Internet Engineering Task Force D. M'Raihi

Internet-Draft Verisign, 1Inc.
Intended status: Informational J. Rydell
Expires: September 12, 2011 Portwise, Inc.

S. Bajaj

Symantec Corp.

S. Machani

Diversinet Corp.

D. Naccache

Ecole Normale Superieure
March 11, 2011

OCRA: OATH Challenge-Response Algorithms
draft-mraihi-mutual-oath-hotp-variants-14.txt

Abstract

This document describes an algorithm for challenge-response
authentication developed by the "Initiative for Open AuTHentication"
(OATH). The specified mechanisms leverage the HMAC-based One-Time
Password algorithm (HOTP) [REC4226] and offer one-way and mutual
authentication, and digital signature capabilities.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The 1list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 12, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents

M'Raihi, et al. Expires September 12, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/rfc4226
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft OCRA March 2011

(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must

include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

Introduction
Notation and Termlnology
Algorithm Requirements
OCRA Background
4.1. HOTP Algorithm
Definition of OCRA
DataInput Parameters
CryptoFunction
he OCRASuite
Algorithm
CryptoFunction
DataInput .
OCRASuite Examples
Algorlthm Modes for Authentlcatlon
One way Challenge-Response
Mutual Challenge-Response
Algorithm Modes for Signature
.3.1. Plain Signature e
7.3.2. Signature with Server Authentlcatlon
Security Considerations .
8.1. Security Analysis of the OCRA algorlthm
8.2. Implementation Considerations
IANA Considerations
Conclusion
Acknowledgements
References .o
12.1. Normative references
12.2. Informative References .
Appendix A. Reference Implementation
Appendix B. Test Vectors Generation
Appendix C. Test Vectors
C.1. Plain challenge response
C.2. Mutual Challenge Response
C.3. Plain Signature
Authors' Addresses

\-lk W N =

lon
a
[

o
RN

»
N

D
w

I~
~ ‘ (o]
R »

~
N

‘\l
~N (W

|co

= |©

=
N

W W W W [w [N R R [TR Y [T
‘m‘ﬂ‘m‘b‘b‘m‘o‘m‘m‘m ~ NN m‘m‘m‘w wiN ke o‘o\m\m\m\m\m\m\m\b\b\w\w\w

o IS IR (5 |

g~y

http://trustee.ietf.org/license-info

M'Raihi, et al. Expires September 12, 2011 [Page 2]

Internet-Draft OCRA March 2011

1.

N

[eN]

Introduction

OATH [OATH] has identified several use cases and scenarios that
require an asynchronous variant to accommodate users who do not want
to maintain a synchronized authentication system. A commonly
accepted method for this is to use a challenge-response scheme.

Such challenge response mode of authentication is widely adopted in
the industry. Several vendors already offer software applications
and hardware devices implementing challenge-response - but each of
those uses vendor-specific proprietary algorithms. For the benefits
of users there is a need for a standardized challenge-response
algorithm which allows multi-sourcing of token purchases and
validation systems to facilitate the democratization of strong
authentication.

Additionally, this specification describes the means to create
symmetric key based short digital signatures. Such signatures are
variants of challenge-response mode where the data to be signed
becomes the challenge.

Notation and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

Algorithm Requirements

This section presents the main requirements that drove this algorithm
design. A lot of emphasis was placed on flexibility and usability,
under the constraints and specificity of the HOTP algorithm and
hardware token capabilities.

R1 - The algorithm MUST support challenge-response based
authentication.

R2 - The algorithm MUST be capable of supporting symmetric key based
short digital signatures. Essentially this is a variation of
challenge-response where the challenge is derived from the data that
needs to be signed.

R3 - The algorithm MUST be capable of supporting server-
authentication, whereby the user can verify that he/she is talking to
a trusted server.

https://datatracker.ietf.org/doc/html/rfc2119

M'Raihi, et al. Expires September 12, 2011 [Page 3]

Internet-Draft OCRA March 2011

[

R4 - The algorithm SHOULD use HOTP [RFC4226] as a key building block.

R5 - The length and format of the input challenge SHOULD be
configurable.

R6 - The output length and format of the generated response SHOULD be
configurable.

R7 - The challenge MAY be generated with integrity checking (e.g.,
parity bits). This will allow tokens with pin pads to perform simple
error checking when the user enters the challenge value into a token.

R8 - There MUST be a unique secret (key) for each token/soft token
that is shared between the token and the authentication server. The
keys MUST be randomly generated or derived using a key derivation
algorithm.

R9 - The algorithm MAY enable additional data attributes such as a
timestamp or session information to be included in the computation.
These data inputs MAY be used individually or all together.

OCRA Background

OATH introduced the HOTP algorithm as a first open, freely available
building block towards strengthening authentication for end-users in
a variety of applications. One-time passwords are very efficient at
solving specific security issues thanks to the dynamic nature of OTP
computations.

After carefully analyzing different use cases, OATH came to the
conclusion that providing for extensions to the HOTP algorithms was
important. A very natural extension is to introduce a challenge mode
for computing HOTP values based on random questions. Equally
beneficial is being able to perform mutual authentication between two
parties, or short-signature computation for authenticating
transaction to improve the security of e-commerce applications.

.1. HOTP Algorithm

The HOTP algorithm, as defined in [RFC4226] is based on an increasing
counter value and a static symmetric key known only to the prover and
verifier parties.

As a reminder:
HOTP(K,C) = Truncate(HMAC-SHA1(K,C))

Where Truncate represents the function that converts an HMAC-SHA-1

https://datatracker.ietf.org/doc/html/rfc4226
https://datatracker.ietf.org/doc/html/rfc4226

M'Raihi, et al. Expires September 12, 2011 [Page 4]

Internet-Draft OCRA March 2011

value into an HOTP value.

We refer the reader to [REC4226] for the full description and further
details on the rationale and security analysis of HOTP.

The present draft describes the different variants based on similar
constructions as HOTP.

Definition of OCRA

o

OCRA is a generalization of HOTP with variable data inputs not solely
based on an incremented counter and secret key values.

The definition of OCRA requires a cryptographic function, a key K and
a set of DataInput parameters. This section first formally
introduces the OCRA algorithm and then introduces the definitions and
default values recommended for all parameters.

In a nutshell,
OCRA = CryptoFunction(K, DataInput)

Where:

0 K: a shared secret key known to both parties

o DataInput: a structure that contains the concatenation of the
various input data values defined in details in section 5.1

0 CryptoFunction: this is the function performing the OCRA
computation from the secret key K and the DataInput material;

CryptoFunction is described in details in section Section 5.2

5.1. DataInput Parameters

This structure is the concatenation over byte array of the OCRASuite
value as defined in section 6 with the different parameters used in
the computation, save for the secret key K.

DataInput = {OCRASuite | @0 | C | Q | P | S | T} where:

0 OCRASuite is a value representing the suite of operations to
compute an OCRA response

0 00 is a byte value used as a separator

o C is an unsigned 8-byte counter value processed high-order bit
first, and MUST be synchronized between all parties; It loops
around from "{Hex}0" to "{Hex}FFFFFFFFFFFFFFFF" and then starts
over at "{Hex}@". Note that 'C' is optional for all OCRA modes
described in this document.

https://datatracker.ietf.org/doc/html/rfc4226

M'Raihi, et al. Expires September 12, 2011 [Page 5]

Internet-Draft OCRA March 2011

o Q, mandatory, is a 128-byte list of (concatenated) challenge
gquestion(s) generated by the parties; if Q is less than 128 bytes,
then it should be padded with zeroes to the right

o P is a hash (SHA1 [REC3174], SHA256 and SHA512 [SHA2] are
supported) value of PIN/password that is known to all parties
during the execution of the algorithm; the length of P will depend
on the hash function that is used

0 S is an UTF-8 [RFEC2279] encoded string of length upto 512 bytes
that contains information about the current session; the length of
S is defined in the OCRASuite string

o T is an 8-byte unsigned integer in big endian (i.e. network byte
order) representing the number of time-steps(seconds, minutes,
hours or days depending on the specified granularity) since
midnight UTC of January 1, 1970. More specificatlly, if the OCRA
computation includes a timestamp T, you should first convert your
current local time to UTC time; you can then derive the UTC time
in the proper format (i.e. seconds, minutes, hours or days elapsed
from Epoch time); the size of the time-step is defined in the
OCRASuite string

When computing a response, the concatenation order is always the
following:
C |
OTHER-PARTY -GENERATED-CHALLENGE -QUESTION |
YOUR-GENERATED-CHALLENGE-QUESTION |
Pl S| T
If a value is empty (i.e. a certain input is not used in the
computation) then the value is simply not represented in the string.
The counter on the token or client MUST be incremented every time a
new computation is requested by the user. The server's counter value
MUST only be incremented after a successful OCRA authentication.
5.2. CryptoFunction
The default CryptoFunction is HOTP-SHA1-6, i.e. the default mode of

computation for OCRA is HOTP with the default 6-digit dynamic
truncation and a combination of DataInput values as the message to

https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc2279

M'Raihi, et al. Expires September 12, 2011 [Page 6]

Internet-Draft OCRA March 2011

compute the HMAC-SHA1l digest.

We denote t as the length in decimal digits of the truncation output.
For instance, if t = 6, then the output of the truncation is a
6-digit (decimal) value.

We define the HOTP family of functions as an extension to HOTP:

1. HOTP-H-t: these are the different possible truncated versions of
HOTP, using the dynamic truncation method for extracting an HOTP
value from the HMAC output

2. We will denote HOTP-H-t as the realization of an HOTP function
that uses an HMAC function with the hash function H, and the
dynamic truncation as described in [RFC4226] to extract a t-digit
value

3. t=0 means that no truncation is performed and the full HMAC value
is used for authentication purpose

We list the following preferred modes of computation, where * denotes
the default CryptoFunction:

0 HOTP-SHA1-4: HOTP with SHA-1 as the hash function for HMAC and a
dynamic truncation to a 4-digit value; this mode is not
recommended in the general case but can be useful when a very
short authentication code is needed by an application

0 HOTP-SHA1-6: HOTP with SHA-1 as the hash function for HMAC and a
dynamic truncation to a 6-digit value

0 HOTP-SHA1-8: HOTP with SHA-1 as the hash function for HMAC and a
dynamic truncation to an 8-digit value

0 HOTP-SHA256-6: HOTP with SHA-256 as the hash function for HMAC and
a dynamic truncation to a 6-digit value

0 HOTP-SHA512-6: HOTP with SHA-512 as the hash function for HMAC and
a dynamic truncation to a 6-digit value

This table summarizes all possible values for the CryptoFunction:

R U e e e e eeemaaaas +
[Name | HMAC Function Used | Size of Truncation (t) |
B S e e e o oo e +
HOTP-SHA1-t	HMAC-SHA1	© (no truncation), 4-10
HOTP-SHA256-t	HMAC - SHA256	@ (no truncation), 4-10
HOTP-SHA512-t	HMAC - SHA512	© (no truncation), 4-10
B RS e e e e oo - e e e e e +

Table 1: CryptoFunction Table

https://datatracker.ietf.org/doc/html/rfc4226

M'Raihi, et al. Expires September 12, 2011 [Page 7]

Internet-Draft OCRA March 2011

6.

6.1.

6.2.

6.3.

The OCRASuite

An OCRASuite value is a text string that captures one mode of
operation for the OCRA algorithm, completely specifying the various
options for that computation. An OCRASuite value is represented as
follows:

<Algorithm>:<CryptoFunction>:<DataInput>
The OCRASuite value is the concatenation of three sub-components that
are described below. Some example OCRASuite strings are described in

section 6.4.

The client and server need to agree on one or two values of
OCRASuite. These values may be agreed at time of token provisioning
or for more sophisticated client-server interactions these values may
be negotiated for every transaction.

Note that for Mutual Challenge-Response or Signature with Server
Authentication modes, the client and server will need to agree on two
values of OCRASuite - one for server computation and another for
client computation.

Algorithm

Description: Indicates the version of OCRA algorithm.

Values: OCRA-v where v represents the version number (e.g. 1, 2
etc.). This document specifies version 1 of the OCRA algorithm.

CryptoFunction

Description: Indicates the function used to compute OCRA values
Values: Permitted values are described in section 5.2

DataInput

Description: This component of the OCRASuite string captures the list
of valid inputs for that computation; [] indicates a value is
optional:

[C] | QFxx | [PH | Snnn | TG] : Challenge-Response computation

[C] | QFxx | [PH | TG] : Plain Signature computation

Each input that is used for the computation is represented by a

aihi, et al. xpires September 12, age
M'Raihi t al Expi September 12, 2011 P 8

Internet-Draft OCRA March 2011

single letter (except Q) and they are separated by a hyphen.

The input for challenge is further qualified by the formats supported
by the client for challenge question(s). Supported values can be:

T e e oo e +
| Format (F) | Up to Length (xx) |
o e e e e e +
A (alphanumeric)	04-64
N (numeric)	04-64
H (hexadecimal)	04-64
oo o e oo +

Table 2: Challenge Format Table
The default challenge format is NO8, numeric and upto 8 digits.

The input for P is further qualified by the hash function used for
the PIN/password. Supported values for hash function can be:

Hash function (H) - SHA1, SHA256, SHA512.

The default hash function for P is SHA1.

The input for S is further qualified by the length of the session
data in bytes. The client and server could agree to any length but
the typical values are:

Length (nnn) - 064, 128, 256 and 512.

The default length is 064 bytes.

The input for timestamps is further qualified by G, size of the time-
step. G can be specified in number of seconds, minutes or hours:

e Fom e e e e e e oo +
| Time-step Size (G) | Examples |
B Y e e e e ememeaeaaaaas +
[1-59]S	number of seconds, e.g. 20S
[1-59]M	number of minutes, e.g. 5M
[0-48]H	number of hours, e.g. 24H
B Y e e e e eeemeeaaaaaas +

Table 3: Time-step Size Table

Default value for G is 1M, i.e. time step size is one minute and the
T represents the number of minutes since Epoch time.

M'Raihi, et al. Expires September 12, 2011 [Page 9]

Internet-Draft OCRA March 2011

6.

I~

~

4. OCRASuite Examples

Here are some examples of OCRASuite strings:

0 "OCRA-1:HOTP-SHA512-8:C-QNO8-PSHA1" means version 1 of the OCRA
algorithm with HMAC-SHA512 function, truncated to an 8-digit
value, using the counter, a random challenge and a SHA1l digest of
the PIN/Password as parameters. It also indicates that the client
supports only numeric challenge upto 8 digits in length

0 "OCRA-1:HOTP-SHA256-6:QA10-T1M" means version 1 of the OCRA
algorithm with HMAC-SHA256 function, truncated to a 6-digit value,
using a random alphanumeric challenge upto 10 characters in length
and a timestamp in number of minutes since Epoch time

0 "OCRA-1:HOTP-SHA1-4:QH8-S512" means version 1 of the OCRA
algorithm with HMAC-SHA1 function, truncated to a 4-digit value,
using a random hexadecimal challenge upto 8 nibbles and a session
value of 512 bytes

Algorithm Modes for Authentication

This section describes the typical modes in which the above defined
computation can be used for authentication.

.1. One way Challenge-Response

A challenge/response is a security mechanism in which the verifier
presents a question (challenge) to the prover who must provide a
valid answer (response) to be authenticated.

To use this algorithm for a one-way challenge-response, the verifier
will communicate a challenge value (typically randomly generated) to
the prover. The prover will use the challenge in the computation as
described above. The prover then communicates the response to the
verifier to authenticate.

Therefore in this mode, the typical data inputs will be:
C - Counter, optional.
Challenge question, mandatory, supplied by the verifier.
Hashed version of PIN/password, optional.
Session information, optional.
Timestamp, optional.

Q
P
S
T

The diagram below shows the message exchange between the client
(prover) and the server (verifier) to complete a one-way challenge-
response authentication.

It is assumed that the client and server have a pre-shared key K that
is used for the computation.

aihi, et al. xpires September 12, age
M'Raihi t al Expi September 12, 2011 P 10

Int

ernet-Draft OCRA March 2011

CLIENT SERVER
(PROVER) VERIFIER)
I I
| Verifier sends challenge to prover |
Challenge = Q |

|
Prover Computes Response |
R = OCRA(K, {[C] | Q| [P [S| TI}) |
Prover sends Response = R |
|
|
|

Verifier Validates Response
If Response is valid, Server sends OK |
If Response is not, Server sends NOK |

Mutual Challenge-Response

Mutual challenge-response is a variation of one-way challenge-
response where both the client and server mutually authenticate each
other.

To use this algorithm, the client will first send a random client-
challenge to the server. The server computes the server-response and
sends it to the client along with a server-challenge.

The client will first verify the server-response to be assured that
it is talking to a valid server. It will then compute the client-
response and send it to the server to authenticate. The server
verifies the client-response to complete the two-way authentication
process.

In this mode there are two computations: client-response and server-
response. There are two separate challenge questions, generated by
both parties. We denote these challenge questions Q1 and Q2.

Typical data inputs for server-response computation will be:
C - Counter, optional.
QC - Challenge question, mandatory, supplied by the client.
QS - Challenge question, mandatory, supplied by the server.
S - Session information, optional.
T - Timestamp, optional.

Typical data inputs for client-response computation will be:

aihi, et al. xpires September 12, age
M'Raihi t al Expi September 12, 2011 P 11

Internet-Draft OCRA March 2011

7.3.

C - Counter, optional.

QS - Challenge question, mandatory, supplied by the server.
QC - Challenge question, mandatory, supplied by the client.
P - Hashed version of PIN/password, optional.

S - Session information, optional.

T - Timestamp, optional.

The following picture shows the messages that are exchanged between
the client and the server to complete a two-way mutual challenge-
response authentication.

It is assumed that the client and server have a pre-shared key K (or
pair of keys if using dual-key mode of computation) that is used for
the computation.

CLIENT SERVER
(PROVER) (VERIFIER)
I I
| 1. Client sends client-challenge |
| QC = Client-challenge
I e e T R P >

I

| 2. Server computes server-response

| and sends server-challenge

| RS = OCRA(K, [C] | QC | @S | [S | T])
| QS = Server-challenge

| Response = RS, QS

[<--mmmmmm I
I

I

I

I

I

I

I
3. Client verifies server-response |
and computes client-response |
OCRA(K, [C] | QC | QS | [S | T]) '= RS -> STOP |
RC = OCRA(K, [C] | @ | QC | [P | S | T]) I
Response = RC
e e EEEEEEEE >|
I I
| 4. Server verifies client-response |
| OCRA(K, [C] | QS | QC | [P]S|T]) !'= RC -> STOP |
| Response = 0K |
R e EEEEEEE |
I

Algorithm Modes for Signature

In this section we describe the typical modes in which the above
defined computation can be used for digital signatures.

M'Raihi, et al. Expires September 12, 2011 [Page 12]

Internet-Draft OCRA March 2011

7.3.1. Plain Signature

To use this algorithm in plain signature mode, the server will
communicate a signature-challenge value to the client (signer). The
signature-challenge is either the data to be signed or derived from
the data to be signed using a hash function, for example.

The client will use the signature-challenge in the computation as
described above. The client then communicates the signature value
(response) to the server to authenticate.

Therefore in this mode, the data inputs will be:
C - Counter, optional.
QS - Signature-challenge, mandatory, supplied by the server.
P - Hashed version of PIN/password, optional.
T - Timestamp, optional.

The picture below shows the messages that are exchanged between the
client (prover) and the server (verifier) to complete a plain
signature operation.

It is assumed that the client and server have a pre-shared key K that
is used for the computation.

CLIENT SERVER
(PROVER) (VERIFIER)
I I
| Verifier sends signature-challenge |

Challenge = QS |

I

| |
I I
| Client Computes Response |
I SIGN = OCRA(K, [C] | @S | [P | T]) I
| Response = SIGN |
| oo >
I I
| Verifier Validates Response |
| Response = OK |
| S |

7.3.2. Signature with Server Authentication
This mode is a variation of the plain signature mode where the client
can first authenticates the server before generating a digital

signature.

To use this algorithm, the client will first send a random client-

M'Raihi, et al. Expires September 12, 2011 [Page 13]

Internet-Draft OCRA March 2011

challenge to the server. The server computes the server-response and
sends it to the client along with a signature-challenge.

The client will first verify the server-response to authenticate that
it is talking to a valid server. It will then compute the signature
and send it to the server.

In this mode there are two computations: client-signature and server-
response.

Typical data inputs for server-response computation will be:
C - Counter, optional.
QC - Challenge question, mandatory, supplied by the client.
QS - Signature-challenge, mandatory, supplied by the server.
T - Timestamp, optional.

Typical data inputs for client-signature computation will be:
C - Counter, optional.
QC - Challenge question, mandatory, supplied by the client.
QS - Signature-challenge, mandatory, supplied by the server.
P - Hashed version of PIN/password, optional.
T - Timestamp, optional.

The diagram below shows the messages that are exchanged between the
client and the server to complete a signature with server
authentication transaction.

It is assumed that the client and server have a pre-shared key K (or
pair of keys if using dual-key mode of computation) that is used for
the computation.

M'Raihi, et al. Expires September 12, 2011 [Page 14]

Internet-Draft OCRA March 2011

CLIENT SERVER
(PROVER) VERIFIER)
I I
| 1. Client sends client-challenge |
| QC = Client-challenge

I
| >
I I
| 2. Server computes server-response |
| and sends signature-challenge |
I RS = OCRA(K, [C] | QC | Qs | [T]) I
| QS = signature-challenge |
| Response = RS, QS
R REREEEEEEEE |
I I
| 3. Client verifies server-response |
| and computes signature |
| OCRA(K, [C] | QC | QS | [T]) != RS -> STOP |
I SIGN = OCRA(K, [C] | Q@S | QC | [P | T]) I
| Response = SIGN
| oo >
I I
| 4. Server verifies Signature |
[OCRA(K, [CT | QS | QC | [P|T]) != SIGN -> STOP |
| Response = OK
S |
I

8. Security Considerations

Any algorithm is only as secure as the application and the
authentication protocols that implement it. Therefore, this section
discusses the critical security requirements that our choice of
algorithm imposes on the authentication protocol and validation
software.

(o)

.1. Security Analysis of the OCRA algorithm

The security and strength of this algorithm depends on the properties
of the underlying building block HOTP, which is a construction based
on HMAC [RFC2104] using SHA-1 [RFC3174] (or SHA-256 or SHA-512
[SHA2]) as the hash function.

The conclusion of the security analysis detailed in [RFC4226] is
that, for all practical purposes, the outputs of the dynamic
truncation on distinct counter inputs are uniformly and independently
distributed strings.

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc4226

aihi, et al. xpires September 12, age
M'Raihi t al Expi September 12, 2011 P 15

Internet-Draft OCRA March 2011

The analysis demonstrates that the best possible attack against the
HOTP function is the brute force attack.

8.2. Implementation Considerations

IC1 - In the authentication mode, the client MUST support two- factor
authentication, i.e., the communication and verification of something
you know (secret code such as a Password, Pass phrase, PIN code,
etc.) and something you have (token). The secret code is known only
to the user and usually entered with the Response value for
authentication purpose (two-factor authentication). Alternatively,
instead of sending something you know to the server, the client may
use a hash of the Password or PIN code in the computation itself,
thus implicitly enabling two-factor authentication.

IC2 - Keys SHOULD be of the length of the CryptoFunction output to
facilitate interoperability.

IC3 - Keys SHOULD be chosen at random or using a cryptographically
strong pseudo-random generator properly seeded with a random value.
We RECOMMEND following the recommendations in [RFC4086] for all
pseudo-random and random generations. The pseudo-random numbers used
for generating the keys SHOULD successfully pass the randomness test
specified in [CN].

IC4 - Challenge questions SHOULD be 20-byte values and MUST be at
least t-byte values where t stands for the digit-length of the OCRA
truncation output.

IC5 - On the client side, the keys SHOULD be embedded in a tamper
resistant device or securely implemented in a software application.
Additionally, by embedding the keys in a hardware device, you also
have the advantage of improving the flexibility (mobility) of the
authentication system.

IC6 - All the communications SHOULD take place over a secure channel
e.g. SSL/TLS [REC5246], IPsec connections.

IC7 - The OCRA algorithm when used in mutual authentication mode or
in signature with server authentication mode MAY use dual key mode -
i.e. there are two keys that are shared between the client and the
server. One shared key is used to generate the server response on
the server side and to verify it on the client side. The other key
is used to create the response or signature on the client side and to
verify it on the server side.

IC8 - We recommend that implementations MAY use the session
information, S as an additional input in the computation. For

https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc5246

M'Raihi, et al. Expires September 12, 2011 [Page 16]

Internet-Draft OCRA March 2011

[©

example, S could be the session identifier from the TLS session.

This will mitigate against certain types of man-in-the-middle
attacks. However, this will introduce the additional dependency that
first of all the prover needs to have access to the session
identifier to compute the response and the verifier will need access
to the session identifier to verify the response. [RFC5056] contains
a relevant discussion of using Channel Bindings to Secure Channels

IC9 - In the signature mode, whenever the counter or time (defined as
optional elements) are not used in the computation, there might be a
risk of replay attack and the implementers should carefully consider
this issue in the light of their specific application requirements
and security guidelines. The server SHOULD also provide whenever
possible a mean for the client (if able) to verify the validity of
the signature challenge.

IC10 - We also RECOMMEND storing the keys securely in the validation
system, and more specifically encrypting them using tamper-resistant
hardware encryption and exposing them only when required: for
example, the key is decrypted when needed to verify an OCRA response,
and re-encrypted immediately to limit exposure in the RAM for a short
period of time. The key store MUST be in a secure area, to avoid as
much as possible direct attack on the validation system and secrets
database. Particularly, access to the key material should be limited
to programs and processes required by the validation system only.

IANA Considerations

This document has no actions for IANA.

Conclusion

This draft introduced several variants of HOTP for challenge-
response based authentication and short signature-like computations.

The OCRASuite provides for an easy integration and support of
different flavors within an authentication and validation system.

Finally, OCRA should enable mutual authentication both in connected
and off-1line modes, with the support of different response sizes and
mode of operations.

Acknowledgements

We would like to thank Jeff Burstein, Shuh Chang, Oanh Hoang, Philip

https://datatracker.ietf.org/doc/html/rfc5056

aihi, et al. xpires September 12, age
M'Raihi t al Expi September 12, 2011 P 17

Internet-Draft OCRA March 2011

12.

12

Hoyer, Jon Martinsson, Frederik Mennes, Mingliang Pei, Jonathan
Tuliani, Stu Vaeth, Enrique Rodriguez and Robert Zuccherato for their
comments and suggestions to improve this draft document.

References

.1. Normative references

12.

[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
Hashing for Message Authentication", RFC 2104,
February 1997, <http://www.ietf.org/rfc/rfc2104.txt>.

[RFC2119] "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997,
<http://www.ietf.org/rfc/rfc2119.txt>.

[RFC2279] Yergeau, F., "UTF-8, a transformation format of ISO
10646", RFC 2279, January 1998,
<http://www.ietf.org/rfc/rfc2279.txt>.

[RFC3174] Eastlake, D. and P. Jones, "US Secure Hash Algorithm 1
(SHA1)", RFC 3174, September 2001,
<http://www.ietf.org/rfc/rfc3174.txt>.

[RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
Recommendations for Security", RFEC 4086, June 2005,
<http://www.ietf.org/rfc/rfc4086.txt>.

[RFC4226] M'Raihi, D., Bellare, M., Hoornaert, F., Naccache, D., and
0. Ranen, "HOTP: An HMAC-Based One-Time Password
Algorithm", RFC 4226, December 2005,
<http://www.ietf.org/rfc/rfc4226.txt>.

[SHAZ2] NIST, "FIPS PUB 180-3: Secure Hash Standard (SHS)",
October 2008, <http://csrc.nist.gov/publications/fips/
fips180-3/fips180-3 final.pdf>.

2. Informative References

[CN] Coron, J. and D. Naccache, "An accurate evaluation of
Maurer's universal test", LNCS 1556, February 1999, <http:
//www.gemplus.com/smart/rd/publications/pdf/CN99maur.pdf>.

[OATH] Initiative for Open AuTHentication, "OATH Vision",
<http://www.openauthentication.org/about>.

[RFC5056] Williams, N., "On the Use of Channel Bindings to Secure

https://datatracker.ietf.org/doc/html/rfc2104
http://www.ietf.org/rfc/rfc2104.txt
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.ietf.org/rfc/rfc2119.txt
https://datatracker.ietf.org/doc/html/rfc2279
http://www.ietf.org/rfc/rfc2279.txt
https://datatracker.ietf.org/doc/html/rfc3174
http://www.ietf.org/rfc/rfc3174.txt
https://datatracker.ietf.org/doc/html/rfc4086
http://www.ietf.org/rfc/rfc4086.txt
https://datatracker.ietf.org/doc/html/rfc4226
http://www.ietf.org/rfc/rfc4226.txt
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://www.openauthentication.org/about

M'Raihi, et al. Expires September 12, 2011 [Page 18]

Internet-Draft OCRA March 2011

Channels", RFC 5056, November 2007,
<http://www.ietf.org/rfc/rfc5056.txt>.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008,
<http://www.ietf.org/rfc/rfc5246.txt>.

[RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
for TLS", REC 5929, July 2010,
<http://www.ietf.org/rfc/rfc5929.txt>.

[uT] wWikipedia, "Unix time",
<http://en.wikipedia.org/wiki/Unix_time>.

Appendix A. Reference Implementation

<CODE BEGINS>

/**
Copyright (c) 2011 IETF Trust and the persons identified as authors of
the code. All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;
import java.math.BigInteger;

/**
* This an example implementation of the OATH OCRA algorithm.
* Visit www.openauthentication.org for more information.
*
* @author Johan Rydell, PortWise
*/

https://datatracker.ietf.org/doc/html/rfc5056
http://www.ietf.org/rfc/rfc5056.txt
https://datatracker.ietf.org/doc/html/rfc5246
http://www.ietf.org/rfc/rfc5246.txt
https://datatracker.ietf.org/doc/html/rfc5929
http://www.ietf.org/rfc/rfc5929.txt
http://en.wikipedia.org/wiki/Unix_time

M'Raihi, et al. Expires September 12, 2011 [Page 19]

Internet-Draft OCRA March 2011

public class OCRA {

private OCRA() {}

* This method uses the JCE to provide the crypto

* algorithm.

* HMAC computes a Hashed Message Authentication Code with the
* crypto hash algorithm as a parameter.

* @param crypto the crypto algorithm (HmacSHA1, HmacSHA256,
* HmacSHA512)

* @param keyBytes the bytes to use for the HMAC key

* @param text the message or text to be authenticated.

*/

private static byte[] hmac_shal(String crypto,
byte[] keyBytes, byte[] text){
Mac hmac = null;
try {
hmac = Mac.getInstance(crypto);
SecretKeySpec macKey =
new SecretKeySpec(keyBytes, "RAW");
hmac.init(macKey);
return hmac.doFinal(text);
} catch (Exception e) {
e.printStackTrace();

}

return null;

private static final int[] DIGITS_POWER
// 061 2 3 4 5 6 7 8
= {1,10,100,1000,10000,100000, 1000000, 10000000, 100000000 };

/**
* This method converts HEX string to Byte[]

*

* @param hex the HEX string
*
* @return A byte array
*/
private static byte[] hexStr2Bytes(String hex){
// Adding one byte to get the right conversion
// values starting with "©" can be converted
byte[] bArray = new BigInteger("10" + hex,16).toByteArray();

aihi, et al. xpires September 12, age
M'Raihi t al Expi September 12, 2011 P 20

Internet-Draft OCRA March 2011

// Copy all the REAL bytes, not the "first"
byte[] ret = new byte[bArray.length - 1];
System.arraycopy(bArray, 1, ret, 0, ret.length);
return ret;

/**
* This method generates an OCRA HOTP value for the given
* set of parameters.

* @param ocraSuite the OCRA Suite

* @param key the shared secret, HEX encoded

* @param counter the counter that changes on a per use

* basis, HEX encoded

* @param question the challenge question, HEX encoded

* @param password a password that can be used, HEX encoded
* @param sessionInformation Static information that identifies
* the current session, Hex encoded

* @param timeStamp a value that reflects a time

* @return A numeric String in base 10 that includes
* {@1link truncationDigits} digits
*/
static public String generateOCRA(String ocraSuite,
String key,
String counter,
String question,
String password,
String sessionInformation,
String timeStamp){

int codeDigits = 0O;

String crypto = "";

String result = null;

int ocraSuitelLength = (ocraSuite.getBytes()).length;
int counterLength = 0;

int questionLength = 0;

int passwordLength = 0;

int sessionInformationLength = 0;

int timeStampLength = 0;

// The OCRASuites components
String CryptoFunction = ocraSuite.split(":")[1];
String DataInput = ocraSuite.split(":")[2];

if(CryptoFunction.toLowerCase().indexOf("shal") > 1)

M'Raihi, et al. Expires September 12, 2011 [Page 21]

Internet-Draft OCRA March 2011

crypto = "HmacSHA1";
if(CryptoFunction.toLowerCase().index0f("sha256") > 1)
crypto = "HmacSHA256";
if(CryptoFunction.toLowerCase().index0f("sha512") > 1)
crypto = "HmacSHA512";

// How many digits should we return
codeDigits = Integer.decode(CryptoFunction.substring(
CryptoFunction.lastIndexOf("-")+1));

// The size of the byte array message to be encrypted
// Counter
if(DataInput.toLowerCase().startswith("c")) {
// Fix the length of the HEX string
while(counter.length() < 16)
counter = "@" + counter;
counterLength=8;
3
// Question - always 128 hytes
if(DataInput.toLowerCase().startswith("q") ||
(DataInput.toLowerCase().index0f("-q") >= 0)) {
while(question.length() < 256)
gquestion = question + "@";
questionLength=128;
}

// Password - shail
if(DataInput.toLowerCase().index0f("pshal") > 1){
while(password.length() < 40)
password = "@" + password;
passwordLength=20;

}

// Password - sha256
if(DataInput.toLowerCase().index0f("psha256") > 1){
while(password.length() < 64)
password = "@" + password;
passwordLength=32;

}

// Password - shab512
if(DataInput.toLowerCase().index0f("psha512") > 1){
while(password.length() < 128)
password = "@" + password;
passwordLength=64;

}

// sessionInformation - s064

M'Raihi, et al. Expires September 12, 2011 [Page 22]

Internet-Draft OCRA March 2011

if(DataInput.toLowerCase().index0f("s064") > 1){
while(sessionInformation.length() < 128)
sessionInformation = "@" + sessionInformation;
sessionInformationLength=64;

}

// sessionInformation - s128
if(DataInput.toLowerCase().index0f("s128") > 1){
while(sessionInformation.length() < 256)
sessionInformation = "@" + sessionInformation;
sessionInformationLength=128;

}

// sessionInformation - s256
if(DataInput.toLowerCase().index0f("s256") > 1){
while(sessionInformation.length() < 512)
sessionInformation = "0@" + sessionInformation;
sessionInformationLength=256;

}

// sessionInformation - s512
if(DataInput.toLowerCase().index0f("s512") > 1){
while(sessionInformation.length() < 1024)
sessionInformation = "0@" + sessionInformation;
sessionInformationLength=512;

}

// TimeStamp
if(DataInput.toLowerCase().startswith("t") ||
(DataInput.toLowerCase().index0f("-t") > 1)){
while(timeStamp.length() < 16)
timeStamp = "O" + timeStamp;
timeStampLength=8;
}

// Remember to add "1" for the "00" byte delimiter
byte[] msg = new byte[ocraSuitelLength +
counterLength +
guestionLength +
passwordLength +
sessionInformationLength +
timeStampLength +
1];

// Put the bytes of "ocraSuite" parameters into the message
byte[] bArray = ocraSuite.getBytes();
System.arraycopy(bArray, 0, msg, 0, bArray.length);

M'Raihi, et al. Expires September 12, 2011 [Page 23]

Internet-Draft OCRA March 2011

// Delimiter
msg[bArray.length] = 0x00;

// Put the bytes of "Counter" to the message
// Input is HEX encoded
if(counterLength > 0){
bArray = hexStr2Bytes(counter);
System.arraycopy(bArray, 0, msg, ocraSuitelLength + 1,
bArray.length);

// Put the bytes of "question" to the message
// Input 1is text encoded
if(questionLength > 0){
bArray = hexStr2Bytes(question);
System.arraycopy(bArray, 0, msg, ocraSuitelLength + 1 +
counterLength, bArray.length);

}

// Put the bytes of "password" to the message
// Input 1is HEX encoded
if(passwordLength > 0){
bArray = hexStr2Bytes(password);
System.arraycopy(bArray, 0, msg, ocraSuitelLength + 1 +
counterLength + guestionLength, bArray.length);

}

// Put the bytes of "sessionInformation" to the message
// Input is text encoded
if(sessionInformationLength > 0){
bArray = hexStr2Bytes(sessionInformation);
System.arraycopy(bArray, 0, msg, ocraSuitelLength + 1 +
counterLength + guestionLength +
passwordLength, bArray.length);

}

// Put the bytes of "time" to the message
// Input is text value of minutes
if(timeStampLength > 0){
bArray = hexStr2Bytes(timeStamp);
System.arraycopy(bArray, 0, msg, ocraSuitelLength + 1 +
counterLength + questionLength +
passwordLength + sessionInformationLength,
bArray.length);

}

bArray = hexStr2Bytes(key);

aihi, et al. xpires September 12, age
M'Raihi t al Expi September 12, 2011 P 24

Internet-Draft OCRA March 2011

byte[] hash = hmac_shal(crypto, bArray, msg);

// put selected bytes into result int
int offset = hash[hash.length - 1] & 0Oxf;

int binary =
((hash[offset] & Ox7f) << 24) |
((hash[offset + 1] & Oxff) << 16) |
((hash[offset + 2] & Oxff) << 8) |
(hash[offset + 3] & Oxff);

int otp = binary % DIGITS_POWER[codeDigits];

result = Integer.toString(otp);
while (result.length() < codeDigits) {
result = "O@" + result;

}

return result;

}

<CODE ENDS>

M'Raihi, et al. Expires September 12, 2011 [Page 25]

Internet-Draft OCRA March 2011

Appendix B. Test Vectors Generation

<CODE BEGINS>

/

* %

Copyright (c) 2011 IETF Trust and the persons identified as authors of
the code. All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

import java.math.BigInteger;
import java.util.*;

import java.text.DateFormat;
import java.text.SimpleDateFormat;

p

p

}

ublic class TestOCRA {

ublic static String asHex (byte buf[]) {
StringBuffer strbuf = new StringBuffer(buf.length * 2);
int i;

for (1 = 0; i < buf.length; i++) {
if (((int) buf[i] & Oxff) < Ox10)
strbuf.append("0");
strbuf.append(Long.toString((int) buf[i] & Oxff, 16));

}
return strbuf.toString();

/**

* @param args
*/

public static void main(String[] args) {

String ocra = "";

M'Raihi, et al. Expires September 12, 2011 [Page 26]

Internet-Draft OCRA March 2011

String seed = "";

String ocraSuite = "";

String counter = "";

String password = "";

String sessionInformation = "";
String question = "";

String gHex = "";

String timeStamp = "";

// PASS1234 is SHA1l hash of "1234"
String PASS1234 = "7110eda4d09e062aa5e4a390b0a572ac0d2c0220";

String SEED = "3132333435363738393031323334353637383930";

String SEED32 = "31323334353637383930313233343536373839" +
"'30313233343536373839303132";

String SEED64 = "31323334353637383930313233343536373839" +
""3031323334353637383930313233343536373839" +
"'3031323334353637383930313233343536373839" +
"'3031323334";

int STOP = 5;

Date myDate = Calendar.getInstance().getTime();
BigInteger b = new BigInteger("0");
String sDate = "Mar 25 2008, 12:06:30 GMT";

try{
DateFormat df =

new SimpleDateFormat("MMM dd yyyy, HH:mm:ss zzz");
myDate = df.parse(sDate);
b = new BigInteger("0" + myDate.getTime());
b = b.divide(new BigInteger("60000"));

System.out.println("Time of \"" + sDate + "\" is in");
System.out.println("milli sec: " + myDate.getTime());
System.out.println("minutes: " + b.toString());
System.out.println("minutes (HEX encoded): "

+ b.toString(16).toUpperCase());
System.out.println("Time of \"" + sDate

+ "\" is the same as this localized");
System.out.println("time, \""

+ new Date(myDate.getTime()) + "\"");

System.out.println();

System.out.println("Standard 20Byte key: " +
"'3132333435363738393031323334353637383930");

System.out.println("Standard 32Byte key: " +
"'3132333435363738393031323334353637383930");

aihi, et al. xpires September 12, age
M'Raihi t al Expi September 12, 2011 P 27

Internet-Draft OCRA March 2011

System.out.println(" "+
"'313233343536373839303132");

System.out.println("Standard 64Byte key: 313233343536373839"
+ "3031323334353637383930");

System.out.println(" 313233343536373839"
+ "3031323334353637383930");

System.out.println(" 313233343536373839"
+ "3031323334353637383930");

System.out.println(" 31323334");

System.out.println();
System.out.println("Plain challenge response");
System_out.println(”::::::::::::::::::::::::“);
System.out.println();

ocraSuite = "OCRA-1:HOTP-SHA1-6:QNG8";

System.out.println(ocraSuite);

System.out.println("=======================");

seed = SEED;

counter = "";

question = "";

password = "";

sessionInformation = "";

timeStamp = "";

for(int i=0; i < 10; i++){
question = "" + i + i+ 1+ i+ 1+1+ 1+ 1;
gHex = new String((new BigInteger(question,10))

.toString(16)).toUppercCase();
ocra = OCRA.generateOCRA(ocraSuite, seed, counter,
gHex, password,
sessionInformation, timeStamp);
System.out.println("Key: Standard 20Byte Q: "
+ question + " OCRA: " + ocra);
}
System.out.println();

ocraSuite = "OCRA-1:HOTP-SHA256-8:C-QNO8-PSHA1";
System.out.println(ocraSuite);
System.out.println("=======================o==oooo===x"');
seed = SEED32;

counter = "";

question = "12345678";

password = PASS1234;

sessionInformation = "";

timeStamp = "";

for(int i=0; i < 10; i++){
counter = "" + i;

gHex = new String((new BigInteger(question,10))

M'Raihi, et al. Expires September 12, 2011 [Page 28]

Internet-Draft OCRA March 2011

.toString(16)).toUppercCase();
ocra = OCRA.generateOCRA(ocraSuite, seed, counter,

gHex, password, sessionInformation, timeStamp);
System.out.println("Key: Standard 32Byte C: "

+ counter + " Q: "
+ question + " PIN(1234): ");
System.out.println(password + " OCRA: " + ocra);

}
System.out.println();

ocraSuite = "OCRA-1:HOTP-SHA256-8:QN08-PSHA1";
System.out.println(ocraSuite);

System.out.println("===============================");

seed = SEED32;

counter = "";

question = "";

password = PASS1234;

sessionInformation = "";

timeStamp = "";

for(int i=0; i < STOP; i++){
question = "" + i1+ i+ i +1i+1i+1+1i+ 1
gHex = new String((new BigInteger(question,10))

.toString(16)).toUppercCase();
OCRA.generateOCRA(ocraSuite, seed, counter,
gHex, password, sessionInformation, timeStamp);
System.out.println("Key: Standard 32Byte Q: "
+ question + " PIN(1234): ");
System.out.println(password + " OCRA: " + ocra);

oCra

}
System.out.println();

ocraSuite = "OCRA-1:HOTP-SHA512-8:C-QN0O8";
System.out.println(ocraSuite);
System.out.println("===================—==-====") .
seed = SEED64;
counter = "";
question = "";
password = "";
sessionInformation = "";
timeStamp = "";
for(int i=0; i < 10; i++){
question = "" + i+ i+ i+1i+1i+1i+1i+ 1
gHex = new String((new BigInteger(question,10))
.toString(16)).toUppercCase();
counter = "OOOO" + 1i;
ocra = OCRA.generateOCRA(ocraSuite, seed, counter,
gHex, password, sessionInformation, timeStamp);

M'Raihi, et al. Expires September 12, 2011 [Page 29]

Internet-Draft OCRA March 2011

System.out.println("Key: Standard 64Byte C: "
+ counter + " Q: "
+ question + " OCRA: " + ocra);

}
System.out.println();

ocraSuite = "OCRA-1:HOTP-SHA512-8:QNO8-T1M";
System.out.println(ocraSuite);
System.out.println("=============================");
seed = SEED64;
counter = "";
question = "";
password = "";
sessionInformation = "";
timeStamp = b.toString(16);
for(int i=0; i < STOP; i++){
question = "" + i1+ i+ i +1i+1i+1i+1i+ 1
counter = "";
gHex = new String((new BigInteger(question,10))
.toString(16)).toUppercCase();
ocra = OCRA.generateOCRA(ocraSuite, seed, counter,
gHex, password, sessionInformation, timeStamp);

System.out.println("Key: Standard 64Byte Q: "
+ question +" T: "
+ timeStamp.toUpperCase()
+ " OCRA: " + ocra);

b
System.out.println();

System.out.println();
System.out.println("Mutual Challenge Response");
System .out. println("o) ;
System.out.println();

ocraSuite = "OCRA-1:HOTP-SHA256-8:QA08";
System.out.println("OCRASuite (server computation)
+ ocraSuite);
System.out.println("OCRASuite (client computation)
+ ocraSuite);
System.out.println("

seed = SEED32;

counter = "";
question = "";
password = "";
sessionInformation = "";

timeStamp = "";

M'Raihi, et al. Expires September 12, 2011 [Page 30]

Internet-Draft OCRA March 2011

for(int i=0; i < STOP; i++){
guestion = "CLI2222" + i + "SRv1111" + 1i;
gHex = asHex(question.getBytes());
ocra OCRA.generateOCRA(ocraSuite, seed, counter, gHex,
password, sessionInformation, timeStamp);
System.out.println(
"(server)Key: Standard 32Byte Q: "
+ question + " OCRA: "
+ ocra);
question = "SRv1111" + i + "CLI2222" + 1i;
gHex asHex(question.getBytes());
ocra OCRA.generateOCRA(ocraSuite, seed, counter, gHex,
password, sessionInformation, timeStamp);
System.out.println(
"(client)Key: Standard 32Byte Q: "
+ question + " OCRA: "
+ ocra);

}
System.out.println();

String ocraSuitel = "OCRA-1:HOTP-SHA512-8:QA08";

String ocraSuite2 = "OCRA-1:HOTP-SHA512-8:QA08-PSHA1";

System.out.println("OCRASuite (server computation) = "
+ ocraSuitel);

System.out.println("OCRASuite (client computation)
+ ocraSuite2);

System.out.println("===============================" +
"=================s=mssssmssmommmot)

ocraSuite = "";

seed = SEED64;

counter = "";

question = "";

password = "";

sessionInformation = "";

timeStamp = "";

for(int i=0; i < STOP; i++){
ocraSuite = ocraSuitel;
question = "CLI2222" + i + "SRvi111i" + 1i;
gHex = asHex(question.getBytes());
password = "";
ocra = OCRA.generateOCRA(ocraSuite, seed, counter, gHex,
password, sessionInformation, timeStamp);
System.out.println(
"(server)Key: Standard 64Byte Q: "
+ question + " OCRA: "
+ ocra);
ocraSuite = ocraSuite2;
question = "SRv1111" + i + "CLI2222" + 1i;

M'Raihi, et al. Expires September 12, 2011 [Page 31]

Internet-Draft OCRA March 2011

gHex = asHex(question.getBytes());

password = PASS1234;

ocra = OCRA.generateOCRA(ocraSuite, seed, counter, gHex,
password, sessionInformation, timeStamp);

System.out.println("(client)Key: Standard 64Byte Q: "
+ question);

System.out.println("P: " + password.toUpperCase()
+ " OCRA: " + ocra);

b
System.out.println();

System.out.println();
System.out.println("Plain Signature");
System.out.println("==============="),
System.out.println();

ocraSuite = "OCRA-1:HOTP-SHA256-8:QA08";
System.out.println(ocraSuite);

System.out.println("========================="),
seed = SEED32;

counter = "";

question = "";

password = "";

sessionInformation = "";

timeStamp = "";

for(int i=0; i < STOP; i++){

question = "SIG1" + i + "EOEO";

gHex = asHex(question.getBytes());

ocra = OCRA.generateOCRA(ocraSuite, seed, counter, gHex,

password, sessionInformation, timeStamp);

System.out.println(
"Key: Standard 32Byte Q(Signature challenge): "
+ question);

System.out.println(" OCRA: " + ocra);

}
System.out.println();

ocraSuite = "OCRA-1:HOTP-SHA512-8:QA10-T1M";
System.out.println(ocraSuite);
System.out.println("============================x=");
seed = SEED64;
counter = "";
question = "";
password = "";
sessionInformation = "";
timeStamp = b.toString(16);
for(int i=0; i < STOP; i++){
guestion = "SIG1" + i + "QOOOO";
gHex = asHex(question.getBytes());

M'Raihi, et al. Expires September 12, 2011 [Page 32]

Internet-Draft OCRA March 2011

ocra = OCRA.generateOCRA(ocraSuite, seed, counter,
gHex, password, sessionInformation, timeStamp);
System.out.println(
"Key: Standard 64Byte Q(Signature challenge): "
+ question);
System.out.println(" T: "
+ timeStamp.toUpperCase() + " OCRA: "

+ ocra);
}
}catch (Exception e){
System.out.println("Error : " + e);
}
}
}

<CODE ENDS>

M'Raihi, et al. Expires September 12, 2011 [Page 33]

Int

Appendix C.

c.1.

ernet-Draft

Test Vectors

OCRA

March 2011

This section provides test values that can be used for OCRA algorithm
interoperability test.

Standard 20Byte key:

3132333435363738393031323334353637383930

Standard 32Byte key:

3132333435363738393031323334353637383930313233343536373839303132

Standard 64Byte key:

313233343536373839303132333435363738393031323334353637383930313233343

53637383930313233343536373839303132333435363738393031323334

PIN (1234) SHA1 hash value:

7110eda4d09e062aa5e4a390b0a572ac0d2c0220

Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard

Plain challenge response

20Byte
20Byte
20Byte
20Byte
20Byte
20Byte
20Byte
20Byte
20Byte
20Byte

00000000
11111111
22222222
33333333
44444444
55555555
66666666
77777777
88888888
99999999

OCRA-1:HOTP-SHA1-6:

237653
243178
653583
740991
608993
388898
816933
224598
750600
294470

M'Raihi, et al. Expires September 12, 2011 [Page 34]

Internet-Draft

Standar
Standar
Standar
Standar
Standar
Standar
Standar
Standar
Standar
Standar

| Stand
| Stand
| Stand
| Stand
| Stand

Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard

OCRA
--------- e
ey | C | Q I
--------- Fome e et
d 32Byte | © | 12345678 |
d 32Byte | 1 | 12345678 |
d 32Byte | 2 | 12345678 |
d 32Byte | 3 | 12345678 |
d 32Byte | 4 | 12345678 |
d 32Byte | 5 | 12345678 |
d 32Byte | 6 | 12345678 |
d 32Byte | 7 | 12345678 |
d 32Byte | 8 | 12345678 |
d 32Byte | 9 | 12345678 |
--------- Fome e et

ard 32Byte
ard 32Byte
ard 32Byte
ard 32Byte
ard 32Byte

65347737
86775851
78192410
71565254
10104329
65983500
70069104
91771096
75011558
08522129

Q | OCRA Value |

00000000 |
11111111 |
22222222 |
33333333 |
44444444 |

_______ o
| ¢ | Q
_______ e
64Byte | 00000 | 0000000
64Byte | 00001 | 11111111
64Byte | 00002 | 22222222
64Byte | 00003 | 33333333
64Byte | 00004 | 44444444
64Byte | 00005 | 55555555
64Byte | 00006 | 66666666
64Byte | 00007 | 77777777
64Byte | 00008 | 88888888
64Byte | 00009 | 99999999
_______ o

83238735
01501458
17957585
86776967
86807031

07016083
63947962
70123924
25341727
33203315
34205738
44343969
51946085
20403879
31409299

OCRA-1:HOTP-SHA512-8:C-QNO8

March 2011

M'Raihi, et al. Expires September 12, 2011 [Page 35]

Internet-Draft OCRA March 2011
S E R —_— [R R +
| Key [Q | T | OCRA Value |
P B Fommmmo oo - Fomm e e oo oo +
Standard 64Byte	00000000	132dOb6	95209754
Standard 64Byte	11111111	132d6b6	55907591
Standard 64Byte	22222222	132d0b6	22048402
Standard 64Byte	33333333	132d0b6	24218844
Standard 64Byte	44444444	132d0b6	36209546

OCRA-1:HOTP-SHA512-8:QNO8-T1M

C.2. Mutual Challenge Response

OCRASuite

(server computation) OCRA-1:HOTP-SHA256-8:QA08

OCRASuite (client computation)

OCRA-1:HOTP-SHA256-8:QA08

| Key | Q | OCRA Value |
oo e oo oo e e e oo S RSP +
Standard 32Byte	CLI22220SRV11110	28247970
Standard 32Byte	CLI22221SRvV11111	01984843
Standard 32Byte	CLI22222SRv11112	65387857
Standard 32Byte	CLI22223SRvV11113	03351211
Standard 32Byte	CLI22224SRvV11114	83412541
o e e oo - S S +		
Server -- OCRA-1:HOTP-SHA256-8:QA08		
o e oo - g . +		
Key	Q	OCRA Value
S e e e oo - S RSP +		
Standard 32Byte	SRV11110CLI22220	15510767
Standard 32Byte	SRV11111CLI22221	90175646
Standard 32Byte	SRV11112CLI22222	33777207
Standard 32Byte	SRV11113CLI22223	95285278
Standard 32Byte	SRV11114CLI22224	28934924
oo oo S SR +
Client -- OCRA-1:HOTP-SHA256-8:QA08

M'Raihi, et al. Expires September 12, 2011 [Page 36]

Internet-Draft

C.3.

OCRASuite (server computation)

OCRASuite (client computation)

Standard 64Byte
Standard 64Byte
Standard 64Byte
Standard 64Byte
Standard 64Byte

Standard 64Byte
Standard 64Byte
Standard 64Byte
Standard 64Byte
Standard 64Byte

Client

Plain Signature

OCRA

OCRA-1:HOTP-

CLI22220SRV11110
CLI22221SRV11111
CLI22222SRV11112
CLI22223SRV11113
CLI22224SRv11114

SRV11110CLI22220
SRV11111CLI22221
SRV11112CLI22222
SRV11113CLI22223
SRV11114CLI22224

SHA512-8:QA08

| 79496648
| 76831980
| 12250499
| 90856481
| 12761449

| 18806276
| 70020315
| 01600026
| 18951020
| 32528969

-- OCRA-1:HOTP-SHA512-8:QA08-PSHA1

March 2011

OCRA-1:HOTP-SHA512-8:QA08-PSHAL

In this mode of operation, Q represents the signature challenge.

| Standard
| Standard
| Standard
| Standard
| Standard

32Byte
32Byte
32Byte
32Byte
32Byte

| SIG10000 |
| SIG11000 |
| SIG12000 |
I I
I I

SIG13000
SIG14000

CRA Value |
53095496
04110475
31331128
76028668
46554205

OCRA-1:HOTP-SHA256-8:QA08

M'Raihi, et al. Expires September 12, 2011 [Page 37]

Internet-Draft OCRA March 2011

| Key | Q | T | OCRA Value |

| Standard 64Byte | SIG1000000 | 132dOb6 | 77537423
| Standard 64Byte | SIG1100000 | 132dOb6 | 31970405
| Standard 64Byte | SIG1200000 | 132d0b6 | 10235557
| Standard 64Byte | SIG1300000 | 132d0b6 | 95213541
| Standard 64Byte | SIG1400000 | 132d0b6 | 65360607

OCRA-1:HOTP-SHA512-8:QA10-T1M

Authors' Addresses

David M'Raihi

Verisign, Inc.

487 E. Middlefield Road
Mountain View, CA 94043
USA

Email: davidietf@gmail.com

Johan Rydell

Portwise, Inc.

275 Hawthorne Ave, Suite 119
Palo Alto, CA 94301

USA

Email: johanietf@gmail.com

Siddharth Bajaj

Symantec Corp.

350 Ellis Street
Mountain View, CA 94043
USA

Email: siddharthietf@gmail.com

M'Raihi, et al. Expires September 12, 2011 [Page 38]

Internet-Draft OCRA March 2011

Salah Machani

Diversinet Corp.

2225 Sheppard Avenue East, Suite 1801
Toronto, Ontario M2J 5C2

Canada

Email: smachani@diversinet.com

David Naccache

Ecole Normale Superieure
ENS DI, 45 rue d'Ulm
Paris, 75005

France

Email: david.naccache@ens.fr

M'Raihi, et al. Expires September 12, 2011 [Page 39]

