
Network Working Group R. Moskowitz,

Ed.

Internet-Draft HTT

Consulting

Intended status: Standards Track R.

Hummen

Expires: July 21, 2016 COMSYS, RWTH

Aachen

 January 20,

2016

 HIP Diet EXchange (DEX)

 draft-moskowitz-hip-dex-05

Abstract

 This document specifies the Host Identity Protocol Diet EXchange

(HIP

 DEX), a variant of the Host Identity Protocol Version 2 (HIPv2).

The

 HIP DEX protocol design aims at reducing the overhead of the

employed

 cryptographic primitives by omitting public-key signatures and hash

 functions. In doing so, the main goal is to still deliver similar

 security properties to HIPv2.

 The HIP DEX protocol is primarily designed for computation or

memory-

 constrained sensor/actuator devices. Like HIPv2, it is expected to

 be used together with a suitable security protocol such as the

 Encapsulated Security Payload (ESP) for the protection of upper

layer

 protocol data. In addition, HIP DEX can also be used as a keying

 mechanism for security primitives at the MAC layer, e.g., for IEEE

 802.15.4 networks.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six

months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 21, 2016.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Moskowitz & Hummen Expires July 21, 2016 [Page

1]

Internet-Draft HIP Diet EXchange (DEX) January

2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal

 Provisions Relating to IETF Documents

 (http://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with

respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction .

3

 1.1. The HIP Diet EXchange (DEX)

4

 1.2. Memo Structure .

5

 2. Terms and Definitions .

6

 2.1. Requirements Terminology

6

 2.2. Notation .

6

 2.3. Definitions .

6

 3. Host Identity (HI) and its Structure

7

 3.1. Host Identity Tag (HIT)

8

 3.2. Generating a HIT from an HI

8

 4. Protocol Overview .

9

 4.1. Creating a HIP Association

9

 4.1.1. HIP Puzzle Mechanism

10

 4.1.2. HIP State Machine

11

 4.1.3. HIP DEX Security Associations

15

 4.1.4. User Data Considerations

16

 5. Packet Formats .

16

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

 5.1. Payload Format .

16

 5.2. HIP Parameters .

16

 5.2.1. DH_GROUP_LIST .

17

 5.2.2. HIP_CIPHER .

17

 5.2.3. HOST_ID .

17

 5.2.4. HIT_SUITE_LIST

18

 5.2.5. ENCRYPTED_KEY .

18

 5.3. HIP Packets .

19

 5.3.1. I1 - the HIP Initiator Packet

20

 5.3.2. R1 - the HIP Responder Packet

21

 5.3.3. I2 - the Second HIP Initiator Packet

23

 5.3.4. R2 - the Second HIP Responder Packet

24

 5.4. ICMP Messages .

25

 6. Packet Processing .

25

Moskowitz & Hummen Expires July 21, 2016 [Page

2]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 6.1. Solving the Puzzle

25

 6.2. HIP_MAC Calculation and Verification

26

 6.2.1. CMAC Calculation

26

 6.3. HIP DEX KEYMAT Generation

27

 6.4. Initiation of a HIP Diet EXchange

30

 6.5. Processing Incoming I1 Packets

30

 6.6. Processing Incoming R1 Packets

31

 6.7. Processing Incoming I2 Packets

34

 6.8. Processing Incoming R2 Packets

37

 6.9. Processing Incoming NOTIFY Packets

38

 6.10. Processing UPDATE, CLOSE, and CLOSE_ACK Packets

39

 6.11. Handling State Loss

39

 7. HIP Policies .

39

 8. Security Considerations

39

 9. IANA Considerations .

40

 10. Acknowledgments .

41

 11. Changelog .

41

 11.1. Changes in draft-moskowitz-hip-rg-dex-06

41

 11.2. Changes in draft-moskowitz-hip-dex-00

41

 11.3. Changes in draft-moskowitz-hip-dex-01

42

 11.4. Changes in draft-moskowitz-hip-dex-02

42

 11.5. Changes in draft-moskowitz-hip-dex-03

42

 11.6. Changes in draft-moskowitz-hip-dex-04

43

 12. References .

43

 12.1. Normative References

43

 12.2. Informative References

44

https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-rg-dex-06
https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-dex-00
https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-dex-01
https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-dex-02
https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-dex-03
https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-dex-04

 Appendix A. Password-based two-factor authentication during

 the HIP DEX handshake

46

 Authors' Addresses .

46

1. Introduction

 This document specifies the Host Identity Protocol Diet EXchange

(HIP

 DEX). HIP DEX builds on the Base EXchange (BEX) of the Host

Identity

 Protocol Version 2 (HIPv2) [RFC7401]. HIP DEX preserves the

protocol

 semantics as well as the general packet structure of HIPv2. Hence,

 it is recommended that [RFC7401] is well-understood before reading

 this document.

 The main differences between HIP BEX and HIP DEX are:

 1. Minimum collection of cryptographic primitives to reduce the

 protocol overhead.

 * Static Elliptic Curve Diffie-Hellman key pairs for peer

 authentication and encryption of the session key.

Moskowitz & Hummen Expires July 21, 2016 [Page

3]

https://datatracker.ietf.org/doc/html/rfc7401
https://datatracker.ietf.org/doc/html/rfc7401

Internet-Draft HIP Diet EXchange (DEX) January

2016

 * AES-CTR for symmetric encryption and AES-CMAC for MACing

 function.

 * A simple fold function for HIT generation.

 2. Forfeit of Perfect Forward Secrecy with the dropping of an

 ephemeral Diffie-Hellman key agreement.

 3. Forfeit of digital signatures with the removal of a hash

 function. Reliance on ECDH derived key used in HIP_MAC to prove

 ownership of the private key.

 4. Diffie-Hellman derived key ONLY used to protect the HIP packets.

 A separate secret exchange within the HIP packets creates the

 session key(s).

 5. Optional retransmission strategy tailored to handle the

 potentially extensive processing time of the employed

 cryptographic operations on computationally constrained devices.

 By eliminating the need for public-key signatures and the ephemeral

 DH key agreement, HIP DEX reduces the computation, energy,

 transmission, and memory requirements for public-key cryptography

 (see [LN08]) in the HIPv2 protocol design. Moreover, by dropping

the

 cryptographic hash function, HIP DEX affords a more efficient

 protocol implementation than HIP BEX with respect to the

 corresponding computation and memory requirements. This makes HIP

 DEX especially suitable for constrained devices as defined in

 [RFC7228].

 This document focuses on the protocol specifications related to

 differences between HIP BEX and HIP DEX. Where differences are not

 called out explicitly, the protocol specification of HIP DEX is the

 same as defined in [RFC7401].

1.1. The HIP Diet EXchange (DEX)

 The HIP Diet EXchange is a two-party cryptographic protocol used to

 establish a secure communication context between hosts. The first

 party is called the Initiator and the second party the Responder.

 The four-packet exchange helps to make HIP DEX DoS resilient. The

 Initiator and the Responder exchange their static Elliptic Curve

 Diffie-Hellman (ECDH) keys in the 2nd and 3rd handshake packet. The

 parties then authenticate each other in the 3rd and 4th handshake

 packet based on the ECDH-derived keying material. The Initiator and

 the Responder additionally transmit keying material for the session

 key in these last two handshake packets. This is to prevent overuse

 of the static ECDH-derived keying material. Moreover, the Responder

https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7401

Moskowitz & Hummen Expires July 21, 2016 [Page

4]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 starts a puzzle exchange in the 2nd packet and the Initiator

 completes this exchange in the 3rd packet before the Responder

 performs computationally expensive operations or stores any state

 from the exchange. Given this handshake structure, HIP DEX

 operationally is very similar to HIP BEX. Moreover, the employed

 model is also fairly equivalent to 802.11-2007 [IEEE.802-11.2007]

 Master Key and Pair-wise Transient Key, but handled in a single

 exchange.

 HIP DEX does not have the option to encrypt the Host Identity of the

 Initiator in the 3rd packet. The Responder's Host Identity also is

 not protected. Thus, contrary to HIPv2, there is no attempt at

 anonymity.

 Data packets start to flow after the 4th packet. The 3rd and 4th

HIP

 packets may carry data payload in the future. However, the details

 of this may be defined later.

 An existing HIP association can be updated with the update mechanism

 defined in [RFC7401]. Likewise, the association can be torn down

 with the defined closing mechanism for HIPv2 if it is no longer

 needed. HIP DEX thereby omits the HIP_SIGNATURE parameters of the

 original HIPv2 specification.

 Finally, HIP DEX is designed as an end-to-end authentication and key

 establishment protocol. As such, it can be used in combination with

 Encapsulated Security Payload (ESP) [RFC7402] as well as with other

 end-to-end security protocols. In addition, HIP DEX can also be

used

 as a keying mechanism for security primitives at the MAC layer,

e.g.,

 for IEEE 802.15.4 networks [IEEE.802-15-4.2011]. It is worth

 mentioning that the HIP DEX base protocol does not cover all the

 fine-grained policy control found in Internet Key Exchange Version 2

 (IKEv2) [RFC5996] that allows IKEv2 to support complex gateway

 policies. Thus, HIP DEX is not a replacement for IKEv2.

1.2. Memo Structure

 The rest of this memo is structured as follows. Section 2 defines

 the central keywords, notation, and terms used throughout this

 document. Section 3 defines the structure of the Host Identity and

 its various representations. Section 4 gives an overview of the HIP

 Diet EXchange protocol. Sections 5 and 6 define the detailed packet

 formats and rules for packet processing. Finally, Sections 7, 8,

and

 9 discuss policy, security, and IANA considerations, respectively.

https://datatracker.ietf.org/doc/html/rfc7401
https://datatracker.ietf.org/doc/html/rfc7402
https://datatracker.ietf.org/doc/html/rfc5996

Moskowitz & Hummen Expires July 21, 2016 [Page

5]

Internet-Draft HIP Diet EXchange (DEX) January

2016

2. Terms and Definitions

2.1. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in RFC 2119 [RFC2119].

2.2. Notation

 [x] indicates that x is optional.

 {x} indicates that x is encrypted.

 X(y) indicates that y is a parameter of X.

 <x>i indicates that x exists i times.

 --> signifies "Initiator to Responder" communication (requests).

 <-- signifies "Responder to Initiator" communication (replies).

 | signifies concatenation of information - e.g., X | Y is the

 concatenation of X and Y.

 FOLD (X, K) denotes the partitioning of X into n K-bit segments

and

 the iterative folding of these segments via XOR. I.e., X = x_1,

 x_2, ..., x_n, where x_i is of length K and the last segment x_n

 is padded to length K by appending 0 bits. FOLD then is computed

 as FOLD(X, K) = t_n, where t_i = t_i-1 XOR x_i and t_1 = x_1.

 Ltrunc (M(x), K) denotes the lowest order K bits of the result of

 the MAC function M on the input x.

2.3. Definitions

 HIP Diet Exchange (DEX): The ECDH-based HIP handshake for

 establishing a new HIP association.

 Host Identity (HI): The static ECDH public key that represents the

 identity of the host. In HIP DEX, a host proves ownership of the

 private key belonging to its HI by creating a HIP_MAC with the

 derived ECDH key (c.f. Section 3).

 Host Identity Tag (HIT): A shorthand for the HI in IPv6 format. It

 is generated by folding the HI (c.f. Section 3).

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Moskowitz & Hummen Expires July 21, 2016 [Page

6]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 HIT Suite: A HIT Suite groups all algorithms that are required to

 generate and use an HI and its HIT. In particular, these

 algorithms are: 1) ECDH and 2) FOLD.

 HIP association: The shared state between two peers after

completion

 of the HIP DEX handshake.

 Initiator: The host that initiates the HIP DEX handshake. This

role

 is typically forgotten once the handshake is completed.

 Responder: The host that responds to the Initiator in the HIP DEX

 handshake. This role is typically forgotten once the handshake

is

 completed.

 Responder's HIT Hash Algorithm (RHASH): In HIP DEX, RHASH is

 redefined as CMAC. Still, note that CMAC is a message

 authentication code and not a cryptographic hash function. Thus,

 a mapping from CMAC(x,y) to RHASH(z) must be defined where RHASH

 is used. Moreover, RHASH has different security properties in

HIP

 DEX and is not used for HIT generation.

 Length of the Responder's HIT Hash Algorithm (RHASH_len): The

 natural output length of RHASH in bits.

 CKDF: CMAC-based Key Derivation Function.

3. Host Identity (HI) and its Structure

 In this section, the properties of the Host Identity and Host

 Identity Tag are discussed, and the exact format for them is

defined.

 In HIP, the public key of an asymmetric key pair is used as the Host

 Identity (HI). Correspondingly, the host itself is defined as the

 entity that holds the private key of the key pair. See the HIP

 architecture specification [I-D.ietf-hip-rfc4423-bis] for more

 details on the difference between an identity and the corresponding

 identifier.

 HIP DEX implementations MUST support the Elliptic Curve Diffie-

 Hellman (ECDH) [RFC6090] key exchange for generating the HI as

 defined in Section 5.2.3. No additional algorithms are supported at

 this time.

 A compressed encoding of the HI, the Host Identity Tag (HIT), is

used

 in the handshake packets to represent the HI. The DEX Host Identity

 Tag (HIT) is different from the BEX HIT in two ways:

https://datatracker.ietf.org/doc/html/rfc6090

 o The HIT suite ID MUST only be a DEX HIT ID (see Section 5.2.4).

Moskowitz & Hummen Expires July 21, 2016 [Page

7]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 o The DEX HIT is not generated via a cryptographic hash. Rather,

it

 is a compression of the HI.

 Due to the latter property, an attacker may be able to find a

 collision with a HIT that is in use. Hence, policy decisions such

as

 access control MUST NOT be based solely on the HIT. Instead, the HI

 of a host SHOULD be considered.

 Carrying HIs and HITs in the header of user data packets would

 increase the overhead of packets. Thus, it is not expected that

 these parameters are carried in every packet, but other methods are

 used to map the data packets to the corresponding HIs. In some

 cases, this allows to use HIP DEX without any additional headers in

 the user data packets. For example, if ESP is used to protect data

 traffic, the Security Parameter Index (SPI) carried in the ESP

header

 can be used to map the encrypted data packet to the correct HIP DEX

 association.

3.1. Host Identity Tag (HIT)

 With HIP DEX, the HIT is a 128-bit value - a compression of the HI

 prepended with a specific prefix. There are two advantages of using

 a hashed encoding over the actual variable-sized public key in

 protocols. First, the fixed length of the HIT keeps packet sizes

 manageable and eases protocol coding. Second, it presents a

 consistent format for the protocol, independent of the underlying

 identity technology in use.

 The structure of the HIT is based on RFC 7343 [RFC7343], called

 Overlay Routable Cryptographic Hash Identifiers (ORCHIDs), and

 consists of three parts: first, an IANA assigned prefix to

 distinguish it from other IPv6 addresses. Second, a four-bit

 encoding of the algorithms that were used for generating the HI and

 the compressed representation of the HI. Third, a 96-bit hashed

 representation of the HI. In contrast to HIPv2, HIP DEX employs

HITs

 that are NOT generated by means of a cryptographic hash. Instead,

 the HI is compressed to 96 bits as defined in the following section.

3.2. Generating a HIT from an HI

 The HIT does not follow the exact semantics of an ORCHID as there is

 no hash function in HIP DEX. Still, its structure is strongly

 aligned with the ORCHID design. The same IPv6 prefix used in HIPv2

 is used for HIP DEX. The HIP DEX HIT suite (see Section 9) is used

 for the four bits of the Orchid Generation Algorithm (OGA) field in

 the ORCHID. The hash representation in an ORCHID is replaced with

 FOLD(HI,96).

https://datatracker.ietf.org/doc/html/rfc7343
https://datatracker.ietf.org/doc/html/rfc7343

Moskowitz & Hummen Expires July 21, 2016 [Page

8]

Internet-Draft HIP Diet EXchange (DEX) January

2016

4. Protocol Overview

 This section gives a simplified overview of the HIP DEX protocol

 operation and does not contain all the details of the packet formats

 or the packet processing steps. Section 5 and Section 6 describe

 these aspects in more detail and are normative in case of any

 conflicts with this section. Importantly, the information given in

 this section focuses on the differences between the HIPv2 and HIP

DEX

 protocol specifications.

4.1. Creating a HIP Association

 By definition, the system initiating a HIP Diet EXchange is the

 Initiator, and the peer is the Responder. This distinction is

 typically forgotten once the handshake completes, and either party

 can become the Initiator in future communications.

 The HIP Diet EXchange serves to manage the establishment of state

 between an Initiator and a Responder. The first packet, I1,

 initiates the exchange, and the last three packets, R1, I2, and R2,

 constitute an authenticated Diffie-Hellman [DH76] key exchange for

 the Master Key SA generation. This Master Key SA is used by the

 Initiator and the Responder to wrap secret keying material in the I2

 and R2 packets. Based on the exchanged keying material, the peers

 then derive a Pair-wise Key SA if cryptographic keys are needed,

 e.g., for ESP-based protection of user data.

 The Initiator first sends a trigger packet, I1, to the Responder.

 This packet contains the HIT of the Initiator and the HIT of the

 Responder, if it is known. Moreover, the I1 packet initializes the

 negotiation of the Diffie-Hellman group that is used for generating

 the the Master Key SA. Therefore, the I1 packet contains a list of

 Diffie-Hellman Group IDs supported by the Initiator. Note that in

 some cases it may be possible to replace this trigger packet by some

 other form of a trigger, in which case the protocol starts with the

 Responder sending the R1 packet. In such cases, another mechanism

to

 convey the Initiator's supported DH Groups (e.g., by using a default

 group) must be specified.

 The second packet, R1, starts the actual authenticated Diffie-

Hellman

 key exchange. It contains a puzzle - a cryptographic challenge that

 the Initiator must solve before continuing the exchange. The level

 of difficulty of the puzzle can be adjusted based on level of trust

 with the Initiator, current load, or other factors. In addition,

the

 R1 contains the Responder's Diffie-Hellman parameter and lists of

 cryptographic algorithms supported by the Responder. Based on these

 lists, the Initiator can continue, abort, or restart the handshake

 with a different selection of cryptographic algorithms.

Moskowitz & Hummen Expires July 21, 2016 [Page

9]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 In the I2 packet, the Initiator MUST display the solution to the

 received puzzle. Without a correct solution, the I2 packet is

 discarded. The I2 also contains a key wrap parameter that carries a

 secret keying material of the Initiator. This keying material is

 only half the final session key. The packet is authenticated by the

 sender (Initiator) via a MAC.

 The R2 packet acknowledges the receipt of the I2 packet and

completes

 the handshake. The R2 contains a key wrap parameter that carries

the

 rest of the keying material of the Responder. The packet is

 authenticated by the sender (Responder) via a MAC.

 The HIP DEX handshake is illustrated below. The terms "ENC(DH,x)"

 and "ENC(DH,y)" refer to the random values x and y that are wrapped

 based on the Master Key SA (indicated by ENC and DH). Note that x

 and y each constitute half the final session key material. The

 packets also contain other parameters that are not shown in this

 figure.

 Initiator Responder

 I1:

 --------------------------------->

 remain stateless

 R1: puzzle, HI

 <--------------------------------

 solve puzzle

 perform ECDH

 encrypt x

 I2: solution, HI, ENC(DH,x), mac

 --------------------------------->

 check puzzle

 perform ECDH

 check mac

 decrypt x

 encrypt y

 R2: ENC(DH,y), mac

 <---------------------------------

 check mac

 decrypt y

4.1.1. HIP Puzzle Mechanism

 The purpose of the HIP puzzle mechanism is to protect the Responder

 from a number of denial-of-service threats. It allows the Responder

 to delay state creation until receiving the I2 packet. Furthermore,

 the puzzle allows the Responder to use a fairly cheap calculation to

Moskowitz & Hummen Expires July 21, 2016 [Page

10]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 check that the Initiator is "sincere" in the sense that it has

 churned enough CPU cycles in solving the puzzle.

 The puzzle mechanism enables a Responder to immediately reject an I2

 packet if it does not contain a valid puzzle solution. To verify

the

 puzzle solution, the Responder only has to compute a single CMAC

 operation. After a successful puzzle verification, the Responder

can

 securely create session-specific state and perform CPU-intensive

 operations such as a Diffie-Hellman key generation. By varying the

 difficulty of the puzzle, the Responder can frustrate CPU or memory

 targeted DoS attacks. Under normal network conditions, the puzzle

 difficulty SHOULD be zero, thus effectively reverting the puzzle

 mechanism to a cookie-based DoS protection mechanism. Without

 setting the puzzle difficulty to zero under normal network

 conditions, potentially scarce computation resources at the

Initiator

 would be churned unnecessarily.

 Conceptually, the puzzle mechanism in HIP DEX is the same as in

 HIPv2. Hence, this document refers to Sections 4.1.1 and 4.1.2 in

 [RFC7401] for more detailed information about the employed

mechanism.

 Notably, the only difference between the puzzle mechanism in HIP DEX

 and HIPv2 is that HIP DEX uses CMAC instead of a hash function for

 solving and verifying a puzzle. The implications of this change on

 the puzzle implementation are discussed in Section 6.1.

4.1.2. HIP State Machine

 The HIP DEX state machine has the same states as the HIPv2 state

 machine (see 4.4. in [RFC7401]). However, HIP DEX features a

 retransmission strategy with an optional reception acknowledgement

 for the I2 packet. The goal of this additional acknowledgement is

to

 reduce premature I2 retransmissions in case of devices with low

 computation resources [HWZ13]. As a result, there are minor changes

 regarding the transitions in the HIP DEX state machine. The

 following section documents these differences compared to HIPv2.

4.1.2.1. HIP DEX Retransmission Mechanism

 For the retransmission of I1 and I2 packets, the Initiator adopts

the

 retransmission strategy of HIPv2 (see Section 4.4.3. in [RFC7401]).

 This strategy is based on a timeout that is set to a value larger

 than the worst-case anticipated round-trip time (RTT). For each

 received I1 or I2 packet, the Responder sends an R1 or R2 packet,

 respectively. This design trait enables the Responder to remain

 stateless until the reception and successful processing of the I2

 packet. The Initiator stops retransmitting I1 or I2 packets after

https://datatracker.ietf.org/doc/html/rfc7401
https://datatracker.ietf.org/doc/html/rfc7401
https://datatracker.ietf.org/doc/html/rfc7401#section-4.4.3

 the reception of the corresponding R1 or R2. If the Initiator did

 not receive an R1 packet after I1_RETRIES_MAX tries, it stops I1

Moskowitz & Hummen Expires July 21, 2016 [Page

11]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 retransmissions. Likewise, it stops retransmitting the I2 packet

 after I2_RETRIES_MAX unsuccessful tries.

 For repeatedly received I2 packets, the Responder SHOULD NOT perform

 operations related to the Diffie-Hellman key exchange or the keying

 material wrapped in the ENCRYPTED_KEY parameters. Instead, it

SHOULD

 re-use the previously established state to re-create the

 corresponding R2 packet in order to prevent unnecessary computation

 overhead.

 The potentially high processing time of an I2 packet at a (resource-

 constrained) Responder may cause premature retransmissions if the

 time required for I2 transmission and processing exceeds the RTT-

 based retransmission timeout. Thus, the Initiator should also take

 the processing time of the I2 packet at the Responder into account

 for retransmission purposes. To this end, the Responder MAY notify

 the Initiator about the anticipated delay once the puzzle solution

 was successfully verified and if the remaining I2 packet processing

 incurs a high processing delay. The Responder MAY therefore send a

 NOTIFY packet (see Section 5.3.6. in [RFC7401]) to the Initiator

 before the Responder commences the ECDH operation. The NOTIFY

packet

 serves as an acknowledgement for the I2 packet and consists of a

 NOTIFICATION parameter with Notify Message Type I2_ACKNOWLEDGEMENT

 (see Section 5.2.19. in [RFC7401]). The NOTIFICATION parameter

 contains the anticipated remaining processing time for the I2 packet

 in milliseconds as two-octet Notification Data. This processing

time

 can, e.g., be estimated by measuring the computation time of the

ECDH

 key derivation operation at Responder boot-up. After the I2

 processing has finished, the Responder sends the regular R2 packet.

 When the Initiator receives the NOTIFY packet, it sets the I2

 retransmission timeout to the I2 processing time indicated in the

 NOTIFICATION parameter plus half the RTT-based timeout value. In

 doing so, the Initiator MUST NOT set the retransmission timeout to a

 higher value than allowed by a local policy. This is to prevent

 unauthenticated NOTIFY packets from maliciously delaying the

 handshake beyond a well-defined upper bound in case of a lost R2

 packet. At the same time, this extended retransmission timeout

 enables the Initiator to defer I2 retransmissions until the point in

 time when the Responder should have completed its I2 packet

 processing and the network should have delivered the R2 packet

 according to the employed worst-case estimates.

4.1.2.2. HIP State Processes

 HIP DEX clarifies or introduces the following new transitions.

https://datatracker.ietf.org/doc/html/rfc7401#section-5.3.6
https://datatracker.ietf.org/doc/html/rfc7401#section-5.2.19

Moskowitz & Hummen Expires July 21, 2016 [Page

12]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 System behavior in state I2-SENT, Table 1.

 +---------------------+---

+

 | Trigger | Action

|

 +---------------------+---

+

 | Receive NOTIFY, | Set I2 retransmission timer to value in

|

 | process | I2_ACKNOWLEDGEMENT Notification Data plus

|

 | | 1/2 RTT-based timeout value and stay at

|

 | | I2-SENT

|

 | |

|

 | Timeout | Increment trial counter

|

 | |

|

 | | If counter is less than I2_RETRIES_MAX,

|

 | | send I2, reset timer to RTT-based timeout,

|

 | | and stay at I2-SENT

|

 | |

|

 | | If counter is greater than I2_RETRIES_MAX,

|

 | | go to E-FAILED

|

 +---------------------+---

+

 Table 1: I2-SENT - Waiting to finish the HIP Diet EXchange

4.1.2.3. Simplified HIP State Diagram

 The following diagram shows the major state transitions.

Transitions

 based on received packets implicitly assume that the packets are

 successfully authenticated or processed.

Moskowitz & Hummen Expires July 21, 2016 [Page

13]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 +--+ +----------------------------

+

 recv I1, send R1 | | |

|

 | v v

|

 +--------------+ recv I2, send R2

|

 +----------------| UNASSOCIATED |----------------+

|

 datagram | +--+ +--------------+ |

|

 to send, | | | Alg. not supported, |

|

 send I1 | | | send I1 |

|

 . v | v |

|

 . +---------+ recv I2, send R2 |

|

 +---->| I1-SENT |--------------------------------------+ |

|

 | +---------+ +----------------------+ | |

|

 | | recv R1, | recv I2, send R2 | | |

|

 | v send I2 | v v v

|

 | +---------+ | +---------+

|

 | +--->| I2-SENT |----------+ +--------------| R2-SENT |<---+

|

 | | +---------+ | +---------+ |

|

 | | | |recv R2 | data or| |

|

 | |recv R1, | | | EC timeout| |

|

 | |send I2 +--|-----------------+ | receive I2,|

|

 | | | | +-------------+ | send R2|

|

 | | | +------>| ESTABLISHED |<----------+ |

|

 | | | +-------------+ |

|

 | | | | | | receive I2, send R2 |

|

 | | +------------+ | +-------------------------------+

|

 | | | +-----------+ |

|

 | | | no packet sent/received| +---+ |

|

 | | | for UAL min, send CLOSE| | |timeout |

|

 | | | v v |(UAL+MSL) |

|

 | | | +---------+ |retransmit |

|

 +--|----------|------------------------| CLOSING |-+CLOSE |

|

 | | +---------+ |

|

 | | | | | | |

|

 +----------|-------------------------+ | | +----------------+

|

 | | +-----------+ +------------------|--

+

 | | |recv CLOSE, recv CLOSE_ACK |

|

 | +-------------+ |send CLOSE_ACK or timeout |

|

 | recv CLOSE, | | (UAL+MSL) |

|

 | send CLOSE_ACK v v |

|

 | +--------+ receive I2, send R2 |

|

 +---------------------| CLOSED |------------------------------+

|

 +--------+

|

 ^ | |

|

 recv CLOSE, send CLOSE_ACK| | | timeout (UAL+2MSL)

|

 +-+ +------------------------------------

+

Moskowitz & Hummen Expires July 21, 2016 [Page

14]

Internet-Draft HIP Diet EXchange (DEX) January

2016

4.1.3. HIP DEX Security Associations

 HIP DEX establishes two Security Associations (SA), one for the

 Diffie-Hellman derived key, or Master Key, and one for the session

 key, or Pair-wise Key.

4.1.3.1. Master Key SA

 The Master Key SA is used to authenticate HIP packets and to encrypt

 selected HIP parameters in the HIP DEX packet exchanges. Since only

 little data is protected by this SA, it can be long-lived with no

 need for rekeying.

 The Master Key SA contains the following elements:

 o Source HIT

 o Destination HIT

 o HIP_Encrypt Key

 o HIP_MAC Key

 The HIP_Encrypt and HIP_MAC keys are extracted from the Diffie-

 Hellman derived key as described in Section 6.3. Their length is

 determined by the HIP_CIPHER.

4.1.3.2. Pair-wise Key SA

 The Pair-wise Key SA is used to authenticate and to encrypt user

 data. It is refreshed (or rekeyed) using an UPDATE packet exchange.

 The Pair-wise Key SA elements are defined by the data transform

(e.g.

 ESP_TRANSFORM [RFC7402]).

 The keys for the Pair-wise Key SA are derived based on the wrapped

 keying material exchanged in the ENCRYPTED_KEY parameter (see

 Section 5.2.5) of the I2 and R2 packets. Specifically, the

exchanged

 keying material of the two peers is concatenated. This

concatenation

 forms the input to a Key Derivation Function (KDF). If the data

 transform does not specify its own KDF, the key derivation function

 defined in Section 6.3 is used. Even though this input is randomly

 distributed, a KDF Extract phase may be needed to get the proper

 length for the input to the KDF Expand phase.

https://datatracker.ietf.org/doc/html/rfc7402

Moskowitz & Hummen Expires July 21, 2016 [Page

15]

Internet-Draft HIP Diet EXchange (DEX) January

2016

4.1.4. User Data Considerations

 The User Data Considerations in Section 4.5. of [RFC7401] also apply

 to HIP DEX. There is only one difference between HIPv2 and HIP DEX.

 Loss of state due to system reboot may be a critical performance

 issue for resource-constrained devices. Thus, implementors MAY

 choose to use non-volatile, secure storage for HIP states in order

 for them to survive a system reboot. This will limit state loss

 during reboots to only those situations with an SA timeout.

5. Packet Formats

5.1. Payload Format

 HIP DEX employs the same fixed HIP header and payload structure as

 HIPv2. As such, the specifications in Section 5.1 of [RFC7401] also

 apply to HIP DEX.

5.2. HIP Parameters

 The HIP parameters carry information that is necessary for

 establishing and maintaining a HIP association. For example, the

 peer's public keys as well as the signaling for negotiating ciphers

 and payload handling are encapsulated in HIP parameters. Additional

 information, meaningful for end-hosts or middleboxes, may also be

 included in HIP parameters. The specification of the HIP parameters

 and their mapping to HIP packets and packet types is flexible to

 allow HIP extensions to define new parameters and new protocol

 behavior.

 In HIP packets, HIP parameters are ordered according to their

numeric

 type number and encoded in TLV format.

 HIP DEX reuses the HIP parameters of HIPv2 defined in Section 5.2.

of

 [RFC7401] where possible. Still, HIP DEX further restricts and/or

 extends the following existing parameter types:

 o DH_GROUP_LIST and HOST_ID are restricted to ECC-based suites.

 o HIP_CIPHER is restricted to AES-128-CTR and NULL-ENCRYPT.

 o HIT_SUITE_LIST is limited to the HIT suite ECDH/FOLD.

 o RHASH and RHASH_len are redefined to CMAC for the PUZZLE,

 SOLUTION, and HIP_MAC parameters (see Section 6.1 and

 Section 6.2).

 In addition, HIP DEX introduces the following new parameter:

https://datatracker.ietf.org/doc/html/rfc7401#section-4.5
https://datatracker.ietf.org/doc/html/rfc7401#section-5.1
https://datatracker.ietf.org/doc/html/rfc7401#section-5.2
https://datatracker.ietf.org/doc/html/rfc7401#section-5.2
https://datatracker.ietf.org/doc/html/rfc7401#section-5.2

Moskowitz & Hummen Expires July 21, 2016 [Page

16]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 +------------------+------+----------+------------------------------

+

 | TLV | Type | Length | Data

|

 +------------------+------+----------+------------------------------

+

 | ENCRYPTED_KEY | 643 | variable | Encrypted container for the

|

 | | | | session key exchange

|

 +------------------+------+----------+------------------------------

+

5.2.1. DH_GROUP_LIST

 The DH_GROUP_LIST parameter contains the list of supported DH Group

 IDs of a host. It is defined in Section 5.2.6 of [RFC7401]. With

 HIP DEX, the DH Group IDs are restricted to:

 Group KDF Value

 NIST P-256 [RFC5903] CKDF 7

 NIST P-384 [RFC5903] CKDF 8

 NIST P-521 [RFC5903] CKDF 9

 SECP160R1 [SECG] CKDF 10

 The ECDH groups 7 - 9 are defined in [RFC5903] and [RFC6090]. ECDH

 group 10 is covered in [SECG] and Appendix D of [RFC7401]. Any ECDH

 used with HIP MUST have a co-factor of 1.

5.2.2. HIP_CIPHER

 The HIP_CIPHER parameter contains the list of supported cipher

 algorithms to be used for encrypting the contents of the ENCRYPTED

 and ENCRYPTED_KEY parameters. The HIP_CIPHER parameter is defined

in

 Section 5.2.8 of [RFC7401]. With HIP DEX, the Suite IDs are limited

 to:

 Suite ID Value

 RESERVED 0

 NULL-ENCRYPT 1 ([RFC2410])

 AES-128-CTR 5 ([RFC3686])

 Mandatory implementation: AES-128-CTR. Implementors SHOULD support

 NULL-ENCRYPT ([RFC2410]) for testing/debugging purposes but MUST NOT

 offer or accept this value unless explicitly configured for testing/

 debugging of HIP.

5.2.3. HOST_ID

https://datatracker.ietf.org/doc/html/rfc7401#section-5.2.6
https://datatracker.ietf.org/doc/html/rfc5903
https://datatracker.ietf.org/doc/html/rfc5903
https://datatracker.ietf.org/doc/html/rfc5903
https://datatracker.ietf.org/doc/html/rfc5903
https://datatracker.ietf.org/doc/html/rfc6090
https://datatracker.ietf.org/doc/html/rfc7401#appendix-D
https://datatracker.ietf.org/doc/html/rfc7401#section-5.2.8
https://datatracker.ietf.org/doc/html/rfc2410
https://datatracker.ietf.org/doc/html/rfc3686
https://datatracker.ietf.org/doc/html/rfc2410

 The HOST_ID parameter conveys the Host Identity (HI) along with

 optional information about a host. It is defined in Section 5.2.9

of

 [RFC7401].

Moskowitz & Hummen Expires July 21, 2016 [Page

17]

https://datatracker.ietf.org/doc/html/rfc7401#section-5.2.9
https://datatracker.ietf.org/doc/html/rfc7401#section-5.2.9
https://datatracker.ietf.org/doc/html/rfc7401#section-5.2.9

Internet-Draft HIP Diet EXchange (DEX) January

2016

 HIP DEX uses the public portion of a host's static ECDH key-pair as

 the HI. Correspondingly, HIP DEX limits the HI algorithms to the

 following profile:

 Algorithm profiles Value

 ECDH 11 [RFC6090] (REQUIRED)

 HIP DEX HIs are serialized equally to the ECC-based HIs in HIPv2

(see

 Section 5.2.9. of [RFC7401]). The Group ID of the HIP DEX HI is

 encoded in the "ECC curve" field of the HOST_ID parameter. The

 supported DH Group IDs are defined in Section 5.2.1.

5.2.4. HIT_SUITE_LIST

 The HIT_SUITE_LIST parameter contains a list of the supported HIT

 suite IDs of the Responder. Based on the HIT_SUITE_LIST, the

 Initiator can determine which source HIT Suite IDs are supported by

 the Responder. The HIT_SUITE_LIST parameter is defined in

 Section 5.2.10 of [RFC7401].

 The following HIT Suite IDs are defined for HIP DEX, and the

 relationship between the four-bit ID value used in the OGA ID field

 and the eight-bit encoding within the HIT_SUITE_LIST ID field is

 clarified:

 HIT Suite Four-bit ID Eight-bit encoding

 ECDH/FOLD 8 0x80

 Note that the HIP DEX HIT Suite ID allows the peers to distinguish a

 HIP DEX handshake from a HIPv2 handshake. The Responder MUST

respond

 with a HIP DEX HIT suite ID when the HIT of the Initiator is a HIP

 DEX HIT.

5.2.5. ENCRYPTED_KEY

https://datatracker.ietf.org/doc/html/rfc6090
https://datatracker.ietf.org/doc/html/rfc7401#section-5.2.9
https://datatracker.ietf.org/doc/html/rfc7401#section-5.2.10

Moskowitz & Hummen Expires July 21, 2016 [Page

18]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type | Length |

 +-+

 / Encrypted value /

 / /

 / +-------------------------------+

 / | Padding |

 +-+

 Type 643

 Length length in octets, excluding Type, Length, and

 Padding

 Encrypted The value is encrypted using an encryption

algorithm

 value as defined in the HIP_CIPHER parameter.

 The ENCRYPTED_KEY parameter encapsulates a random value that is

later

 used in the session key creation process (see Section 6.3). This

 random value MUST have a length of at least 64 bit. The puzzle

value

 #I and the puzzle solution #J (see [RFC7401]) are used as the

 initialization vector (IV) for the encryption process. To this end,

 the IV is computed as FOLD(I | J, 128). The AES-CTR counter is a 16

 bit value that is initialized to zero with the first use.

 Once this encryption process is completed, the "encrypted value"

data

 field is ready for inclusion in the Parameter. If necessary,

 additional Padding for 8-byte alignment is then added according to

 the rules of TLV Format in [RFC7401].

5.3. HIP Packets

 HIP DEX uses the same eight basic HIP packets as HIPv2 (see

 Section 5.3 of [RFC7401]). Four of them are for the HIP handshake

 (I1, R1, I2, and R2), one is for updating an association (UPDATE),

 one is for sending notifications (NOTIFY), and two are for closing

 the association (CLOSE and CLOSE_ACK). There are some differences

 regarding the HIP parameters that are included in the handshake

 packets concerning HIP BEX and HIP DEX. This section covers these

 differences for the DEX packets. Packets not discussed here, follow

 the structure defined in [RFC7401].

 An important difference between packets in HIP BEX and HIP DEX is

 that the DIFFIE_HELLMAN and the HIP_SIGNATURE parameters are not

 included in HIP DEX. Thus, the R1 packet is completely unprotected

 and can be spoofed. As a result, negotiation parameters contained

in

 the R1 packet have to be re-included in later, protected packets in

https://datatracker.ietf.org/doc/html/rfc7401
https://datatracker.ietf.org/doc/html/rfc7401
https://datatracker.ietf.org/doc/html/rfc7401#section-5.3
https://datatracker.ietf.org/doc/html/rfc7401

 order to detect and prevent potential downgrading attacks.

Moreover,

Moskowitz & Hummen Expires July 21, 2016 [Page

19]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 the I2, R2, UPDATE, NOTIFY, CLOSE, and CLOSE_ACK packets are not

 covered by a signature and purely rely on the HIP_MAC parameter for

 packet authentication. The processing of these packets is changed

 accordingly.

 In the future, an optional upper-layer payload MAY follow the HIP

 header. The Next Header field in the header indicates if there is

 additional data following the HIP header.

5.3.1. I1 - the HIP Initiator Packet

 The HIP header values for the I1 packet:

 Header:

 Packet Type = 1

 SRC HIT = Initiator's HIT

 DST HIT = Responder's HIT, or NULL

 IP (HIP (DH_GROUP_LIST))

 Valid control bits: none

 The I1 packet contains the fixed HIP header and the Initiator's

 DH_GROUP_LIST. The Initiator's HIT Suite ID MUST be of a HIP DEX

 type as defined in Section 5.2.4.

 Regarding the Responder's HIT, the Initiator may receive this HIT

 either from a DNS lookup of the Responder's FQDN, from some other

 repository, or from a local table. The Responder's HIT also MUST be

 of a HIP DEX type. If the Initiator does not know the Responder's

 HIT, it may attempt to use opportunistic mode by using NULL (all

 zeros) as the Responder's HIT. See Section 4.1.8 of [RFC7401] for

 detailed information about the "HIP Opportunistic Mode".

 As a compression of the employed HIs, the Initiator's and the

 Responder's HITs both determine the DH group ID that must be used in

 order to successfully conclude the triggered handshake. HITs,

 however, only include the OGA ID identifying a HIP DEX HIT. They do

 not include information about the specific DH group ID of the

 corresponding HI. To inform the Responder about its employed and

its

 otherwise supported DH Group IDs, the Initiator therefore includes

 the DH_GROUP_LIST parameter in the I1 packet. This parameter MUST

 include the DH group ID that corresponds to the currently employed

 Initiator HIT as the first list element. With HIP DEX, the

 DH_GROUP_LIST parameter MUST only include ECDH groups defined in

 Section 5.2.1.

https://datatracker.ietf.org/doc/html/rfc7401#section-4.1.8

Moskowitz & Hummen Expires July 21, 2016 [Page

20]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 Since this packet is so easy to spoof even if it were protected, no

 attempt is made to add to its generation or processing cost. As a

 result, the DH_GROUP_LIST in the I1 packet is not protected.

 Implementations MUST be able to handle a storm of received I1

 packets, discarding those with common content that arrive within a

 small time delta.

5.3.2. R1 - the HIP Responder Packet

 The HIP header values for the R1 packet:

 Header:

 Packet Type = 2

 SRC HIT = Responder's HIT

 DST HIT = Initiator's HIT

 IP (HIP ([R1_COUNTER,]

 PUZZLE,

 DH_GROUP_LIST,

 HIP_CIPHER,

 HOST_ID,

 HIT_SUITE_LIST,

 TRANSPORT_FORMAT_LIST,

 [<, ECHO_REQUEST_UNSIGNED >i])

 Valid control bits: A

 If the Responder's HI is an anonymous one, the A control MUST be

set.

 The Initiator's HIT MUST match the one received in the I1 packet if

 the R1 is a response to an I1. If the Responder has multiple HIs,

 the Responder's HIT MUST match the Initiator's request. If the

 Initiator used opportunistic mode, the Responder may select among

its

 HIs as described below. See Section 4.1.8 of [RFC7401] for detailed

 information about the "HIP Opportunistic Mode".

 The R1 packet generation counter is used to determine the currently

 valid generation of puzzles. The value is increased periodically,

 and it is RECOMMENDED that it is increased at least as often as

 solutions to old puzzles are no longer accepted.

 The Puzzle contains a Random value #I and the puzzle difficulty K.

 The difficulty K indicates the number of lower-order bits, in the

 puzzle CMAC result, that MUST be zeros (see [RFC7401]). Responders

 SHOULD set K to zero by default and only increase the puzzle

 difficulty to protect against a DoS attack targeting the HIP DEX

 handshake. A puzzle difficulty of zero effectively turns the puzzle

https://datatracker.ietf.org/doc/html/rfc7401#section-4.1.8
https://datatracker.ietf.org/doc/html/rfc7401

Moskowitz & Hummen Expires July 21, 2016 [Page

21]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 mechanism into a return-routablility test and is strongly encouraged

 during normal operation in order to conserve energy resources as

well

 as to prevent unnecessary handshake delay in case of a resource-

 constrained Initiator.

 The DH_GROUP_LIST parameter contains the Responder's order of

 preference based on which it chose the ECDH key contained in the

 HOST_ID parameter (see below). This allows the Initiator to

 determine whether its own DH_GROUP_LIST in the I1 packet was

 manipulated by an attacker. There is a further risk that the

 Responder's DH_GROUP_LIST was manipulated by an attacker, as the R1

 packet cannot be authenticated in HI DEX. Thus, this parameter is

 repeated in the R2 packet to allow for a final, cryptographically

 secured validation.

 The HIP_CIPHER contains the encryption algorithms supported by the

 Responder to protect the key exchange, in the order of preference.

 All implementations MUST support the AES-CTR [RFC3686].

 The HIT_SUITE_LIST parameter is an ordered list of the Responder's

 supported and preferred HIT Suites. It enables a Responder to

notify

 the Initiator about other available HIT suites than the one used in

 the current handshake. Based on the received HIT_SUITE_LIST, the

 Initiator MAY decide to abort the current handshake and initiate a

 new handshake with a different mutually supported HIT suite. This

 mechanism can, e.g., be used to move from an initial HIP DEX

 handshake to a HIP BEX handshake for peers supporting both protocol

 variants.

 The HOST_ID parameter depends on the received DH_GROUP_LIST

parameter

 and the Responder HIT in the I1 packet. Specifically, if the I1

 contains a Responder HIT, the Responder verifies that this HIT

 matches the required DH group based on the received DH_GROUP_LIST

 parameter. In case of a positive result, the Responder selects the

 corresponding HOST_ID for inclusion in the R1 packet. Likewise, if

 the Responder HIT in the I1 packet is NULL (i.e., during an

 opportunistic handshake), the Responder chooses its HOST_ID

according

 to the Initiator's employed DH group as indicated in the received

 DH_GROUP_LIST parameter and sets the source HIT in the R1 packet

 accordingly. If the Responder however does not support the DH group

 required by the Initiator or if the Responder HIT in the I1 packet

 does not match the required DH group, the Responder selects the

 mutually preferred and supported DH group based on the DH_GROUP_LIST

 parameter in the I1 packet. The Responder then includes the

 corresponding ECDH key in the HOST_ID parameter. This parameter

also

 indicates the selected DH group. Moreover, the Responder sets the

 source HIT in the R2 packet based on the destination HIT from the I1

https://datatracker.ietf.org/doc/html/rfc3686

 packet. Based on the deviating DH group ID in the HOST_ID

parameter,

Moskowitz & Hummen Expires July 21, 2016 [Page

22]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 the Initiator then SHOULD abort the current handshake and initiate a

 new handshake with the mutually supported DH group as far as local

 policies (see Section 7) permit.

 The TRANSPORT_FORMAT_LIST parameter is an ordered list of the

 Responder's supported and preferred transport format types. The

list

 allows the Initiator and the Responder to agree on a common type for

 payload protection. Currently, the only transport format defined is

 IPsec ESP [RFC7402].

 The ECHO_REQUEST_UNSIGNED parameters contain data that the sender

 wants to receive unmodified in the corresponding response packet in

 the ECHO_RESPONSE_UNSIGNED parameter. The R1 packet may contain

zero

 or more ECHO_REQUEST_UNSIGNED parameters.

5.3.3. I2 - the Second HIP Initiator Packet

 The HIP header values for the I2 packet:

 Header:

 Type = 3

 SRC HIT = Initiator's HIT

 DST HIT = Responder's HIT

 IP (HIP ([R1_COUNTER,]

 SOLUTION,

 HIP_CIPHER,

 ENCRYPTED_KEY,

 HOST_ID,

 TRANSPORT_FORMAT_LIST,

 HIP_MAC,

 [<, ECHO_RESPONSE_UNSIGNED>i)])

 Valid control bits: A

 The HITs MUST match the ones used in the R1 packet.

 If the Initiator's HI is an anonymous one, the A control bit MUST be

 set.

 If present in the R1 packet, the Initiator MUST include an

unmodified

 copy of the R1_COUNTER parameter into the I2 packet.

 The Solution contains the Random #I from the R1 packet and the

 computed #J value. The low-order #K bits of the RHASH(I | ... | J)

 MUST be zero.

https://datatracker.ietf.org/doc/html/rfc7402

Moskowitz & Hummen Expires July 21, 2016 [Page

23]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 The HIP_CIPHER contains the single encryption transform selected by

 the Initiator that it uses to encrypt the ENCRYPTED and

ENCRYPTED_KEY

 parameters. The chosen cipher MUST correspond to one of the ciphers

 offered by the Responder in the R1. All implementations MUST

support

 the AES-CTR transform [RFC3686].

 The HOST_ID parameter contains the Initiator HI corresponding to the

 Initiator HIT.

 The ENCRYPTED_KEY parameter contains an Initiator generated random

 value that MUST be uniformly distributed. This random value is

 encrypted with the Master Key SA using the HIP_CIPHER encryption

 algorithm.

 The ECHO_RESPONSE_UNSIGNED parameter(s) contain the unmodified

Opaque

 data copied from the corresponding echo request parameter(s). This

 parameter can also be used for two-factor password authentication as

 shown in Appendix A.

 The TRANSPORT_FORMAT_LIST parameter contains the single transport

 format type selected by the Initiator. The chosen type MUST

 correspond to one of the types offered by the Responder in the R1

 packet. Currently, the only transport format defined is the ESP

 transport format [RFC7402].

 The MAC is calculated over the whole HIP envelope, excluding any

 parameters after the HIP_MAC parameter as described in Section 6.2.

 The Responder MUST validate the HIP_MAC parameter.

5.3.4. R2 - the Second HIP Responder Packet

 The HIP header values for the R2 packet:

 Header:

 Packet Type = 4

 SRC HIT = Responder's HIT

 DST HIT = Initiator's HIT

 IP (HIP (DH_GROUP_LIST,

 HIP_CIPHER,

 ENCRYPTED_KEY,

 HIT_SUITE_LIST,

 TRANSPORT_FORMAT_LIST,

 HIP_MAC)

 Valid control bits: none

 The HITs used MUST match the ones used in the I2 packet.

https://datatracker.ietf.org/doc/html/rfc3686
https://datatracker.ietf.org/doc/html/rfc7402

Moskowitz & Hummen Expires July 21, 2016 [Page

24]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 The Responder repeats the DH_GROUP_LIST, HIP_CIPHER, HIT_SUITE_LIST,

 and TRANSPORT_FORMAT_LIST parameters in the R2 packet. These

 parameters MUST be the same as included in the R1 packet. The

 parameter are re-included here because the R2 packet is MACed and

 thus cannot be altered by an attacker. For verification purposes,

 the Initiator re-evaluates the selected suites and compares the

 results against the chosen ones. If the re-evaluated suites do not

 match the chosen ones, the Initiator acts based on its local policy.

 The ENCRYPTED_KEY parameter contains an Responder generated random

 value that MUST be uniformly distributed. This random value is

 encrypted with the Master Key SA using the HIP_CIPHER encryption

 algorithm.

 The MAC is calculated over the whole HIP envelope, excluding any

 parameters after the HIP_MAC, as described in Section 6.2. The

 Initiator MUST validate the HIP_MAC parameter.

5.4. ICMP Messages

 When a HIP implementation detects a problem with an incoming packet,

 and it either cannot determine the identity of the sender of the

 packet or does not have any existing HIP association with the sender

 of the packet, it MAY respond with an ICMP packet. Any such reply

 MUST be rate-limited as described in [RFC4443]. In most cases, the

 ICMP packet has the Parameter Problem type (12 for ICMPv4, 4 for

 ICMPv6), with the Pointer field pointing to the field that caused

the

 ICMP message to be generated. The problem cases specified in

 Section 5.4. of [RFC7401] also apply to HIP DEX.

6. Packet Processing

 Due to the adopted protocol semantics and the inherited general

 packet structure, the packet processing in HIP DEX only differs from

 HIPv2 in very few places. Here, we focus on these differences and

 refer to Section 6 in [RFC7401] otherwise.

 The processing of outgoing and incoming application data remains the

 same as in HIP BEX (see Sections 6.1 and 6.2 in [RFC7401]).

6.1. Solving the Puzzle

 The procedures for solving and verifying a puzzle in HIP DEX are

 strongly based on the corresponding procedures in HIPv2. The only

 exceptions are that HIP DEX does not use pre-computation of R1

 packets and that RHASH is set to CMAC. As a result, the pre-

 computation step in in Section 6.3 of [RFC7401] is skipped in HIP

 DEX.

https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc7401#section-5.4
https://datatracker.ietf.org/doc/html/rfc7401#section-6
https://datatracker.ietf.org/doc/html/rfc7401
https://datatracker.ietf.org/doc/html/rfc7401#section-6.3

Moskowitz & Hummen Expires July 21, 2016 [Page

25]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 Moreover, the Initiator solves a puzzle by computing:

 Ltrunc(CMAC(I, HIT-I | HIT-R | J), K) == 0

 Similarly, the Responder verifies a puzzle by computing:

 V := Ltrunc(CMAC(I, HIT-I | HIT-R | J), K)

 Apart from these modifications, the procedures defined in

Section 6.3

 of [RFC7401] also apply for HIP DEX.

6.2. HIP_MAC Calculation and Verification

 The following subsections define the actions for processing the

 HIP_MAC parameter.

6.2.1. CMAC Calculation

 The HIP_MAC calculation uses RHASH, i.e., CMAC, as the underlying

 cryptographic function. The scope of the calculation for HIP_MAC

is:

 CMAC: { HIP header | [Parameters] }

 where Parameters include all HIP parameters of the packet that is

 being calculated with Type values ranging from 1 to (HIP_MAC's Type

 value - 1) and exclude parameters with Type values greater or equal

 to HIP_MAC's Type value.

 During HIP_MAC calculation, the following applies:

 o In the HIP header, the Checksum field is set to zero.

 o In the HIP header, the Header Length field value is calculated to

 the beginning of the HIP_MAC parameter.

 The parameter order is described in Section 5.2.1 of [RFC7401].

 The CMAC calculation and verification process is as follows:

 Packet sender:

 1. Create the HIP packet, without the HIP_MAC or any other

parameter

 with greater Type value than the HIP_MAC parameter has.

 2. Calculate the Header Length field in the HIP header.

 3. Compute the CMAC using either HIP-gl or HIP-lg integrity key

 retrieved from KEYMAT as defined in Section 6.3.

https://datatracker.ietf.org/doc/html/rfc7401#section-6.3
https://datatracker.ietf.org/doc/html/rfc7401#section-6.3
https://datatracker.ietf.org/doc/html/rfc7401#section-5.2.1

Moskowitz & Hummen Expires July 21, 2016 [Page

26]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 4. Add the HIP_MAC parameter to the packet and any parameter with

 greater Type value than the HIP_MAC's that may follow.

 5. Recalculate the Length field in the HIP header.

 Packet receiver:

 1. Verify the HIP header Length field.

 2. Remove the HIP_MAC parameter, as well as all other parameters

 that follow it with greater Type value, saving the contents if

 they will be needed later.

 3. Recalculate the HIP packet length in the HIP header and clear

the

 Checksum field (set it to all zeros).

 4. Compute the CMAC using either HIP-gl or HIP-lg integrity key as

 defined in Section 6.3 and verify it against the received CMAC.

 5. Set Checksum and Header Length fields in the HIP header to

 original values. Note that the Checksum and Length fields

 contain incorrect values after this step.

6.3. HIP DEX KEYMAT Generation

 The HIP DEX KEYMAT process is used to derive the keys for the Master

 Key SA as well as for the Pair-wise Key SA. The keys for the Master

 Key SA are based from the Diffie-Hellman derived key, Kij, produced

 during the HIP DEX handshake. The Initiator generates Kij during

the

 creation of the I2 packet and the Responder generates Kij once it

 receives the I2 packet. Hence, I2, R2, UPDATE, CLOSE, and CLOSE_ACK

 packets can contain authenticated and/or encrypted information.

 The keys of the Pair-wise Key SA are not directly used in the HIP

DEX

 handshake. Instead, these keys are made available as payload

 protection keys. Some payload protection mechanisms have their own

 Key Derivation Function, and if so this mechanism SHOULD be used.

 Otherwise, the HIP DEX KEYMAT process MUST be used to derive the

keys

 of the Pair-wise Key SA based on the concatenation of the random

 values that are contained in the exchanged ENCRYPTED_KEY parameters.

 The HIP DEX KEYMAT process consists of two components, CKDF-Extract

 and CKDF-Expand. The Extract function compresses a non-uniformly

 distributed key, as is the output of a Diffie-Hellman key

derivation,

 to extract the key entropy into a fixed length output. The Expand

 function takes either the output of the Extract function or directly

 uses a uniformly distributed key and expands the length of the key,

 repeatedly distributing the key entropy, to produce the keys needed.

Moskowitz & Hummen Expires July 21, 2016 [Page

27]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 The key derivation for the Master Key SA employs both the Extract

and

 Expand phases, whereas the Pair-wise Key SA MAY need both the

Extract

 and Expand phases if the key is longer than 128 bits. Otherwise, it

 only requires the Expand phase.

 The CKDF-Extract function is the following operation:

 CKDF-Extract(I, IKM, info) -> PRK

 where

 I Random #I from the PUZZLE parameter

 IKM Input keying material, i.e., either the Diffie-

Hellman

 derived key or the concatenation of the random values

 of the ENCRYPTED_KEY parameters in the same order as

 the HITs with sort(HIT-I | HIT-R)

 info sort(HIT-I | HIT-R) | "CKDF-Extract"

 PRK a pseudorandom key (of RHASH_len/8 octets)

 | denotes the concatenation

 The pseudorandom key PRK is calculated as follows:

 PRK = CMAC(I, IKM | info)

 The CKDF-Expand function is the following operation:

Moskowitz & Hummen Expires July 21, 2016 [Page

28]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 CKDF-Expand(PRK, info, L) -> OKM

 where

 PRK a pseudorandom key of at least RHASH_len/8 octets

 (either the output from the extract step or the

 concatenation of the random values of the

 ENCRYPTED_KEY parameters in the same order as the

 HITs with sort(HIT-I | HIT-R))

 info sort(HIT-I | HIT-R) | "CKDF-Expand"

 L length of output keying material in octets

 (<= 255*RHASH_len/8)

 | denotes the concatenation

 The output keying material OKM is calculated as follows:

 N = ceil(L/RHASH_len/8)

 T = T(1) | T(2) | T(3) | ... | T(N)

 OKM = first L octets of T

 where

 T(0) = empty string (zero length)

 T(1) = CMAC(PRK, T(0) | info | 0x01)

 T(2) = CMAC(PRK, T(1) | info | 0x02)

 T(3) = CMAC(PRK, T(2) | info | 0x03)

 ...

 (where the constant concatenated to the end of each T(n) is a

 single octet.)

 sort(HIT-I | HIT-R) is defined as the network byte order

 concatenation of the two HITs, with the smaller HIT preceding the

 larger HIT, resulting from the numeric comparison of the two HITs

 interpreted as positive (unsigned) 128-bit integers in network byte

 order.

 The initial keys are drawn sequentially in the order that is

 determined by the numeric comparison of the two HITs, with the

 comparison method described in the previous paragraph. HOST_g

 denotes the host with the greater HIT value, and HOST_l the host

with

 the lower HIT value.

 The drawing order for initial keys:

 1. HIP-gl encryption key for HOST_g's outgoing HIP packets

 2. HIP-gl integrity (CMAC) key for HOST_g's outgoing HIP packets

Moskowitz & Hummen Expires July 21, 2016 [Page

29]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 3. HIP-lg encryption key for HOST_l's outgoing HIP packets

 4. HIP-lg integrity (CMAC) key for HOST_l's outgoing HIP packets

 The number of bits drawn for a given algorithm is the "natural" size

 of the keys. For the mandatory algorithms, the following sizes

 apply:

 AES 128 or 256 bits

 If other key sizes are used, they must be treated as different

 encryption algorithms and defined separately.

6.4. Initiation of a HIP Diet EXchange

 The initiation of a HIP DEX handshake proceeds as described in

 Section 6.6 of [RFC7401]. The I1 packet contents are specified in

 Section 5.3.1.

6.5. Processing Incoming I1 Packets

 I1 packets in HIP DEX are handled almost identical to HIPv2 (see

 Section 6.7 of [RFC7401]). The main differences are that the

 Responder SHOULD select a HIP DEX HIT Suite in the R1 response.

 Moreover, as R1 packets are neither covered by a signature nor incur

 the overhead of generating an ephemeral Diffie-Hellman key-pair,

pre-

 computation of an R1 is only marginally beneficial, but would incur

 additional memory resources at the Responder. Hence, the R1 pre-

 computation SHOULD be omitted in HIP DEX.

 Correspondingly, the modified conceptual processing rules for

 responding to an I1 packet are as follows:

 1. The Responder MUST check that the Responder's HIT in the

received

 I1 packet is either one of its own HITs or NULL. Otherwise, it

 must drop the packet.

 2. If the Responder is in ESTABLISHED state, the Responder MAY

 respond to this with an R1 packet, prepare to drop an existing

 HIP security association with the peer, and stay at ESTABLISHED

 state.

 3. If the Responder is in I1-SENT state, it MUST make a comparison

 between the sender's HIT and its own (i.e., the receiver's) HIT.

 If the sender's HIT is greater than its own HIT, it should drop

 the I1 packet and stay at I1-SENT. If the sender's HIT is

 smaller than its own HIT, it SHOULD send the R1 packet and stay

https://datatracker.ietf.org/doc/html/rfc7401#section-6.6
https://datatracker.ietf.org/doc/html/rfc7401#section-6.7

Moskowitz & Hummen Expires July 21, 2016 [Page

30]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 at I1-SENT. The HIT comparison is performed as defined in

 Section 6.3.

 4. If the implementation chooses to respond to the I1 packet with

an

 R1 packet, it creates a new R1 according to the format described

 in Section 5.3.2. It chooses the HI based on the destination

HIT

 and the DH_GROUP_LIST in the I1 packet. If the implementation

 does not support the DH group required by the Initiator or if

the

 destination HIT in the I1 packet does not match the required DH

 group, it selects the mutually preferred and supported DH group

 based on the DH_GROUP_LIST parameter in the I1 packet. The

 implementation includes the corresponding ECDH public key in the

 HOST_ID parameter. If no suitable DH Group ID was contained in

 the DH_GROUP_LIST in the I1 packet, it sends an R1 packet with

 any suitable ECDH public key.

 5. If the received Responder's HIT in the I1 packet is not NULL,

the

 Responder's in the R1 packet HIT MUST match the destination HIT

 in the I1 packet. Otherwise, the Responder MUST select a HIT

 with the same HIT Suite as the Initiator's HIT. If this HIT

 Suite is not supported by the Responder, it SHOULD select a

 REQUIRED HIT Suite from Section 5.2.10 of [RFC7401], which is

 currently RSA/DSA/SHA-256. Other than that, selecting the HIT

is

 a local policy matter.

 6. The Responder expresses its supported HIP transport formats in

 the TRANSPORT_FORMAT_LIST as described in Section 5.2.11 of

 [RFC7401]. The Responder MUST provide at least one payload

 transport format type.

 7. The Responder sends the R1 packet to the source IP address of

the

 I1 packet.

 Note that only steps 4 and 5 have been changed with regard to the

 processing rules of HIPv2. The considerations about R1 management

 (except pre-computation) and malformed I1 packets in Sections 6.7.1

 and 6.7.2 of [RFC7401] likewise apply to HIP DEX.

6.6. Processing Incoming R1 Packets

 R1 packets in HIP DEX are handled identically to HIPv2 (see

 Section 6.8 in [RFC7401]) with the following exceptions: HIP DEX

uses

 ECDH public keys as HIs and does not employ signatures.

 The modified conceptual processing rules for responding to an R1

https://datatracker.ietf.org/doc/html/rfc7401#section-5.2.10
https://datatracker.ietf.org/doc/html/rfc7401#section-5.2.11
https://datatracker.ietf.org/doc/html/rfc7401#section-5.2.11
https://datatracker.ietf.org/doc/html/rfc7401
https://datatracker.ietf.org/doc/html/rfc7401#section-6.8

 packet are as follows:

Moskowitz & Hummen Expires July 21, 2016 [Page

31]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 1. A system receiving an R1 MUST first check to see if it has sent

 an I1 packet to the originator of the R1 packet (i.e., it has a

 HIP association that is in state I1-SENT and that is associated

 with the HITs in the R1). Unless the I1 packet was sent in

 opportunistic mode (see Section 4.1.8 of [RFC7401]), the IP

 addresses in the received R1 packet SHOULD be ignored by the R1

 processing and, when looking up the right HIP association, the

 received R1 packet SHOULD be matched against the associations

 using only the HITs. If a match exists, the system should

 process the R1 packet as described below.

 2. Otherwise, if the system is in any state other than I1-SENT or

 I2-SENT with respect to the HITs included in the R1 packet, it

 SHOULD silently drop the R1 packet and remain in the current

 state.

 3. If the HIP association state is I1-SENT or I2-SENT, the

received

 Initiator's HIT MUST correspond to the HIT used in the original

 I1 packet. Also, the Responder's HIT MUST correspond to the

one

 used in the I1 packet, unless this packet contained a NULL HIT.

 4. If the HIP association state is I1-SENT, and multiple valid R1

 packets are present, the system MUST select from among the R1

 packets with the largest R1 generation counter.

 5. The system MUST check that the Initiator's HIT Suite is

 contained in the HIT_SUITE_LIST parameter in the R1 packet

 (i.e., the Initiator's HIT Suite is supported by the

Responder).

 If the HIT Suite is supported by the Responder, the system

 proceeds normally. Otherwise, the system MAY stay in state

 I1-SENT and restart the HIP DEX handshake by sending a new I1

 packet with an Initiator HIT that is supported by the Responder

 and hence is contained in the HIT_SUITE_LIST in the R1 packet.

 The system MAY abort the handshake if no suitable source HIT is

 available. The system SHOULD wait for an acceptable time span

 to allow further R1 packets with higher R1 generation counters

 or different HIT and HIT Suites to arrive before restarting or

 aborting the HIP DEX handshake.

 6. The system MUST check that the DH Group ID in the HOST_ID

 parameter in the R1 matches the first DH Group ID in the

 Responder's DH_GROUP_LIST in the R1 packet, and also that this

 Group ID corresponds to a value that was included in the

 Initiator's DH_GROUP_LIST in the I1 packet. If the DH Group ID

 of the HOST_ID parameter does not express the Responder's best

 choice, the Initiator can conclude that the DH_GROUP_LIST in

the

 I1 or R1 packet was adversely modified. In such a case, the

 Initiator MAY send a new I1 packet; however, it SHOULD NOT

https://datatracker.ietf.org/doc/html/rfc7401#section-4.1.8

Moskowitz & Hummen Expires July 21, 2016 [Page

32]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 change its preference in the DH_GROUP_LIST in the new I1

packet.

 Alternatively, the Initiator MAY abort the HIP DEX handshake.

 Moreover, if the DH Group ID indicated in the HOST_ID parameter

 does not match the DH Group ID of the HI employed by the

 Initiator, the system SHOULD wait for an acceptable time span

to

 allow further R1 packets with different DH Group IDs to arrive

 before restarting or aborting the HIP DEX handshake. When

 restarting the handshake, the Initiator MUST consult local

 policies (see Section 7) regarding the use of another, mutually

 supported DH group for the subsequent handshake with the

 Responder.

 7. If the HIP association state is I2-SENT, the system MAY re-

enter

 state I1-SENT and process the received R1 packet if it has a

 larger R1 generation counter than the R1 packet responded to

 previously.

 8. The R1 packet may have the A-bit set - in this case, the system

 MAY choose to refuse it by dropping the R1 packet and returning

 to state UNASSOCIATED. The system SHOULD consider dropping the

 R1 packet only if it used a NULL HIT in the I1 packet. If the

 A-bit is set, the Responder's HIT is anonymous and SHOULD NOT

be

 stored permanently.

 9. The system SHOULD attempt to validate the HIT against the

 received Host Identity by using the received Host Identity to

 construct a HIT and verify that it matches the Sender's HIT.

 10. The system MUST store the received R1 generation counter for

 future reference.

 11. The system attempts to solve the puzzle in the R1 packet. The

 system MUST terminate the search after exceeding the remaining

 lifetime of the puzzle. If the puzzle is not successfully

 solved, the implementation MAY either resend the I1 packet

 within the retry bounds or abandon the HIP base exchange.

 12. The system computes standard Diffie-Hellman keying material

 according to the public value and Group ID provided in the

 HOST_ID parameter. The Diffie-Hellman keying material Kij is

 used for key extraction as specified in Section 6.3.

 13. The system selects the HIP_CIPHER ID from the choices presented

 in the R1 packet and uses the selected values subsequently when

 generating and using encryption keys, and when sending the I2

 packet. If the proposed alternatives are not acceptable to the

 system, it may either resend an I1 packet within the retry

 bounds or abandon the HIP base exchange.

Moskowitz & Hummen Expires July 21, 2016 [Page

33]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 14. The system chooses one suitable transport format from the

 TRANSPORT_FORMAT_LIST and includes the respective transport

 format parameter in the subsequent I2 packet.

 15. The system initializes the remaining variables in the

associated

 state, including Update ID counters.

 16. The system prepares and sends an I2 packet as described in

 Section 5.3.3.

 17. The system SHOULD start a timer whose timeout value SHOULD be

 larger than the worst-case anticipated RTT, and MUST increment

a

 trial counter associated with the I2 packet. The sender SHOULD

 retransmit the I2 packet upon a timeout and restart the timer,

 up to a maximum of I2_RETRIES_MAX tries.

 18. If the system is in state I1-SENT, it SHALL transition to state

 I2-SENT. If the system is in any other state, it remains in

the

 current state.

 Note that step 4 from the original processing rules of HIPv2

 (signature verification) has been removed in the above processing

 rules for HIP DEX. Moreover, step 7 of the HIPv2 processing rules

 has been adapted to account for the fact that HIP DEX uses ECDH

 public keys as HIs. The considerations about malformed R1 packets

in

 Sections 6.8.1 of [RFC7401] also apply to HIP DEX.

6.7. Processing Incoming I2 Packets

 The processing of I2 packets follows similar rules as HIPv2 (see

 Section 6.9 of [RFC7401]). The main differences to HIPv2 are that

 HIP DEX introduces a new session key exchange via the ENCRYPTED_KEY

 parameter as well as an I2 reception acknowledgement for

 retransmission purposes. Moreover, with HIP DEX the Initiator is

 responsible for triggering retransmissions, whereas the Responder

 merely replies to received I2 packets.

 The modified HIP DEX conceptual processing rules for responding to

an

 I2 packet are:

 1. The system MAY perform checks to verify that the I2 packet

 corresponds to a recently sent R1 packet. Such checks are

 implementation dependent. See Appendix A in [RFC7401] for a

 description of an example implementation.

 2. The system MUST check that the Responder's HIT corresponds to

 one of its own HITs and MUST drop the packet otherwise.

https://datatracker.ietf.org/doc/html/rfc7401
https://datatracker.ietf.org/doc/html/rfc7401#section-6.9
https://datatracker.ietf.org/doc/html/rfc7401#appendix-A

Moskowitz & Hummen Expires July 21, 2016 [Page

34]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 3. The system MUST further check that the Initiator's HIT Suite is

 supported. The Responder SHOULD silently drop I2 packets with

 unsupported Initiator HITs.

 4. If the system's state machine is in the R2-SENT state, the

 system MUST check to see if the newly received I2 packet is

 similar to the one that triggered moving to R2-SENT. If so, it

 MUST retransmit a previously sent R2 packet and reset the

 R2-SENT timer. The system SHOULD re-use the previously

 established state to re-create the corresponding R2 packet in

 order to prevent unnecessary computation overhead.

 5. If the system's state machine is in the I2-SENT state, the

 system MUST make a comparison between its local and sender's

 HITs (similarly as in Section 6.3). If the local HIT is

smaller

 than the sender's HIT, it should drop the I2 packet, use the

 peer Diffie-Hellman key, ENCRYPTED_KEY keying material and

nonce

 #I from the R1 packet received earlier, and get the local

 Diffie-Hellman key, ENCRYPTED_KEY keying material, and nonce #J

 from the I2 packet sent to the peer earlier. Otherwise, the

 system should process the received I2 packet and drop any

 previously derived Diffie-Hellman keying material Kij and

 ENCRYPTED_KEY keying material it might have generated upon

 sending the I2 packet previously. The peer Diffie-Hellman key,

 ENCRYPTED_KEY, and the nonce #J are taken from the just arrived

 I2 packet. The local Diffie-Hellman key, ENCRYPTED_KEY keying

 material, and the nonce #I are the ones that were sent earlier

 in the R1 packet.

 6. If the system's state machine is in the I1-SENT state, and the

 HITs in the I2 packet match those used in the previously sent

I1

 packet, the system uses this received I2 packet as the basis

for

 the HIP association it was trying to form, and stops

 retransmitting I1 packets (provided that the I2 packet passes

 the additional checks below).

 7. If the system's state machine is in any state other than

 R2-SENT, the system SHOULD check that the echoed R1 generation

 counter in the I2 packet is within the acceptable range if the

 counter is included. Implementations MUST accept puzzles from

 the current generation and MAY accept puzzles from earlier

 generations. If the generation counter in the newly received

I2

 packet is outside the accepted range, the I2 packet is stale

 (and perhaps replayed) and SHOULD be dropped.

 8. The system MUST validate the solution to the puzzle as

described

 in Section 6.1.

Moskowitz & Hummen Expires July 21, 2016 [Page

35]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 9. The I2 packet MUST have a single value in the HIP_CIPHER

 parameter, which MUST match one of the values offered to the

 Initiator in the R1 packet.

 10. The system MUST derive Diffie-Hellman keying material Kij based

 on the public value and Group ID in the HOST_ID parameter.

This

 keying material is used to derive the keys of the Master Key SA

 as described in Section 6.3. If the Diffie-Hellman Group ID is

 unsupported, the I2 packet is silently dropped. If the

 processing time for the derivation of the Diffie-Hellman keying

 material Kij is likely to cause premature I2 retransmissions by

 the Initiator, the system MAY send a NOTIFY packet before

 starting the key derivation process. The NOTIFY packet

contains

 a NOTIFICATION parameter with Notify Message Type

 I2_ACKNOWLEDGEMENT. The NOTIFICATION parameter indicates the

 anticipated remaining processing time for the I2 packet in

 milliseconds as two-octet Notification Data.

 11. The implementation SHOULD also verify that the Initiator's HIT

 in the I2 packet corresponds to the Host Identity sent in the

I2

 packet. (Note: some middleboxes may not be able to make this

 verification.)

 12. The system MUST process the TRANSPORT_FORMAT_LIST parameter.

 Other documents specifying transport formats (e.g., [RFC7402])

 contain specifications for handling any specific transport

 selected.

 13. The system MUST verify the HIP_MAC according to the procedures

 in Section 6.2.

 14. If the checks above are valid, then the system proceeds with

 further I2 processing; otherwise, it discards the I2 and its

 state machine remains in the same state.

 15. The I2 packet may have the A-bit set - in this case, the system

 MAY choose to refuse it by dropping the I2 and the state

machine

 returns to state UNASSOCIATED. If the A-bit is set, the

 Initiator's HIT is anonymous and should not be stored

 permanently.

 16. The system MUST decrypt the keying material from the

 ENCRYPTED_KEY parameter. This keying material is a partial

 input to the key derivation process for the Pair-wise Key SA

 (see Section 6.3).

 17. The system initializes the remaining variables in the

associated

https://datatracker.ietf.org/doc/html/rfc7402

 state, including Update ID counters.

Moskowitz & Hummen Expires July 21, 2016 [Page

36]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 18. Upon successful processing of an I2 packet when the system's

 state machine is in state UNASSOCIATED, I1-SENT, I2-SENT, or

 R2-SENT, an R2 packet is sent as described in Section 5.3.4 and

 the system's state machine transitions to state R2-SENT.

 19. Upon successful processing of an I2 packet when the system's

 state machine is in state ESTABLISHED, the old HIP association

 is dropped and a new one is installed, an R2 packet is sent as

 described in Section 5.3.4, and the system's state machine

 transitions to R2-SENT.

 20. Upon the system's state machine transitioning to R2-SENT, the

 system starts a timer. The state machine transitions to

 ESTABLISHED if some data has been received on the incoming HIP

 association, or an UPDATE packet has been received (or some

 other packet that indicates that the peer system's state

machine

 has moved to ESTABLISHED). If the timer expires (allowing for

a

 maximal amount of retransmissions of I2 packets), the state

 machine transitions to ESTABLISHED.

 Note that steps 11 (encrypted HOST_ID) and 15 (signature

 verification) from the original processing rules of HIPv2 have been

 removed in the above processing rules for HIP DEX. Moreover, step

10

 of the HIPv2 processing rules has been adapted to account for

 optional extension of the retransmission mechanism. Step 16 has

been

 added to the processing rules. The considerations about malformed

I2

 packets in Sections 6.9.1 of [RFC7401] also apply to HIP DEX.

6.8. Processing Incoming R2 Packets

 R2 packets in HIP DEX are handled identically to HIPv2 (see

 Section 6.10 of [RFC7401]) with the following exceptions: HIP DEX

 introduces a new session key exchange via the ENCRYPTED_KEY

parameter

 and does not employ signatures.

 The modified conceptual processing rules for responding to an R2

 packet are as follows:

 1. If the system is in any other state than I2-SENT, the R2 packet

 is silently dropped.

 2. The system MUST verify that the HITs in use correspond to the

 HITs that were received in the R1 packet that caused the

 transition to the I2-SENT state.

 3. The system MUST verify the HIP_MAC according to the procedures

https://datatracker.ietf.org/doc/html/rfc7401
https://datatracker.ietf.org/doc/html/rfc7401#section-6.10

in

 Section 6.2.

Moskowitz & Hummen Expires July 21, 2016 [Page

37]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 4. The system MUST re-evaluate the DH_GROUP_LIST, HIP_CIPHER,

 HIT_SUITE_LIST, and TRANSPORT_FORMAT_LIST parameters in the R2

 packet and compare the results against the chosen suites.

 5. If any of the checks above fail, there is a high probability of

 an ongoing man-in-the-middle or other security attack. The

 system SHOULD act accordingly, based on its local policy.

 6. The system MUST decrypt the keying material from the

 ENCRYPTED_KEY parameter. This keying material is a partial

input

 to the key derivation process for the Pair-wise Key SA (see

 Section 6.3).

 7. Upon successful processing of the R2 packet, the state machine

 transitions to state ESTABLISHED.

 Note that step 4 (signature verification) from the original

 processing rules of HIPv2 has been replaced with a negotiation re-

 evaluation in the above processing rules for HIP DEX. Moreover,

step

 6 has been added to the processing rules.

6.9. Processing Incoming NOTIFY Packets

 Processing of NOTIFY packets is OPTIONAL. If processed, any errors

 in a received NOTIFICATION parameter SHOULD be logged. Received

 errors MUST be considered only as informational, and the receiver

 SHOULD NOT change its HIP state purely based on the received NOTIFY

 packet.

 If a NOTIFY packet is received in state I2-SENT, this packet may be

 an I2 reception acknowledgement of the optional retransmission

 mechanism extension and SHOULD be processed. The following steps

 define the conceptual processing rules for such incoming NOTIFY

 packets in state I2-SENT:

 1. The system MUST verify that the HITs in use correspond to the

 HITs that were received in the R1 packet that caused the

 transition to the I2-SENT state. If this check fails, the

NOTIFY

 packet SHOULD be dropped silently.

 2. If the NOTIFY packet contains a NOTIFICATION parameter with

 Notify Message Type I2_ACKNOWLEDGEMENT, the system SHOULD set

the

 I2 retransmission timer to the I2 processing time indicated in

 the NOTIFICATION parameter plus half the RTT-based timeout

value.

 The system MUST NOT set the retransmission timeout to a higher

 value than allowed by a local policy. Moreover, the system

 SHOULD reset the I2 retransmission timer to the RTT-based

timeout

 value after the next I2 retransmission.

Moskowitz & Hummen Expires July 21, 2016 [Page

38]

Internet-Draft HIP Diet EXchange (DEX) January

2016

6.10. Processing UPDATE, CLOSE, and CLOSE_ACK Packets

 UPDATE, CLOSE, and CLOSE_ACK packets are handled similarly in HIP

DEX

 as in HIP BEX (see Sections 6.11, 6.12, 6.14, and 6.15 of

[RFC7401]).

 The only difference is the that the HIP_SIGNATURE is never present

 and, therefore, is not required to be processed by the receiving

 party.

6.11. Handling State Loss

 Implementors MAY choose to use non-volatile, secure storage for HIP

 states in order for them to survive a system reboot. If no secure

 storage capabilities are available, the system SHOULD delete the

 corresponding HIP state, including the keying material. If the

 implementation does drop the state (as RECOMMENDED), it MUST also

 drop the peer's R1 generation counter value, unless a local policy

 explicitly defines that the value of that particular host is stored.

 An implementation MUST NOT store a peer's R1 generation counters by

 default, but storing R1 generation counter values, if done, MUST be

 configured by explicit HITs.

7. HIP Policies

 There are a number of variables that will influence the HIP

exchanges

 that each host must support. All HIP DEX implementations SHOULD

 provide for an ACL of Initiator's HI to Responder's HI. This ACL

 SHOULD also include preferred transform and local lifetimes.

 Wildcards SHOULD also be supported for this ACL.

 The value of #K used in the HIP R1 must be chosen with care. Values

 of #K that are too high will exclude clients with weak CPUs because

 these devices cannot solve the puzzle within a reasonable amount of

 time. #K should only be raised if a Responder is under high load,

 i.e., it cannot process all incoming HIP handshakes any more. If a

 Responder is not under high load, #K SHOULD be 0.

8. Security Considerations

 HIP DEX closely resembles HIPv2. As such, the security

 considerations discussed in Section 8 of [RFC7401] similarly apply

to

 HIP DEX. HIP DEX, however, replaces the SIGMA-based authenticated

 Diffie-Hellman key exchange of HIPv2 with an exchange of random

 keying material that is encrypted by a Diffie-Hellman derived key.

 Both the Initiator and Responder contribute to this keying material.

 As a result, the following additional security considerations apply

 to HIP DEX:

https://datatracker.ietf.org/doc/html/rfc7401
https://datatracker.ietf.org/doc/html/rfc7401#section-8

Moskowitz & Hummen Expires July 21, 2016 [Page

39]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 o The strength of the keys for the Pair-wise Key SA is based on the

 quality of the random keying material generated by the Initiator

 and the Responder. Since the Initiator is expected to be a

sensor

 or an actuator device, there is a natural concern about the

 quality of its random number generator.

 o HIP DEX lacks the Perfect Forward Secrecy (PFS) property of

HIPv2.

 Consequently, if an HI is compromised, all HIP connections

 protected with that HI are compromised.

 o The puzzle mechanism using CMAC may need further study regarding

 the level of difficulty.

 o The HIP DEX HIT generation may present new attack opportunities.

 o The R1 packet is unauthenticated and offers an adversary a new

 attack vector against the Initiator. This is mitigated by only

 processing a received R1 packet when the Initiator has previously

 sent a corresponding I1 packet. Moreover, the Responder repeats

 the DH_GROUP_LIST, HIP_CIPHER, HIT_SUITE_LIST, and

 TRANSPORT_FORMAT_LIST parameters in the R2 packet in order to

 enable the Initiator to verify that these parameters have not

been

 modified by an attacker in the unprotected R1 packet.

 The optional retransmission extension of HIP DEX is based on a

NOTIFY

 packet that the Responder can use to inform the Initiator about the

 reception of an I2 packet. The Responder, however, cannot protect

 the authenticity of this packet as it did not yet set up the Master

 Key SA. Hence, an eavesdropping adversary may send spoofed

reception

 acknowledgements for an overheard I2 packet and signal an arbitrary

 I2 processing time to the Initiator. The adversary can, e.g.,

 indicate a lower I2 processing time than actually required by the

 Responder in order to cause premature retransmissions. To protect

 against this attack, the Initiator SHOULD set the NOTIFY-based

 timeout value to the maximum indicated packet processing time in

case

 of conflicting NOTIFY packets. This allows the legitimate Responder

 to extend the retransmission timeout to the intended length. The

 adversary, however, can still arbitrarily delay the protocol

 handshake beyond the Responder's actual I2 processing time. To

limit

 the extend of such a maliciously induced handshake delay, this

 specification additionally requires the Initiator not to set the

 NOTIFY-based timeout value higher than allowed by a local policy.

9. IANA Considerations

 The following changes to the "Host Identity Protocol (HIP)

 Parameters" registries have been made:

Moskowitz & Hummen Expires July 21, 2016 [Page

40]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 HIT Suite ID This document defines the new HIT Suite "ECDH/FOLD"

 (see Section 5.2.4).

 Parameter Type This document defines the new HIP parameter

 "ENCRYPTED_KEY" with type number 643 (see Section 5.2.5).

 HIP Cipher ID This document defines the new HIP Cipher ID "AES-

 128-CTR" (see Section 5.2.2).

 HI Algorithm This document defines the new HI Algorithm "ECDH" (see

 Section 5.2.3).

 ECC Curve Label This document specifies a new algorithm-specific

 subregistry named "ECDH Curve Label". The values for this

 subregistry are defined in Section 5.2.1.

10. Acknowledgments

 The drive to put HIP on a cryptographic 'Diet' came out of a number

 of discussions with sensor vendors at IEEE 802.15 meetings. David

 McGrew was very helpful in crafting this document.

11. Changelog

 This section summarizes the changes made from draft-moskowitz-hip-

rg-

 dex-05, which was the first stable version of the draft. Note that

 the draft was renamed after draft-moskowitz-hip-rg-dex-06.

11.1. Changes in draft-moskowitz-hip-rg-dex-06

 o A major change in the ENCRYPT parameter to use AES-CTR rather

than

 AES-CBC.

11.2. Changes in draft-moskowitz-hip-dex-00

 o Draft name change. HIPRG ended in IRTF, HIP DEX is now

individual

 submission.

 o Added the change section.

 o Added a Definitions section.

 o Changed I2 and R2 packets to reflect use of AES-CTR for

 ENCRYPTED_KEY parameter.

 o Cleaned up KEYMAT Generation text.

https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-rg-dex-05
https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-rg-dex-05
https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-rg-dex-05
https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-rg-dex-06
https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-rg-dex-06
https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-dex-00

Moskowitz & Hummen Expires July 21, 2016 [Page

41]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 o Added Appendix with C code for the ECDH shared secret generation

 on an 8 bit processor.

11.3. Changes in draft-moskowitz-hip-dex-01

 o Numerous editorial changes.

 o New retransmission strategy.

 o New HIT generation mechanism.

 o Modified layout of ENCRYPTED_KEY parameter.

 o Clarify to use puzzle difficulty of zero under normal network

 conditions.

 o Align inclusion directive of R1_COUNTER with HIPv2 (from SHOULD

to

 MUST).

 o Align inclusion of TRANSPORT_FORMAT_LIST with HIPv2 (added to R1

 and I2).

 o HIP_CIPHER, HIT_SUITE_LIST, and TRANSPORT_FORMAT_LIST must now be

 echoed in R2 packet.

 o Added new author.

11.4. Changes in draft-moskowitz-hip-dex-02

 o Introduced formal definition of FOLD function.

 o Clarified use of CMAC for puzzle computation in section "Solving

 the Puzzle".

 o Several editorial changes.

11.5. Changes in draft-moskowitz-hip-dex-03

 o Addressed HI crypto agility.

 o Clarified purpose of secret exchanged via ENCRYPTED_KEY

parameter.

 o Extended the IV in the ENCRYPTED_KEY parameter.

 o Introduced forward-references to HIP DEX KEYMAT process and

 improved KEYMAT section.

https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-dex-01
https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-dex-02
https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-dex-03

Moskowitz & Hummen Expires July 21, 2016 [Page

42]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 o Replaced Appendix A on "C code for ECC point multiplication" with

 short discussion in introduction.

 o Updated references.

 o Further editorial changes.

11.6. Changes in draft-moskowitz-hip-dex-04

 o Improved retransmission extension.

 o Updated and strongly revised packet processing rules.

 o Updated security considerations.

 o Updated IANA considerations.

 o Move the HI Algorithm for ECDH to a value of 11.

 o Many editorial changes.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2410] Glenn, R. and S. Kent, "The NULL Encryption Algorithm and

 Its Use With IPsec", RFC 2410, November 1998.

 [RFC3686] Housley, R., "Using Advanced Encryption Standard (AES)

 Counter Mode With IPsec Encapsulating Security Payload

 (ESP)", RFC 3686, January 2004.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, "Internet Control

 Message Protocol (ICMPv6) for the Internet Protocol

 Version 6 (IPv6) Specification", RFC 4443, March 2006.

 [RFC7343] Laganier, J. and F. Dupont, "An IPv6 Prefix for Overlay

 Routable Cryptographic Hash Identifiers Version 2

 (ORCHIDv2)", RFC 7343, September 2014.

 [RFC7401] Moskowitz, R., Heer, T., Jokela, P., and T. Henderson,

 "Host Identity Protocol Version 2 (HIPv2)", RFC 7401,

 April 2015.

https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-dex-04
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2410
https://datatracker.ietf.org/doc/html/rfc3686
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc7343
https://datatracker.ietf.org/doc/html/rfc7401

Moskowitz & Hummen Expires July 21, 2016 [Page

43]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 [RFC7402] Jokela, P., Moskowitz, R., and J. Melen, "Using the

 Encapsulating Security Payload (ESP) Transport Format

with

 the Host Identity Protocol (HIP)", RFC 7402, April 2015.

12.2. Informative References

 [DH76] Diffie, W. and M. Hellman, "New Directions in

 Cryptography", IEEE Transactions on Information Theory

 vol. IT-22, number 6, pages 644-654, Nov 1976.

 [HWZ13] Hummen, R., Wirtz, H., Ziegeldorf, J., Hiller, J., and K.

 Wehrle, "Tailoring End-to-End IP Security Protocols to

the

 Internet of Things", in Proceedings of IEEE International

 Conference on Network Protocols (ICNP 2013), October

2013.

 [I-D.ietf-hip-rfc4423-bis]

 Moskowitz, R. and M. Komu, "Host Identity Protocol

 Architecture", draft-ietf-hip-rfc4423-bis-13 (work in

 progress), December 2015.

 [IEEE.802-11.2007]

 "Information technology - Telecommunications and

 information exchange between systems - Local and

 metropolitan area networks - Specific requirements - Part

 11: Wireless LAN Medium Access Control (MAC) and Physical

 Layer (PHY) Specifications", IEEE Standard 802.11, June

 2007, <http://standards.ieee.org/getieee802/

 download/802.11-2007.pdf>.

 [IEEE.802-15-4.2011]

 "Information technology - Telecommunications and

 information exchange between systems - Local and

 metropolitan area networks - Specific requirements - Part

 15.4: Wireless Medium Access Control (MAC) and Physical

 Layer (PHY) Specifications for Low-Rate Wireless Personal

 Area Networks (WPANs)", IEEE Standard 802.15.4, September

 2011, <http://standards.ieee.org/getieee802/

 download/802.15.4-2011.pdf>.

 [LN08] Liu, A. and H. Ning, "TinyECC: A Configurable Library for

 Elliptic Curve Cryptography in Wireless Sensor Networks",

 in Proceedings of International Conference on Information

 Processing in Sensor Networks (IPSN 2008), April 2008.

 [RFC5903] Fu, D. and J. Solinas, "Elliptic Curve Groups modulo a

 Prime (ECP Groups) for IKE and IKEv2", RFC 5903, June

 2010.

https://datatracker.ietf.org/doc/html/rfc7402
https://datatracker.ietf.org/doc/html/draft-ietf-hip-rfc4423-bis-13
http://standards.ieee.org/getieee802/download/802.11-2007.pdf
http://standards.ieee.org/getieee802/download/802.11-2007.pdf
http://standards.ieee.org/getieee802/download/802.15.4-2011.pdf
http://standards.ieee.org/getieee802/download/802.15.4-2011.pdf
https://datatracker.ietf.org/doc/html/rfc5903

Moskowitz & Hummen Expires July 21, 2016 [Page

44]

Internet-Draft HIP Diet EXchange (DEX) January

2016

 [RFC5996] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,

 "Internet Key Exchange Protocol Version 2 (IKEv2)", RFC

 5996, September 2010.

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental

Elliptic

 Curve Cryptography Algorithms", RFC 6090, February 2011.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for

 Constrained-Node Networks", RFC 7228, May 2014.

 [SECG] SECG, "Recommended Elliptic Curve Domain Parameters", SEC

 2 , 2000, <http://www.secg.org/>.

https://datatracker.ietf.org/doc/html/rfc5996
https://datatracker.ietf.org/doc/html/rfc5996
https://datatracker.ietf.org/doc/html/rfc6090
https://datatracker.ietf.org/doc/html/rfc7228
http://www.secg.org/

Moskowitz & Hummen Expires July 21, 2016 [Page

45]

Internet-Draft HIP Diet EXchange (DEX) January

2016

Appendix A. Password-based two-factor authentication during the HIP DEX

 handshake

 HIP DEX allows to identify authorized connections based on a two-

 factor authentication mechanism. With two-factor authentication,

 devices that are authorized to communicate with each other are

 required to be pre-provisioned with a shared (group) key. The

 Initiator uses this pre-provisioned key to encrypt the

 ECHO_RESPONSE_UNSIGNED in the I2 packet. Upon reception of the I2,

 the Responder verifies that its challenge in the

 ECHO_REQUEST_UNSIGNED parameter in the R1 packet has been encrypted

 with the correct key. If verified successfully, the Responder

 proceeds with the handshake. Otherwise, it silently drops the I2

 packet.

 Note that there is no explicit signaling in the HIP DEX handshake

for

 this behavior. Thus, knowledge of two-factor authentication must be

 configured externally prior to the handshake.

Authors' Addresses

 Robert Moskowitz (editor)

 HTT Consulting

 Oak Park, MI

 USA

 EMail: rgm@htt-consult.com

 Rene Hummen

 Chair of Communication and Distributed Systems, RWTH Aachen

 Ahornstrasse 55

 Aachen 52074

 Germany

 EMail: hummen@comsys.rwth-aachen.de

 URI: http://www.comsys.rwth-aachen.de/team/rene-hummen/

http://www.comsys.rwth-aachen.de/team/rene-hummen/

Moskowitz & Hummen Expires July 21, 2016 [Page

46]

