at E2
        If counter is greater than N2, go to E-FAILED

   +---------+
   |    E3   | HIP SA established
   +---------+

   Receive I1, send R1 and stay at E3
   Receive I2, process with Birthday check
        if successful, send R2, drop old SA and cycle at E3
        if fail, stay at E3
   Receive R1, process with SA and Birthday check
        if successful, send I2 with last datagram, drop old SA
                and go to E2
        if fail, stay at E3
   Receive R2, drop and stay at E3

   Receive ESP for SA, process and stay at E3
   Receive NES, process
        if successful, send NES and stay at E3
        if failed, stay at E3

5.4.3 Simplified HIP State Diagram
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   Receive packets cause a move to new state

   +---------+
   |    E0   |>---+
   +---------+    |
    | ^ |         |
    | | | Dgm to  |
    +-+ | send    |
     I1 |         |  (note: ESP- means ESP with unknown SPI)
   ESP- |         |
        v         |
   +---------+    |
   |    E1   |>---|----------+
   +---------+    |          |
        |         |          |
        | R1      |          |
        |         |I2        |I2
        v         |          |
   +---------+    |          |
   |    E2   |>---|----------|-----+
   |         |<---|-----+    |     |
   +---------+    |     |    |     |
        |         |     |    |     |
        | R2      |     |R1  |     |I2
        |         |     |    |     |
        v         |     |    |     |
   +---------+<---+     |    |     |
   |         |----------+    |     |
   |    E3   |<--------------+     |
   |         |<--------------------+
   +---------+
    |  ^
    |  |
    +--+
    ESP,
    NES,
    I1,
    I2
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6. Packet formats

6.1 Payload format

   All HIP packets start with a fixed header.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Next Header   |  Payload Len  |     Type      |  VER. |  RES. |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Controls             |             CRC               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                Sender's Host Identity Tag (HIT)               |
   |                                                               |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               Receiver's Host Identity Tag (HIT)              |
   |                                                               |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   /                        HIP Parameters                         /
   /                                                               /
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The HIP header is logically an IPv6 destination option. However, this
   document does not describe processing for Next Header values other
   than decimal 59, IPPROTO_NONE, the IPV6 no next header value.  Future
   documents MAY do so.  However, implementations MUST ignore trailing
   data if a Next Header value is received that is not implemented.

   The Header Length field contains the length of the HIP Header and the
   length of HIP parameters in 8 bytes units, excluding the first 8
   bytes.  Since all HIP headers MUST contain the sender's and
   receiver's HIT fields, the minimum value for this field is 4, and
   conversely, the maximum length of the HIP Parameters field is
   (255*8)-32 = 2008 bytes.

   The Packet Type indicates the HIP packet type.  The individual packet
   types are defined in the relevant sections. If a HIP host receives a
   HIP packet that contains an unknown packet type, it MUST silently
   drop the packet.
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   The HIP Version is four bits. The current version is 1. The version
   number is expected to be incremented only if there are incompatible
   changes to the protocol.  Most extensions can be handled by defining
   new packet types, new parameter types, or new controls.

   The following four bits are reserved for future use.  They MUST be
   zero when send, and they SHOULD be ignored when handling a received
   packet.

   The HIT fields are always 128 bits (16 bytes) long.

6.1.1 HIP Controls

   The HIP control section transfers information about the structure of
   the packet and capabilities of the host.

   The following fields have been defined:

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | | | | | | | | | | | | | |C|E|A|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   C - Certificate One or more certificate packets (CER) follows this
      HIP packet (see Section 7.7).

   E - ESP sequence numbers The ESP transform requires 64-bit sequence
      numbers.  See Section 11.4 for processing this control.

   A - Anonymous If this is set, the senders HI in this packet is
      anonymous, i.e., one not listed in a directory.  Anonymous HIs
      SHOULD NOT be stored.  This control is set in packets R1 and/or
      I2.  The peer receiving an anonymous HI may choose to refuse it by
      silently dropping the exchange.

   The rest of the fields are reserved for future use and MUST be set to
   zero on sent packets and ignored on received packets.

6.1.2 CRC

   The checksum field is located at the same location within the header
   as the checksum field in UDP packets, enabling hardware assisted
   checksum generation and verification. Note that since the checksum
   covers the source and destination addresses in the IP header, it must
   be recomputed on HIP based NAT boxes.

   If IPv6 is used to carry the HIP packet, the pseudo-header [10]
   contains the source and destination IPv6 addresses, HIP packet length
   in the pseudo-header length field, a zero field, and the HIP protocol
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   number (TBD) in the Next Header field.  The length field is in bytes
   and can be calculated from the HIP header length field: (HIP Header
   Length + 1) * 8.

   In case of using IPv4, the the IPv6 pseudo header format [10] is
   still used, but in the pseudo-header source and destination addresses
   are IPv4 addresses expressed in IPv4-in-IPv6 format [3].

6.2 HIP parameters

   The HIP Parameters are used to carry the public key associated with
   the sender's HIT, together with other related security information.
   The HIP Parameters consists of ordered parameters, encoded in TLV
   format.

   The following parameter types are currently defined.

      TLV Type             Length          Data

      SPI_LSI              16              Remote's SPI, Remote's LSI.

      BIRTHDAY_COOKIE      40              System Boot Counter plus
                                           3 64 bit fields:
                                           Random #I, K or random # J,
                                           Hash target

      DIFFIE_HELLMAN       variable        public key

      HIP_TRANSFORM        variable        HIP Encryption Transform

      ESP_TRANSFORM        variable        ESP Encryption and
                                           Authentication Transform

      HOST_ID              variable        Host Identity

      HOST_ID_FQDN         variable        Host Identity with Fully
                                           Qualified Domain Name

      CERT                 variable        HI certificate

      NES_INFO             XXX             ESP sequence number,
                                           Old SPI, New SPI

      ENCRYPTED            variable        Encrypted part of I2 or CER
                                           packets

      HIP_SIGNATURE        variable        Signature of the packet
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      HIP_SIGNATURE2      variable        Signature of the packet R1

6.3 TLV format

   The TLV encoded parameters are described in the following
   subsections. The type-field value also describes the order of these
   fields in the packet.  The parameters MUST be included into the
   packet so that the types form an increasing order. If the order does
   not follow this rule, the packet is considered to be malformed and it
   MUST be discarded.

   All the TLV parameters have a length which is a multiple of 8 bytes.
   When needed, padding MUST be added to the end of the parameter so
   that the total length becomes a multiple of 8 bytes.  This rule
   ensures proper alignment of data. If padding is added, the Length
   field MUST NOT include the padding.

   Consequently, the Length field indicates the length of the Contents
   field (in bytes). The total length of the TLV parameter (including
   Type, Length, Contents, and Padding) is related to the Length field
   according to the following formula:

   Total Length = 11 + Length - (Length + 3) % 8;

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      /                          Contents                             /
      /                                               +-+-+-+-+-+-+-+-+
      |                                               |    Padding    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

6.3.1 SPI_LSI

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Reserved                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              SPI                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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      |                              LSI                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type         1
      Length       12
      Reserved     Zero when sent, ignored when received
      SPI          Security Parameter Index
      LSI          Local Scope Identifier

6.3.2 BIRTHDAY_COOKIE

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Reserved                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Birthday, 8 bytes                                             |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Random # I, 8 bytes                                           |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Random # J or K, 8 bytes                                      |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Hash Target, 8 bytes                                          |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type         2 (in R1) or 3 (in I2)
      Length       36
      Reserved     Zero when sent, ignored when received
      Birthday     System boot counter
      Random # I   random number
      K or         K is the number of verified bits (in R1 packet)
      Random # J   random number (in I2 packet)
      Hash Target  calculated hash value

   Birthday, Random #I, K, Random #J, and Hash Target are in network
   byte order.

6.3.3 DIFFIE_HELLMAN

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
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      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Group ID    |               public value                    /
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                               |            padding            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type         6
      Length       length in octets, excluding T and L fields and padding
      Group ID     defines values for p and g
      public value

   The following Group IDs have been defined:

      Group                            Value
      Reserved                         0
      OAKLEY well known group 1        1
      OAKLEY well known group 2        2
      1536-bit MODP group              3
      2048-bit MODP group              4
      3072-bit MODP group              5
      4096-bit MODP group              6
      6144-bit MODP group              7
      8192-bit MODP group              8

   MODP Diffie-Hellman groups are defined in [14]. OAKLEY groups are
   defined in [7]. The OAKLEY well known group 5 is the same as 1536-bit
   MODP group.

6.3.4 HIP_TRANSFORM

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Transform-ID #1      |       Transform-ID #2         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Transform-ID #n      |             Padding           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type         16
      Length       length in octets, excluding T and L fields and padding
      Transform-ID Defines the HIP Transform to be used

   The following encryption algorithms are defined.
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         Transform-ID             Value

         RESERVED                 0
         ENCR_NULL                1
         ENCR_3DES                2
         ENCR_AES_128             3

   There MUST NOT be more than three (3) HIP Transform-IDs in one HIP
   transform TLV. The limited number of transforms sets the maximum size
   of HIP_TRANSFORM TLV. The HIP_TRANSFORM TLV MUST contain at least one
   of the mandatory Transform-IDs.

   Mandatory implementations: ENCR_3DES and ENCR_NULL

6.3.5 ESP_TRANSFORM

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Suite-ID #1          |           Suite-ID #2         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Suite-ID #n          |             Padding           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type         18
      Length       length in octets, excluding T and L fields and padding
      Suite-ID     Defines the ESP Suite to be used

   The following Suite-IDs are defined ([15],[16]):

         Suite-ID                          Value

         RESERVED                          0
         ESP-AES-CBC with HMAC-SHA1        1
         ESP-3DES-CBC with HMAC-SHA1       2
         ESP-3DES-CBC with HMAC-MD5        3
         ESP-BLOWFISH-CBC with HMAC-SHA1   4
         ESP-NULL with HMAC-SHA1           5
         ESP-NULL with HMAC-MD5            6

   There MUST NOT be more than six (6) ESP Suite-IDs in one
   ESP_TRANSFORM TLV. The limited number of Suite-IDs sets the maximum
   size of ESP_TRANSFORM TLV. The ESP_TRANSFORM MUST contain at least
   one of the mandatory Suite-IDs.

   Mandatory implementations: ESP-3DES-CBC with HMAC-SHA1 and ESP-NULL
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   with HMAC-SHA1

6.3.6 HOST_ID

   When the host sends a Host Identity to a peer, it MAY send the
   identity without any verification information or use certificates to
   proof the HI. If certificates are sent, they are sent in a separate
   HIP packet (CER).

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Host Identity                          /
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                                               |   padding     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type           32
      Length         length in octets, excluding T and L fields and padding
      Host Identity  actual host identity

   The Host Identity is represented in RFC2535 [11] format.  The
   algorithms used in RDATA format are the following:

         Algorithms       Values

         RESERVED         0
         DSA              3 [RFC2536] (REQUIRED)
         RSA              5 [RFC3110] (OPTIONAL)

6.3.7 HOST_ID_FQDN

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          HI Length            |          FQDN Length          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Host Identity                         /
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                               |             FDQN              /
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                                               |    Padding    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc2536
https://datatracker.ietf.org/doc/html/rfc3110
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      Type           33
      Length         length in octets, excluding T and L fields and padding
      Host Identity
      length         length of the HI
      FQDN length    length of the FQDN
      Host Identity  actual host identity
      FQDN           Fully Qualified Domain Name, in the binary format.

   The Host Identity is represented in RFC2535 [11] format.  The format
   for the FQDN is defined in RFC1035 [1] Sect. 3.1.

   If there is no FQDN, the HOST_ID TLV is sent instead.

6.3.8 CERT

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Cert count   |   Cert ID     |   Cert type   |               /
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                          Certificate                          /
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                               |            Padding            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type        64
      Length      length in octets, excluding T and L fields and padding
      Cert count  total count of certificates that are sent, possibly
                  in different CER packets
      Cert ID     the order number for this certificate
      Cert Type   describes the type of the certificate

   The receiver must know the total number (Cert count) of certificates
   that it will receive from the sender, related to the R1 or I2. The
   Cert ID identifies the particular certificate and its order in the
   certificate chain. The numbering in Cert ID MUST go from 1 to Cert
   count.

   The following certificate types have been identified:

      Cert format    Type number
      X.509 v3       1

   The encoding format for X.509v3 certificate is defined in [9].

https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc1035
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6.3.9 HIP_SIGNATURE

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    SIG alg    |                  Signature                    /
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      /                               |             padding           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type         65534 (2^16-2)
      Length       length in octets, excluding T and L fields and padding
      SIG alg      Signature algorithm
      Signature    the signature is calculated over the HIP packet,
                   excluding the HIP_SIGNATURE TLV field. The checksum
                   field MUST be set to zero and the HIP header length in
                   the HIP common header MUST be calculated to the
                   beginning of the HIP_SIGNATURE TLV when the signature is
                   calculated.

   Signature calculation and verification process:

   Packet sender:

   1.  Create the HIP packet without the HIP_SIGNATURE TLV

   2.  Calculate the length field in the HIP header

   3.  Compute the signature

   4.  Add the HIP_SIGNATURE TLV to the packet

   5.  Recalculate the length field in the HIP header

   Packet receiver:

   1.  Verify the HIP header length field

   2.  Save the HIP_SIGNATURE TLV and remove it from the packet

   3.  Recalculate the HIP packet length in the HIP header and zero
       checksum field.

   4.  Compute the signature and verify it against the received
       signature
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   The signature algorithms are defined in Section 6.3.5. The signature
   in the Signature field is encoded using the proper method depending
   on the signature algorithm (e.g. in case of DSA, according to [12]).

   The verification can use either the HI received from a HIP packet,
   the HI from a DNS query, if the FQDN has been received either in the
   HOST_ID_FQDN or in the CER packet, or one reveived by some other
   means.

6.3.10 HIP_SIGNATURE_2

   The TLV structure is the same as in Section 6.3.9. The fields are:

      Type         65533 (2^16-3)
      Length       length in octets, excluding T and L fields and padding
      SIG alg      Signature algorithm
      Signature    the signature is calculated over the R1 packet,
                   excluding the HIP_SIGNATURE_2 TLV field. Initiator's HIT
                   and Checksum field MUST be set to zero and the HIP
                   packet length in the HIP header MUST be calculated to
                   the beginning of the HIP_SIGNATURE_2 TLV when the
                   signature is calculated.

   Zeroing the Initiator's HIT makes it possible to create R1 packets
   beforehand to minimize the effects of possible DoS attacks.

   Signature calculation and verification process: see the process in
Section 6.3.9 HIP_SIGNATURE. Just replace the HIP_SIGNATURE with

   HIP_SIGNATURE_2 and zero Initiator's HIT at the receiver's end-point.

   The signature algorithms are defined in Section 6.3.5. The signature
   in the Signature field is encoded using the proper method depending
   on the signature algorithm (e.g. in case of DSA, according to [12]).

   The verification can use either the HI received from a HIP packet,
   the HI from a DNS query, if the FQDN has been received either in the
   HOST_ID_FQDN or in the CER packet, or one reveived by some other
   means.

6.3.11 NES_INFO

   [XXX: The contents of the NES_INFO payload are subject to change,
   since it is desireable to unify the NES and REA functionality.
   However, the details of that need to be worked out.]

    0                   1                   2                   3
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    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             Type              |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                            Reserved                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Current SPI in reverse direction              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          Current SPI                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                            New SPI                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Keymaterial index       |           packet ID           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type         4
      Length       length in octets, excluding T and L fields
      ESP sequence
      number
      Old SPI
      New SPI

6.3.12 ENCRYPTED

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Reserved                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              IV                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Encrypted data                         /
      /                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type         20
      Length       length in octets, excluding T and L fields
      Reserved     zero when sent, ignored when received
      IV           Initialization vector, if needed, zero otherwise
      Encrypted    the data is encrypted using an encryption algorithm as
      data         defined in HIP transform

   The encrypted data is in TLV format itself. Consequently, the first
   fields in the contents are Type and Length.
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7. HIP Packets

   There are eight basic HIP packets. Four are for the base HIP
   exchange,one is for rekeying, one is a broadcast for use when there
   is no IP addressing (e.g., before DHCP exchange), one is used to send
   certificates and one is for sending unencrypted data.

   Packets consist of the fixed header as described in Section 6.1,
   followed by the parameters. The parameter part in turn consists of
   zero or more TLV coded parameters.

   In addition to the base packets, some other packets may be defined
   later in separate standards. E.g. the mobility and multihoming
   management support is not included in this base specification.

   Packet representation uses the following operations:

      ()   parameter
      x{y} operation x on content y
      <x>i x exists i times
      []   optional parameter
      x|y  x or y

   An OPTIONAL upper layer payload MAY follow the HIP header. The
   payload proto field in the header indicates if there is additional
   data following the HIP header. The P-bit in the control field of the
   HIP packet header indicates whether the sender is capable of sending
   and receiving this additional data. The HIP packet, however, MUST NOT
   be fragmented. This limits the size of the possible additional data
   in the packet.

7.1 I1 - the HIP Initiator packet

   The HIP header values for the I1 packet:

       Type = 1
       SRC HIT = Initiator's HIT
       DST HIT = Responder's HIT, or NULL

      IP(HIP())

   The I1 packet contains only the fixed HIP header.

   Valid control bits: None

   The Initiator gets the Responder's HIT either from a DNS lookup of
   the responder's FQDN, from some other repository, or from a local
   table.  If the initiator does not know the responder's HIT, it may
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   attempt anonymous mode by using NULL (all zeros) as the responder's
   HIT.

   Since this packet is so easy to spoof even if it were signed, no
   attempt is made to add to its generation or processing cost.

   Implementation MUST be able to handle a storm of reveived I1 packets,
   discarding those with common content that arrive within a small time
   delta.

7.2 R1 - the HIP Responder packet

   The HIP header values for the R1 packet:

      Header:
        Packet Type = 2
        SRC HIT = Responder's HIT
        DST HIT = Initiator's HIT

      IP ( HIP ( BIRTHDAY_COOKIE,
                 DIFFIE_HELLMAN,
                 HIP_TRANSFORM,
                 ESP_TRANSFORM,
                 ( HOST_ID | HOST_ID_FQDN ),
                 HIP_SIGNATURE_2 ) )

   Valid control bits: C, A

   The R1 packet may be followed by one or more CER packets. In this
   case, the C-bit in the control field MUST be set.

   If the Responder has multiple HIs, the HIT used MUST match
   Initiator's request.  If the Initiator used anonymous mode, the
   Responder may select freely among its HIs.

   The Initiator HIT MUST match the one received in I1.  If the R1 is a
   response to an ESP packet with an unknown SPI, the Initiator HIT
   SHOULD be zero.

   The Birthday is a reboot count used to manage state reestablishment
   when one peer rebooted or timed out its SA.

   The Cookie contains random I and difficulty K.  K is number of bits
   that the Initiator must match get zero in the puzzle.

   The Diffie-Hellman value is ephemeral, but can be reused over a
   number of connections.  In fact, as a defense against I1 storms, an
   implementation MAY use the same Diffie-Hellman value for a period of
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   time, for example, 15 minutes.  By using a small number of different
   Cookies for a given Diffie-Hellman value, the R1 packets can be
   pre-computed and delivered as quickly as I1 packets arrive. A
   scavenger process should clean up unused DHs and Cookies.

   The HIP_TRANSFORM contains the encryption algorithms supported by the
   responder to protect the HI exchange, in order of preference. All
   implementations MUST support the 3DES [8] transform.

   The ESP_TRANSFORM contains the ESP modes supported by the responder,
   in order of preference.  All implementations MUST support 3DES [8]
   with HMAC-SHA-1-96 [4].

   The SIG is calculated over the whole HIP envelope, after setting the
   Initiator HIT and header checksum temporarily to zero.  This allows
   the Responder to use precomputed R1s.  The Initiator SHOULD validate
   this SIG.  It SHOULD check that the HI received matches with the one
   expected, if any.

7.3 I2 - the HIP Second Initiator packet

   The HIP header values for the I2 packet:

        Type = 3
        SRC HIT = Initiator's HIT
        DST HIT = Responder's HIT

      IP ( HIP ( SPI_LSI,
                 BIRTHDAY_COOKIE,
                 DIFFIE_HELLMAN,
                 HIP_TRANSFORM,
                 ESP_TRANSFORM,
                 ENCRYPTED { HOST_ID | HOST_ID_FQDN },
                 HIP_SIGNATURE ) )

   Valid control bits: C, E, A

   The HITs used MUST match the ones used previously.

   The Birthday is a reboot count used to manage state reestablishment
   when one peer rebooted or timed out its SA.

   The Cookie contains I from R1 and the computed J. The low order K
   bits of the SHA-1(I | ... | J) MUST match be zero.

   The Diffie-Hellman value is ephemeral.  If precomputed, a scavenger
   process should clean up unused DHs.
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   The HIP_TRANSFORM contains the encryption used to protect the HI
   exchange selected by the initiator.  All implementations MUST support
   the 3DES transform.

   The Initiator's HI is encrypted using the HIP_TRANSFORM. The keying
   material is derived from the Diffie-Hellman exchanged as defined in

Section 9.

   The ESP_TRANSFORM contains the ESP mode selected by the initiator.
   All implementations MUST support 3DES [8] with HMAC-SHA-1-96 [4].

   The HIP SIG is calculated over whole HIP envelope.  The Responder
   MUST validate this SIG.  It MAY use either the HI in the packet or
   the HI acquired by some other means.

7.4 R2 - the HIP Second Responder packet

   The HIP header values for the R2 packet:

        Packet Type = 4
        SRC HIT = Responder's HIT
        DST HIT = Initiator's HIT

      IP ( HIP ( SPI_LSI,
                 HIP_SIGNATURE ) )

   Valid control bits: E

   The signature is calculated over whole HIP envelope. The Initiator
   MUST validate this signature.

7.5 NES - the HIP New SPI Packet

   The HIP New SPI Packet serves three functions.  Firstly, it provides
   the peer system with a new SPI to use when sending packets.
   Secondly, it optionally provides a new Diffie-Hellman key to produce
   new keying material.  Thirdly, it provides any intermediate system
   with the mapping of the old SPI to the new one.  This is important to
   systems like NATs [20] that use SPIs to maintain address translation
   state.

   The new SPI Packet is a HIP packet with SPI and D-H in the HIP
   payload.  The HIP packet contains the current ESP Sequence Number and
   SPI to provide DoS and replay protection.

   The HIP header values for the NES packet:
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        Packet Type = 5
        SRC HIT = Sender's HIT
        DST HIT = Recipients's HIT

        IP ( HIP ( [ DIFFIE_HELLMAN, ] NES_INFO , HIP_SIGNATURE ) )

   Valid control bits: None

   During the life of an SA established by HIP, one of the hosts may
   need to reset the Sequence Number to one (to prevent wrapping) and
   rekey.  The reason for rekeying might be an approaching sequence
   number wrap in ESP, or a local policy on use of a key.  A new SPI or
   rekeying ends the current SAs and starts a new ones on both peers.
   Intermediate systems that use the SPI will have to inspect HIP
   packets for a HIP New SPI packet.  The packet is signed for the
   benefit of the Intermediate systems.

   This packet has a potential DoS attack of a packet within the replay
   window and proper SPI, but a malformed signature. Implementations
   MUST recognize when they are under attack and manage the attack.  If
   it is still receiving ESP packets with increasing Sequence Numbers,
   the NES packets are obviously attacks and can be ignored.

   Since intermediate systems may need the new SPI values, the contents
   of this packet cannot be encrypted.

   Intermediate systems that use the SPI will have to inspect ALL HIP
   packets for a NES packet.  This is a potential DoS attack against the
   Intermediate system, as the signature processing may be relatively
   expensive.  A further step against attack for the Intermediate
   systems is to implement ESP's replay protection of windowing the
   sequence number.  This requires the intermediate system to track ALL
   ESP packets to follow the Sequence Number.

7.6 BOS - the HIP Bootstrap Packet

   In some situations, an initiator may not be able to learn of a
   responder's information from DNS or another repository. Some examples
   of this are DHCP and NetBios servers.  Thus, a packet is needed to
   provide information that would otherwise be gleaned from a
   repository.  This HIP packet is either self-signed in applications
   like SoHo, or from a trust anchor in large private or public
   deployments.  This packet MAY be broadcasted in IPv4 or multicasted
   to the all hosts multicast group in IPv6.  The packet MUST NOT be
   sent more often than once in every second.  Implementations MAY
   ignore received BOS packets.

   The HIP header values for the BOS packet:
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        Packet Type = 7
        SRC HIT = Announcer's HIT
        DST HIT = NULL

        IP ( HIP ( ( HOST_ID | HOST_ID_FQDN ), HIP_SIGNATURE ) )

   The BOS packet may be followed by a CER packet if the HI is signed.
   In this case, the C-bit in the control field MUST be set.  If the BOS
   packet is broadcasted or multicasted, the following CER packet(s)
   MUST be broadcasted or multicasted to the same multicast group and
   scope, respectively.

   Valid control bits: C, A

7.7 CER - the HIP Certificate Packet

   The Optional CER packets over the Announcer's HI by a higher level
   authority known to the Recipient is an alternative method for the
   Recipient to trust the Announcer's HI (over DNSSEC or PKI).

   The HIP header values for CER packet:

        Packet Type = 8
        SRC HIT = Announcer's HIT
        DST HIT = Recipients's HIT

        IP ( HIP ( ENCRYPTED { <CERT>i }, HIP_SIGNATURE ) )

   Valid control bits: None

   Certificates in the CER packet MAY be encrypted.  The encryption
   algorithm is provided in the HIP transform of the previous (R1 or I2)
   packet.

7.8 PAYLOAD - the HIP Payload Packet

   The HIP header values for the PAYLOAD packet:

        Packet Type = 64

      IP ( HIP ( ), payload )

   Valid control bits: None

   Payload Proto field in the Header MUST be set to correspond the
   correct protocol number of the payload.

   The PAYLOAD packet is used to carry a non-ESP protected data. By
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   usign HIP header we ensure interoperability with NAT and other middle
   boxes.

   Processing rules of the PAYLOAD packet are the following:

   Receiving:  if there is an existing HIP security association with the
      given HITs, and the IP addresses match the IP addresses associated
      with the HITs, pass the packet to the upper layer, associated with
      metadata indicating that the packet was NOT integrity or
      confidentiality protected.

   Sending:  if the IPsec SPD defines BYPASS for a given destination
      HIT, send it with the PAYLOAD packet. Otherwise use the ESP as
      specified in the SPD.
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8. Packet processing

   [XXX: This section is currently in its very beginning. It needs much
   more text.]

8.1 R1 Management

   All compliant implementations MUST produce R1 packets. An R1 packet
   MAY be precomputed. An R1 packet MAY be reused for time Delta T. R1
   information MUST not be discarded until Delta S after T.  Time S is
   the delay needed for the last I2 to arrive back to the responder. A
   spoofed I1 can result in an R1 attack on a system.  An R1 sender MUST
   have a mechanism to rate limit R1s to an address.

8.2 Processing NES packets

   The ESP Sequence Number and current SPI are included to provide
   replay protection for the receiving peer.  The old SA MUST NOT be
   deleted until all ESP packets with a lower Sequence Number have been
   received and processed, or a reasonable time has elapsed (to account
   for lost packets).  If the Sequence Number is the replay window is
   greater than the number in the NES packet, the NES packet MUST be
   ignored.  If the SPI number does not match with an existing SPI
   number used, the NES packet must be ignored.

   The peer that initiates a New SPI exchange MUST include a Diffie-
   Hellmen key.  Its peer MUST respond with a New SPI packet, an MAY
   include a Diffie-Hellman key if the receiving system's policy is to
   increase the new KEYMAT by changing its key pair.

   When a host receives a New SPI Packet with a Diffie-Hellman, its next
   ESP packet MUST use the KEYMAT generated by the new Kij.  The sending
   host MUST expect at least a replay window worth of ESP packets using
   the old Kij.  Out of order delivery could result in needing the old
   Kij after packets start arriving using the new SA's Kij.  Once past
   the rekeying start, the sending host can drop the old SA and its Kij.

   The first packet sent by the receiving system MUST be a HIP New SPI
   packet.  It MAY also include a datagram, using the new SAs.  This
   packet supplies the new SPI for the rekeying system, which cannot
   send any packets until it receives this packet.  If it does not
   receive a HIP New SPI packet within a reasonable round trip delta, it
   MUST assume it or the HIP Rekey packet was lost and MAY resend the
   HIP New SPI packet or renegotiate HIP as if in a reboot condition.
   The choice is a local policy decision.

   This packet MAY contain a Diffie-Hellman key, if the receiving
   system's policy is to increase the new KEYMAT by changing its key
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   pair.
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9. HIP KEYMAT

   HIP keying material is derived from the Diffie-Hellman Kij produced
   during the base HIP exchange.  The initiator has Kij during the
   creation of the I2 packet, and the responder has Kij once it receives
   the I2 packet.  This is why I2 can already contain encrypted
   information.

   The KEYMAT is derived by feeding Kij and the HITs into the following
   operation; the | operation denotes concatenation.

    KEYMAT = K1 | K2 | K3 | ...
          where

    K1   = SHA-1( Kij | sort(HIT-I | HIT-R) | 0x01 )
    K2   = SHA-1( Kij | K1 | 0x02 )
    K3   = SHA-1( Kij | K2 | 0x03 )
    ...
    K255 = SHA-1( Kij | K254 | 0xff )
    K256 = SHA-1( Kij | K255 | 0x00 )
    etc.

   Sort(HIT-I | HIT-R) is defined as the numeric network byte order
   comparison of the HITs, with lower HIT preceding higher HIT,
   resulting in the concatenation of the HITs in the said order. The
   initial keys are drawn sequentially in the following order:

      HIP Initiator key

      HIP Responder key (currently unused)

      Initiator ESP key

      Initiator AUTH key

      Responder ESP key

      Responder AUTH key

   The number of bits drawn for a given algorithm is the "natural" size
   of the keys.  For the manatory algorithms, the following sizes apply:

   3DES 192 bits

   SHA-1 160 bits
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   NULL 0 bits

   Subsequent rekeys without Diffie-Hellman just requre drawing out more
   sets of ESP keys.  In the situation where Kij is the result of a HIP
   rekey exchange with Diffie-Hellman, there is only the need from one
   set of ESP keys, without the HIP keys.  These are then the only keys
   taken from the KEYMAT.
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10. HIP Fragmentation Support

   A HIP implementation must support IP fragmentation / reassembly.
   Fragment reassembly MUST be implemented in both IPv4 and IPv6, but
   fragment generation MUST be implemented only in IPv4 (IPv4 stacks and
   networks will usually do this by default) and SHOULD be implemented
   in IPv6.  In the IPv6 world, the minimum MTU is larger, 1280 bytes,
   than in the IPv4 world. The larger MTU size is usually sufficient for
   most HIP packets, and therefore fragment generation may not be
   needed.  If a host expects to send HIP packets that are larger than
   the minimum IPv6 MTU, it MUST implement fragment generation even for
   IPv6.

   In the IPv4 world, HIP packets may encounter low MTUs along their
   routed path.  Since HIP does not provide a mechanism to use multiple
   IP datagrams for a single HIP packet, support of path MTU discovery
   does not bring any value to HIP in the IPv4 world.  HIP aware NAT
   systems MUST perform any IPv4 reassembly/fragmentation.

   All HIP implementations MUST employ a reassembly algorithm that is
   sufficiently resistant against DoS attacks.
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11. ESP with HIP

   HIP sets up a pair of Security Associations (SA) to enable ESP in an
   end-to-end manner that can span addressing realms (i.e. across NATs).
   This is accomplished through the various informations that are
   exchanged within HIP.  Since HIP is designed for host usage, not for
   gateways, only ESP transport mode is supported with HIP.  The SA is
   not bound to an IP address; all internal control of the SA is by the
   HIT and LSI. Thus a host can easily change its address using Mobile
   IP, DHCP, PPP, or IPv6 readdressing and still maintain the SAs.  And
   since the transports are bound to the SA (LSI or HIT), any active
   transport is also maintained.  Thus, real world conditions like loss
   of a PPP connection and its reestablishment or a mobile cell change
   will not require a HIP negotiation or disruption of transport
   services.

   Since HIP does not negotiate any lifetimes, all lifetimes are local
   policy.  The only lifetimes a HIP implementation MUST support are
   sequence number rollover (for replay protection), and SA timeout. An
   SA times out if no packets are received using that SA.  The default
   timeout value is 15 minutes. Implementations MAY support lifetimes
   for the various ESP transforms.  Note that HIP does not offer any
   service comparable with IKE's Quick Mode.  A Diffie-Hellman
   calculation is needed for each rekeying.

11.1 Security Association Management

   An SA is indexed by the 2 SPIs and 2 HITs (both HITs since a system
   can have more than one HIT). An inactivity timer is recommended for
   all SAs. If the state dictates the deletion of an SA, a timer is set
   to allow for any late arriving packets. The SA MUST include the I
   that created it for replay detection.

11.2 Security Parameters Index (SPI)

   The SPIs in ESP provide a simple compression of the HIP data from all
   packets after the HIP exchange.  This does require a per HIT- pair
   Security Association (and SPI), and a decrease of policy granularity
   over other Key Management Protocols like IKE.

   When a host rekeys, it gets a new SPI from its partner.

11.3 Supported Transforms

   All HIP implementations MUST support 3DES [8] and HMAC-SHA-1-96 [4].
   If the Initiator does not support any of the transforms offered by
   the Responder in the R1 HIP packet, it MUST use 3DES and
   HMAC-SHA-1-96 and state so in the I2 HIP packet.
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   In addition to 3DES, all implementations MUST implement the ESP NULL
   encryption and authentication algorithms.  These algoritms are
   provided mainly for debugging purposes, and SHOULD NOT be used in
   production environments.  The default configuration in
   implementations MUST be to reject NULL encryption or authentication.

11.4 Sequence Number

   The Sequence Number field is MANDATORY in ESP.  Anti-replay
   protection MUST be used in an ESP SA established with HIP.

   This means that each host MUST rekey before its sequence number
   reaches 2^32.  Note that in HIP rekeying, unlike IKE rekeying, only
   one Diffie-Hellman key can be changed, that of the rekeying host.
   However, if one host rekeys, the other host SHOULD rekey as well.

   In some instances, a 32 bit sequence number is inadequate.  In either
   the I2 or R2 packets, a peer MAY require that a 64 bit sequence
   number be used.  In this case the higher 32 bits are NOT included in
   the ESP header, but are simply kept local to both peers. 64 bit
   sequence numbers must only be used for ciphers that will not be open
   to cryptoanalysis as a result.  AES is one such cipher.
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12. HIP Policies

   There are a number of variables that will influence the HIP exchanges
   that each host must support.  All HIP implementations MUST support
   more than one simultaneous HIs, at least one one of which SHOULD be
   reserved for anonymous usage.  Although anonymous HIs will be rarely
   used as responder HIs, they will be common for initiators.  Support
   for more than two HIs is RECOMMENDED.

   Many initiators would want to use a different HI for different
   responders.  The implementations SHOULD provide for an ACL of
   initiator HIT to responder HIT.  This ACL SHOULD also include
   preferred transform and local lifetimes.  For HITs with HAAs,
   wildcarding SHOULD be supported.  Thus if a Community of Interest,
   like Banking, gets an RAA, a single ACL could be used. A global
   wildcard would represent the general policy to be used.  Policy
   selection would be from most specific to most general.

   The value of K used in the HIP R1 packet can also vary by policy.  K
   should never be greater than 20, but for trusted partners it could be
   as low as 0.

   Responders would need a similar ACL, representing which hosts they
   accept HIP exchanges, and the preferred transform and local
   lifetimes.  Wildcarding SHOULD be support supported for this ACL
   also.
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13. Security Considerations

   HIP is designed to provide secure authentication of hosts and to
   provide a fast key exchange for IPsec ESP.  HIP also attempts to
   limit the exposure of the host to various denial-of-service and man-
   in-the-middle attacks.  In so doing, HIP itself is subject to its own
   DoS and MitM attacks that potentially could be more damaging to a
   host's ability to conduct business as usual.

   HIP enabled ESP is IP address independent.  This might seem to make
   it easier for an attacker, but ESP with replay protection is already
   as well protected as possible, and the removal of the IP address as a
   check should not increase the exposure of ESP to DoS attacks.
   Furthermore, this is in line with the forthcoming revision of ESP.

   Denial-of-service attacks take advantage of the cost of start of
   state for a protocol on the responder compared to the 'cheapness' on
   the initiator.  HIP makes no attempt to increase the cost of the
   start of state on the initiator, but makes an effort to reduce the
   cost to the responder.  This is done by having the responder start
   the 3-way cookie exchange instead of the initiator, making the HIP
   protocol 4 packets long.  In doing this, packet 2 becomes a 'stock'
   packet that the responder MAY use many times.  The duration of use is
   a paranoia versus throughput concern.  Using the same Diffie- Hellman
   values and random puzzle I has some risk.  This risk needs to be
   balanced against a potential storm of HIP I1 packets.

   This shifting of the start of state cost to the initiator in creating
   the I2 HIP packet, presents another DoS attack.  The attacker spoofs
   the I1 HIP packet and the responder sends out the R1 HIP packet.
   This could conceivably tie up the 'initiator' with evaluating the R1
   HIP packet, and creating the I2 HIP packet.  The defense against this
   attack is to simply ignore any R1 packet where a corresponding I1 or
   ESP data was not sent.

   A second form of DoS attack arrives in the I2 HIP packet. Once the
   attacking initiator has solved the cookie challenge, it can send
   packets with spoofed IP source addresses with either invalid
   encrypted HIP payload component or a bad HIP SIG.  This would take
   resources in the responder's part to reach the point to discover that
   the I2 packet cannot be completely processed. The defense against
   this attack is after N bad I2 packets, the responder would discard
   any I2s that contain the given Initiator HIT.  Thus will shut down
   the attack.  The attacker would have to request another R1 and use
   that to launch a new attack.  The responder could up the value of K
   while under attack.  On the downside, valid I2s might get dropped
   too.
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   A third form of DoS attack is emulating the restart of state after a
   reboot of one of the partners.  To protect against such an attack, a
   system Birthday is included in the R1 and I2 packets to prove loss of
   state to a peer.  The inclusion of the Birthday creates a very
   deterministic process for state restart.  Any other action is a DoS
   attack.

   A fourth form of DoS attack is emulating the end of state.  HIP has
   no end of state packet.  It relies on a local policy timer to end
   state.

   Man-in-the-middle attacks are difficult to defend against, without
   third-party authentication.  A skillful MitM could easily handle all
   parts of HIP; but HIP indirectly provides the following protection
   from a MitM attack.  If the responder's HI is retrieved from a signed
   DNS zone, a certificate, or through some other secure means, the
   initiator can use this to validate the R1 HIP packet.

   Likewise, if the initiator's HI is in a secure DNS zone, a trusted
   certificate, or otherwise securely available, the responder can
   retrieve it after it gets the I2 HIP packet and validate that.
   However, since an initiator may choose to use an anonymous HI, it
   knowingly risks a MitM attack.  The responder may choose not to
   accept a HIP exchange with an anonymous initiator.

   New SPIs and rekeying provide another opportunity for an attacker.
   Replay protection is included to prevent a system from accepting an
   old new SPI packet.  There is still the opening for an attacker to
   produce a packet with exactly the right Sequence Number and old SPI
   with a malformed signature, consuming considerable computing
   resources.  All implementations must design to mitigate this attack.
   If ESP protected datagrams are still being received, there is an
   obvious attack.  If the peer is quiet, it is easier for an attacker
   to launch this sort of attack, but again, the system should be able
   to recognize a regular influx of malformed signatures and take some
   action.

   There is a similar attack centered on the readdress packet.  Similar
   defense mechanisms are appropriate here.

   Since not all hosts will ever support HIP, ICMP 'Destination Protocol
   Unreachable' are to be expected and present a DoS attack. Against an
   Initiator, the attack would look like the responder does not support
   HIP, but shortly after receiving the ICMP message, the initiator
   would receive a valid R1 HIP packet.  Thus to protect against this
   attack, an initiator should not react to an ICMP message until a
   reasonable delta time to get the real responder's R1 HIP packet.  A
   similar attack against the responder is more involved.  First an ICMP
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   message is expected if the I1 was a DoS attack and the real owner of
   the spoofed IP address does not support HIP.  The responder SHOULD
   NOT act on this ICMP message to remove the minimal state from the R1
   HIP packet (if it has one), but wait for either a valid I2 HIP packet
   or the natural timeout of the R1 HIP packet.  This is to allow for a
   sophisticated attacker that is trying to break up the HIP exchange.
   Likewise, the initiator should ignore any ICMP message while waiting
   for an R2 HIP packet, deleting state only after a natural timeout.
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14. IANA Considerations

   IANA has assigned IP Protocol number TBD to HIP.
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Appendix A. Backwards compatibility API issues

   Tom Henderson floated again the thought that that the LSI could be
   completely local and does not need to be exchanged. Applications
   continue to use IP addresses in socket calls, and kernel does
   whatever NATting (including application NATting) is required.  It was
   pointed out that this approach was going to be prone to some kinds of
   data flows escaping the HIP protection, unless the local housekeeping
   in an implementation was especially good.  Example: FTP opens control
   connection to IP address.  One or both parties move.  FTP later opens
   data connection to the old IP address.  Kernel must identify that the
   application really means to connect to the host that was previously
   at that IP address -- but obviously if the old address is reused by
   another host, this becomes difficult.

   Related to this, the discussion also opened up the question of DNS
   resolution.  Should the HIT/LSI be returned to applications as a
   (spoofed) address in the resolution process, allowing apps to use the
   socket API with HIT or LSI values instead of an IP address?  While
   this seems to be the original intention of LSIs, there are a couple
   of difficulties especially in the IPv4 case:

      How does kernel know whether value being passed in a socket call
      is an IP address or an LSI?  The fact that a name resolver library
      gave an application an LSI is no guarantee that the application
      will use that information in its socket call.  It may also have
      cached some IP address from before or received an IP address as
      side information. This difficulty is now relieved as the LSIs are
      constrained to the well-known private subnet space.

      Handing an LSI may confuse legacy applications that assume that
      what is being passed to them is an IP address. Good examples of
      this are diagnostic tools such as dig and ping.  The conclusion is
      that HIP should most not be used with diagnostic applications.

      What does kernel do with an LSI that it cannot map to an address
      based on information that it has locally cached?

   It seems that some modification to the resolver library (to
   explicitly convey HIP information rather than spoofing IP addresses),
   as well as modifications to socket API to explicitly let the kernel
   know that the application is HIP aware, are the cleanest long-term
   solution, but what to do about legacy applications?? -- still
   partially an open issue.  The HUT team has been considering these
   problems.
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Appendix B. Probabilities of HIT collisions

   The birthday paradox sets a bound for the expectation of collisions.
   It is based on the square root of the number of values.  A 64-bit
   hash, then, would put the chances of a collision at 50-50 with 2^32
   hosts (4 billion).  A 1% chance of collision would occur in a
   population of 640M and a .001% collision chance in a 20M population.
   A 128 bit hash will have the same .001% collision chance in a 9x10^16
   population.
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Appendix C. Probabilities in the cookie calculation

   A question: Is it guaranteed that the Initiator is able to solve the
   puzzle in this way when the K value is large?

   Answer: No, it is not guaranteed.  But it is not guaranteed even in
   the old mechanism, since the Initiator may start far away from J and
   arrive to J after far too many steps.  If we wanted to make sure that
   the Initiator finds a value, we would need to give some hint of a
   suitable J, and I don't think we want to do that.

   In general, if we model the hash function with a random function, the
   probability that one iteration gives are result with K zero bits is
   2^-K.  Thus, the probablity that one iteration does *not* give K zero
   bits is (1 - 2^-K).  Consequently, the probablity that 2^K iterations
   does not give K zero bits is (1 - 2^-K)^(2^K).

   Since my calculus starts to be rusty, I made a small experiment and
   found out that

     lim     (1 - 2^-k)^(2^k)     = 0.36788
     k->inf

     lim     (1 - 2^-k)^(2^(k+1)) = 0.13534
     k->inf

     lim     (1 - 2^-k)^(2^(k+2)) = 0.01832
     k->inf

     lim     (1 - 2^-k)^(2^(k+3)) = 0.000335
     k->inf

   Thus, if hash functions were random functions, we would need about
   2^(K+3) iterations to make sure that the probability of a failure is
   less than 1% (actually less than 0.04%).  Now, since my perhaps
   flawed understanding of hash functions is that they are "flatter"
   than random functions, 2^(K+3) is probably an overkill.  OTOH, the
   currently suggested 2^K is clearly too little.  The draft has been
   changed to read 2^(K+2).
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Appendix D. Using responder cookies

   As mentioned in Section 4.1.1, the responder may delay state creation
   and still reject most spoofed I2s by using a number of pre-calculated
   R1s and a local selection function.  This appendix defines one
   possible implementation in detail.  The purpose of this appendix is
   to give the implementators an idea on how to implement the mechanism.
   The method described in this appendix SHOULD NOT be used in any real
   implementation.  If the implementation is based on this appendix, it
   SHOULD contain some local modification that makes an attacker's task
   harder.

   The basic idea is to create a cheap, varying local mapping function
   f:

      f( IP-I, IP-R, HIT-I, HIT-R ) -> cookie-index

    That is, given the Initiators and Responders IP addresses and HITs,
   the function returns an index to a cookie.  When processing an I1,
   the cookie is embedded in an pre-computed R1, and the Responder
   simply sends that particular R1 to the Initiator.  When processing an
   I2, the cookie may still be embedded in the R1, or the R1 may be
   depracated (and replaced with a new one), but the cookie is still
   there.  If the received cookie does not match with the R1 or saved
   cookie, the I2 is simply dropped.  That prevents the Initiator from
   generating spoofed I2s with a probability that depends on the number
   of pre-computed R1s.

   As a concrete example, let us assume that the Responder has an array
   of R1s.  Each slot in the array contains a timestamp, an R1, and an
   old cookie that was sent in the previous R1 that occupied that
   particular slot.  The Responder replaces one R1 in the array every
   few minutes, thereby replacing all the R1s gradually.

   To create a varying mapping function, the Responder generates a
   random number every few minutes.  The octets in the IP addresses and
   HITs are XORed together, and finally the result is XORed with the
   random number.  Using pseudo-code, the function looks like the
   following.

   Pre-computation:
       r1 := random number

   Index computation:
       index := r1    XOR hit_r[0] XOR hit_r[1] XOR ... XOR hit_r[15]
       index := index XOR hit_i[0] XOR hit_i[1] XOR ... XOR hit_i[15]
       index := index XOR  ip_r[0] XOR  ip_r[1] XOR ... XOR  ip_r[15]
       index := index XOR  ip_i[0] XOR  ip_i[1] XOR ... XOR  ip_i[15]
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    The index gives the slot used in the array.

   It is possible that an Initator receives an I1, and while it is
   computing I2, the Responder deprecates an R1 and/or chooses a new
   random number for the mapping function.  Therefore the Responder must
   remember the cookies used in deprecated R1s and the previous random
   number.

   To check an received I2, the Responder can use a simple algorithm,
   expressed in pseudo-code as follows.

     If I2.hit_r does not match my_hits, drop the packet.

     index := compute_index(current_random_number, I2)
     If current_cookie[index]  == I2.cookie, go to cookie check.
     If previous_cookie[index] == I2.cookie, go to cookie check.

     index := compute_index(previous_random_number, I2)
     If current_cookie[index]  == I2.cookie, go to cookie check.
     If previous_cookie[index] == I2.cookie, go to cookie check.

     Drop packet.

   cookie_check:
     V := Ltrunc( SHA-1( I2.I, I2.hit_i, I2.hit_r, I2.J ), K )
     if V != 0, drop the packet.

   Whenever the Responder receives an I2 that fails on the index check,
   it can simply drop the packet on the floor and forget about it.  New
   I2s with the same or other spoofed parameters will get dropped with a
   reasonable probability and minimal effort.

   If a Responder receives an I2 that passes the index check but fails
   on the puzzle check, it should create a state indicating this.  After
   two or three failures the Responder should cease checking the puzzle
   but drop the packets directly.  This saves the Responder from the
   SHA-1 calculations.  Such block should not last long, however, or
   there would be a danger that a legitimite Initiator could be blocked
   from getting connections.

   A key for the success of the defined scheme is that the mapping
   function must be considerably cheaper than computing SHA-1.  It also
   must detect any changes in the IP addresses, and preferably most
   changes in the HITs.  Checking the HITs is not that essential,
   though, since HITs are included in the cookie computation, too.

   The effectivity of the method can be varied by varying the size of
   the array containing pre-computed R1s.  If the array is large, the
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   probability that an I2 with a spoofed IP address or HIT happens to
   map to the same slot is fairly slow.  However, a large array means
   that each R1 has a fairly long life time, thereby allowing an
   attacker to utilize one solved puzzle for a longer time.
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