
INTERNET-DRAFT Martin Rex
Updates (if approved): 5246, 4366, 4346, 2246 (SAP AG)
Intended Status: Standards Track Stefan Santesson
Expires: June 18, 2010 (3xA Security)
 December 15, 2009

Transport Layer Security (TLS) Secure Renegotiation
<draft-mrex-tls-secure-renegotiation-04.txt>

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright and License Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

Martin Rex, et al. Expires June 18, 2009 [Page 1]

https://datatracker.ietf.org/doc/html/draft-mrex-tls-secure-renegotiation-04.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

INTERNET DRAFT TLS/SSL Secure Renegotiation December 15, 2009

Abstract

 A protocol design flaw in the TLS renegotiation handshake leaves all
 currently implemented protocol version of TLS (SSLv3 to TLSv1.2)
 vulnerable to Man-in-the-Middle (MitM) attacks where the attacker can
 establish a TLS session with a server, send crafted application data
 of his choice to the server and then proxy an unsuspecting client's
 TLS handshake into the TLS renegotiation handshake of the server.
 Many applications on top of TLS see the data injected by the attacker
 and the data sent by the client as a single data stream and assume
 that an authentication during the TLS renegotiation handshake or
 contained in the client's application data applies to the entire data
 stream received through the TLS-protected communication channel.

 This document describes a protocol change for all protocol versions
 of TLS and SSLv3 that will fix this vulnerability for all
 communication between updated TLS clients and updated TLS servers.

Table of Contents

1 Requirements Terminology . 3
2 Introduction . 3

2.1 TLS handshake terminology 3
3 The TLS renegotiation vulnerability 4

3.1 Attack scenarios . 4
4 The TLS renegotiation fix 6

4.1 Characteristics . 6
4.2 Solution brief . 6
4.3 Additional connection and session state 7
4.4 New protocol elements 8
4.5 Reconnaissance . 9
4.6 Backwards interoperability with old peers 9
4.7 Updated Handshake message hash calculation 10
4.8 Rationale . 11

5 Security Considerations 11
6 IANA Considerations . 12
7 Acknowledgements . 12
8 References . 13

8.1 Normative References 13
8.2 Informative References 13

Appendix A Implementation Considerations 14
A.1 Forward compatibility of SSLv3 and TLSv1.0 14
A.2 Installed Base Considerations 14

Appendix B Code example . 15
B.1 Server-Side, updated handshake message hash 15

 Author's Addresses . 16

Martin Rex, et al. Expires June 18, 2009 [Page 2]

INTERNET DRAFT TLS/SSL Secure Renegotiation December 15, 2009

1 Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2 Introduction

 The TLS protocol provides communications security over the Internet
 and allows client/server applications to communicate in a way that is
 designed to prevent eavesdropping, tampering, or message forgery.

 TLS is the IETF's successor to SSLv3 from Netscape. TLSv1.0 [RFC2246]
 was finalized in January 1999. It is widely deployed and used to
 protect the communication of many application protocols, such as HTTP
 over TLS [RFC2818], WebDAV, CalDAV, LDAP, SOAP, SIP, IPP, IMAP/POP,
 NNTP, SMTP, XMPP, BEEP and also SSL-VPNs.

 Today you find SSL and its successor TLS not only in web servers and
 web browsers, but in many communication software for PCs, networking
 equipment, appliances, PDAs, SmartPhones and other small devices.

2.1 TLS handshake terminology

 The TLS and SSLv3 protocols specify only two types of handshakes (see
 TLSv1.2 [RFC5246] Section 7.3 Handshake Protocol Overview), a "full
 handshake" and an "abbreviated handshake" which is also referred to
 as "session resume".

 The distinction "initial TLS handshake" and "TLS renegotiation
 handshake" is orthogonal to these handshake types.

 An initial TLS handshake is the first TLS handshake on a connection,
 i.e. the handshake begins in the clear; the TLS record layer is
 initialized with the cipher suite TLS_NULL_WITH_NULL_NULL.

 A TLS renegotiation handshake is a handshake that is started under
 the protection of an existing TLS session. With the exchange of the
 ChangeCipherSuite messages the existing TLS session is entirely
 replaced with the newly (re)negotiated TLS session.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc5246#section-7.3

Martin Rex, et al. Expires June 18, 2009 [Page 3]

INTERNET DRAFT TLS/SSL Secure Renegotiation December 15, 2009

3 The TLS renegotiation vulnerability

 All currently existing protocol version of TLS (SSLv3 to TLSv1.2)
 contain a security vulnerability in the design of the TLS
 renegotiation algorithm. The newly renegotiated TLS session is
 completely independent from the previous TLS session that it
 replaces. Applications using TLS to secure their communication often
 use TLS for channel authentication. They assume that an
 authentication performed at the TLS level or within application data
 coming through the TLS-protected channel is valid for all data
 received through this channel. The TLS protocol explicitly requires a
 TLS renegotiation to be mostly transparent to the application data
 stream. This opens a door to Man-in-the-Middle (MitM) attacks
 exploiting this weakness in the TLS renegotiation handshake.

3.1 Attack scenarios

 There are three possible types of attack scenarios on TLS
 renegotiation:

 1. Client's initial TLS handshake is proxied by MitM into Server's
 TLS renegotiation

 2. Client's renegotiation handshake is proxied by MitM into
 Server's initial TLS handshake

 3. Two independent TLS sessions Client<->MitM and MitM<->Server
 are spliced into one single TLS session Client<->Server through
 TLS renegotiation where the MitM proxies all communication

 The MitM can only inject data into the initial TLS session where it
 is an original TLS client or server. It is not possible to modify
 the actual handshake between TLS client and server without breaking
 the Finished verification. As soon as the ChangeCipherSpec messages
 are exchanged on the renegotiation handshake, the MitM can no longer
 inject or read application data exchanged by client and server. So
 the MitM is unable to read the server's reply to the injected
 request(s) that the unsuspecting client is made to authenticate for.

 It is impossible for the server to notice that it is being attacked
 in all three scenarios with the existing TLS protocol. Example
 exploits for type (1) scenarios have received the most attention, and
 are quite effective for protocols such as HTTP over TLS. When client
 certificates are used, type (3) attacks are also attractive. For
 type (2) scenarios, no attractive exploits have been described so
 far, but it would be unwise to assume that they do not exist.

Martin Rex, et al. Expires June 18, 2009 [Page 4]

INTERNET DRAFT TLS/SSL Secure Renegotiation December 15, 2009

 At the TLS protocol level, all these renegotiations look perfectly
 OK. Server Endpoint Identification performed by clients (as in

Section 3.1 of [RFC2818]) does not necessarily mitigate all of the
 attacks scenarios of type (2) and (3), where the renegotiation will
 usually result in a change of the server identity at the TLS protocol
 level. The TLS protocol itself does not constrain changes in
 cryptographic properties and authenticated identities during a
 renegotiation.

 A MitM attack usually leaves behind _two_ victims of the attack. The
 server is a victim of the attack, because it is made to perform a
 request issued by the attacker. But the client is also a victim,
 because the authentication performed by the unsuspecting client is
 re-purposed to authorize the request of the attacker.

 You may notice that TLS clients in type (1) scenarios as well as TLS
 servers in type (2) scenarios perform only an initial TLS handshake,
 and they can still become a victim of an attack. This has serious
 consequences. It means that all TLS implementations, including those
 that have renegotiation disabled or not even implemented, are at risk
 from becoming a victim in a MitM attack on the TLS renegotiation
 vulnerability.

https://datatracker.ietf.org/doc/html/rfc2818#section-3.1

Martin Rex, et al. Expires June 18, 2009 [Page 5]

INTERNET DRAFT TLS/SSL Secure Renegotiation December 15, 2009

4 The TLS renegotiation fix

4.1 Characteristics

 If a TLS client or server wants to be absolutely sure that it can not
 become a victim of an attack based on the TLS renegotiation
 vulnerability, it (a) must be updated and (b) must discontinue
 talking TLS to peers that are not updated.

 The latter is a pretty challenging requirement. The first one
 getting updated would suddenly have no one else to talk to. In the
 interest of continuous operation and interoperability with existing
 usage scenarios in the installed base, the vast majority is likely to
 embrace a different approach--at least for a transition period, where
 a lot of communication peers are not yet updated. Unpatched TLS
 server should have the old renegotiation disabled entirely. TLS
 clients, which have traditionally been quite trusting to TLS servers
 and requests for renegotiation, should become much more careful about
 unpatched TLS servers they handshake with.

 This document provides a protocol fix for the TLS renegotiation
 vulnerability. It secures the TLS renegotiation between updated
 clients and updated servers. It allows updated clients and servers
 to determine whether their respective communication peer has also
 been updated. It provides a high level of interoperability with the
 installed base of old TLS communication peers, while protecting
 communication between updated TLS peers from downgrade attacks.

4.2 Solution brief

 This solution applies equally to TLS and SSLv3. All further
 references to TLS without protocol version applies to SSLv3 as well.

 1. The verify_data from Finished messages of a TLS handshake are
 memorized in the connection state and will be added into the
 handshake message hash of the renegotiation handshake, thus
 authenticating the enclosing TLS session.

 2. For Client to Server signaling, the special cipher suite value
 TLS_RENEGO_PROTECTION_REQUEST is assigned and must be included
 in all ClientHello handshake messages from updated clients.

 3. For Server to Client signaling, a new TLS extension
 "renego_protection" is defined, that an updated Server must
 send back as a ServerHello extension whenever it finds the
 cipher suite value TLS_RENEGO_PROTECTION_REQUEST in
 ClientHello.

Martin Rex, et al. Expires June 18, 2009 [Page 6]

INTERNET DRAFT TLS/SSL Secure Renegotiation December 15, 2009

4.3 Additional connection and session state

 In order to implement secure TLS renegotiation, it is necessary to
 memorize additional TLS connection state: the verify_data from the
 finished messages, a state variable "protection_available" for the
 signaling, and optionally a session state variable "allow_old_renego"
 when old renegotiation needs to be supported.

 The length of the verify_data in the Finished messages differs
 between protocol versions of TLSv1.x and SSLv3:

 TLSv1.0 & TLSv1.1: 12 octets
 TLSv1.2: default 12 octets --but can be defined by cipher suite
 SSLv3: 36 octets --it is a concatenation of two
 elements "md5_hash" and "sha_hash"

 The additional state that TLS client and servers have to memorize:

 (1a) plaintext verify_data of Client.Finished
 (1b) length of (1a)
 (2a) plaintext verify_data of Server.Finished
 (2b) length of (2a)
 (3) protection_available /*Boolean, for handshake signaling */

 (4) allow_old_renego /*Boolean, OPTIONAL session attribute*/
 /*for renegotiation with old TLS peers*/

 For every initial TLS handshake (see Section 2.1), the values for
 (1a)(1b)(2a)(2b) are empty/initial. The the optional session state
 "allow_old_renego" is left unchanged when a session resume is
 performed, and initialized with the setting of a system-wide or
 application-supplied value for support of old renegotiation
 (distinguishing client and server) for a full initial TLS handshake.
 "protection_available" is initialized to False for every TLS
 handshake.

 TLS servers and clients that implement renegotiation MUST memorize
 the verify_data of Client and Server Finished messages, so this can
 be used in a later renegotiation handshake to authenticate the
 enclosing TLS session. These could be memorized when building one's
 own Finished message and when processing the peer's Finished message.

 If TLS implementations want to offer support for old renegotiation,
 at least for the transition period, then any system-wide
 configuration option(s) MUST distinguish between TLS server and TLS
 client side. TLS servers SHOULD NOT allow old renegotiation, TLS
 client MAY allow old renegotiation for a transition period, after
 which they SHOULD NOT allow old renegotiation.

Martin Rex, et al. Expires June 18, 2009 [Page 7]

INTERNET DRAFT TLS/SSL Secure Renegotiation December 15, 2009

4.4 New protocol elements

 This document defines a new cipher suite value

 TLS_RENEGO_PROTECTION_REQUEST = { TBD, TBD }

 to be used as for Client to Server signaling in ClientHello. This
 cipher suite value does _not_ represent a real cipher suite and
 SHOULD NOT be configurable by, and not made visible to, regular
 cipher suite configuration APIs and UIs. TLS servers MUST NOT select
 this cipher suite value as the common cipher suite with the client.

 This document also defines a new TLS extension "renego_protection"

 enum {
 renego_protection(TBD), (65535)
 } ExtensionType;

 and contains _no_ extension_data (zero-length vector)

 Implementations of SSLv3 and TLSv1.x, which do not implement TLS
 extensions, might use the following simplified approach to process
 the Server to Client signaling in ServerHello. Properly encoded, the
 above TLS extension is represented with the following static sequence
 of 6 octets as a single TLS extension in ServerHello after
 compression_method:

 0x00 0x04 MSB LSB 0x00 0x00

 where (MSB*256)+LSB is equal to the extension type assigned by IANA.

 Conforming servers that do not implement TLS extensions may add this
 static sequence of 6 octets into the ServerHello handshake message
 after compression_methods as a response to a ClientHello that
 includes TLS_RENEGO_PROTECTION_REQUEST. (this increases the length of
 the ServerHello handshake message from 70 to 76 octets, in case of a
 32-octet session_id).

 Conforming clients that do not implement TLS extensions will have to
 check whether the received ServerHello handshake message contains 6
 additional octets after the compression_method and whether these
 match the above static 6-octet sequence representing the TLS
 extension "renego_protection".

Martin Rex, et al. Expires June 18, 2009 [Page 8]

INTERNET DRAFT TLS/SSL Secure Renegotiation December 15, 2009

4.5 Reconnaissance

 All conforming TLS clients MUST include the cipher suite value
 TLS_RENEGO_PROTECTION_REQUEST in the cipher_suites list of _every_
 ClientHello handshake message they send. This includes clients that
 do not implement renegotiation or have it disabled (see Section 3.1
 type (1) attacks). This cipher suite value MAY appear anywhere in the
 cipher_suites list.

 Conforming clients that compose a ClientHello handshake messages with
 other TLS extensions, MAY include the TLS extension
 "renego_protection" defined in 4.4.

 When receiving a ClientHello that contains the cipher suite value
 TLS_RENEGO_PROTECTION_REQUEST, conforming servers MUST treat this
 exactly like the receipt of the TLS extension "protection_available"
 and MUST add this TLS extension into the (Extended)ServerHello reply
 to the client. This applies to full handshakes as well as session
 resume, and includes servers that do not implement renegotiation or
 have it disabled (see Section 3.1 type (2) attacks).

 Such server behavior is an explicit exception to the prohibition of
 "unsolicited" ServerHello extensions in Section 7.4.1.4 [RFC5246] and

Section 2.3 [RFC4366] and is only permitted when the client requests
 this TLS extension by including the TLS_RENEGO_PROTECTION_REQUEST
 cipher suite value in ClientHello. The special cipher suite value is
 a request for the renego_protection extension that can be combined
 with extension-less ClientHello and initial SSLv2 ClientHello that
 are still in use by conservative clients and for re-connect fallbacks
 of some web browsers for interoperability with old servers.

 A conforming server which receives TLS_RENEGO_PROTECTION_REQUEST
 asserts the "protection_available" flag in the connection state and
 sets the optional "allow_old_renego" state to False.

 A conforming client that receives an (Extended)ServerHello containing
 the "renego_protection" extension asserts the "protection_available"
 flag in the connection state and sets the optional "allow_old_renego"
 state to False for the current session.

4.6 Backwards interoperability with old peers

 Conforming TLS clients receiving a ServerHello without the TLS
 extension "renego_protection" assume an old server. If the current
 handshake is a renegotiation for the TLS client, but
 "allow_old_renego" is False for the enclosing TLS session, then the
 client MUST abort the handshake with a fatal handshake failure alert.

https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.4
https://datatracker.ietf.org/doc/html/rfc4366#section-2.3

Martin Rex, et al. Expires June 18, 2009 [Page 9]

INTERNET DRAFT TLS/SSL Secure Renegotiation December 15, 2009

 Otherwise the client MAY proceed with the old handshake.

 Conforming TLS servers receiving a ClientHello without the cipher
 suite value TLS_RENEGO_PROTECTION_REQUEST assume an old client. If
 the current handshake is a renegotiation for the TLS server, but
 "allow_old_renego" is False for the enclosing TLS session, then the
 server MUST abort the handshake with a fatal handshake failure alert.
 Otherwise the server MAY proceed with the old handshake.

4.7 Updated Handshake message hash calculation

 For all TLS handshakes between updated clients and updated servers
 the following updated definition of the handshake message hash is
 used. This applies to the handshake message hash used in
 Client.Finished and Server.Finished and in the optional
 CertificateVerify handshake message.

 The updated handshake message hash will ensure that initial and
 renegotiation handshakes are properly distinguished from each other
 and that renegotiation handshakes must authenticate the enclosing TLS
 session.

 Conforming clients and servers, which have received the confirmation
 about renego protection availability from their peer, MUST add the
 following data directly to their handshake message hash function,
 immediately following the ServerHello handshake message:

 on every initial TLS handshake with an updated peer:

 4 static octets: 0x14 0x00 0x00 0x0b

 on every TLS renegotiation handshake with an updated peer:

 4 static octets: 0x14 0xff 0xff 0xff
 verify_data from Client.Finished of enclosing TLS session
 verify_data from Server.Finished of enclosing TLS session

 This applies to full TLS handshake as well as TLS session resumes.

 The verify_data from Client.Finished MUST be added before the
 verify_data from Server.Finished. There MUST NOT be any length
 fields included in verify_data, only the verify_data itself (so for
 TLSv1.0-1.2 it is 12 octets each, for SSLv3 36 octets each).

 The optional state "allow_old_renego" must be transferred from the
 enclosing TLS session to the newly renegotiated session.

Martin Rex, et al. Expires June 18, 2009 [Page 10]

INTERNET DRAFT TLS/SSL Secure Renegotiation December 15, 2009

4.8 Rationale

 The renegotiation vulnerability is removed by cryptographically
 binding the renegotiation handshake to the enclosing TLS session.
 This is accomplished by both sides adding the Finished.verify_data,
 which authenticated the enclosing TLS session, to the handshake
 message hash of the renegotiation handshake. The handshake
 authentication performed by the Finished message verification will
 fail if client and server do not share the exact same memories about
 the previous Finished messages, and thus protect renegotiation
 handshakes from MitM attacks. The same applies to the
 CertificateVerify signature verification in the optional client
 certificate authentication.

 As discussed in Section 3.1, only communication between updated
 clients and updated servers can be reliably protected from type (1)
 and (2) attacks. Clients and servers need a bidirectional signaling
 scheme as part of the TLS handshake to determine whether the peer,
 they are handshaking with, is also updated.

 The chosen signaling scheme is a compromise due to a non-negligible
 amount of intolerance of old servers to TLS extensions in the
 ClientHello handshake message. Various workarounds currently in use
 to remedy this interoperability problem (see [RFC5246] Appendix E)
 can not be simply ignored. The chosen signaling scheme works for
 extension-less SSLv3 ClientHello and even SSLv2 ClientHello on the
 initial TLS handshake. This enables secure renegotiation in all
 existing usage scenarios, including conservative clients and
 application-level reconnect fallbacks.

5 Security Considerations

 This document describes a protocol change for all currently existing
 versions of the TLS protocol: TLSv1.2 [RFC5246], TLSv1.1 [RFC4346],
 TLSv1.0 [RFC2246] and SSLv3 [SSLv3] to fix a serious security
 vulnerability in the TLS renegotiation algorithm.

 The original SSL and TLS protocol does not distinguish an initial TLS
 handshake from a TLS renegotiation handshake. Every pair of old TLS
 clients and servers of the installed base can potentially become a
 victim in a Man-in-the-Middle (MitM) attack through TLS renegotiation
 in one or more of the attack scenarios described in Section 3.1,
 provided that one of the two implements TLS renegotiation and can be
 coerced, lured, or simply asked to perform a TLS renegotiation.

 Only TLS communication between updated clients and updated servers is
 reliably protected from the risk of attack.

https://datatracker.ietf.org/doc/html/rfc5246#appendix-E
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc2246

Martin Rex, et al. Expires June 18, 2009 [Page 11]

INTERNET DRAFT TLS/SSL Secure Renegotiation December 15, 2009

 Usually TLS renegotiation involves a full TLS handshake, so all of
 the security parameters and cryptographic properties are newly
 negotiated and authenticated, including the identities of the
 communication peers. Some applications actively use this feature,
 e.g. web servers deciding to request client certificates in a server-
 initiated TLS renegotiation after having seen the client's HTTP
 request. Some applications may be actively using the possibility to
 switch identities multiple times through TLS renegotiation for an
 existing connection.

 To a number of applications, however, the change of a previously
 authenticated identity during TLS renegotiation comes as a surprise,
 and this may have serious security implications. Some TLS
 implementations will automatically perform certificate path
 validation, but the interpretation what a peer's certificate means is
 left entirely to the calling application ([RFC5246] Section 1. last
 paragraph).

 It is RECOMMENDED that TLS implementations offer to applications the
 option to either disable renegotiation or to abort renegotiations
 when the remote peer tries to replace a previously authenticated
 certificate with a different one during renegotiation.

6 IANA Considerations

 IANA has assigned the following TLS Cipher Suite value and the
 following TLS ExtensionType value for use with this specification
 (see Section 4.4):

 TLS Cipher Suite TLS_RENEGO_PROTECTION_REQUEST = { TBD, TBD }

 TLS ExtensionType renego_protection = { TBD }

7 Acknowledgements

 The TLS renegotiation vulnerability was first discovered by Marsh Ray
 in August 2009. The MitM susceptibility of the TLS renegotiation was
 independently discovered by Martin Rex in November 2009 during
 channel bindings discussions on the IETF TLS WG mailing list.

 Many participants of the TLS working group provided valuable feedback
 and comments for improvement, to make the fix easy to implement and
 have a low risk of causing interoperability problems.

 Special thanks to Michael D'Errico for continuous implementer's
 feedback, Marsh Ray, Nicolas Williams, Nasko Oskov, David-Sarah
 Hopwood and Eric Rescorla for elaborate discussions and input.

https://datatracker.ietf.org/doc/html/rfc5246#section-1

Martin Rex, et al. Expires June 18, 2009 [Page 12]

INTERNET DRAFT TLS/SSL Secure Renegotiation December 15, 2009

8 References
8.1 Normative References

 [RFC2119] S. Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5246] T. Dierks and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008

 [RFC4346] T. Dierks and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346, April 2006

 [RFC2246] T. Dierks and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999

 NOTE to implementers: The protocol specifications of TLSv1.2, TLSv1.1
 and TLSv1.0 are individually referenced. Please refer to the protocol
 specification on which your implementation is based when implementing
 the fix described in this document. There were a few backwards
 incompatible changes in the TLS protocol specifications that may not
 be sufficiently obvious to spot.

8.2 Informative References

 [SSLv3] Alan O. Freier, Philip Karlton, Paul C. Kocher, "The SSL
 Protocol Version 3.0", Internet Draft, November 1996,

http://tools.ietf.org/html/draft-ietf-tls-ssl-version3-00

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000

 [RFC4366] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, T.
 Wright, "Transport Layer Security (TLS) Extensions",

RFC 4466, April 2006

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc2246
http://tools.ietf.org/html/draft-ietf-tls-ssl-version3-00
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc4466

Martin Rex, et al. Expires June 18, 2009 [Page 13]

INTERNET DRAFT TLS/SSL Secure Renegotiation December 15, 2009

Appendix A Implementation Considerations

A.1 Forward compatibility of SSLv3 and TLSv1.0

 The evolvement of the TLS protocol is facing problems with the
 interoperability of newer protocol features with some server
 implementations of SSLv3 and TLSv1.0 in the installed base.

 There are two areas of big concern, where minimal changes to the code
 might make a huge difference in terms of interoperability. These two
 issues are described in a little more detail in [RFC5246] Appendix E.

 One problem is some servers (lack of) forward compatibility for extra
 data in the ClientHello handshake message (the extensibility used by
 TLS extensions). The other is forward interoperability with TLS
 protocol version numbers other than SSLv3 {0x03,0x00} or TLSv1.0
 {0x03,0x01} in ClientHello.client_version and the relation to
 protocol versions in other handshake messages (ServerHello, RSA
 Premaster Secret) and in the SSL/TLS record layer.

 When updating SSLv3 or TLSv1.0 code for implementing this fix, it is
 highly advisable to also check these two issues.

A.2 Installed Base Considerations

 Over the last 14 years SSLv3 and TLS have grown a huge installed
 base, but differing characteristics with respect to supported
 protocol versions, and forward compatibility of protocol versions and
 TLS extension in the initial ClientHello handshake message.

 Some of the installed base is quite old, some might be out of
 maintenance, and some will be difficult to patch, let alone upgrade.

 The production of software patches with the security fix for
 TLS/SSLv3 described in this document will be followed by a transition
 period where the patches get individually deployed, resulting in a
 mix of updated and old TLS client and servers. Adoption speed will
 likely correspond to the number of interoperability problems and
 risks each patch creates for existing usage scenarios.

 Implementers, software vendors and suppliers should be careful with
 providing the update/patch in a fashion that will adversely affect
 existing usage scenarios. Many consumers of the TLS and SSL
 technology will likely need a configuration option that lets them
 individually determine when to discontinue SSL/TLS-protected
 communication with unpatched TLS peers, for continued operation
 through the transition period.

https://datatracker.ietf.org/doc/html/rfc5246#appendix-E

Martin Rex, et al. Expires June 18, 2009 [Page 14]

INTERNET DRAFT TLS/SSL Secure Renegotiation December 15, 2009

Appendix B Code example

B.1 Server-Side, updated handshake message hash

 Here is an example, very loosely based on OpenSSL, for the server-
 side of the updated handshake message algorithm.

 The final statement in ssl/s3_srvr.c:ssl3_send_server_hello()

 return(ssl3_do_write(s,SSL3_RT_HANDSHAKE));

 could be replaced with something like the following:

 ret = ssl3_do_write(s,SSL3_RT_HANDSHAKE);
 if (ret>0)
 {
 if (s->s3->protection_available)
 {
 if (NULL == s->enc_read_ctx)
 {
 /* add distinct prefix for initial handshake */
 ssl3_finished_mac(s,"\x14\x00\x00\x0b", 4);
 }
 else
 {
 /* add static prefix for renegotiation */
 ssl3_finished_mac(s,"\x14\xff\xff\xff", 4);
 /* add previous verify_data of Client.Finished */
 ssl3_finish_mac(s,s->s3->previous_client_finished,
 s->s3->previous_client_finished_len);
 /* add previous verify_data of Server.Finished */
 ssl3_finish_mac(s,s->s3->previous_server_finished,
 s->s3->previous_server_finished_len);
 }
 }
 else
 {
 if (NULL != s->enc_read_ctx)
 if (!s->session->allow_old_renego)
 {
 ssl3_send_alert(s,SSL3_AL_FATAL,
 SSL_AD_HANDSHAKE_FAILURE);
 ret = -1;
 }
 }
 }
 }
 return(ret);

Martin Rex, et al. Expires June 18, 2009 [Page 15]

INTERNET DRAFT TLS/SSL Secure Renegotiation December 15, 2009

Author's Addresses

 Martin Rex
 SAP AG
 EMail: mrex@sap.com

 Stefan Santesson
 3xA Security
 EMail: sts@aaa-sec.com

Martin Rex, et al. Expires June 18, 2009 [Page 16]

