
Workgroup: HIP

Internet-Draft:

draft-moskowitz-hip-new-crypto-10

Updates: 7401, 7402 (if approved)

Published: 2 August 2021

Intended Status: Standards Track

Expires: 3 February 2022

Authors: R. Moskowitz

HTT Consulting

S. Card

AX Enterprize

A. Wiethuechter

AX Enterprize

New Cryptographic Algorithms for HIP

Abstract

This document provides new cryptographic algorithms to be used with

HIP. The Edwards Elliptic Curve and the Keccak sponge functions are

the main focus. The HIP parameters and processing instructions

impacted by these algorithms are defined.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 3 February 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc7401
https://www.rfc-editor.org/rfc/rfc7402
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Terms and Definitions

2.1. Requirements Terminology

2.2. Definitions

3. HIP Parameter values for new Cryptographic Functions

3.1. Elliptic Curves for Diffie-Hellman

3.1.1. DIFFIE_HELLMAN

3.2. Edward Digital Signature Algorithm for HITs

3.2.1. HOST_ID

3.2.2. HIT_SUITE_LIST

3.3. Hashing in HIP

3.3.1. Hashing with the Sponge Functions

3.3.2. RHASH

3.3.3. HIP_MAC and HIP_MAC2

3.4. HIP Cipher

3.4.1. HIP_CIPHER

3.5. ESP Transform

3.5.1. ESP_TRANSFORM

4. Generating a HIT from an HI

5. HIP KEYMAT Generation

5.1. The Keccak KEYMAT

5.2. The Xoodyak KEYMAT

6. Pseudorandom Function (PRF)

7. IANA Considerations

8. Security Considerations

8.1. Keymat vulnerabilities

8.2. KMAC Security as a KDF

9. Acknowledgments

10. References

10.1. Normative References

10.2. Informative References

Authors' Addresses

1. Introduction

This document adds new cryptographic algorithms for HIPv2 [RFC7401]

and [RFC7402]. This includes:

New elliptic curves for ECDH.

The Edwards Elliptic Curve Digital Signature Algorithm (EdDSA)

used in Host Identities (HI) and for Base Exchange (BEX)

signatures.

Hashes used in Host Identity Tag (HIT) generation, and wherever

else hashes are needed.

¶

* ¶

*

¶

*

¶

cSHAKE (The customizable SHAKE function [NIST SP800-185]):

DEC function (Doubly-Extendable Cryptographic function):

DECK function (Doubly-Extendable Cryptographic Keyed function):

Keccak:

Keyed hashes used for KEYMAT generation and packet MACing

operations.

AEAD and stream ciphers to use in HIP and HIP enabled secure

communication protocols.

The hashes and encryption are all built on the Keccak [Keccak]

sponge function and the Xoodyak [Xoodyak] lightweight scheme.

These additions reflect selection of advances in the field of

cryptography that would best benefit HIP, particularly in

constrained devices and communications.

Ed Note: The Xoodyak function calls should be considered the 1st

best effort. There are a few areas open for discussion, like which

of the 3 choices for adding in the nonce to the AEAD mode and when

to use counter and Id. Also there may be copy errors from the source

specification, nicer function calls, better acronyms.

2. Terms and Definitions

2.1. Requirements Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2.2. Definitions

Extends the SHAKE scheme to allow users to customize their use of

the function.

An extendable output function (XOF) that accepts sequences of

strings as input and that supports incremental queries

efficiently.

A keyed function that takes a sequence of input strings and

returns a pseudorandom string of arbitrary length and that can be

computed incrementally.

The family of all sponge functions with a KECCAK-f permutation as

the underlying function and multi-rate padding as the padding

rule. In particular all the functions referenced from [NIST

FIPS-202] and [NIST SP800-185].

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

KMAC (KECCAK Message Authentication Code [NIST SP800-185]):

SHAKE (Secure Hash Algorithm KECCAK [NIST FIPS-202]):

PRF (Pseudorandom Function):

XHASH (Xoodyak Hash Algorithm):

XMAC (Xoodyak Message Authentication Code):

XOF (eXtendable-Output Function [NIST FIPS-202]):

A pseduo random function (PRF) and keyed hash function based on

KECCAK.

A secure hash that allows for an arbitrary output length.

SHAKE128 and SHAKE256 are instances of XOFs. SHAKE is shorthand

for SHAKE128.

A function that takes as input a key and that it is hard to

distinguish from a random oracle by an adversary that does not

know the key.

A secure hash, based on Xoodyak, that allows for an arbitrary

output length. XHASH is an instance of XOF.

A keyed hash function similar to KMAC, based on Xoodyak, that

allows for an arbitrary output length.

A function on bit strings (also called messages) in which the

output can be extended to any desired length.

3. HIP Parameter values for new Cryptographic Functions

HIP parameters carry information that is necessary for establishing

and maintaining a HIP association. For example, the device's public

keys as well as the signaling for negotiating ciphers and payload

handling are encapsulated in HIP parameters. Additional information,

meaningful for end hosts or middleboxes, may also be included in HIP

parameters. The specification of the HIP parameters and their

mapping to HIP packets and packet types is flexible to allow HIP

extensions to define new parameters and new protocol behavior.

3.1. Elliptic Curves for Diffie-Hellman

Elliptic curves Curve25519 and Curve448 [RFC7748] are specified here

for use in the HIP Diffie-Hellman exchange.

Curve25519 and Curve448 are already defined in Section 5.2.1 of

[hip-dex], using the HIP-DEX CKDF. Here they are defined for using

the new KMAC [NIST SP800-185] or XMAC [Xoodyak] derived KDF in

Section 5.

¶

¶

¶

¶

¶

¶

¶

¶

¶

3.1.1. DIFFIE_HELLMAN

The DIFFIE_HELLMAN parameter may be included in selected HIP packets

based on the DH Group ID selected. The DIFFIE_HELLMAN parameter is

defined in Section 5.2.7 of [RFC7401].

The following Elliptic Curves are defined here:

A new KDF for KEYMAT, Section 6.5 of [RFC7401] using Keccak or

Xoodyak is defined in Section 5.

3.2. Edward Digital Signature Algorithm for HITs

This section is extracted from Appendix D of [drip-rid]. It may

later be pulled and only maintained there.

Edwards-Curve Digital Signature Algorithm (EdDSA) [RFC8032] are

specified here for use as Host Identities (HIs) per HIPv2 [RFC7401].

Further the HIT_SUITE_LIST is specified as used in [RFC7343].

3.2.1. HOST_ID

The HOST_ID parameter specifies the public key algorithm, and for

elliptic curves, a name. The HOST_ID parameter is defined in Section

5.2.19 of [RFC7401].

For hosts that implement EdDSA as the algorithm, the following ECC

curves are available:

¶

¶

Group KDF Value

Curve25519 [RFC7748] KMAC 13

Curve448 [RFC7748] KMAC 14

¶

¶

¶

¶

¶

 Algorithm

 profiles Values

 EdDSA 13 [RFC8032]

¶

¶

3.2.2. HIT_SUITE_LIST

The HIT_SUITE_LIST parameter contains a list of the supported HIT

suite IDs of the Responder. Based on the HIT_SUITE_LIST, the

Initiator can determine which source HIT Suite IDs are supported by

the Responder. The HIT_SUITE_LIST parameter is defined in Section

5.2.10 of [RFC7401].

The following HIT Suite ID is defined, and the relationship between

the four-bit ID value used in the OGA ID field and the eight-bit

encoding within the HIT_SUITE_LIST ID field is clarified:

The following table provides more detail on the above HIT Suite

combinations. The input for each generation algorithm is the

encoding of the HI as defined herein.

The output of cSHAKE128 and XHASH are variable per the needs of a

specific ORCHID construction. It is at most 96 bits long and is

directly used in the ORCHID (without truncation).

Index
Hash

function
HMAC

Signature

algorithm

family

Description

5 cSHAKE128 KMAC128 EdDSA

EdDSA HI hashed with

cSHAKE128, output is

variable

6 XHASH XMAC EdDSA
EdDSA HI hashed with

XMAC, output is variable

Table 1: HIT Suites

 Algorithm Curve Values

 EdDSA RESERVED 0

 EdDSA EdDSA25519 1 [RFC8032]

 EdDSA EdDSA25519ph 2 [RFC8032]

 EdDSA EdDSA448 3 [RFC8032]

 EdDSA EdDSA448ph 4 [RFC8032]

¶

¶

¶

 HIT Suite Four-bit ID Eight-bit encoding

 RESERVED 0 0x00

 EdDSA/cSHAKE128 5 0x50

 EdDSA/XHASH 6 0x60

¶

¶

¶

3.3. Hashing in HIP

Hashing is used in HIP for HIT generation and keyed hashes of HIP

payloads. The hash algorithm used is designated as part of the

HIT_SUITE_ID. The keyed hash function is the "common" such function

used in conjunction with the HIT hash.

3.3.1. Hashing with the Sponge Functions

The XOF function in SHA-3, Secure Hash Algorithm Keccak (SHAKE)

[NIST FIPS-202] and the more recent Xoodyak [Xoodyak] algorithm are

called sponge functions. Sponge functions have a special feature in

which an arbitrary number of output bits are "squeezed" out of the

hashing state. This is a significant use change in that hash

truncation or multiple "runs" for enough bits are not used with

sponge functions.

3.3.1.1. cSHAKE, the customizable SHAKE function

The customizable SHAKE function (cSHAKE) in [NIST SP800-185] will be

used as a HIP hash. As a Keccak XOF, it does not use the truncation

operation that other hashes need. The invocation of cSHAKE specifies

the desired number of bits in the hash output. Further, cSHAKE has a

parameter 'S' as a customization bit string. This parameter will be

used for including hash specific customization like the ORCHID

Context Identifier in a standard fashion.

Hardware implementation of Keccak in VHDL is available from Keccak

[Keccak] team website.

3.3.1.2. The Xoodyak Hash

The Xoodyak [Xoodyak] sponge function is a candidate in the NIST

Lightweight Cryptography (LWC) Standardization process (see [NISTIR

8369]). Xoodyak has been selected here for use in HIP from the LWC

2nd round candidates as it was developed by the Keccak team, making

it more directly in line with Keccak.

Xoodyak has a hash function mode. More specifically, this hash mode

is an extendable output function (XOF).

As the Xoodyak specification [Xoodyak_Spec] does not provide high-

level function calls, rather a set of primitives to use to construct

the various modes, the appropriate primitive calls will be detailed

below. Xoodyak as a hash will be called here "XHASH".

To get a n-byte digest of some input x: XHASH(n, x), use the

following set of Xoodyak primitives:

¶

¶

¶

¶

¶

¶

¶

¶

Xoodyak can also naturally implement a DEC function and process a

sequence of strings. Here the output depends on the sequence as such

and not just on the concatenation of the different strings. To

compute a n-byte digest, XHASH(n, {x1, x2, x3}) the Xoodyak

primitives are:

The equivalent of the parameter 'S' in cSHAKE above can be

implemented as the last Absorb primitive call in the DEC function.

That is: XHASH(L, {S, N, X}) is equivalent to cSHAKE(X, L, N, S).

3.3.2. RHASH

RHASH is the general term used throughout [RFC7401] to refer to the

hash used for a specific HIT suite. For this addendum cSHAKE128 for

Keccak or XHASH for Xoodyak is used, even for HITs of EdDSA448.

Unless otherwise specified, L of cSHAKE128 or n of XHASH is 256,

resulting in a similar output to SHA256. Any truncation used for,

older, fixed output hashes is still used. This is to simplify code

integration. One exception to this is in Section 4.

3.3.3. HIP_MAC and HIP_MAC2

The HIP_MAC and HIP_MAC2 parameters in [RFC7401] use HMAC [RFC2104].

This performs two hashes on a string with a key for a keyed hash the

length of the underlying hash.

For both HIP_MAC and HIP_MAC2 use, the parameter S below is NULL. It

is included for complete function definition.

3.3.3.1. The Keccak Keyed MAC

Here, KMAC from NIST SP 800-185 [NIST SP800-185] is used. This is a

single pass using the underlying cSHAKE function. The function call

is:

 Cyclist(ε,ε,ε)

 Absorb(x)

 Squeeze(n)

¶

¶

 Cyclist(ε,ε,ε)

 Absorb(x1)

 Absorb(x2)

 Absorb(x3)

 Squeeze(n)

¶

¶

¶

¶

¶

¶

¶

3.3.3.2. The Xoodyak Keyed MAC

Here, XMAC is defined as the keyed hash function based on Xoodyak.

It is built with primitives from [Xoodyak_Spec] as a DEC function.

To get a n-byte keyed MAC of some input x: XMAC(Key, n, {x, S}).

Where n=256, use the following set of Xoodyak primitives:

Id is "HIP_MAC" and "HIP_MAC2" respectively. Note since S is null in

this XMAC usage, the first Absorb call is not performed.

3.4. HIP Cipher

HIP encrypted parameters use the HIP_CIPHER, Section 5.2.8 of

[RFC7401]. The Xoodyak cipher, [Xoodyak], is recommended. Here

Xoodyak is used in encrypt only mode.

3.4.1. HIP_CIPHER

The HIP_CIPHER parameter value for Xoodyak is:

The Xoodyak primitive calls for encrypt only are:

 KMAC128(Key, Input String, 256, S)
¶

¶

¶

 Cyclist(Key,Id,ε)

 Absorb(S) Only if S is non-null

 Absorb(Input String)

 Squeeze(32)

¶

¶

¶

¶

hip_cipher

 Suite ID Value

 Xoodyak 6 (Xoodyak)

¶

¶

 Cyclist(Key,Id,ε)

 Absorb(IV)

 C ← Encrypt(P)

 Where Id is HIP parameter name (e.g. "ENCRYPTED").

 IV is from the encrypted HIP parameter.

 P is the plain-text per the specific HIP encrypted parameter.

 C is the ciphertext.

¶

3.5. ESP Transform

The ESP_TRANSFORM parameter is used during ESP SA establishment,

Section 5.1.2 of [RFC7402]. The Xoodyak cipher, [Xoodyak], is

recommended. Here Xoodyak is used in AEAD mode.

Further, it is recommended to use Implicit IV ESP [RFC8750] to match

its lightweight over-the-air format with the lightweight Xoodyak

AEAD cipher.

3.5.1. ESP_TRANSFORM

The ESP_TRANSFORM Suite IDs for Xoodyak are:

The Implicit IV Suite ID is unique in that it is an AND condition

with ciphers that can use it. That is AES-GCM and Xoodyak can both

use 'regular' ESP [RFC4303] or [RFC8750].

The Xoodyak primitive calls for AEAD encrypt are:

Where Id is "ESP_TRANSFORM". The IV is either a 32 bit ESP IV per

[RFC4303] or the ESP Seq Number per[RFC8750]. P is the plain-text

and A is the associated data. t is either 12 or 16. T is the ESP ICV

of length t.

4. Generating a HIT from an HI

The EdDSA/cSHAKE based HITs require a new ORCHID generation method

than that described in section 3.2 of [RFC7401]. The XOF

functionality of cSHAKE produces an output of L bits. This replaces

the Encode_96 function in the ORCHID generation.

For identities that are EdDSA public keys, ORCHIDs will be generated

per the process defined in Appendix C.2.1 of [drip-rid].

¶

¶

¶

hip_cipher

 Suite ID Value

 Xoodyak-96 16 (Xoodyak)

 Xoodyak 17 (Xoodyak)

 Implicit IV 18 [8750]

¶

¶

¶

 Cyclist(Key,Id,ε)

 Absorb(IV)

 Absorb(A)

 C ← Encrypt(P)

 T ← Squeeze(t)

¶

¶

¶

¶

5. HIP KEYMAT Generation

For either the Keccak or Xoodyak KEYMAT generation, the inputs are

consistent. The only practical difference is that cSHAKE allows for

128 or 256 bits of strength, whereas Xoodyak only provides 128 bits.

L is the derived key bit length. Since 4 HIP keys are "drawn" from

this output, the length is 4 * HIP_key_size. Per ASIACRYPT 2017, pp.

606-637 [ASIACRYPT-2017] each of these derived keys will have the

same strength as the Diffie-Hellman shared secret.

S is the byte string 01001011 || 01000100 || 01000110, which

represents the sequence of characters "K", "D", and "F" in 8-bit

ASCII.

Salt and info are derived as defined in sec 6.5 of [RFC7401]. There

are special security considerations for IKM per [RFC7748].

5.1. The Keccak KEYMAT

The KMAC function provides a new, more efficient, key derivation

function over HKDF [RFC5869]. KMAC as a KDF is defined below.

The two HIs MUST be used in constructing IKM as follows:

The two HIs are separately DER encoded per [RFC7401]

The choice of KMAC128 or KMAC256 is based on the strength of the

output key material. For 256 bits of strength equivalent to HMAC-

SHA256, use KMAC256. Per [NIST SP800-56Cr1], Section 4.1, Option 3:

5.2. The Xoodyak KEYMAT

Here, XMAC from Section 3.3.3.2 is used. The DEC function XMAC("",

L, {DH, sort(HI-I, HI-R), info, Salt, S}) primitives are:

¶

¶

¶

¶

¶

¶

 IKM = Diffie-Hellman secret | sort(HI-I | HI-R)
¶

¶

¶

 OKM = KMAC[128|256](salt | info, IKM, L, S)
¶

¶

Diffie Hellman:

Host ID:

HIT Suite ID:

HIP Cipher:

ESP Transform:

Ed Note: Need to check that all above are well defined bytestrings

per 7401. I think they are.

6. Pseudorandom Function (PRF)

Appendix B of NIST SP 800-185 [NIST SP800-185] defines how to use

SHAKE, cSHAKE, or KMAC as a PRF.

For Xoodyak, XMAC from Section 3.3.3.2 is used in the same manner as

KMAC above.

7. IANA Considerations

IANA will need to make the following changes to the "Host Identity

Protocol (HIP) Parameters" registries:

This document defines the new Curve25519 and Curve448 for the

Diffie-Hellman exchange (see Section 3.1.1).

This document defines the new EdDSA Host ID (see Section 3.2.1).

This document defines the new HIT Suite of EdDSA/cSHAKE and

EdDSA/XHASH (see Section 3.2.2).

This document defines the new Xoodyak cipher for HIP encrypted

parameters (see Section 3.4.1).

This document defines the new Xoodyak cipher and use of [RFC8750]

for the ESP Transform parameter (see Section 3.5).

 Cyclist(ε, ε, ε)

 Absorb(S)

 Absorb(salt)

 Absorb(info)

 Absorb(max(HI-I , HI-R))

 Absorb(min(HI-I , HI-R))

 Absorb(Diffie-Hellman secret)

 Squeeze(L) Where L is bytes

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

8. Security Considerations

8.1. Keymat vulnerabilities

[RFC7748] warns about using Curve25519 and Curve448 in Diffie-

Hellman for key derivation:

Designers using these curves should be aware that for each public

key, there are several publicly computable public keys that are

equivalent to it, i.e., they produce the same shared secrets. Thus

using a public key as an identifier and knowledge of a shared secret

as proof of ownership (without including the public keys in the key

derivation) might lead to subtle vulnerabilities.

Thus the two Host IDs are included with the Diffie-Hellman secret in

the KEYMAT generation.

8.2. KMAC Security as a KDF

Section 4.1 of NIST SP 800-185 [NIST SP800-185] states:

"The KECCAK Message Authentication Code (KMAC) algorithm is a PRF

and keyed hash function based on KECCAK . It provides variable-

length output"

That is, the output of KMAC is indistinguishable from a random

string, regardless of the length of the output. As such, the output

of KMAC can be divided into multiple substrings, each with the

strength of the function (KMAC128 or KMAC256) and provided that a

long enough key is used, as discussed in Sec. 8.4.1 of SP 800-185.

For example KMAC128(K, X, 512, S), where K is at least 128 bits, can

produce 4 128 bit keys each with a strength of 128 bits. That is a

single sponge operation is replacing perhaps 5 HMAC-SHA256

operations (each 2 SHA256 operations) in HKDF.

9. Acknowledgments

Quynh Dang of NIST gave considerable guidance on using Keccak and

the NIST supporting documents. Joan Deamen of the Keccak team was

especially helpful in many aspects of using Keccak and Xoodyak,

particularly with the KEYMAT section and the strength of the derived

keys.

NIST is entering round 3 (final) of its Lightweight Crypto

Competition with anticipated selection the end of 2021 or early in

2022. Events in this process will impact selections in this

document.

¶

¶

¶

¶

¶

¶

¶

¶

¶

[NIST FIPS-202]

[NIST SP800-185]

[NIST SP800-56Cr1]

[NISTIR 8369]

[RFC2119]

[RFC7401]

[RFC7402]

10. References

10.1. Normative References

Dworkin, M., "SHA-3 Standard: Permutation-Based Hash

and Extendable-Output Functions", National Institute of

Standards and Technology report, DOI 10.6028/nist.fips.

202, July 2015, <https://doi.org/10.6028/nist.fips.202>.

Kelsey, J., Change, S., and R. Perlner, "SHA-3

derived functions: cSHAKE, KMAC, TupleHash and

ParallelHash", National Institute of Standards and

Technology report, DOI 10.6028/nist.sp.800-185, December

2016, <https://doi.org/10.6028/nist.sp.800-185>.

Barker, E., Chen, L., and R. Davis,

"Recommendation for key-derivation methods in key-

establishment schemes", National Institute of Standards

and Technology report, DOI 10.6028/nist.sp.800-56cr1,

April 2018, <https://doi.org/10.6028/nist.sp.800-56cr1>.

Sonmez Turan, M., McKay, K., Chang, D., Calik, C.,

Bassham, L., Kang, J., and J. Kelsey, "Status Report on

the Second Round of the NIST Lightweight Cryptography

Standardization Process", National Institute of Standards

and Technology report, DOI 10.6028/nist.ir.8369, July

2021, <https://doi.org/10.6028/nist.ir.8369>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Moskowitz, R., Ed., Heer, T., Jokela, P., and T.

Henderson, "Host Identity Protocol Version 2 (HIPv2)",

RFC 7401, DOI 10.17487/RFC7401, April 2015, <https://

www.rfc-editor.org/info/rfc7401>.

Jokela, P., Moskowitz, R., and J. Melen, "Using the

Encapsulating Security Payload (ESP) Transport Format

with the Host Identity Protocol (HIP)", RFC 7402, DOI

https://doi.org/10.6028/nist.fips.202
https://doi.org/10.6028/nist.sp.800-185
https://doi.org/10.6028/nist.sp.800-56cr1
https://doi.org/10.6028/nist.ir.8369
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7401
https://www.rfc-editor.org/info/rfc7401

[RFC8174]

[Xoodyak]

[Xoodyak_Spec]

[ASIACRYPT-2017]

[drip-rid]

[hip-dex]

[Keccak]

[RFC2104]

[RFC4303]

[RFC5869]

10.17487/RFC7402, April 2015, <https://www.rfc-

editor.org/info/rfc7402>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Daemen, J., Hoffert, S., Peeters, M., Van Assche, G.,

and R. Van Keer, "The Xoodyak Cipher and Hash", <https://

keccak.team/xoodyak.html>.

Daemen, J., Hoffert, S., Peeters, M., Van Assche, G.,

and R. Van Keer, "Xoodoo cookbook", 2019, <https://

eprint.iacr.org/2018/767.pdf>.

10.2. Informative References

Daemen, J., Mennink, B., and G. Van Assche, "Full-

State Keyed Duplex with Built-In Multi-user Support", DOI

10.1007/978-3-319-70697-9_21, Advances in Cryptology -

ASIACRYPT 2017 pp. 606-637, 2017, <https://doi.org/

10.1007/978-3-319-70697-9_21>.

Moskowitz, R., Card, S. W., Wiethuechter, A., and A.

Gurtov, "Unmanned Aircraft System Remote Identification

(UAS RID)", Work in Progress, Internet-Draft, draft-ietf-

drip-rid-08, 25 July 2021, <https://datatracker.ietf.org/

doc/html/draft-ietf-drip-rid-08>.

Moskowitz, R., Hummen, R., and M. Komu, "HIP Diet

EXchange (DEX)", Work in Progress, Internet-Draft, draft-

ietf-hip-dex-24, 19 January 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-hip-dex-24>.

Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.,

and R. Van Keer, "The Keccak Function", <https://

keccak.team/index.html>.

Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-

Hashing for Message Authentication", RFC 2104, DOI

10.17487/RFC2104, February 1997, <https://www.rfc-

editor.org/info/rfc2104>.

Kent, S., "IP Encapsulating Security Payload (ESP)", RFC

4303, DOI 10.17487/RFC4303, December 2005, <https://

www.rfc-editor.org/info/rfc4303>.

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-

Expand Key Derivation Function (HKDF)", RFC 5869, DOI

https://www.rfc-editor.org/info/rfc7402
https://www.rfc-editor.org/info/rfc7402
https://www.rfc-editor.org/info/rfc8174
https://keccak.team/xoodyak.html
https://keccak.team/xoodyak.html
https://eprint.iacr.org/2018/767.pdf
https://eprint.iacr.org/2018/767.pdf
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-319-70697-9_21
https://datatracker.ietf.org/doc/html/draft-ietf-drip-rid-08
https://datatracker.ietf.org/doc/html/draft-ietf-drip-rid-08
https://datatracker.ietf.org/doc/html/draft-ietf-hip-dex-24
https://datatracker.ietf.org/doc/html/draft-ietf-hip-dex-24
https://keccak.team/index.html
https://keccak.team/index.html
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc4303
https://www.rfc-editor.org/info/rfc4303

[RFC7343]

[RFC7748]

[RFC8032]

[RFC8750]

10.17487/RFC5869, May 2010, <https://www.rfc-editor.org/

info/rfc5869>.

Laganier, J. and F. Dupont, "An IPv6 Prefix for Overlay

Routable Cryptographic Hash Identifiers Version 2

(ORCHIDv2)", RFC 7343, DOI 10.17487/RFC7343, September

2014, <https://www.rfc-editor.org/info/rfc7343>.

Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves

for Security", RFC 7748, DOI 10.17487/RFC7748, January

2016, <https://www.rfc-editor.org/info/rfc7748>.

Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital

Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/

RFC8032, January 2017, <https://www.rfc-editor.org/info/

rfc8032>.

Migault, D., Guggemos, T., and Y. Nir, "Implicit

Initialization Vector (IV) for Counter-Based Ciphers in

Encapsulating Security Payload (ESP)", RFC 8750, DOI

10.17487/RFC8750, March 2020, <https://www.rfc-

editor.org/info/rfc8750>.

Authors' Addresses

Robert Moskowitz

HTT Consulting

Oak Park, MI 48237

United States of America

Email: rgm@labs.htt-consult.com

Stuart W. Card

AX Enterprize

4947 Commercial Drive

Yorkville, NY 13495

United States of America

Email: stu.card@axenterprize.com

Adam Wiethuechter

AX Enterprize

4947 Commercial Drive

Yorkville, NY 13495

United States of America

Email: adam.wiethuechter@axenterprize.com

https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc7343
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8750
https://www.rfc-editor.org/info/rfc8750
mailto:rgm@labs.htt-consult.com
mailto:stu.card@axenterprize.com
mailto:adam.wiethuechter@axenterprize.com

	New Cryptographic Algorithms for HIP
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terms and Definitions
	2.1. Requirements Terminology
	2.2. Definitions

	3. HIP Parameter values for new Cryptographic Functions
	3.1. Elliptic Curves for Diffie-Hellman
	3.1.1. DIFFIE_HELLMAN

	3.2. Edward Digital Signature Algorithm for HITs
	3.2.1. HOST_ID
	3.2.2. HIT_SUITE_LIST

	3.3. Hashing in HIP
	3.3.1. Hashing with the Sponge Functions
	3.3.1.1. cSHAKE, the customizable SHAKE function
	3.3.1.2. The Xoodyak Hash

	3.3.2. RHASH
	3.3.3. HIP_MAC and HIP_MAC2
	3.3.3.1. The Keccak Keyed MAC
	3.3.3.2. The Xoodyak Keyed MAC

	3.4. HIP Cipher
	3.4.1. HIP_CIPHER

	3.5. ESP Transform
	3.5.1. ESP_TRANSFORM

	4. Generating a HIT from an HI
	5. HIP KEYMAT Generation
	5.1. The Keccak KEYMAT
	5.2. The Xoodyak KEYMAT

	6. Pseudorandom Function (PRF)
	7. IANA Considerations
	8. Security Considerations
	8.1. Keymat vulnerabilities
	8.2. KMAC Security as a KDF

	9. Acknowledgments
	10. References
	10.1. Normative References
	10.2. Informative References

	Authors' Addresses

