
Internet Engineering Task Force D. M'Raihi

Internet-Draft Verisign, Inc.

Intended status: Informational S. Machani

Expires: August 29, 2011 Diversinet Corp.

M. Pei

Symantec

J. Rydell

Portwise, Inc.

February 25, 2011

TOTP: Time-based One-time Password Algorithm

draft-mraihi-totp-timebased-08.txt

Abstract

This document describes an extension of one-time password (OTP)

algorithm, namely the HMAC-Based One-Time Password (HOTP) Algorithm as

defined in RFC 4226, to support time-based moving factor. The HOTP

algorithm specifies an event based OTP algorithm where the moving

factor is an event counter. The present work bases the moving factor on

a time value. A time-based variant of the OTP algorithm provides short-

lived OTP values, which are desirable for enhanced security.

The proposed algorithm can be used across a wide range of network

applications ranging from remote Virtual Private Network (VPN) access,

Wi-Fi network logon to transaction-oriented Web applications. The

authors believe that a common and shared algorithm will facilitate

adoption of two-factor authentication on the Internet by enabling

interoperability across commercial and open-source implementations.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on August 29, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Scope

1.2. Background

2. Notation and Terminology

3. Algorithm Requirements

4. TOTP Algorithm

4.1. Notations

4.2. Description

5. Security Considerations

5.1. General

5.2. Validation and Time-step Size

6. Resynchronization

7. IANA Considerations

8. Acknowledgements

9. References

9.1. Normative references

9.2. Informative References

Appendix A. TOTP Algorithm: Reference Implementation

Appendix B. Test Vectors

Authors' Addresses

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

1. Introduction

1.1. Scope

This document describes an extension of one-time password (OTP)

algorithm HMAC-Based One-Time Password (HOTP) as defined in [RFC4226]

to support time based moving factor.

1.2. Background

As defined in [RFC4226] the HOTP algorithm is based on the HMAC-SHA-1

algorithm, as specified in [RFC2104] applied to an increasing counter

value representing the message in the HMAC computation.

Basically, the output of the HMAC-SHA-1 calculation is truncated to

obtain user-friendly values:

HOTP(K,C) = Truncate(HMAC-SHA-1(K,C))

where Truncate represents the function that can convert an HMAC-SHA-1

value into an HOTP value. K and C reprensent the shared secret and

counter value, see [RFC4226] for their detail definition.

TOTP is the time-based variant of this algorithm where a value T

derived from a time reference and a time step replaces the counter C in

the HOTP computation.

TOTP implementations MAY use HMAC-SHA-256 or HMAC-SHA-512 functions,

based on SHA-256 or SHA-512 [SHA2] hash functions, instead of HMAC-

SHA-1 function that has been specified for HOTP computation in

[RFC4226].

2. Notation and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119]

3. Algorithm Requirements

This section summarizes the requirements taken into account for

designing the TOTP algorithm.

R1 - The prover (e.g. token, soft token) and verifier (authentication

or validation server) MUST know or be able to derive the current Unix

time (i.e. the number of seconds elapsed since midnight UTC of January

1, 1970) for OTP generation. See [UT] for more detail definition of the

commonly known "Unix time". The precision of the time used by the

prover affects how often the clock synchronization should be done, see

Section 6.

R2 - The prover and verifier MUST either share a same secret or the

knowledge of a secret transformation to generate a shared secret

R3 - The algorithm MUST use HOTP [RFC4226] as a key building block.

R4 - The prover and verifier MUST use the same time step value X.

R5 - There MUST be a unique secret (key) for each prover.

R6 - The keys SHOULD be randomly generated or derived using a key

derivation algorithms.

R7 - The keys MAY be stored in a tamper-resistant device and SHOULD be

protected against unauthorized access and usage.

4. TOTP Algorithm

This variant of the HOTP algorithm specifies the calculation of a one-

time password value, based on a representation of the counter as a time

factor.

4.1. Notations

- X represents the time step in seconds (default value X = 30 seconds)

and is a system parameter;

- T0 is the Unix time to start counting time steps (default value is 0,

Unix epoch) and is also a system parameter.

4.2. Description

Basically, we define TOTP as TOTP = HOTP(K, T) where T is an integer

and represents the number of time steps between the initial counter

time T0 and the current Unix time.

More specifically T = (Current Unix time - T0) / X where:

- X represents the time step in seconds (default value X = 30 seconds)

and is a system parameter.

- T0 is the Unix time to start counting time steps (default value is 0,

Unix epoch) and is also a system parameter;

- The default floor function is used in the computation. For example,

with T0 = 0 and time step X = 30, T = 1 if the current Unix time is 59

seconds and T = 2 if the current Unix time is 60 seconds.

The implementation of this algorithm MUST support the time value T

larger than 32-bit integer when it is beyond year 2038. The value of

the system parameters X and T0 are pre-established during the

provisioning process and communicated between a prover and verifier as

part of the provisioning step. The provisioning flow is out of scope of

this document, refer to [RFC6030] for such provisioning container

specification.

5. Security Considerations

5.1. General

The security and strength of this algorithm depends on the properties

of the underlying building block HOTP, which is a construction based on

HMAC [RFC2104] using SHA-1 as the hash function.

The conclusion of the security analysis detailed in [RFC4226] is that,

for all practical purposes, the outputs of the dynamic truncation on

distinct inputs are uniformly and independently distributed strings.

The analysis demonstrates that the best possible attack against the

HOTP function is the brute force attack.

As indicated in the algorithm requirement section, keys SHOULD be

chosen at random or using a cryptographically strong pseudo-random

generator properly seeded with a random value.

Keys SHOULD be of the length of the HMAC output to facilitate

interoperability.

We RECOMMEND following the recommendations in [RFC4086] for all pseudo-

random and random generations. The pseudo-random numbers used for

generating the keys SHOULD successfully pass the randomness test

specified in [CN] or a similar well-recognized test.

All the communications SHOULD take place over a secure channel e.g.

SSL/TLS [RFC5246], IPsec connections [RFC4301].

We also RECOMMEND storing the keys securely in the validation system,

and more specifically encrypting them using tamper-resistant hardware

encryption and exposing them only when required: for example, the key

is decrypted when needed to verify an OTP value, and re-encrypted

immediately to limit exposure in the RAM for a short period of time.

The key store MUST be in a secure area, to avoid as much as possible

direct attack on the validation system and secrets database.

Particularly, access to the key material should be limited to programs

and processes required by the validation system only.

5.2. Validation and Time-step Size

An OTP generated within the same Time-step will be the same. When an

OTP is received at a validation system, it doesn't know a client's

exact timestamp when an OTP was generated. The validation system may

typically use the timestamp when an OTP is received for OTP comparison.

Due to the network latency for an OTP to transmit from a requesting

application to a validation system and user's actual input time of an

OTP to a receiving system, such timestamp gap between the actual OTP

generation time and server's receiving time may be large. The receiving

time at the validation system and the actual OTP generation may not

fall within the same Time-step window that produce the same OTP. When

an OTP is generated at the end of a Time-step window, the receiving

time most likely falls into the next Time-step window. A validation

system SHOULD typically set a policy for an acceptable OTP transmission

delay window for validation. The validation system should compare OTPs

not only with the receiving timestamp but also the past timesteps that

are within the transmission delay. A larger acceptable delay window

would introduce some OTP attack window. We RECOMMEND that at most one

time step is allowed as the network delay.

The Time-step size has impact on both security and usability. A larger

Time-step size means larger validity window for an OTP to be accepted

by a validation system. There are the following implications with a

larger Time-step size.

At first, a larger Time-step size exposes larger window for attack.

When an OTP is generated and exposed to a third party before it is

consumed, the third party can consume the OTP within the Time-step

window.

We RECOMMEND default Time-step size for 30 seconds. This default value

of 30 seconds is selected to balance between security and usability.

Secondly, the next different OTP must be generated in the next Time-

step window. A user must wait till the clock moves to the next Time-

step window from the last submission. The waiting time may not be

exactly the length of Time-step depending on when the last OTP was

generated. For example, if the last OTP was generated at the half way

in a Time-step window, the waiting time for the next OTP is half of

length of Time-step. In general, a larger Time-step window means larger

waiting time for a user to get the next valid OTP after the last

successfully OTP validation. A too large window, for example 10

minutes, most probably won't be suitable for typical internet login use

cases; a user may not be able to get the next OTP within 10 minutes and

therefore re-login back to the same site in 10 minutes.

Note that a prover may send the same OTP inside a given time window

multiple times to a verifier. The verifier MUST not accept the second

attempt of the OTP after the successful validation has been issued for

the first OTP, which ensures one-time only use of an OTP.

6. Resynchronization

Because of possible clock drifts between a client and a validation

server, we RECOMMEND that the validator be set with a specific limit to

the number of time steps a prover can be 'out of synch' before being

rejected.

This limit can be set both forward and backwards from the calculated

time step on receipt of the OTP value. If the time step is 30 seconds

as recommended, and the validator is set to only accept 2 time step

backwards then the maximum elapsed time drift would be around 89

seconds, i.e. 29 seconds in the calculated time step and 60 for two

backward time steps.

This would mean the validator could perform a validation against the

current time and then further two validations for each backward step

(for a total of 3 validations). Upon successful validation, the

validation server can record the detected clock drift for the token in

terms of number of Time-step. When a new OTP is received after this

step, the validator can validate the OTP with current timestamp

adjusted with recorded number of Time-step clock drifts for the token.

Also, it is important to note that the longer a prover has not sent an

OTP to a validation system, the longer (potentially) the accumulated

clock drift between the prover and the verifier. In such cases, the

automatic resynchronization described above may not work if the drift

exceeds the allowed threshold. Additional authentication measures

should be used to safely authenticate the prover and explicitly

resynchronize the clock drift between the prover and the validator.

7. IANA Considerations

This document has no actions for IANA.

8. Acknowledgements

The authors of this draft would like to thank the following people for

their contributions and support to make this a better specification:

Hannes Tschofenig, Jonathan Tuliani, David Dix, Siddharth Bajaj, Stu

Veath, Shuh Chang, Oanh Hoang, John Huang, and Siddhartha Mohapatra.

9. References

9.1. Normative references

, "

[RFC4226]

M'Raihi, D., Bellare, M., Hoornaert, F., Naccache, D.

and O. Ranen, "HOTP: An HMAC-Based One-Time Password

Algorithm", RFC 4226, December 2005.

[RFC4086]
Eastlake, D., Schiller, J. and S. Crocker, "Randomness

Recommendations for Security", RFC 4086, June 2005.

[RFC2119]
Key words for use in RFCs to Indicate Requirement

Levels", BCP 14, RFC 2119, March 1997.

[RFC2104]

Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-

Hashing for Message Authentication", RFC 2104, February

1997.

[SHA2]
NIST, , "FIPS PUB 180-3: Secure Hash Standard (SHS)",

October 2008.

9.2. Informative References

[CN]
Coron, J.S. and D. Naccache, "An accurate evaluation of

Maurer's universal test", LNCS 1556, February 1999.

[RFC4301]
Kent, S. and K. Seo, "Security Architecture for the

Internet Protocol", RFC 4301, December 2005.

[RFC5246]

Dierks, T. and E. Rescorla, "The Transport Layer

Security (TLS) Protocol Version 1.2", RFC 5246, August

2008.

[RFC6030]
Hoyer, P., Pei, M. and S. Machani, "Portable Symmetric

Key Container (PSKC)", RFC 6030, October 2010.

[UT] , , "Unix time", February 2011.

Appendix A. TOTP Algorithm: Reference Implementation

http://tools.ietf.org/html/rfc4226
http://tools.ietf.org/html/rfc4226
http://tools.ietf.org/html/rfc4086
http://tools.ietf.org/html/rfc4086
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc4301
http://tools.ietf.org/html/rfc4301
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc6030
http://tools.ietf.org/html/rfc6030

<CODE BEGINS>

/**

Copyright (c) 2011 IETF Trust and the persons identified as authors of

the code. All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

import java.lang.reflect.UndeclaredThrowableException;

import java.security.GeneralSecurityException;

import java.text.DateFormat;

import java.text.SimpleDateFormat;

import java.util.Date;

import javax.crypto.Mac;

import javax.crypto.spec.SecretKeySpec;

import java.math.BigInteger;

import java.util.TimeZone;

/**

 * This an example implementation of the OATH TOTP algorithm.

 * Visit www.openauthentication.org for more information.

 *

 * @author Johan Rydell, PortWise, Inc.

 */

public class TOTP {

 private TOTP() {}

 /**

 * This method uses the JCE to provide the crypto

 * algorithm.

 * HMAC computes a Hashed Message Authentication Code with the

 * crypto hash algorithm as a parameter.

 *

 * @param crypto the crypto algorithm (HmacSHA1, HmacSHA256,

 * HmacSHA512)

 * @param keyBytes the bytes to use for the HMAC key

 * @param text the message or text to be authenticated.

 */

 private static byte[] hmac_sha(String crypto, byte[] keyBytes,

 byte[] text){

 try {

 Mac hmac;

 hmac = Mac.getInstance(crypto);

 SecretKeySpec macKey =

 new SecretKeySpec(keyBytes, "RAW");

 hmac.init(macKey);

 return hmac.doFinal(text);

 } catch (GeneralSecurityException gse) {

 throw new UndeclaredThrowableException(gse);

 }

 }

 /**

 * This method converts HEX string to Byte[]

 *

 * @param hex the HEX string

 *

 * @return A byte array

 */

 private static byte[] hexStr2Bytes(String hex){

 // Adding one byte to get the right conversion

 // values starting with "0" can be converted

 byte[] bArray = new BigInteger("10" + hex,16).toByteArray();

 // Copy all the REAL bytes, not the "first"

 byte[] ret = new byte[bArray.length - 1];

 for (int i = 0; i < ret.length ; i++)

 ret[i] = bArray[i+1];

 return ret;

 }

 private static final int[] DIGITS_POWER

 // 0 1 2 3 4 5 6 7 8

 = {1,10,100,1000,10000,100000,1000000,10000000,100000000 };

 /**

 * This method generates an TOTP value for the given

 * set of parameters.

 *

 * @param key the shared secret, HEX encoded

 * @param time a value that reflects a time

 * @param returnDigits number of digits to return

 *

 * @return A numeric String in base 10 that includes

 * {@link truncationDigits} digits

 */

 public static String generateTOTP(String key,

 String time,

 String returnDigits){

 return generateTOTP(key, time, returnDigits, "HmacSHA1");

 }

 /**

 * This method generates an TOTP value for the given

 * set of parameters.

 *

 * @param key the shared secret, HEX encoded

 * @param time a value that reflects a time

 * @param returnDigits number of digits to return

 *

 * @return A numeric String in base 10 that includes

 * {@link truncationDigits} digits

 */

 public static String generateTOTP256(String key,

 String time,

 String returnDigits){

 return generateTOTP(key, time, returnDigits, "HmacSHA256");

 }

 /**

 * This method generates an TOTP value for the given

 * set of parameters.

 *

 * @param key the shared secret, HEX encoded

 * @param time a value that reflects a time

 * @param returnDigits number of digits to return

 *

 * @return A numeric String in base 10 that includes

 * {@link truncationDigits} digits

 */

 public static String generateTOTP512(String key,

 String time,

 String returnDigits){

 return generateTOTP(key, time, returnDigits, "HmacSHA512");

 }

 /**

 * This method generates an TOTP value for the given

 * set of parameters.

 *

 * @param key the shared secret, HEX encoded

 * @param time a value that reflects a time

 * @param returnDigits number of digits to return

 * @param crypto the crypto function to use

 *

 * @return A numeric String in base 10 that includes

 * {@link truncationDigits} digits

 */

 public static String generateTOTP(String key,

 String time,

 String returnDigits,

 String crypto){

 int codeDigits = Integer.decode(returnDigits).intValue();

 String result = null;

 // Using the counter

 // First 8 bytes are for the movingFactor

 // Complaint with base RFC 4226 (HOTP)

 while(time.length() < 16)

 time = "0" + time;

 // Get the HEX in a Byte[]

 byte[] msg = hexStr2Bytes(time);

 byte[] k = hexStr2Bytes(key);

 byte[] hash = hmac_sha(crypto, k, msg);

 // put selected bytes into result int

 int offset = hash[hash.length - 1] & 0xf;

 int binary =

 ((hash[offset] & 0x7f) << 24) |

 ((hash[offset + 1] & 0xff) << 16) |

 ((hash[offset + 2] & 0xff) << 8) |

 (hash[offset + 3] & 0xff);

 int otp = binary % DIGITS_POWER[codeDigits];

 result = Integer.toString(otp);

 while (result.length() < codeDigits) {

 result = "0" + result;

 }

 return result;

 }

 public static void main(String[] args) {

 // Seed for HMAC-SHA1 - 20 bytes

 String seed = "3132333435363738393031323334353637383930";

 // Seed for HMAC-SHA256 - 32 bytes

 String seed32 = "3132333435363738393031323334353637383930" +

 "313233343536373839303132";

 // Seed for HMAC-SHA512 - 64 bytes

 String seed64 = "3132333435363738393031323334353637383930" +

 "3132333435363738393031323334353637383930" +

 "3132333435363738393031323334353637383930" +

 "31323334";

 long T0 = 0;

 long X = 30;

 long testTime[] = {59L, 1111111109L, 1111111111L,

 1234567890L, 2000000000L, 20000000000L};

 String steps = "0";

 DateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

 df.setTimeZone(TimeZone.getTimeZone("UTC"));

 try{

 System.out.println(

 "+---------------+-----------------------+" +

 "------------------+--------+--------+");

 System.out.println(

 "| Time(sec) | Time (UTC format) " +

 "| Value of T(Hex) | TOTP | Mode |");

 System.out.println(

 "+---------------+-----------------------+" +

 "------------------+--------+--------+");

 for(int i=0; i<testTime.length; i++) {

 long T = (testTime[i] - T0)/X;

 steps = Long.toHexString(T).toUpperCase();

 while(steps.length() < 16) steps = "0" + steps;

 String fmtTime = String.format("%1$-11s", testTime[i]);

 String utcTime = df.format(new Date(testTime[i]*1000));

 System.out.print("| " + fmtTime + " | " + utcTime +

 " | " + steps + " |");

 System.out.println(generateTOTP(seed, steps, "8",

 "HmacSHA1") + "| SHA1 |");

 System.out.print("| " + fmtTime + " | " + utcTime +

 " | " + steps + " |");

 System.out.println(generateTOTP(seed32, steps, "8",

 "HmacSHA256") + "| SHA256 |");

 System.out.print("| " + fmtTime + " | " + utcTime +

 " | " + steps + " |");

 System.out.println(generateTOTP(seed64, steps, "8",

 "HmacSHA512") + "| SHA512 |");

 System.out.println(

 "+---------------+-----------------------+" +

 "------------------+--------+--------+");

 }

 }catch (final Exception e){

 System.out.println("Error : " + e);

 }

 }

}

<CODE ENDS>

Appendix B. Test Vectors

This section provides test values that can be used for HOTP time-based

variant algorithm interoperability test.

The test token shared secret uses the ASCII string value

"12345678901234567890". With Time Step X = 30, and Unix epoch as

initial value to count time steps where T0 = 0, the TOTP algorithm will

display the following values for specified modes and timestamps.

Time (sec) UTC Time Value of T (hex) TOTP Mode

59 1970-01-01 00:00:59 0000000000000001 94287082 SHA1

59 1970-01-01 00:00:59 0000000000000001 46119246 SHA256

59 1970-01-01 00:00:59 0000000000000001 90693936 SHA512

1111111109 2005-03-18 01:58:29 00000000023523EC 07081804 SHA1

1111111109 2005-03-18 01:58:29 00000000023523EC 68084774 SHA256

1111111109 2005-03-18 01:58:29 00000000023523EC 25091201 SHA512

1111111111 2005-03-18 01:58:31 00000000023523ED 14050471 SHA1

1111111111 2005-03-18 01:58:31 00000000023523ED 67062674 SHA256

1111111111 2005-03-18 01:58:31 00000000023523ED 99943326 SHA512

1234567890 2009-02-13 23:31:30 000000000273EF07 89005924 SHA1

1234567890 2009-02-13 23:31:30 000000000273EF07 91819424 SHA256

1234567890 2009-02-13 23:31:30 000000000273EF07 93441116 SHA512

2000000000 2033-05-18 03:33:20 0000000003F940AA 69279037 SHA1

2000000000 2033-05-18 03:33:20 0000000003F940AA 90698825 SHA256

2000000000 2033-05-18 03:33:20 0000000003F940AA 38618901 SHA512

20000000000 2603-10-11 11:33:20 0000000027BC86AA 65353130 SHA1

20000000000 2603-10-11 11:33:20 0000000027BC86AA 77737706 SHA256

20000000000 2603-10-11 11:33:20 0000000027BC86AA 47863826 SHA512

TOTP Table

Authors' Addresses

David M'Raihi M'Raihi Verisign, Inc. 685 E. Middlefield Road

Mountain View, CA 94043 USA EMail: davidietf@gmail.com

Salah Machani Machani Diversinet Corp. 2225 Sheppard Avenue East,

Suite 1801 Toronto, Ontario M2J 5C2 Canada EMail:

smachani@diversinet.com

Mingliang Pei Pei Symantec 510 E. Middlefield Road

Mountain View, CA 94043 USA EMail: Mingliang_Pei@symantec.com

Johan Rydell Rydell Portwise, Inc. 275 Hawthorne Ave, Suite 119 Palo

Alto, CA 94301 USA EMail: johan.rydell@portwise.com

mailto:davidietf@gmail.com
mailto:smachani@diversinet.com
mailto:Mingliang_Pei@symantec.com
mailto:johan.rydell@portwise.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Scope
	1.2. Background
	2. Notation and Terminology
	3. Algorithm Requirements
	4. TOTP Algorithm
	4.1. Notations
	4.2. Description
	5. Security Considerations
	5.1. General
	5.2. Validation and Time-step Size
	6. Resynchronization
	7. IANA Considerations
	8. Acknowledgements
	9. References
	9.1. Normative references
	9.2. Informative References
	Appendix A. TOTP Algorithm: Reference Implementation
	Appendix B. Test Vectors
	Authors' Addresses

