
Network Working Group R. Moskowitz
Internet-Draft ICSAlabs, a Division of TruSecure
Expires: December 18, 2003 Corporation
 P. Nikander
 P. Jokela
 Ericsson Research Nomadic Lab
 June 19, 2003

Host Identity Protocol
draft-moskowitz-hip-07

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 18, 2003.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This memo specifies the details of the Host Identity Protocol (HIP).
 The overall description of protocol and the underlying architectural
 thinking is available in the separate HIP architecture specification.
 The Host Identity Protocol is used to establish a rapid
 authentication between two hosts and to provide continuity of
 communications between those hosts independent of the networking
 layer.

 The various forms of the Host Identity (HI), Host Identity Tag (HIT),

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Moskowitz, et al. Expires December 18, 2003 [Page 1]

Internet-Draft Host Identity Protocol June 2003

 and Local Scope Identifier (LSI), are covered in detail. It is
 described how they are used to support authentication and the
 establishment of keying material, which is then used by IPsec
 Encapsulated Security payload (ESP) to establish a two-way secured
 communication channel between the hosts. The basic state machine for
 HIP provides a HIP compliant host with the resiliency to avoid many
 denial-of-service (DoS) attacks. The basic HIP exchange for two
 public hosts shows the actual packet flow. Other HIP exchanges,
 including those that work across NATs are covered elsewhere.

Table of Contents

1. Introduction . 4
1.1 A new name space and identifiers 4
1.2 The HIP protocol . 4
2. Conventions used in this document 6
3. Host Identifiers . 7
3.1 Host Identity Tag (HIT) 7
3.1.1 Generating a HIT from a HI 7
3.2 Local Scope Identity (LSI) 8
3.3 Security Parameter Index (SPI) 9
3.4 Difference between an LSI and the SPI 10
3.5 TCP and UDP pseudoheader computation 10
4. The Host Identity Protocol 11
4.1 Base HIP exchange . 11
4.1.1 HIP Cookie Mechanism 11
4.1.2 Authenticated Diffie-Hellman protocol 14
4.1.3 HIP Birthday . 14
4.2 Sending data on HIP packets 14
4.3 Distributing certificates 14

 5. The Host Identity Protocol packet flow and state machine . 16
5.1 HIP Scenarios . 16
5.2 Refusing a HIP exchange 16
5.3 Reboot and SA timeout restart of HIP 17
5.4 HIP State Machine . 18
5.4.1 HIP States . 18
5.4.2 HIP State Processes 18
5.4.3 Simplified HIP State Diagram 19
6. Packet formats . 21
6.1 Payload format . 21
6.1.1 HIP Controls . 22
6.1.2 CRC . 22
6.2 HIP parameters . 23
6.3 TLV format . 24
6.3.1 SPI_LSI . 24
6.3.2 BIRTHDAY_COOKIE . 25
6.3.3 DIFFIE_HELLMAN . 25
6.3.4 HIP_TRANSFORM . 26

Moskowitz, et al. Expires December 18, 2003 [Page 2]

Internet-Draft Host Identity Protocol June 2003

6.3.5 ESP_TRANSFORM . 27
6.3.6 HOST_ID . 28
6.3.7 HOST_ID_FQDN . 28
6.3.8 CERT . 29
6.3.9 HIP_SIGNATURE . 30
6.3.10 HIP_SIGNATURE_2 . 31
6.3.11 NES_INFO . 31
6.3.12 ENCRYPTED . 32
7. HIP Packets . 33
7.1 I1 - the HIP Initiator packet 33
7.2 R1 - the HIP Responder packet 34
7.3 I2 - the HIP Second Initiator packet 35
7.4 R2 - the HIP Second Responder packet 36
7.5 NES - the HIP New SPI Packet 36
7.6 BOS - the HIP Bootstrap Packet 37
7.7 CER - the HIP Certificate Packet 38
7.8 PAYLOAD - the HIP Payload Packet 38
8. Packet processing . 40
8.1 R1 Management . 40
8.2 Processing NES packets 40
9. HIP KEYMAT . 42
10. HIP Fragmentation Support 44
11. ESP with HIP . 45
11.1 Security Association Management 45
11.2 Security Parameters Index (SPI) 45
11.3 Supported Transforms 45
11.4 Sequence Number . 46
12. HIP Policies . 47
13. Security Considerations 48
14. IANA Considerations 51
15. Acknowledgments . 52

 References . 53
 Authors' Addresses . 54

A. Backwards compatibility API issues 56
B. Probabilities of HIT collisions 57
C. Probabilities in the cookie calculation 58
D. Using responder cookies 59

 Intellectual Property and Copyright Statements 62

Moskowitz, et al. Expires December 18, 2003 [Page 3]

Internet-Draft Host Identity Protocol June 2003

1. Introduction

 The Host Identity Protocol (HIP) provides a rapid exchange of Host
 Identities (HI) between two hosts. The exchange also establishes a
 pair IPsec Security Associations (SA), to be used with IPsec
 Encapsulated Security Payload (ESP) [5]. The HIP protocol is
 designed to be resistant to Denial-of-Service (DoS) and
 Man-in-the-middle (MitM) attacks, and when used to enable ESP,
 provides DoS and MitM protection to upper layer protocols, such as
 TCP and UDP.

1.1 A new name space and identifiers

 The Host Identity Protocol introduces a new namespace, the Host
 Identity. The affects of this change are explained in the companion
 document, the HIP architecture [18] specification.

 There are three representations of the Host Identity, the full Host
 Identifier (HI), the Host Identity Tag (HIT), and the Local Scope
 Identity (LSI). Three representations are used, as each meets a
 different design goal of HIP, and none of them can be removed and
 meet these goals. The HI represents directly the Identity, a public
 key. Since there are different public key algorithms that can be
 used with different key lengths, the HI is not good for using as the
 HIP packet identifier, or as a index into the various operational
 tables needed to support HIP.

 A hash of the HI, the Host Identity Tag (HIT), thus becomes the
 operational representation. It is 128 bits long. It is used in the
 HIP payloads, and it is intended be used to index the corresponding
 state in the end hosts.

 In many environments, 128 bits is still considered large. For
 example, currently used IPv4 based applications are constrained with
 32 bit API fields. Thus, the third representation, the 32 bit LSI,
 is needed. The LSI provides a compression of the HIT with only a
 local scope so that it can be carried efficiently in any application
 level packet and used in API calls.

1.2 The HIP protocol

 The base HIP exchange consists of four packets. The four-packet
 design helps to make HIP DoS resilient. The protocol exchanges
 Diffie-Hellman keys in the 2nd and 3rd packets, and authenticates the
 parties in the 3rd and 4th packets. Additionally, it starts the
 cookie exchange in the 2nd packet, completing it with the 3rd packet.

 The exchange uses the Diffie-Hellman exchange to hide the Host

Moskowitz, et al. Expires December 18, 2003 [Page 4]

Internet-Draft Host Identity Protocol June 2003

 Identity of the Initiator in packet 3. The Responder's Host Identity
 is not protected. It should be noted, however, that both the
 Initiator and the Responder HITs are transported as such (in
 cleartext) in the packets, allowing an eavesdropper with a priori
 knowledge about the parties to verify their identies.

 Data packets start after the 4th packet. The 3rd and 4th HIP packets
 may carry a data payload in the future. However, the details of this
 are to be defined later as more implementation experience is gained.

 Finally, HIP is designed as an end-to-end authentication and key
 establishment protocol. It lacks much of the fine-grain policy
 control found in IKE that allows IKE to support complex gateway
 policies. Thus, HIP is not a complete replacement for IKE.

Moskowitz, et al. Expires December 18, 2003 [Page 5]

Internet-Draft Host Identity Protocol June 2003

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC2119 [2].

Moskowitz, et al. Expires December 18, 2003 [Page 6]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft Host Identity Protocol June 2003

3. Host Identifiers

 The structure of the Host Identifier is the public key of an
 asymmetric key pair. Correspondingly, the host itself is entity that
 holds the private key from the key pair. See the HIP architecture
 specification [18] for more details about the difference between an
 identity and the corresponding identifier.

 DSA is the MUST implement algorithm for all HIP implementations,
 other algorithms MAY be supported. DSA was chosen as the default
 algorithm due to its small signature size.

 A Host Identity Tag (HIT) is used in protocols to represent the Host
 Identity. Another representation of the Host Identity, the Local
 Scope Identity (LSI), can also be used in protocols and APIs. LSI's
 advantage over HIT is its size; its disadvantage is its local scope.

3.1 Host Identity Tag (HIT)

 The Host Identity Tag is a 128 bit entity. There are two advantages
 of using a hash over the actual Identity in protocols. Firstly, its
 fix length makes for easier protocol coding and also better manages
 the packet size cost of this technology. Secondly, it presents a
 consistent format to the protocol whatever underlying identity
 technology is used.

 There are two types of HITs. HITs of the first type, called *type 1
 HIT*, consist of an initial 2 bit prefix of 01, followed by 126 bits
 of the SHA-1 hash of the public key. HITs of the second type consist
 of a Host Assigning Authority (HAA) field, and only the last 64 bits
 come from a SHA-1 hash of the Host Identity. This latter format for
 HIT is recommended for 'well known' systems. It is possible to
 support a resolution mechanism for these names in hierarchical
 directories, like the DNS. Another use of HAA is in policy controls,
 see Section 12.

 This document fully specifies only type 1 HITs. HITs that consists
 of the HAA field and the hash are specified in [19].

 Any conforming implementation MUST be able to deal with HITs that are
 not type 1 ones. However, in that case the implementation must
 explicitly learn and record the binding between the Host Identifier
 and the HIT, and it may not be able form such HITs from Host
 Identifiers.

3.1.1 Generating a HIT from a HI

 The 126 or 64 hash bits in a HIT MUST be generated by taking the

Moskowitz, et al. Expires December 18, 2003 [Page 7]

Internet-Draft Host Identity Protocol June 2003

 least significant 126 or 64 bits of the SHA-1 [17] hash of the Host
 Identifier as it is represented in the Host Identity field in a HIP
 payload packet.

 For Identities that are DSA public keys, the HIT is formed as
 follows.

 1. The DSA public key is encoded as defined in RFC2536 [12] Section
2, taking the fields T, Q, P, G, and Y, concatenated. Thus, the

 length of the data to be hashed is 1 + 20 + 3 * 64 + 3 * 8 * T
 octets long, where T is the size parameter as defined in RFC2536
 [12]. The size parameter T, affecting the field lengths, MUST be
 selected as the minimum value that is long enough to accomodate
 P, G, and Y. The fields MUST be encoded in network byte order,
 as defined in RFC2536 [12].

 2. A SHA-1 hash [17] is calculated over the encoded key.

 3. The least signification 126 or 64 bits of the hash result are
 used to create the HIT, as defined above.

 The following pseudo-code illustrates the process. The symbol :=
 denotes assignment; the symbol += denotes appending. The
 pseudo-function encode_in_network_byte_order takes two parameters, an
 integer (bignum) and length, and returns the integer encoded into a
 byte string of the given length.

 buffer := encode_in_network_byte_order (DSA.T , 1)
 buffer += encode_in_network_byte_order (DSA.Q , 20)
 buffer += encode_in_network_byte_order (DSA.P , 64 + 8 * T)
 buffer += encode_in_network_byte_order (DSA.G , 64 + 8 * T)
 buffer += encode_in_network_byte_order (DSA.Y , 64 + 8 * T)

 digest := SHA-1 (buffer)

 hit_126 := concatenate (01 , low_order_bits (digest, 126))
 hit_haa := concatenate (10 , HAA, low_order_bits (digest, 64))

3.2 Local Scope Identity (LSI)

 LSIs are 32-bit localized representations of a Host Identity. The
 purpose of an LSI is to facilitate using Host Identities in existing
 IPv4 based protocols and APIs. The owner of the Host Identity does
 not set its own LSI; each host selects its partner's 32 bit
 representation for a Host Identity.

 A *local LSI* is an LSI that a remote host has assigned to a host.

https://datatracker.ietf.org/doc/html/rfc2536
https://datatracker.ietf.org/doc/html/rfc2536
https://datatracker.ietf.org/doc/html/rfc2536

Moskowitz, et al. Expires December 18, 2003 [Page 8]

Internet-Draft Host Identity Protocol June 2003

 In some implementations, local LSIs may be assigned to some interface
 as an IP address. A *remote LSI* is an LSI that the host has
 assigned to represent some remote host (and that the remote host has
 accepted).

 The LSIs MUST be allocated from the 1.0.0.0/8 subnet. That makes it
 easier to differentiate between LSIs and IPv4 addresses at the API
 level. By default, the low order 24 bits SHOULD be equal with the
 low order 24 bits of the corresponding HIT. That allows easier
 mapping between LSIs and HITs, and makes the LSI assigned to a host
 to be a fixed one.

 It is possible that the HITs of two remote hosts have equal low order
 24 bits. Since HITs are basically random, if a host is communicating
 with 1000 other hosts, the risk of such collision is roughly 0.006%,
 and for a host communicating with 10000 other hosts, the risk is
 about 0.06%. However, given a population of 100000 hosts, each
 communicating with 1000 other hosts, the probability that there was
 no collisions at all is only about 2%. In other words, even though
 collisions are fairly rare events for any given host, they will
 happen, and the hosts MUST be able to cope with them.

 If a host is forming a remote LSI for a HIT whose low order 24 bits
 are equal with another already existing remote LSI, the host MUST
 select another LSI to represent that host. It may also be hard for a
 host to use a remote LSI that is equal to its own local LSI. Thus,
 if the low order 24 bits of a remote HIT are equal to the low order
 24 bits of a local LSI, the host MAY select a different LSI to
 represent the remote host. In either case, the host SHOULD assing
 the low order 24 bits of the LSI randomly. All hosts MUST be
 prepared to handle local LSIs whose low order 24 bits do not match
 with any of their own HITs.

 If the LSI assigned by a peer to represent a host is unacceptable,
 the host MAY terminate the HIP four-way handshake and start anew.

3.3 Security Parameter Index (SPI)

 SPIs are used in ESP to find the right security association for
 received packets. The ESP SPIs have added significance when used
 with HIP; they are a compressed representation of the HIT in every
 packet. Thus they MAY be used by intermediary systems in providing
 services like address mapping. Note that since the SPI has
 significance at the receiver, only the < DST, SPI >, where DST is a
 destination IP address, uniquely identifies the receiver HIT at every
 given point of time. The same SPI value may be used by several
 hosts. The same < DST, SPI > may denote different hosts at different
 points of time, depending on which host is currently reachable at the

Moskowitz, et al. Expires December 18, 2003 [Page 9]

Internet-Draft Host Identity Protocol June 2003

 DST.

 Each host selects for itself the SPI it wants to see in packets
 received from its peer. This allows it to select different SPIs for
 different peers. The SPI selection SHOULD be random. A different
 SPI SHOULD be used for each HIP exchange with a particular host; this
 is to avoid a replay attack. Additionally, when a host rekeys, the
 SPI MUST change. Furthermore, if a host changes over to use a
 different IP address, it MAY change the SPI used.

 One method for SPI creation that meets these criteria, would be to
 concatenate the HIT with a 32 bit random or sequential number, hash
 this (using SHA1), and then use the high order 32 bits as the SPI.

 The selected SPI is communicated to the peer in the third (I2) and
 fourth (R2) packets of the base HIP exchange. Changes in SPI are
 signalled with NES packets.

3.4 Difference between an LSI and the SPI

 There is a subtle difference between an LSI and a SPI.

 The LSI is relatively longed lived. A system selects the LSI it
 locally uses to represent its peer, it SHOULD reuse a previous LSI
 for a HIT during a HIP exchange. This COULD be important in a
 timeout recovery situation. The LSI ONLY appears in the 3rd and 4th
 HIP packets (each system providing the other with its LSI). The LSI
 is used anywhere in system processes where IP addresses have
 traditionally have been used, like in TCBs and FTP port commands.

 The SPI is short-lived. It changes with each HIP exchange and with a
 HIP rekey and/or movement. A system notifies its peer of the SPI to
 use in ESP packets sent to it. Since the SPI is in all but the first
 two HIP packets, it can be used in intermediary systems to assist in
 address remapping.

3.5 TCP and UDP pseudoheader computation

 When computing TCP and UDP checksums on sockets bound to HITs or
 LSIs, the IPv6 pseudo-header format [10] is used. Additionally, the
 HITs MUST be used in the place of the IPv6 addresses in the IPv6
 pseudoheader. Note that the pseudo-header for actual HIP payloads is
 computed differently; see Section 6.1.2.

Moskowitz, et al. Expires December 18, 2003 [Page 10]

Internet-Draft Host Identity Protocol June 2003

4. The Host Identity Protocol

 The Host Identity Protocol is IP protocol TBD. The HIP payload could
 be carried in every datagram. However, since HIP datagrams are
 relatively large (at least 40 bytes), and ESP already has all of the
 functionality to maintain and protect state, the HIP payload is
 'compressed' into an ESP payload after the HIP exchange. Thus in
 practice, HIP packets only occur in datagrams to establish or change
 HIP state.

4.1 Base HIP exchange

 The base HIP exchange serves to manage the establishment of state
 between an Initiator and a Responder. The Initiator first sends a
 trigger packet, I1, to the responder. The second packet, R1, starts
 the actual exchange. In contains a puzzle, a cryptographic challenge
 that the Initiator must solve before continuing the exchange. In its
 reply, I2, the Initiator must display the solution. Without a
 solution the I2 message is simply discarded.

 The last three packets of the exchange, R1, I2, and R2, constitute a
 standard authenticated Diffie-Hellman key exchange. The base
 exchange is illustrated below.

 Initiator Responder

 I1: trigger exchange
 -------------------------->
 select pre-computed R1
 R1: puzzle, D-H, sig
 <-------------------------
 check sig remain stateless
 solve puzzle
 I2: solution, D-H, sig
 -------------------------->
 compute D-H check cookie
 check puzzle
 check sig
 R2: sig
 <--------------------------
 check sig compute D-H

4.1.1 HIP Cookie Mechanism

 The purpose of the HIP cookie mechanism is to protect the Responder
 from a number of denial-of-service threats. It allows the Responder

Moskowitz, et al. Expires December 18, 2003 [Page 11]

Internet-Draft Host Identity Protocol June 2003

 to delay state creation until receiving I2. Furthermore, the puzzle
 included in the cookie allows the Responder to use a fairly cheap
 calculation to check that the Initiator is "sincere" in the sense
 that it has churned CPU cycles in solving the puzzle.

 The Cookie mechanism has been explicitly designed to give space for
 various implementation options. It allows a responder implementation
 to completely delay session specific state creation until a valid I2
 is received. In such a case a validly formatted I2 can be rejected
 earliest only once the responder has checked its validity by
 computing one hash function. On the other hand, the design also
 allows a responder implementation to keep state about received I1s,
 and match the received I2s against the state, thereby allowing the
 implementation to avoid the computational cost of the hash function.
 The drawback of this latter approach is the requirement of creating
 state. Finally, it also allows an implementation to use any
 combination of the space-saving and computation-saving mechanism.

 One possible way how a Responder can remain stateless but drop most
 spoofed I2s is to base the selection of the cookie on some function
 over the Initiator's identity. The idea is that the Responder has a
 (perhaps varying) number of pre-calculated R1 packets, and it selects
 one of these based on the information carried in I1. When the
 Responder then later receives I2, it checks that the cookie in the I2
 matches with the cookie send in the R1, thereby making it impractical
 for the attacker to first exchange one I1/R1, and then generate a
 large number of spoofed I2s that seemingly come from different IP
 addresses or use different HITs. The method does not protect from an
 attacker that uses fixed IP addresses and HITs, though. Against such
 an attacker it is probably best to create a piece of local state, and
 remember that the puzzle check has previously failed. See Appendix D
 for one possible implementation. Note, however, that the
 implementations MUST NOT use the exact implementation given in the
 appendix, and SHOULD include sufficient randomness to the algorithm
 so that algorithm complexity attacks become impossible [21].

 The Responder can set the difficulty for Initiator, based on its
 concern of trust of the Initiator. The Responder SHOULD use
 heuristics to determine when it is under a denial-of-service attack,
 and set the difficulty value K appropriately.

 The Responder starts the cookie exchange when it receives an I1. The
 Responder supplies a random number I, and requires the Initiator to
 find a number J. To select a proper J, the Initator must create the
 concatenation of I, the HITs of the parties, and J, and take a SHA-1
 hash over this concatenation. The lowest order K bits of the result
 MUST be zeros. To accomplish this, the Initiator will have to
 generate a number of Js until one produces the hash target. The

Moskowitz, et al. Expires December 18, 2003 [Page 12]

Internet-Draft Host Identity Protocol June 2003

 Initiator SHOULD give up after trying 2^(K+2) times, and start over
 the exchange. (See Appendix C.) The Responder needs to re-create
 the contactenation of I, the HITs, and the provided J, and compute
 the hash once to prove that the Initiator did its assigned task.

 To prevent pre-computation attacks, the Responder MUST select I in
 such a way that the Inititiator cannot guess it. Furthermore, the
 construction MUST allow the Responder to verify that the value were
 indeed selected by it and not by the Initiator. See Appendix D for
 an example on how to implement this.

 It is RECOMMENDED that the Responder generates a new cookie and a new
 R1 once every few minutes. Furthermore, it is RECOMMENDED that the
 responder remembers an old cookie at least 60 seconds after it has
 been deprecated. These time values allow a slower Initiator to solve
 the cookie puzzle while limiting the usability that an old, solved
 cookie has to an attacker.

 In R1, the values I and K are sent in network byte order. Similarily,
 in I2 the values I and J are sent in network byte order. The SHA-1
 hash is created by concatenating, in network byte order, the
 following data, in the following order:

 64-bit random value I, in network byte order, as appearing in R1
 and I2.

 128-bit Initiator HIT, in network byte order, as appearing in the
 HIP Payload in R1 and I2.

 128-bit Responder HIT, in network byte order, as appearing in the
 HIP Payload in R1 and I2.

 64-bit random value J, in network byte order, as appearing in I2.

 In order to be a valid response cookie, the K low-order bits of the
 resulting SHA-1 digest must be zero.

 Notes:

 The length of the data to be hashed is 48 bytes.

 All the data in the hash input MUST be in network byte order.

 The order of the Initiator and Responder HITs are different in the
 R1 and I2 packets, See Section 6.1. Care must be taken to copy the
 values in right order to the hash input.

Moskowitz, et al. Expires December 18, 2003 [Page 13]

Internet-Draft Host Identity Protocol June 2003

 Precomputation by the Responder Sets up the challenge difficulty K.

 Generates a random number I.
 Creates a signed R1 and caches it.

 Responder Sends I and K in a HIP Cookie in an R1.

 Saves I and K for a Delta time.

 Initiator Generates repeated attempts to solve the challenge until a
 matching J is found:

 Ltrunc(SHA-1(I | HIT-I | HIT-R | J), K) == 0
 Send I and J in HIP Cookie in I2.

 Responder Verify that the received I is a saved one.

 Match the Response with a K based on I.
 Compute V := Ltrunc(SHA-1(I | HIT-I | HIT-R | J), K)
 Reject if V != 0
 Accept if V == 0

4.1.2 Authenticated Diffie-Hellman protocol

4.1.3 HIP Birthday

 The Birthday is a reboot count used to manage state reestablishment
 when one peer rebooted or timed out its SA. The Birthday is
 increased every time the system boots. The Birthday also has to be
 increased in accordance with the system's SA timeout parameter. If
 the system has open SAs, it MUST increase its Birthday. This impacts
 a system's approach to precomputing R1 packets.

 Birthday SHOULD be a counter. It cannot be reset by the user and a
 system is unlikely to need a birthday larger than 2^64. Date-time in
 GMT can be used if a cross-boot counter is not possible, but it has a
 potential problem if the system time is set back by the user.

4.2 Sending data on HIP packets

 A future version of this document may define how to send ESP
 protected data on various HIP packets. However, currently the HIP
 header is a terminal header, and not followed by any other headers.

4.3 Distributing certificates

 Certificates MAY be distributed using the CERT packet. [XXX: This

Moskowitz, et al. Expires December 18, 2003 [Page 14]

Internet-Draft Host Identity Protocol June 2003

 section needs more text.].

Moskowitz, et al. Expires December 18, 2003 [Page 15]

Internet-Draft Host Identity Protocol June 2003

5. The Host Identity Protocol packet flow and state machine

 A typical HIP packet flow is shown below.

 I --> Directory: lookup of R
 I <-- Directory: return R's addresses, HI, and HIT
 I1 I --> R (Hi. Here is my I1, let's talk HIP)
 R1 I <-- R (OK. Here is my R1, handle this HIP cookie)
 I2 I --> R (Compute, compute, here is my counter I2)
 R2 I <-- R (OK. Let's finish HIP with my R2)
 I --> R (ESP protected data)
 I <-- R (ESP protected data)

5.1 HIP Scenarios

 The HIP protocol and state machine is designed to recover from one of
 the parties crashing and losing its state. The following scenarios
 describe the main use cases covered by the design.

 No prior state between the two systems.

 The system with data to send is the Initiator. The process
 follows standard 4 packet exchange, establishing the SAs.

 The system with data to send has no state with receiver, but
 receiver has a residual SA.

 Intiator acts as in no prior state, sending I1 and getting R1.
 When Receiver gets I2, the old SA is 'discovered' and deleted;
 the new SAs are established.

 System with data to send has an SA, but receiver does not.

 Receiver 'detects' when it receives an unknown SPI. Receiver
 sends an R1 with a NULL Initiator HIT. Sender gets the R1 with
 a later birthdate, discards old SA and continues exchange to
 establish new SAs for sending data.

 A peer determines that it needs to reset Sequence number or rekey.

 It sends NES. Receiver sends NES response, establishes new SAs
 for peers.

5.2 Refusing a HIP exchange

 A HIP aware host may choose not to accept a HIP exchange. If the

Moskowitz, et al. Expires December 18, 2003 [Page 16]

Internet-Draft Host Identity Protocol June 2003

 host's policy is to only be an initiator, it should begin its own HIP
 exchange. A host MAY choose to have such a policy since only the
 Initiator HI is protected in the exchange. There is a risk of a race
 condition if each host's policy is to only be an initiator, at which
 point the HIP exchange will fail.

 If the host's policy does not permit it to enter into a HIP exchange
 with the Initiator, it should send an ICMP Protocol Unreachable,
 Administratively Prohibited message. A more complex HIP packet is
 not used here as it actually opens up more potential DoS attacks than
 a simple ICMP message.

5.3 Reboot and SA timeout restart of HIP

 Simulating a loss of state is a potential DoS attack. The following
 process has been crafted to manage state recovery without presenting
 a DoS opportunity.

 If a host reboots or times out, it has lost its HIP state. If the
 system that lost state has a datagram to deliver to its peer, it
 simply restarts the HIP exchange. The peer sends an R1 HIP packet,
 but does not reset its state until it receives the I2 HIP packet.
 The I2 packet MUST have a Birthday greater than the current SA's
 Birthday. This is to handle DoS attacks that simulate a reboot of a
 peer. Note that either the original Initiator or the Responder could
 end up restarting the exchange, becoming the new Initiator. An
 example of the initial Responder needing to send a datagram but not
 having state occurs when the SAs timed out and a server on the
 Responder sends a keep-alive to the Initiator.

 If a system receives an ESP packet for an unknown SPI, the assumption
 is that it has lost the state and its peer did not. In this case,
 the system treats the ESP packet like an I1 packet and sends an R1
 packet. The Initiator HIT is typically NULL in the R1, since the
 system usually does not know the peer's HIT any more.

 The system receiving the R1 packet first checks to see if it has an
 established and recently used SA with the party sending the R1. If
 such an SA exists, the system checks the Birthday, if the Birthday is
 greater than the current SA's Birthday, it processes the R1 packet
 and resends the ESP packet (along with or) after the I2 packet. The
 peer system processes the I2 in the normal manner, and replies with
 an R2. This will reestablish state between the two peers. [XXX:
 Potential DoS attack if hundreds of peers 'loose' their state and all
 send R1 packets at once to a server. However, that would require the
 attacker having specific knowledge about the SAs used, and an ability
 to trigger R1s as the SAs are used.]

Moskowitz, et al. Expires December 18, 2003 [Page 17]

Internet-Draft Host Identity Protocol June 2003

5.4 HIP State Machine

 HIP has very little state. In the base HIP exchange, there is an
 Initiator and a Responder. Once the SAs are established, this
 distinction is lost. If the HIP state needs to be re-established,
 the controlling parameters are which peer still has state and which
 has a datagram to send to its peer. The following state machine
 attempts to capture these processes.

 The state machine is presented in a single system view, reresenting
 either an Initiator or a Responder. There is not a complete overlap
 of processing logic here and in the packet definitions. Both are
 needed to completely implement HIP.

5.4.1 HIP States

 E0 State machine start

 E1 Initiating HIP

 E2 Waiting to finish HIP

 E3 HIP SA established

 E-FAILED HIP SA establishment failed

5.4.2 HIP State Processes

 +---------+
 | E0 | Start state
 +---------+

 Datagram to send, send I1 and go to E1
 Receive I1, send R1 and stay at E0
 Receive I2, process
 if successful, send R2 and go to E3
 if fail, stay at E0
 Receive ESP for unknown SA, send R1 and stay at E0
 Receive ANYOTHER, drop and stay at E0

 +---------+
 | E1 | Initiating HIP
 +---------+

 Receive I1, send R1 and stay at E1
 Receive I2, process
 if successful, send R2 and go to E3

Moskowitz, et al. Expires December 18, 2003 [Page 18]

Internet-Draft Host Identity Protocol June 2003

 if fail, stay at E1
 Receive R1, process
 if successful, send I2 and go to E2
 if fail, go to E-FAILED
 Receive ANYOTHER, drop and stay at E1
 Timeout, increment timeout counter
 If counter is less than N1, send I1 and stay at E1
 If counter is greater than N1, go to E-FAILED

 +---------+
 | E2 | Waiting to finish HIP
 +---------+

 Receive I1, send R1 and stay at E2
 Receive I2, process
 if successful, send R2 and go to E3
 if fail, stay at E2
 Receive R2, process
 if successful, go to E3
 if fail, go to E-FAILED
 Receive ANYOTHER, drop and stay at E2
 Timeout, increment timeout counter
 If counter is less than N2, send I2 and stay at E2
 If counter is greater than N2, go to E-FAILED

 +---------+
 | E3 | HIP SA established
 +---------+

 Receive I1, send R1 and stay at E3
 Receive I2, process with Birthday check
 if successful, send R2, drop old SA and cycle at E3
 if fail, stay at E3
 Receive R1, process with SA and Birthday check
 if successful, send I2 with last datagram, drop old SA
 and go to E2
 if fail, stay at E3
 Receive R2, drop and stay at E3

 Receive ESP for SA, process and stay at E3
 Receive NES, process
 if successful, send NES and stay at E3
 if failed, stay at E3

5.4.3 Simplified HIP State Diagram

Moskowitz, et al. Expires December 18, 2003 [Page 19]

Internet-Draft Host Identity Protocol June 2003

 Receive packets cause a move to new state

 +---------+
 | E0 |>---+
 +---------+ |
 | ^ | |
 | | | Dgm to |
 +-+ | send |
 I1 | | (note: ESP- means ESP with unknown SPI)
 ESP- | |
 v |
 +---------+ |
 | E1 |>---|----------+
 +---------+ | |
 | | |
 | R1 | |
 | |I2 |I2
 v | |
 +---------+ | |
 | E2 |>---|----------|-----+
 | |<---|-----+ | |
 +---------+ | | | |
 | | | | |
 | R2 | |R1 | |I2
 | | | | |
 v | | | |
 +---------+<---+ | | |
 | |----------+ | |
 | E3 |<--------------+ |
 | |<--------------------+
 +---------+
 | ^
 | |
 +--+
 ESP,
 NES,
 I1,
 I2

Moskowitz, et al. Expires December 18, 2003 [Page 20]

Internet-Draft Host Identity Protocol June 2003

6. Packet formats

6.1 Payload format

 All HIP packets start with a fixed header.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Header | Payload Len | Type | VER. | RES. |
 +-+
 | Controls | CRC |
 +-+
 | Sender's Host Identity Tag (HIT) |
 | |
 | |
 | |
 +-+
 | Receiver's Host Identity Tag (HIT) |
 | |
 | |
 | |
 +-+
 | |
 / HIP Parameters /
 / /
 | |
 +-+

 The HIP header is logically an IPv6 destination option. However, this
 document does not describe processing for Next Header values other
 than decimal 59, IPPROTO_NONE, the IPV6 no next header value. Future
 documents MAY do so. However, implementations MUST ignore trailing
 data if a Next Header value is received that is not implemented.

 The Header Length field contains the length of the HIP Header and the
 length of HIP parameters in 8 bytes units, excluding the first 8
 bytes. Since all HIP headers MUST contain the sender's and
 receiver's HIT fields, the minimum value for this field is 4, and
 conversely, the maximum length of the HIP Parameters field is
 (255*8)-32 = 2008 bytes.

 The Packet Type indicates the HIP packet type. The individual packet
 types are defined in the relevant sections. If a HIP host receives a
 HIP packet that contains an unknown packet type, it MUST silently
 drop the packet.

Moskowitz, et al. Expires December 18, 2003 [Page 21]

Internet-Draft Host Identity Protocol June 2003

 The HIP Version is four bits. The current version is 1. The version
 number is expected to be incremented only if there are incompatible
 changes to the protocol. Most extensions can be handled by defining
 new packet types, new parameter types, or new controls.

 The following four bits are reserved for future use. They MUST be
 zero when send, and they SHOULD be ignored when handling a received
 packet.

 The HIT fields are always 128 bits (16 bytes) long.

6.1.1 HIP Controls

 The HIP control section transfers information about the structure of
 the packet and capabilities of the host.

 The following fields have been defined:

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | | | | | | | | | | | | |C|E|A|
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 C - Certificate One or more certificate packets (CER) follows this
 HIP packet (see Section 7.7).

 E - ESP sequence numbers The ESP transform requires 64-bit sequence
 numbers. See Section 11.4 for processing this control.

 A - Anonymous If this is set, the senders HI in this packet is
 anonymous, i.e., one not listed in a directory. Anonymous HIs
 SHOULD NOT be stored. This control is set in packets R1 and/or
 I2. The peer receiving an anonymous HI may choose to refuse it by
 silently dropping the exchange.

 The rest of the fields are reserved for future use and MUST be set to
 zero on sent packets and ignored on received packets.

6.1.2 CRC

 The checksum field is located at the same location within the header
 as the checksum field in UDP packets, enabling hardware assisted
 checksum generation and verification. Note that since the checksum
 covers the source and destination addresses in the IP header, it must
 be recomputed on HIP based NAT boxes.

 If IPv6 is used to carry the HIP packet, the pseudo-header [10]
 contains the source and destination IPv6 addresses, HIP packet length
 in the pseudo-header length field, a zero field, and the HIP protocol

Moskowitz, et al. Expires December 18, 2003 [Page 22]

Internet-Draft Host Identity Protocol June 2003

 number (TBD) in the Next Header field. The length field is in bytes
 and can be calculated from the HIP header length field: (HIP Header
 Length + 1) * 8.

 In case of using IPv4, the the IPv6 pseudo header format [10] is
 still used, but in the pseudo-header source and destination addresses
 are IPv4 addresses expressed in IPv4-in-IPv6 format [3].

6.2 HIP parameters

 The HIP Parameters are used to carry the public key associated with
 the sender's HIT, together with other related security information.
 The HIP Parameters consists of ordered parameters, encoded in TLV
 format.

 The following parameter types are currently defined.

 TLV Type Length Data

 SPI_LSI 16 Remote's SPI, Remote's LSI.

 BIRTHDAY_COOKIE 40 System Boot Counter plus
 3 64 bit fields:
 Random #I, K or random # J,
 Hash target

 DIFFIE_HELLMAN variable public key

 HIP_TRANSFORM variable HIP Encryption Transform

 ESP_TRANSFORM variable ESP Encryption and
 Authentication Transform

 HOST_ID variable Host Identity

 HOST_ID_FQDN variable Host Identity with Fully
 Qualified Domain Name

 CERT variable HI certificate

 NES_INFO XXX ESP sequence number,
 Old SPI, New SPI

 ENCRYPTED variable Encrypted part of I2 or CER
 packets

 HIP_SIGNATURE variable Signature of the packet

Moskowitz, et al. Expires December 18, 2003 [Page 23]

Internet-Draft Host Identity Protocol June 2003

 HIP_SIGNATURE2 variable Signature of the packet R1

6.3 TLV format

 The TLV encoded parameters are described in the following
 subsections. The type-field value also describes the order of these
 fields in the packet. The parameters MUST be included into the
 packet so that the types form an increasing order. If the order does
 not follow this rule, the packet is considered to be malformed and it
 MUST be discarded.

 All the TLV parameters have a length which is a multiple of 8 bytes.
 When needed, padding MUST be added to the end of the parameter so
 that the total length becomes a multiple of 8 bytes. This rule
 ensures proper alignment of data. If padding is added, the Length
 field MUST NOT include the padding.

 Consequently, the Length field indicates the length of the Contents
 field (in bytes). The total length of the TLV parameter (including
 Type, Length, Contents, and Padding) is related to the Length field
 according to the following formula:

 Total Length = 11 + Length - (Length + 3) % 8;

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | |
 / Contents /
 / +-+-+-+-+-+-+-+-+
 | | Padding |
 +-+

6.3.1 SPI_LSI

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Reserved |
 +-+
 | SPI |
 +-+

Moskowitz, et al. Expires December 18, 2003 [Page 24]

Internet-Draft Host Identity Protocol June 2003

 | LSI |
 +-+

 Type 1
 Length 12
 Reserved Zero when sent, ignored when received
 SPI Security Parameter Index
 LSI Local Scope Identifier

6.3.2 BIRTHDAY_COOKIE

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Reserved |
 +-+
 | Birthday, 8 bytes |
 | |
 +-+
 | Random # I, 8 bytes |
 | |
 +-+
 | Random # J or K, 8 bytes |
 | |
 +-+
 | Hash Target, 8 bytes |
 | |
 +-+

 Type 2 (in R1) or 3 (in I2)
 Length 36
 Reserved Zero when sent, ignored when received
 Birthday System boot counter
 Random # I random number
 K or K is the number of verified bits (in R1 packet)
 Random # J random number (in I2 packet)
 Hash Target calculated hash value

 Birthday, Random #I, K, Random #J, and Hash Target are in network
 byte order.

6.3.3 DIFFIE_HELLMAN

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Moskowitz, et al. Expires December 18, 2003 [Page 25]

Internet-Draft Host Identity Protocol June 2003

 +-+
 | Type | Length |
 +-+
 | Group ID | public value /
 +-+
 / | padding |
 +-+

 Type 6
 Length length in octets, excluding T and L fields and padding
 Group ID defines values for p and g
 public value

 The following Group IDs have been defined:

 Group Value
 Reserved 0
 OAKLEY well known group 1 1
 OAKLEY well known group 2 2
 1536-bit MODP group 3
 2048-bit MODP group 4
 3072-bit MODP group 5
 4096-bit MODP group 6
 6144-bit MODP group 7
 8192-bit MODP group 8

 MODP Diffie-Hellman groups are defined in [14]. OAKLEY groups are
 defined in [7]. The OAKLEY well known group 5 is the same as 1536-bit
 MODP group.

6.3.4 HIP_TRANSFORM

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Transform-ID #1 | Transform-ID #2 |
 +-+
 | Transform-ID #n | Padding |
 +-+

 Type 16
 Length length in octets, excluding T and L fields and padding
 Transform-ID Defines the HIP Transform to be used

 The following encryption algorithms are defined.

Moskowitz, et al. Expires December 18, 2003 [Page 26]

Internet-Draft Host Identity Protocol June 2003

 Transform-ID Value

 RESERVED 0
 ENCR_NULL 1
 ENCR_3DES 2
 ENCR_AES_128 3

 There MUST NOT be more than three (3) HIP Transform-IDs in one HIP
 transform TLV. The limited number of transforms sets the maximum size
 of HIP_TRANSFORM TLV. The HIP_TRANSFORM TLV MUST contain at least one
 of the mandatory Transform-IDs.

 Mandatory implementations: ENCR_3DES and ENCR_NULL

6.3.5 ESP_TRANSFORM

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Suite-ID #1 | Suite-ID #2 |
 +-+
 | Suite-ID #n | Padding |
 +-+

 Type 18
 Length length in octets, excluding T and L fields and padding
 Suite-ID Defines the ESP Suite to be used

 The following Suite-IDs are defined ([15],[16]):

 Suite-ID Value

 RESERVED 0
 ESP-AES-CBC with HMAC-SHA1 1
 ESP-3DES-CBC with HMAC-SHA1 2
 ESP-3DES-CBC with HMAC-MD5 3
 ESP-BLOWFISH-CBC with HMAC-SHA1 4
 ESP-NULL with HMAC-SHA1 5
 ESP-NULL with HMAC-MD5 6

 There MUST NOT be more than six (6) ESP Suite-IDs in one
 ESP_TRANSFORM TLV. The limited number of Suite-IDs sets the maximum
 size of ESP_TRANSFORM TLV. The ESP_TRANSFORM MUST contain at least
 one of the mandatory Suite-IDs.

 Mandatory implementations: ESP-3DES-CBC with HMAC-SHA1 and ESP-NULL

Moskowitz, et al. Expires December 18, 2003 [Page 27]

Internet-Draft Host Identity Protocol June 2003

 with HMAC-SHA1

6.3.6 HOST_ID

 When the host sends a Host Identity to a peer, it MAY send the
 identity without any verification information or use certificates to
 proof the HI. If certificates are sent, they are sent in a separate
 HIP packet (CER).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Host Identity /
 +-+
 / | padding |
 +-+

 Type 32
 Length length in octets, excluding T and L fields and padding
 Host Identity actual host identity

 The Host Identity is represented in RFC2535 [11] format. The
 algorithms used in RDATA format are the following:

 Algorithms Values

 RESERVED 0
 DSA 3 [RFC2536] (REQUIRED)
 RSA 5 [RFC3110] (OPTIONAL)

6.3.7 HOST_ID_FQDN

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | HI Length | FQDN Length |
 +-+
 | Host Identity /
 +-+
 / | FDQN /
 +-+
 / | Padding |
 +-+

https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc2536
https://datatracker.ietf.org/doc/html/rfc3110

Moskowitz, et al. Expires December 18, 2003 [Page 28]

Internet-Draft Host Identity Protocol June 2003

 Type 33
 Length length in octets, excluding T and L fields and padding
 Host Identity
 length length of the HI
 FQDN length length of the FQDN
 Host Identity actual host identity
 FQDN Fully Qualified Domain Name, in the binary format.

 The Host Identity is represented in RFC2535 [11] format. The format
 for the FQDN is defined in RFC1035 [1] Sect. 3.1.

 If there is no FQDN, the HOST_ID TLV is sent instead.

6.3.8 CERT

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Cert count | Cert ID | Cert type | /
 +-+
 / Certificate /
 +-+
 / | Padding |
 +-+

 Type 64
 Length length in octets, excluding T and L fields and padding
 Cert count total count of certificates that are sent, possibly
 in different CER packets
 Cert ID the order number for this certificate
 Cert Type describes the type of the certificate

 The receiver must know the total number (Cert count) of certificates
 that it will receive from the sender, related to the R1 or I2. The
 Cert ID identifies the particular certificate and its order in the
 certificate chain. The numbering in Cert ID MUST go from 1 to Cert
 count.

 The following certificate types have been identified:

 Cert format Type number
 X.509 v3 1

 The encoding format for X.509v3 certificate is defined in [9].

https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc1035

Moskowitz, et al. Expires December 18, 2003 [Page 29]

Internet-Draft Host Identity Protocol June 2003

6.3.9 HIP_SIGNATURE

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | SIG alg | Signature /
 +-+
 / | padding |
 +-+

 Type 65534 (2^16-2)
 Length length in octets, excluding T and L fields and padding
 SIG alg Signature algorithm
 Signature the signature is calculated over the HIP packet,
 excluding the HIP_SIGNATURE TLV field. The checksum
 field MUST be set to zero and the HIP header length in
 the HIP common header MUST be calculated to the
 beginning of the HIP_SIGNATURE TLV when the signature is
 calculated.

 Signature calculation and verification process:

 Packet sender:

 1. Create the HIP packet without the HIP_SIGNATURE TLV

 2. Calculate the length field in the HIP header

 3. Compute the signature

 4. Add the HIP_SIGNATURE TLV to the packet

 5. Recalculate the length field in the HIP header

 Packet receiver:

 1. Verify the HIP header length field

 2. Save the HIP_SIGNATURE TLV and remove it from the packet

 3. Recalculate the HIP packet length in the HIP header and zero
 checksum field.

 4. Compute the signature and verify it against the received
 signature

Moskowitz, et al. Expires December 18, 2003 [Page 30]

Internet-Draft Host Identity Protocol June 2003

 The signature algorithms are defined in Section 6.3.5. The signature
 in the Signature field is encoded using the proper method depending
 on the signature algorithm (e.g. in case of DSA, according to [12]).

 The verification can use either the HI received from a HIP packet,
 the HI from a DNS query, if the FQDN has been received either in the
 HOST_ID_FQDN or in the CER packet, or one reveived by some other
 means.

6.3.10 HIP_SIGNATURE_2

 The TLV structure is the same as in Section 6.3.9. The fields are:

 Type 65533 (2^16-3)
 Length length in octets, excluding T and L fields and padding
 SIG alg Signature algorithm
 Signature the signature is calculated over the R1 packet,
 excluding the HIP_SIGNATURE_2 TLV field. Initiator's HIT
 and Checksum field MUST be set to zero and the HIP
 packet length in the HIP header MUST be calculated to
 the beginning of the HIP_SIGNATURE_2 TLV when the
 signature is calculated.

 Zeroing the Initiator's HIT makes it possible to create R1 packets
 beforehand to minimize the effects of possible DoS attacks.

 Signature calculation and verification process: see the process in
Section 6.3.9 HIP_SIGNATURE. Just replace the HIP_SIGNATURE with

 HIP_SIGNATURE_2 and zero Initiator's HIT at the receiver's end-point.

 The signature algorithms are defined in Section 6.3.5. The signature
 in the Signature field is encoded using the proper method depending
 on the signature algorithm (e.g. in case of DSA, according to [12]).

 The verification can use either the HI received from a HIP packet,
 the HI from a DNS query, if the FQDN has been received either in the
 HOST_ID_FQDN or in the CER packet, or one reveived by some other
 means.

6.3.11 NES_INFO

 [XXX: The contents of the NES_INFO payload are subject to change,
 since it is desireable to unify the NES and REA functionality.
 However, the details of that need to be worked out.]

 0 1 2 3

Moskowitz, et al. Expires December 18, 2003 [Page 31]

Internet-Draft Host Identity Protocol June 2003

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Reserved |
 +-+
 | Current SPI in reverse direction |
 +-+
 | Current SPI |
 +-+
 | New SPI |
 +-+
 | Keymaterial index | packet ID |
 +-+

 Type 4
 Length length in octets, excluding T and L fields
 ESP sequence
 number
 Old SPI
 New SPI

6.3.12 ENCRYPTED

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Reserved |
 +-+
 | IV |
 | |
 +-+
 | Encrypted data /
 / |
 +-+

 Type 20
 Length length in octets, excluding T and L fields
 Reserved zero when sent, ignored when received
 IV Initialization vector, if needed, zero otherwise
 Encrypted the data is encrypted using an encryption algorithm as
 data defined in HIP transform

 The encrypted data is in TLV format itself. Consequently, the first
 fields in the contents are Type and Length.

Moskowitz, et al. Expires December 18, 2003 [Page 32]

Internet-Draft Host Identity Protocol June 2003

7. HIP Packets

 There are eight basic HIP packets. Four are for the base HIP
 exchange,one is for rekeying, one is a broadcast for use when there
 is no IP addressing (e.g., before DHCP exchange), one is used to send
 certificates and one is for sending unencrypted data.

 Packets consist of the fixed header as described in Section 6.1,
 followed by the parameters. The parameter part in turn consists of
 zero or more TLV coded parameters.

 In addition to the base packets, some other packets may be defined
 later in separate standards. E.g. the mobility and multihoming
 management support is not included in this base specification.

 Packet representation uses the following operations:

 () parameter
 x{y} operation x on content y
 <x>i x exists i times
 [] optional parameter
 x|y x or y

 An OPTIONAL upper layer payload MAY follow the HIP header. The
 payload proto field in the header indicates if there is additional
 data following the HIP header. The P-bit in the control field of the
 HIP packet header indicates whether the sender is capable of sending
 and receiving this additional data. The HIP packet, however, MUST NOT
 be fragmented. This limits the size of the possible additional data
 in the packet.

7.1 I1 - the HIP Initiator packet

 The HIP header values for the I1 packet:

 Type = 1
 SRC HIT = Initiator's HIT
 DST HIT = Responder's HIT, or NULL

 IP(HIP())

 The I1 packet contains only the fixed HIP header.

 Valid control bits: None

 The Initiator gets the Responder's HIT either from a DNS lookup of
 the responder's FQDN, from some other repository, or from a local
 table. If the initiator does not know the responder's HIT, it may

Moskowitz, et al. Expires December 18, 2003 [Page 33]

Internet-Draft Host Identity Protocol June 2003

 attempt anonymous mode by using NULL (all zeros) as the responder's
 HIT.

 Since this packet is so easy to spoof even if it were signed, no
 attempt is made to add to its generation or processing cost.

 Implementation MUST be able to handle a storm of reveived I1 packets,
 discarding those with common content that arrive within a small time
 delta.

7.2 R1 - the HIP Responder packet

 The HIP header values for the R1 packet:

 Header:
 Packet Type = 2
 SRC HIT = Responder's HIT
 DST HIT = Initiator's HIT

 IP (HIP (BIRTHDAY_COOKIE,
 DIFFIE_HELLMAN,
 HIP_TRANSFORM,
 ESP_TRANSFORM,
 (HOST_ID | HOST_ID_FQDN),
 HIP_SIGNATURE_2))

 Valid control bits: C, A

 The R1 packet may be followed by one or more CER packets. In this
 case, the C-bit in the control field MUST be set.

 If the Responder has multiple HIs, the HIT used MUST match
 Initiator's request. If the Initiator used anonymous mode, the
 Responder may select freely among its HIs.

 The Initiator HIT MUST match the one received in I1. If the R1 is a
 response to an ESP packet with an unknown SPI, the Initiator HIT
 SHOULD be zero.

 The Birthday is a reboot count used to manage state reestablishment
 when one peer rebooted or timed out its SA.

 The Cookie contains random I and difficulty K. K is number of bits
 that the Initiator must match get zero in the puzzle.

 The Diffie-Hellman value is ephemeral, but can be reused over a
 number of connections. In fact, as a defense against I1 storms, an
 implementation MAY use the same Diffie-Hellman value for a period of

Moskowitz, et al. Expires December 18, 2003 [Page 34]

Internet-Draft Host Identity Protocol June 2003

 time, for example, 15 minutes. By using a small number of different
 Cookies for a given Diffie-Hellman value, the R1 packets can be
 pre-computed and delivered as quickly as I1 packets arrive. A
 scavenger process should clean up unused DHs and Cookies.

 The HIP_TRANSFORM contains the encryption algorithms supported by the
 responder to protect the HI exchange, in order of preference. All
 implementations MUST support the 3DES [8] transform.

 The ESP_TRANSFORM contains the ESP modes supported by the responder,
 in order of preference. All implementations MUST support 3DES [8]
 with HMAC-SHA-1-96 [4].

 The SIG is calculated over the whole HIP envelope, after setting the
 Initiator HIT and header checksum temporarily to zero. This allows
 the Responder to use precomputed R1s. The Initiator SHOULD validate
 this SIG. It SHOULD check that the HI received matches with the one
 expected, if any.

7.3 I2 - the HIP Second Initiator packet

 The HIP header values for the I2 packet:

 Type = 3
 SRC HIT = Initiator's HIT
 DST HIT = Responder's HIT

 IP (HIP (SPI_LSI,
 BIRTHDAY_COOKIE,
 DIFFIE_HELLMAN,
 HIP_TRANSFORM,
 ESP_TRANSFORM,
 ENCRYPTED { HOST_ID | HOST_ID_FQDN },
 HIP_SIGNATURE))

 Valid control bits: C, E, A

 The HITs used MUST match the ones used previously.

 The Birthday is a reboot count used to manage state reestablishment
 when one peer rebooted or timed out its SA.

 The Cookie contains I from R1 and the computed J. The low order K
 bits of the SHA-1(I | ... | J) MUST match be zero.

 The Diffie-Hellman value is ephemeral. If precomputed, a scavenger
 process should clean up unused DHs.

Moskowitz, et al. Expires December 18, 2003 [Page 35]

Internet-Draft Host Identity Protocol June 2003

 The HIP_TRANSFORM contains the encryption used to protect the HI
 exchange selected by the initiator. All implementations MUST support
 the 3DES transform.

 The Initiator's HI is encrypted using the HIP_TRANSFORM. The keying
 material is derived from the Diffie-Hellman exchanged as defined in

Section 9.

 The ESP_TRANSFORM contains the ESP mode selected by the initiator.
 All implementations MUST support 3DES [8] with HMAC-SHA-1-96 [4].

 The HIP SIG is calculated over whole HIP envelope. The Responder
 MUST validate this SIG. It MAY use either the HI in the packet or
 the HI acquired by some other means.

7.4 R2 - the HIP Second Responder packet

 The HIP header values for the R2 packet:

 Packet Type = 4
 SRC HIT = Responder's HIT
 DST HIT = Initiator's HIT

 IP (HIP (SPI_LSI,
 HIP_SIGNATURE))

 Valid control bits: E

 The signature is calculated over whole HIP envelope. The Initiator
 MUST validate this signature.

7.5 NES - the HIP New SPI Packet

 The HIP New SPI Packet serves three functions. Firstly, it provides
 the peer system with a new SPI to use when sending packets.
 Secondly, it optionally provides a new Diffie-Hellman key to produce
 new keying material. Thirdly, it provides any intermediate system
 with the mapping of the old SPI to the new one. This is important to
 systems like NATs [20] that use SPIs to maintain address translation
 state.

 The new SPI Packet is a HIP packet with SPI and D-H in the HIP
 payload. The HIP packet contains the current ESP Sequence Number and
 SPI to provide DoS and replay protection.

 The HIP header values for the NES packet:

Moskowitz, et al. Expires December 18, 2003 [Page 36]

Internet-Draft Host Identity Protocol June 2003

 Packet Type = 5
 SRC HIT = Sender's HIT
 DST HIT = Recipients's HIT

 IP (HIP ([DIFFIE_HELLMAN,] NES_INFO , HIP_SIGNATURE))

 Valid control bits: None

 During the life of an SA established by HIP, one of the hosts may
 need to reset the Sequence Number to one (to prevent wrapping) and
 rekey. The reason for rekeying might be an approaching sequence
 number wrap in ESP, or a local policy on use of a key. A new SPI or
 rekeying ends the current SAs and starts a new ones on both peers.
 Intermediate systems that use the SPI will have to inspect HIP
 packets for a HIP New SPI packet. The packet is signed for the
 benefit of the Intermediate systems.

 This packet has a potential DoS attack of a packet within the replay
 window and proper SPI, but a malformed signature. Implementations
 MUST recognize when they are under attack and manage the attack. If
 it is still receiving ESP packets with increasing Sequence Numbers,
 the NES packets are obviously attacks and can be ignored.

 Since intermediate systems may need the new SPI values, the contents
 of this packet cannot be encrypted.

 Intermediate systems that use the SPI will have to inspect ALL HIP
 packets for a NES packet. This is a potential DoS attack against the
 Intermediate system, as the signature processing may be relatively
 expensive. A further step against attack for the Intermediate
 systems is to implement ESP's replay protection of windowing the
 sequence number. This requires the intermediate system to track ALL
 ESP packets to follow the Sequence Number.

7.6 BOS - the HIP Bootstrap Packet

 In some situations, an initiator may not be able to learn of a
 responder's information from DNS or another repository. Some examples
 of this are DHCP and NetBios servers. Thus, a packet is needed to
 provide information that would otherwise be gleaned from a
 repository. This HIP packet is either self-signed in applications
 like SoHo, or from a trust anchor in large private or public
 deployments. This packet MAY be broadcasted in IPv4 or multicasted
 to the all hosts multicast group in IPv6. The packet MUST NOT be
 sent more often than once in every second. Implementations MAY
 ignore received BOS packets.

 The HIP header values for the BOS packet:

Moskowitz, et al. Expires December 18, 2003 [Page 37]

Internet-Draft Host Identity Protocol June 2003

 Packet Type = 7
 SRC HIT = Announcer's HIT
 DST HIT = NULL

 IP (HIP ((HOST_ID | HOST_ID_FQDN), HIP_SIGNATURE))

 The BOS packet may be followed by a CER packet if the HI is signed.
 In this case, the C-bit in the control field MUST be set. If the BOS
 packet is broadcasted or multicasted, the following CER packet(s)
 MUST be broadcasted or multicasted to the same multicast group and
 scope, respectively.

 Valid control bits: C, A

7.7 CER - the HIP Certificate Packet

 The Optional CER packets over the Announcer's HI by a higher level
 authority known to the Recipient is an alternative method for the
 Recipient to trust the Announcer's HI (over DNSSEC or PKI).

 The HIP header values for CER packet:

 Packet Type = 8
 SRC HIT = Announcer's HIT
 DST HIT = Recipients's HIT

 IP (HIP (ENCRYPTED { <CERT>i }, HIP_SIGNATURE))

 Valid control bits: None

 Certificates in the CER packet MAY be encrypted. The encryption
 algorithm is provided in the HIP transform of the previous (R1 or I2)
 packet.

7.8 PAYLOAD - the HIP Payload Packet

 The HIP header values for the PAYLOAD packet:

 Packet Type = 64

 IP (HIP (), payload)

 Valid control bits: None

 Payload Proto field in the Header MUST be set to correspond the
 correct protocol number of the payload.

 The PAYLOAD packet is used to carry a non-ESP protected data. By

Moskowitz, et al. Expires December 18, 2003 [Page 38]

Internet-Draft Host Identity Protocol June 2003

 usign HIP header we ensure interoperability with NAT and other middle
 boxes.

 Processing rules of the PAYLOAD packet are the following:

 Receiving: if there is an existing HIP security association with the
 given HITs, and the IP addresses match the IP addresses associated
 with the HITs, pass the packet to the upper layer, associated with
 metadata indicating that the packet was NOT integrity or
 confidentiality protected.

 Sending: if the IPsec SPD defines BYPASS for a given destination
 HIT, send it with the PAYLOAD packet. Otherwise use the ESP as
 specified in the SPD.

Moskowitz, et al. Expires December 18, 2003 [Page 39]

Internet-Draft Host Identity Protocol June 2003

8. Packet processing

 [XXX: This section is currently in its very beginning. It needs much
 more text.]

8.1 R1 Management

 All compliant implementations MUST produce R1 packets. An R1 packet
 MAY be precomputed. An R1 packet MAY be reused for time Delta T. R1
 information MUST not be discarded until Delta S after T. Time S is
 the delay needed for the last I2 to arrive back to the responder. A
 spoofed I1 can result in an R1 attack on a system. An R1 sender MUST
 have a mechanism to rate limit R1s to an address.

8.2 Processing NES packets

 The ESP Sequence Number and current SPI are included to provide
 replay protection for the receiving peer. The old SA MUST NOT be
 deleted until all ESP packets with a lower Sequence Number have been
 received and processed, or a reasonable time has elapsed (to account
 for lost packets). If the Sequence Number is the replay window is
 greater than the number in the NES packet, the NES packet MUST be
 ignored. If the SPI number does not match with an existing SPI
 number used, the NES packet must be ignored.

 The peer that initiates a New SPI exchange MUST include a Diffie-
 Hellmen key. Its peer MUST respond with a New SPI packet, an MAY
 include a Diffie-Hellman key if the receiving system's policy is to
 increase the new KEYMAT by changing its key pair.

 When a host receives a New SPI Packet with a Diffie-Hellman, its next
 ESP packet MUST use the KEYMAT generated by the new Kij. The sending
 host MUST expect at least a replay window worth of ESP packets using
 the old Kij. Out of order delivery could result in needing the old
 Kij after packets start arriving using the new SA's Kij. Once past
 the rekeying start, the sending host can drop the old SA and its Kij.

 The first packet sent by the receiving system MUST be a HIP New SPI
 packet. It MAY also include a datagram, using the new SAs. This
 packet supplies the new SPI for the rekeying system, which cannot
 send any packets until it receives this packet. If it does not
 receive a HIP New SPI packet within a reasonable round trip delta, it
 MUST assume it or the HIP Rekey packet was lost and MAY resend the
 HIP New SPI packet or renegotiate HIP as if in a reboot condition.
 The choice is a local policy decision.

 This packet MAY contain a Diffie-Hellman key, if the receiving
 system's policy is to increase the new KEYMAT by changing its key

Moskowitz, et al. Expires December 18, 2003 [Page 40]

Internet-Draft Host Identity Protocol June 2003

 pair.

Moskowitz, et al. Expires December 18, 2003 [Page 41]

Internet-Draft Host Identity Protocol June 2003

9. HIP KEYMAT

 HIP keying material is derived from the Diffie-Hellman Kij produced
 during the base HIP exchange. The initiator has Kij during the
 creation of the I2 packet, and the responder has Kij once it receives
 the I2 packet. This is why I2 can already contain encrypted
 information.

 The KEYMAT is derived by feeding Kij and the HITs into the following
 operation; the | operation denotes concatenation.

 KEYMAT = K1 | K2 | K3 | ...
 where

 K1 = SHA-1(Kij | sort(HIT-I | HIT-R) | 0x01)
 K2 = SHA-1(Kij | K1 | 0x02)
 K3 = SHA-1(Kij | K2 | 0x03)
 ...
 K255 = SHA-1(Kij | K254 | 0xff)
 K256 = SHA-1(Kij | K255 | 0x00)
 etc.

 Sort(HIT-I | HIT-R) is defined as the numeric network byte order
 comparison of the HITs, with lower HIT preceding higher HIT,
 resulting in the concatenation of the HITs in the said order. The
 initial keys are drawn sequentially in the following order:

 HIP Initiator key

 HIP Responder key (currently unused)

 Initiator ESP key

 Initiator AUTH key

 Responder ESP key

 Responder AUTH key

 The number of bits drawn for a given algorithm is the "natural" size
 of the keys. For the manatory algorithms, the following sizes apply:

 3DES 192 bits

 SHA-1 160 bits

Moskowitz, et al. Expires December 18, 2003 [Page 42]

Internet-Draft Host Identity Protocol June 2003

 NULL 0 bits

 Subsequent rekeys without Diffie-Hellman just requre drawing out more
 sets of ESP keys. In the situation where Kij is the result of a HIP
 rekey exchange with Diffie-Hellman, there is only the need from one
 set of ESP keys, without the HIP keys. These are then the only keys
 taken from the KEYMAT.

Moskowitz, et al. Expires December 18, 2003 [Page 43]

Internet-Draft Host Identity Protocol June 2003

10. HIP Fragmentation Support

 A HIP implementation must support IP fragmentation / reassembly.
 Fragment reassembly MUST be implemented in both IPv4 and IPv6, but
 fragment generation MUST be implemented only in IPv4 (IPv4 stacks and
 networks will usually do this by default) and SHOULD be implemented
 in IPv6. In the IPv6 world, the minimum MTU is larger, 1280 bytes,
 than in the IPv4 world. The larger MTU size is usually sufficient for
 most HIP packets, and therefore fragment generation may not be
 needed. If a host expects to send HIP packets that are larger than
 the minimum IPv6 MTU, it MUST implement fragment generation even for
 IPv6.

 In the IPv4 world, HIP packets may encounter low MTUs along their
 routed path. Since HIP does not provide a mechanism to use multiple
 IP datagrams for a single HIP packet, support of path MTU discovery
 does not bring any value to HIP in the IPv4 world. HIP aware NAT
 systems MUST perform any IPv4 reassembly/fragmentation.

 All HIP implementations MUST employ a reassembly algorithm that is
 sufficiently resistant against DoS attacks.

Moskowitz, et al. Expires December 18, 2003 [Page 44]

Internet-Draft Host Identity Protocol June 2003

11. ESP with HIP

 HIP sets up a pair of Security Associations (SA) to enable ESP in an
 end-to-end manner that can span addressing realms (i.e. across NATs).
 This is accomplished through the various informations that are
 exchanged within HIP. Since HIP is designed for host usage, not for
 gateways, only ESP transport mode is supported with HIP. The SA is
 not bound to an IP address; all internal control of the SA is by the
 HIT and LSI. Thus a host can easily change its address using Mobile
 IP, DHCP, PPP, or IPv6 readdressing and still maintain the SAs. And
 since the transports are bound to the SA (LSI or HIT), any active
 transport is also maintained. Thus, real world conditions like loss
 of a PPP connection and its reestablishment or a mobile cell change
 will not require a HIP negotiation or disruption of transport
 services.

 Since HIP does not negotiate any lifetimes, all lifetimes are local
 policy. The only lifetimes a HIP implementation MUST support are
 sequence number rollover (for replay protection), and SA timeout. An
 SA times out if no packets are received using that SA. The default
 timeout value is 15 minutes. Implementations MAY support lifetimes
 for the various ESP transforms. Note that HIP does not offer any
 service comparable with IKE's Quick Mode. A Diffie-Hellman
 calculation is needed for each rekeying.

11.1 Security Association Management

 An SA is indexed by the 2 SPIs and 2 HITs (both HITs since a system
 can have more than one HIT). An inactivity timer is recommended for
 all SAs. If the state dictates the deletion of an SA, a timer is set
 to allow for any late arriving packets. The SA MUST include the I
 that created it for replay detection.

11.2 Security Parameters Index (SPI)

 The SPIs in ESP provide a simple compression of the HIP data from all
 packets after the HIP exchange. This does require a per HIT- pair
 Security Association (and SPI), and a decrease of policy granularity
 over other Key Management Protocols like IKE.

 When a host rekeys, it gets a new SPI from its partner.

11.3 Supported Transforms

 All HIP implementations MUST support 3DES [8] and HMAC-SHA-1-96 [4].
 If the Initiator does not support any of the transforms offered by
 the Responder in the R1 HIP packet, it MUST use 3DES and
 HMAC-SHA-1-96 and state so in the I2 HIP packet.

Moskowitz, et al. Expires December 18, 2003 [Page 45]

Internet-Draft Host Identity Protocol June 2003

 In addition to 3DES, all implementations MUST implement the ESP NULL
 encryption and authentication algorithms. These algoritms are
 provided mainly for debugging purposes, and SHOULD NOT be used in
 production environments. The default configuration in
 implementations MUST be to reject NULL encryption or authentication.

11.4 Sequence Number

 The Sequence Number field is MANDATORY in ESP. Anti-replay
 protection MUST be used in an ESP SA established with HIP.

 This means that each host MUST rekey before its sequence number
 reaches 2^32. Note that in HIP rekeying, unlike IKE rekeying, only
 one Diffie-Hellman key can be changed, that of the rekeying host.
 However, if one host rekeys, the other host SHOULD rekey as well.

 In some instances, a 32 bit sequence number is inadequate. In either
 the I2 or R2 packets, a peer MAY require that a 64 bit sequence
 number be used. In this case the higher 32 bits are NOT included in
 the ESP header, but are simply kept local to both peers. 64 bit
 sequence numbers must only be used for ciphers that will not be open
 to cryptoanalysis as a result. AES is one such cipher.

Moskowitz, et al. Expires December 18, 2003 [Page 46]

Internet-Draft Host Identity Protocol June 2003

12. HIP Policies

 There are a number of variables that will influence the HIP exchanges
 that each host must support. All HIP implementations MUST support
 more than one simultaneous HIs, at least one one of which SHOULD be
 reserved for anonymous usage. Although anonymous HIs will be rarely
 used as responder HIs, they will be common for initiators. Support
 for more than two HIs is RECOMMENDED.

 Many initiators would want to use a different HI for different
 responders. The implementations SHOULD provide for an ACL of
 initiator HIT to responder HIT. This ACL SHOULD also include
 preferred transform and local lifetimes. For HITs with HAAs,
 wildcarding SHOULD be supported. Thus if a Community of Interest,
 like Banking, gets an RAA, a single ACL could be used. A global
 wildcard would represent the general policy to be used. Policy
 selection would be from most specific to most general.

 The value of K used in the HIP R1 packet can also vary by policy. K
 should never be greater than 20, but for trusted partners it could be
 as low as 0.

 Responders would need a similar ACL, representing which hosts they
 accept HIP exchanges, and the preferred transform and local
 lifetimes. Wildcarding SHOULD be support supported for this ACL
 also.

Moskowitz, et al. Expires December 18, 2003 [Page 47]

Internet-Draft Host Identity Protocol June 2003

13. Security Considerations

 HIP is designed to provide secure authentication of hosts and to
 provide a fast key exchange for IPsec ESP. HIP also attempts to
 limit the exposure of the host to various denial-of-service and man-
 in-the-middle attacks. In so doing, HIP itself is subject to its own
 DoS and MitM attacks that potentially could be more damaging to a
 host's ability to conduct business as usual.

 HIP enabled ESP is IP address independent. This might seem to make
 it easier for an attacker, but ESP with replay protection is already
 as well protected as possible, and the removal of the IP address as a
 check should not increase the exposure of ESP to DoS attacks.
 Furthermore, this is in line with the forthcoming revision of ESP.

 Denial-of-service attacks take advantage of the cost of start of
 state for a protocol on the responder compared to the 'cheapness' on
 the initiator. HIP makes no attempt to increase the cost of the
 start of state on the initiator, but makes an effort to reduce the
 cost to the responder. This is done by having the responder start
 the 3-way cookie exchange instead of the initiator, making the HIP
 protocol 4 packets long. In doing this, packet 2 becomes a 'stock'
 packet that the responder MAY use many times. The duration of use is
 a paranoia versus throughput concern. Using the same Diffie- Hellman
 values and random puzzle I has some risk. This risk needs to be
 balanced against a potential storm of HIP I1 packets.

 This shifting of the start of state cost to the initiator in creating
 the I2 HIP packet, presents another DoS attack. The attacker spoofs
 the I1 HIP packet and the responder sends out the R1 HIP packet.
 This could conceivably tie up the 'initiator' with evaluating the R1
 HIP packet, and creating the I2 HIP packet. The defense against this
 attack is to simply ignore any R1 packet where a corresponding I1 or
 ESP data was not sent.

 A second form of DoS attack arrives in the I2 HIP packet. Once the
 attacking initiator has solved the cookie challenge, it can send
 packets with spoofed IP source addresses with either invalid
 encrypted HIP payload component or a bad HIP SIG. This would take
 resources in the responder's part to reach the point to discover that
 the I2 packet cannot be completely processed. The defense against
 this attack is after N bad I2 packets, the responder would discard
 any I2s that contain the given Initiator HIT. Thus will shut down
 the attack. The attacker would have to request another R1 and use
 that to launch a new attack. The responder could up the value of K
 while under attack. On the downside, valid I2s might get dropped
 too.

Moskowitz, et al. Expires December 18, 2003 [Page 48]

Internet-Draft Host Identity Protocol June 2003

 A third form of DoS attack is emulating the restart of state after a
 reboot of one of the partners. To protect against such an attack, a
 system Birthday is included in the R1 and I2 packets to prove loss of
 state to a peer. The inclusion of the Birthday creates a very
 deterministic process for state restart. Any other action is a DoS
 attack.

 A fourth form of DoS attack is emulating the end of state. HIP has
 no end of state packet. It relies on a local policy timer to end
 state.

 Man-in-the-middle attacks are difficult to defend against, without
 third-party authentication. A skillful MitM could easily handle all
 parts of HIP; but HIP indirectly provides the following protection
 from a MitM attack. If the responder's HI is retrieved from a signed
 DNS zone, a certificate, or through some other secure means, the
 initiator can use this to validate the R1 HIP packet.

 Likewise, if the initiator's HI is in a secure DNS zone, a trusted
 certificate, or otherwise securely available, the responder can
 retrieve it after it gets the I2 HIP packet and validate that.
 However, since an initiator may choose to use an anonymous HI, it
 knowingly risks a MitM attack. The responder may choose not to
 accept a HIP exchange with an anonymous initiator.

 New SPIs and rekeying provide another opportunity for an attacker.
 Replay protection is included to prevent a system from accepting an
 old new SPI packet. There is still the opening for an attacker to
 produce a packet with exactly the right Sequence Number and old SPI
 with a malformed signature, consuming considerable computing
 resources. All implementations must design to mitigate this attack.
 If ESP protected datagrams are still being received, there is an
 obvious attack. If the peer is quiet, it is easier for an attacker
 to launch this sort of attack, but again, the system should be able
 to recognize a regular influx of malformed signatures and take some
 action.

 There is a similar attack centered on the readdress packet. Similar
 defense mechanisms are appropriate here.

 Since not all hosts will ever support HIP, ICMP 'Destination Protocol
 Unreachable' are to be expected and present a DoS attack. Against an
 Initiator, the attack would look like the responder does not support
 HIP, but shortly after receiving the ICMP message, the initiator
 would receive a valid R1 HIP packet. Thus to protect against this
 attack, an initiator should not react to an ICMP message until a
 reasonable delta time to get the real responder's R1 HIP packet. A
 similar attack against the responder is more involved. First an ICMP

Moskowitz, et al. Expires December 18, 2003 [Page 49]

Internet-Draft Host Identity Protocol June 2003

 message is expected if the I1 was a DoS attack and the real owner of
 the spoofed IP address does not support HIP. The responder SHOULD
 NOT act on this ICMP message to remove the minimal state from the R1
 HIP packet (if it has one), but wait for either a valid I2 HIP packet
 or the natural timeout of the R1 HIP packet. This is to allow for a
 sophisticated attacker that is trying to break up the HIP exchange.
 Likewise, the initiator should ignore any ICMP message while waiting
 for an R2 HIP packet, deleting state only after a natural timeout.

Moskowitz, et al. Expires December 18, 2003 [Page 50]

Internet-Draft Host Identity Protocol June 2003

14. IANA Considerations

 IANA has assigned IP Protocol number TBD to HIP.

Moskowitz, et al. Expires December 18, 2003 [Page 51]

Internet-Draft Host Identity Protocol June 2003

15. Acknowledgments

 The drive to create HIP came to being after attending the MALLOC
 meeting at IETF 43. Baiju Patel and Hilarie Orman really gave the
 original author, Bob Moskowitz, the assist to get HIP beyond 5
 paragraphs of ideas. It has matured considerably since the early
 drafts thanks to extensive input from IETFers. Most importantly, its
 design goals are articulated and are different from other efforts in
 this direction. Particular mention goes to the members of the
 NameSpace Research Group of the IRTF. Noel Chiappa provided the
 framework for LSIs and Kieth Moore the impetuous to provide
 resolvability. Steve Deering provided encouragement to keep working,
 as a solid proposal can act as a proof of ideas for a research group.

 Many others contributed; extensive security tips were provided by
 Steve Bellovin. Rob Austein kept the DNS parts on track. Paul
 Kocher taught the original authors, Bob Moskowitz, how to make the
 cookie exchange expensive for the Initiator to respond, but easy for
 the Responder to validate. Bill Sommerfeld supplied the Birthday
 concept to simplify reboot management. Rodney Thayer and Hugh
 Daniels provide extensive feedback. In the early times of this
 draft, John Gilmore kept Bob Moskowitz challenged to provide
 something of value.

 During the later stages of this document, when the editing baton was
 transfered to Pekka Nikander, the input from the early implementors
 were invaluable. Without having actual implementations, this
 document would not be on the level it is now.

Moskowitz, et al. Expires December 18, 2003 [Page 52]

Internet-Draft Host Identity Protocol June 2003

References

 [1] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, November 1987.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [3] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 2373, July 1998.

 [4] Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within ESP
 and AH", RFC 2404, November 1998.

 [5] Kent, S. and R. Atkinson, "IP Encapsulating Security Payload
 (ESP)", RFC 2406, November 1998.

 [6] Maughan, D., Schneider, M. and M. Schertler, "Internet Security
 Association and Key Management Protocol (ISAKMP)", RFC 2408,
 November 1998.

 [7] Orman, H., "The OAKLEY Key Determination Protocol", RFC 2412,
 November 1998.

 [8] Pereira, R. and R. Adams, "The ESP CBC-Mode Cipher Algorithms",
RFC 2451, November 1998.

 [9] Housley, R., Ford, W., Polk, T. and D. Solo, "Internet X.509
 Public Key Infrastructure Certificate and CRL Profile", RFC

2459, January 1999.

 [10] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
 Specification", RFC 2460, December 1998.

 [11] Eastlake, D., "Domain Name System Security Extensions", RFC
2535, March 1999.

 [12] Eastlake, D., "DSA KEYs and SIGs in the Domain Name System
 (DNS)", RFC 2536, March 1999.

 [13] Vixie, P., "Extension Mechanisms for DNS (EDNS0)", RFC 2671,
 August 1999.

 [14] Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)
 Diffie-Hellman groups for Internet Key Exchange (IKE)", RFC

3526, May 2003.

 [15] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol",

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2373
https://datatracker.ietf.org/doc/html/rfc2404
https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/html/rfc2408
https://datatracker.ietf.org/doc/html/rfc2412
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/rfc2459
https://datatracker.ietf.org/doc/html/rfc2459
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc2536
https://datatracker.ietf.org/doc/html/rfc2671
https://datatracker.ietf.org/doc/html/rfc3526
https://datatracker.ietf.org/doc/html/rfc3526

Moskowitz, et al. Expires December 18, 2003 [Page 53]

Internet-Draft Host Identity Protocol June 2003

draft-ietf-ipsec-ikev2-08 (work in progress), June 2003.

 [16] Bellovin, S. and W. Aiello, "Just Fast Keying (JFK)",
draft-ietf-ipsec-jfk-04 (work in progress), July 2002.

 [17] NIST, "FIPS PUB 180-1: Secure Hash Standard", April 1995.

 [18] Moskowitz, R. and P. Nikander, "Host Identity Protocol
 Architecture", draft-moskowitz-hip-arch-03 (work in progress),
 May 2003.

 [19] Moskowitz, R. and P. Nikander, "Using Domain Name System (DNS)
 with Host Identity Protocol (HIP)", draft-nikander-hip-dns-00
 (work in progress), June 2003.

 [20] Moskowitz, R., "Host Identity Payload Implementation",
draft-moskowitz-hip-impl-02 (work in progress), January 2001.

 [21] Crosby, SA. and DS. Wallach, "Denial of Service via Algorithmic
 Complexity Attacks", in Proceedings of Usenix Security
 Symposium 2003, Washington, DC., August 2003.

Authors' Addresses

 Robert Moskowitz
 ICSAlabs, a Division of TruSecure Corporation
 1000 Bent Creek Blvd, Suite 200
 Mechanicsburg, PA
 USA

 EMail: rgm@icsalabs.com

 Pekka Nikander
 Ericsson Research Nomadic Lab

 JORVAS FIN-02420
 FINLAND

 Phone: +358 9 299 1
 EMail: pekka.nikander@nomadiclab.com

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-08
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-jfk-04
https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-arch-03
https://datatracker.ietf.org/doc/html/draft-nikander-hip-dns-00
https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-impl-02

Moskowitz, et al. Expires December 18, 2003 [Page 54]

Internet-Draft Host Identity Protocol June 2003

 Petri Jokela
 Ericsson Research Nomadic Lab

 JORVAS FIN-02420
 FINLAND

 Phone: +358 9 299 1
 EMail: petri.jokela@nomadiclab.com

Moskowitz, et al. Expires December 18, 2003 [Page 55]

Internet-Draft Host Identity Protocol June 2003

Appendix A. Backwards compatibility API issues

 Tom Henderson floated again the thought that that the LSI could be
 completely local and does not need to be exchanged. Applications
 continue to use IP addresses in socket calls, and kernel does
 whatever NATting (including application NATting) is required. It was
 pointed out that this approach was going to be prone to some kinds of
 data flows escaping the HIP protection, unless the local housekeeping
 in an implementation was especially good. Example: FTP opens control
 connection to IP address. One or both parties move. FTP later opens
 data connection to the old IP address. Kernel must identify that the
 application really means to connect to the host that was previously
 at that IP address -- but obviously if the old address is reused by
 another host, this becomes difficult.

 Related to this, the discussion also opened up the question of DNS
 resolution. Should the HIT/LSI be returned to applications as a
 (spoofed) address in the resolution process, allowing apps to use the
 socket API with HIT or LSI values instead of an IP address? While
 this seems to be the original intention of LSIs, there are a couple
 of difficulties especially in the IPv4 case:

 How does kernel know whether value being passed in a socket call
 is an IP address or an LSI? The fact that a name resolver library
 gave an application an LSI is no guarantee that the application
 will use that information in its socket call. It may also have
 cached some IP address from before or received an IP address as
 side information. This difficulty is now relieved as the LSIs are
 constrained to the well-known private subnet space.

 Handing an LSI may confuse legacy applications that assume that
 what is being passed to them is an IP address. Good examples of
 this are diagnostic tools such as dig and ping. The conclusion is
 that HIP should most not be used with diagnostic applications.

 What does kernel do with an LSI that it cannot map to an address
 based on information that it has locally cached?

 It seems that some modification to the resolver library (to
 explicitly convey HIP information rather than spoofing IP addresses),
 as well as modifications to socket API to explicitly let the kernel
 know that the application is HIP aware, are the cleanest long-term
 solution, but what to do about legacy applications?? -- still
 partially an open issue. The HUT team has been considering these
 problems.

Moskowitz, et al. Expires December 18, 2003 [Page 56]

Internet-Draft Host Identity Protocol June 2003

Appendix B. Probabilities of HIT collisions

 The birthday paradox sets a bound for the expectation of collisions.
 It is based on the square root of the number of values. A 64-bit
 hash, then, would put the chances of a collision at 50-50 with 2^32
 hosts (4 billion). A 1% chance of collision would occur in a
 population of 640M and a .001% collision chance in a 20M population.
 A 128 bit hash will have the same .001% collision chance in a 9x10^16
 population.

Moskowitz, et al. Expires December 18, 2003 [Page 57]

Internet-Draft Host Identity Protocol June 2003

Appendix C. Probabilities in the cookie calculation

 A question: Is it guaranteed that the Initiator is able to solve the
 puzzle in this way when the K value is large?

 Answer: No, it is not guaranteed. But it is not guaranteed even in
 the old mechanism, since the Initiator may start far away from J and
 arrive to J after far too many steps. If we wanted to make sure that
 the Initiator finds a value, we would need to give some hint of a
 suitable J, and I don't think we want to do that.

 In general, if we model the hash function with a random function, the
 probability that one iteration gives are result with K zero bits is
 2^-K. Thus, the probablity that one iteration does *not* give K zero
 bits is (1 - 2^-K). Consequently, the probablity that 2^K iterations
 does not give K zero bits is (1 - 2^-K)^(2^K).

 Since my calculus starts to be rusty, I made a small experiment and
 found out that

 lim (1 - 2^-k)^(2^k) = 0.36788
 k->inf

 lim (1 - 2^-k)^(2^(k+1)) = 0.13534
 k->inf

 lim (1 - 2^-k)^(2^(k+2)) = 0.01832
 k->inf

 lim (1 - 2^-k)^(2^(k+3)) = 0.000335
 k->inf

 Thus, if hash functions were random functions, we would need about
 2^(K+3) iterations to make sure that the probability of a failure is
 less than 1% (actually less than 0.04%). Now, since my perhaps
 flawed understanding of hash functions is that they are "flatter"
 than random functions, 2^(K+3) is probably an overkill. OTOH, the
 currently suggested 2^K is clearly too little. The draft has been
 changed to read 2^(K+2).

Moskowitz, et al. Expires December 18, 2003 [Page 58]

Internet-Draft Host Identity Protocol June 2003

Appendix D. Using responder cookies

 As mentioned in Section 4.1.1, the responder may delay state creation
 and still reject most spoofed I2s by using a number of pre-calculated
 R1s and a local selection function. This appendix defines one
 possible implementation in detail. The purpose of this appendix is
 to give the implementators an idea on how to implement the mechanism.
 The method described in this appendix SHOULD NOT be used in any real
 implementation. If the implementation is based on this appendix, it
 SHOULD contain some local modification that makes an attacker's task
 harder.

 The basic idea is to create a cheap, varying local mapping function
 f:

 f(IP-I, IP-R, HIT-I, HIT-R) -> cookie-index

 That is, given the Initiators and Responders IP addresses and HITs,
 the function returns an index to a cookie. When processing an I1,
 the cookie is embedded in an pre-computed R1, and the Responder
 simply sends that particular R1 to the Initiator. When processing an
 I2, the cookie may still be embedded in the R1, or the R1 may be
 depracated (and replaced with a new one), but the cookie is still
 there. If the received cookie does not match with the R1 or saved
 cookie, the I2 is simply dropped. That prevents the Initiator from
 generating spoofed I2s with a probability that depends on the number
 of pre-computed R1s.

 As a concrete example, let us assume that the Responder has an array
 of R1s. Each slot in the array contains a timestamp, an R1, and an
 old cookie that was sent in the previous R1 that occupied that
 particular slot. The Responder replaces one R1 in the array every
 few minutes, thereby replacing all the R1s gradually.

 To create a varying mapping function, the Responder generates a
 random number every few minutes. The octets in the IP addresses and
 HITs are XORed together, and finally the result is XORed with the
 random number. Using pseudo-code, the function looks like the
 following.

 Pre-computation:
 r1 := random number

 Index computation:
 index := r1 XOR hit_r[0] XOR hit_r[1] XOR ... XOR hit_r[15]
 index := index XOR hit_i[0] XOR hit_i[1] XOR ... XOR hit_i[15]
 index := index XOR ip_r[0] XOR ip_r[1] XOR ... XOR ip_r[15]
 index := index XOR ip_i[0] XOR ip_i[1] XOR ... XOR ip_i[15]

Moskowitz, et al. Expires December 18, 2003 [Page 59]

Internet-Draft Host Identity Protocol June 2003

 The index gives the slot used in the array.

 It is possible that an Initator receives an I1, and while it is
 computing I2, the Responder deprecates an R1 and/or chooses a new
 random number for the mapping function. Therefore the Responder must
 remember the cookies used in deprecated R1s and the previous random
 number.

 To check an received I2, the Responder can use a simple algorithm,
 expressed in pseudo-code as follows.

 If I2.hit_r does not match my_hits, drop the packet.

 index := compute_index(current_random_number, I2)
 If current_cookie[index] == I2.cookie, go to cookie check.
 If previous_cookie[index] == I2.cookie, go to cookie check.

 index := compute_index(previous_random_number, I2)
 If current_cookie[index] == I2.cookie, go to cookie check.
 If previous_cookie[index] == I2.cookie, go to cookie check.

 Drop packet.

 cookie_check:
 V := Ltrunc(SHA-1(I2.I, I2.hit_i, I2.hit_r, I2.J), K)
 if V != 0, drop the packet.

 Whenever the Responder receives an I2 that fails on the index check,
 it can simply drop the packet on the floor and forget about it. New
 I2s with the same or other spoofed parameters will get dropped with a
 reasonable probability and minimal effort.

 If a Responder receives an I2 that passes the index check but fails
 on the puzzle check, it should create a state indicating this. After
 two or three failures the Responder should cease checking the puzzle
 but drop the packets directly. This saves the Responder from the
 SHA-1 calculations. Such block should not last long, however, or
 there would be a danger that a legitimite Initiator could be blocked
 from getting connections.

 A key for the success of the defined scheme is that the mapping
 function must be considerably cheaper than computing SHA-1. It also
 must detect any changes in the IP addresses, and preferably most
 changes in the HITs. Checking the HITs is not that essential,
 though, since HITs are included in the cookie computation, too.

 The effectivity of the method can be varied by varying the size of
 the array containing pre-computed R1s. If the array is large, the

Moskowitz, et al. Expires December 18, 2003 [Page 60]

Internet-Draft Host Identity Protocol June 2003

 probability that an I2 with a spoofed IP address or HIT happens to
 map to the same slot is fairly slow. However, a large array means
 that each R1 has a fairly long life time, thereby allowing an
 attacker to utilize one solved puzzle for a longer time.

Moskowitz, et al. Expires December 18, 2003 [Page 61]

Internet-Draft Host Identity Protocol June 2003

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

https://datatracker.ietf.org/doc/html/bcp11

Moskowitz, et al. Expires December 18, 2003 [Page 62]

Internet-Draft Host Identity Protocol June 2003

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Moskowitz, et al. Expires December 18, 2003 [Page 63]

