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Abstract

This document describes a stateless, transport-agnostic IPv6-to-IPv6

Network Prefix Translation (NPTv6) function that provides the address

independence benefit associated with IPv4-to-IPv4 NAT (NAPT44), and in

addition provides a 1:1 relationship between addresses in the "inside"

and "outside" prefixes, preserving end to end reachability at the

network layer.
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1. Introduction

This document describes a stateless IPv6-to-IPv6 Network Prefix

Translation (NPTv6) function, designed to provide address independence

to the edge network. It is transport-agnostic with respect to

transports that don't checksum the IP header, such as SCTP, and to

transports that use the TCP/UDP/DCCP pseudo-header and checksum

[RFC1071].

For reasons discussed in [RFC2993] and Section 5, the IETF does not

recommend the use of Network Address Translation technology for IPv6.

Where translation is implemented, however, this specification provides

a mechanism that has less architectural problems than merely

implementing a traditional stateful Network Address Translator in an

IPv6 environment. It also provides a useful alternative to the

complexities and costs imposed by multihoming using provider-

independent addressing, and the routing and network management issues

of overlaid ISP address space. Some problems remain, however. The

reader should consider the alternatives suggested in [RFC4864], and the

considerations of [RFC5902], for improved approaches.

The stateless approach described in this document has several

ramifications: 

Any security benefit that NAPT44 might offer is not present in

NPTv6, necessitating the use of a firewall to obtain those

benefits if desired. An example of such a firewall is described

in [RFC6092].

End to end reachability is preserved, although the address used

"inside" the edge network differs from the address used "outside"

the edge network. This has implications for application referrals

and other uses of Internet layer addresses.

If there are multiple identically-configured prefix translators

between two networks, there is no need for them to exchange

dynamic state, as there is no dynamic state - the algorithmic

translation will be identical across each of them. The network

can therefore asymmetrically route, load-share, and fail-over

among them without issue.

Since translation is 1:1 at the network layer, there is no need

to modify port numbers or other transport parameters.

TCP sessions that authenticate peers using the TCP Authentication

Option [RFC5925] cannot have their addresses translated, as the

addresses are used in the calculation of the Message

Authentication Code. This consideration applies in general to any

*

*

*

*

*

*

*



From the perspective of the edge network:

From the perspective of the upstream network:

UNilateral Self-Address Fixing (UNSAF) [RFC3424] Protocol, which

the IAB recommends against the deployment of in an environment

that changes Internet addresses.

Applications using the Internet Key Exchange Protocol Version 2

(IKEv2) [RFC5996] should, at least in theory, detect the presence

of the translator; while no NAT traversal solution is required, 

[RFC5996] would require such sessions to use UDP.

1.1. What is Address Independence?

For the purposes of this document, IPv6 Address Independence consists

of the following set of properties: 

The IPv6 addresses used

inside the local network (for interfaces, access lists, and

logs) do not need to be renumbered if the global prefix(es)

assigned for use by the edge network are changed.

The IPv6 addresses used inside the edge network (for

interfaces, access lists, and logs) or within other upstream

networks (such as when multihoming) do not need to be

renumbered when a site adds, drops, or changes upstream

networks.

It is not necessary for an administration to convince an

upstream network to route its internal IPv6 prefixes, or for

it to advertise prefixes derived from other upstream networks

into it.

Unless it wants to optimize routing between multiple upstream

networks in the process of multihoming, there is therefore no

need for a BGP exchange with the upstream network.

IPv6 addresses used by

the edge network are guaranteed to have a provider-allocated

prefix, eliminating the need and concern for BCP 38 [RFC2827]

ingress filtering and the advertisement of customer-specific

prefixes.

Thus, address independence has ramifications for the edge network,

networks it directly connects with (especially its upstream networks),

and for the Internet as a whole. The desire for address independence

has been a primary driver for IPv4 NAT deployment in medium to large-

sized enterprise networks, including NAT deployments in enterprises

that have plenty of IPv4 provider independent address space (from IPv4

"swamp space"). It has also been a driver for edge networks to become

members of Regional Internet Registry (RIR) communities, seeking to

obtain BGP Autonomous System Numbers and provider independent prefixes,

and as a result has been one of the drivers of the explosion of the
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IPv4 route table. Service providers have stated that the lack of

address independence from their customers has been a negative incentive

to deployment, due to the impact of customer routing expected in their

networks.

The Local Network Protection [RFC4864] document discusses a related

concept called "Address Autonomy" as a benefit of NAPT44. [RFC4864]

indicates that address autonomy can be achieved by the simultaneous use

of global addresses on all nodes within a site that need external

connectivity, and Unique Local Addresses (ULAs) [RFC4193] for all

internal communication. However, this solution fails to meet the

requirement for address independence, because if an ISP renumbering

event occurs, all of the hosts, routers, DHCP servers, ACLs, firewalls

and other internal systems that are configured with global addresses

from the ISP will need to be renumbered before global connectivity is

fully restored.

The use of IPv6 Provider Independent (PI) addresses has also been

suggested as a means to fulfill the address independence requirement.

However, this solution requires that an enterprise qualify to receive a

PI assignment and persuade their ISP to install specific routes for the

enterprise's PI addresses. There are a number of practical issues with

this approach, especially if there is a desire to route to a number of

geographically and topologically diverse set of sites, which can

sometimes involve coordinating with several ISPs to route portions of a

single PI prefix. These problems have caused numerous enterprises with

plenty of IPv4 swamp space to choose to use IPv4 NAT for part, or

substantially all, of their internal network instead of using their

provider independent address space.

1.2. NPTv6 Applicability

NPTv6 provides a simple and compelling solution to meet the Address

Independence requirement in IPv6. The address independence benefit

stems directly from the translation function of the network prefix

translator. To avoid as many of the issues associated with NAPT44 as

possible, NPTv6 is defined to include a two-way, checksum-neutral,

algorithmic translation function, and nothing else.

The fact that NPTv6 does not map ports and is checksum-neutral avoids

the need for an NPTv6 Translator to re-write transport layer headers.

This makes it feasible to deploy new or improved transport layer

protocols without upgrading NPTv6 Translators. Similarly, since NPTv6

does not re-write transport layer headers, NPTv6 will not interfere

with encryption of the full IP payload in many cases.

The default NPTv6 address mapping mechanism is purely algorithmic, so

NPTv6 translators do not need to maintain per-node or per-connection

state, allowing deployment of more robust and adaptive networks than

can be deployed using NAPT44. Since the default NPTv6 mapping can be

performed in either direction, it does not interfere with inbound

connection establishment, thus allowing internal nodes to participate



in direct Peer-to-Peer applications without the application layer

overhead one finds in many IPv4 Peer-to-Peer applications.

Although NPTv6 compares favorably to NAPT44 in several ways, it does

not eliminate all of the architectural problems associated with IPv4

NAT, as described in [RFC2993]. NPTv6 involves modifying IP headers in

transit, so it is not compatible with security mechanisms, such as the

IPsec Authentication Header, that provide integrity protection for the

IP header. NPTv6 may interfere with the use of application protocols

that transmit IP addresses in the application-specific portion of the

IP datagram. These applications currently require application layer

gateways (ALGs) to work correctly through NAPT44 devices, and similar

ALGs may be required for these applications to work through NPTv6

Translators. The use of separate internal and external prefixes creates

complexity for DNS deployment, due to the desire for internal nodes to

communicate with other internal nodes using internal addresses, while

external nodes need to obtain external addresses to communicate with

the same nodes. This frequently results in the deployment of "split

DNS", which may add complexity to network configuration.

The choice of address within the edge network bears consideration. One

could use a ULA, which maximizes address independence. That could also

be considered a misuse of the ULA; if the expectation is that a ULA

prevents access to a system from outside the range of the ULA, NPTv6

overrides that. On the other hand, the administration is aware that it

has made that choice, and could if it desired deploy a second ULA for

the purpose of privacy; the only prefix that will be translated is one

that has an NPTv6 Translator configured to translate to or from it.

Also, using any other global scope address format makes one either

obtain a PI prefix or be at the mercy of the agency from which it was

allocated.

There are significant technical impacts associated with the deployment

of any prefix translation mechanism, including NPTv6, and we strongly

encourage anyone who is considering the implementation or deployment of

NPTv6 to read [RFC4864] and [RFC5902], and to carefully consider the

alternatives described in that document, some of which may cause fewer

problems than NPTv6.

2. NPTv6 Overview

NPTv6 may be implemented in an IPv6 router to map one IPv6 address

prefix to another IPv6 prefix as each IPv6 datagram transits the

router. A router that implements an NPTv6 prefix translation function

is referred to as an NPTv6 Translator.

2.1. NPTv6: the simplest case

In its simplest form, an NPTv6 Translator interconnects two network

links, one of which is an "internal" network link attached to a leaf

network within a single administrative domain, and the other of which

is an "external" network with connectivity to the global Internet. All



of the hosts on the internal network will use addresses from a single,

locally-routed prefix, and those addresses will be translated to/from

addresses in a globally-routable prefix as IP datagrams transit the

NPTv6 Translator. The lengths of these two prefixes will be

functionally the same; if they differ, the longer of the two will limit

the ability to use subnets in the shorter.

External Network:  Prefix = 2001:0DB8:0001:/48

    --------------------------------------

                      |

                      |

               +-------------+

               |     NPTv6   |

               |  Translator |

               +-------------+

                      |

                      |

    --------------------------------------

Internal Network:  Prefix = FD01:0203:0405:/48

Figure 1 shows an NPTv6 Translator attached to two networks. In this

example, the internal network uses IPv6 Unique Local Addresses (ULAs)

[RFC4193] to represent the internal IPv6 nodes, and the external

network uses globally routable IPv6 addresses to represent the same

nodes.

When an NPTv6 Translator forwards datagrams in the "outbound"

direction, from the internal network to the external network, NPTv6

overwrites the IPv6 source prefix (in the IPv6 header) with a

corresponding external prefix. When datagrams are forwarded in the

"inbound" direction, from the external network to the internal network,

the IPv6 destination prefix is overwritten with a corresponding

internal prefix. Using the prefixes shown in the diagram above, as an

IP datagram passes through the NPTv6 Translator in the outbound

direction, the source prefix (FD01:0203:0405:/48) will be overwritten

with the external prefix (2001:0DB8:0001:/48). In an inbound datagram,

the destination prefix (2001:0DB8:0001:/48) will be overwritten with

the internal prefix (FD01:0203:0405:/48). In both cases, it is the

local IPv6 prefix that is overwritten; the remote IPv6 prefix remains

unchanged. Nodes on the internal network are said to be "behind" the

NPTv6 Translator.

2.2. NPTv6 between peer networks

NPTv6 can also be used between two private networks. In these cases,

both networks may use ULA prefixes, with each subnet in one network

mapped into a corresponding subnet in the other network, and vice

versa. Or, each network may use ULA prefixes for internal addressing,

and global unicast addresses on the other network.



    Internal Prefix = FD01:4444:5555:/48

    --------------------------------------

         V            |      External Prefix

         V            |      2001:0DB8:6666:/48

         V        +---------+      ^

         V        |  NPTv6  |      ^

         V        |  Device |      ^

         V        +---------+      ^

External Prefix       |            ^

2001:0DB8:0001:/48    |            ^

    --------------------------------------

    Internal Prefix = FD01:0203:0405:/48

2.3. NPTv6 redundancy and load-sharing

In some cases, more than one NPTv6 Translator may be attached to a

network, as shown in Figure 3. In such cases, NPTv6 Translators are

configured with the same internal and external prefixes. Since there is

only one translation, even though there are multiple translators, they

map only one external address (prefix and IID) to the internal address.

External Network:  Prefix = 2001:0DB8:0001:/48

    --------------------------------------

           |                      |

           |                      |

    +-------------+        +-------------+

    |  NPTv6      |        |  NPTv6      |

    |  Translator |        |  Translator |

    |   #1        |        |   #2        |

    +-------------+        +-------------+

           |                      |

           |                      |

    --------------------------------------

Internal Network:  Prefix = FD01:0203:0405:/48

2.4. NPTv6 multihoming



   External Network #1:          External Network #2:

Prefix = 2001:0DB8:0001:/48    Prefix = 2001:0DB8:5555:/48

---------------------------    --------------------------

                |                      |

                |                      |

         +-------------+        +-------------+

         |  NPTv6      |        |  NPTv6      |

         |  Translator |        |  Translator |

         |   #1        |        |   #2        |

         +-------------+        +-------------+

                |                      |

                |                      |

         --------------------------------------

     Internal Network:  Prefix = FD01:0203:0405:/48

When multihoming, NPTv6 Translators are attached to an internal

network, as shown in Figure 4, but connected to different external

networks. In such cases, NPTv6 Translators are configured with the same

internal prefix, but different external prefixes. Since there are

multiple translations, they map multiple external addresses (prefix and

IID) to the common internal address. A system within the edge network

is unable to determine which external address it is using apart from

services such as STUN [RFC5389].

Multihoming in this sense has one negative feature as compared with

multihoming with a provider independent address; when routes change

between NPTv6 Translators, since the upstream network changes, the

translated prefix can change. This would cause sessions and referrals

dependent on it to fail as well. This is not expected to be a major

issue, however, in networks where routing is generally stable.

2.5. Mapping with No Per-Flow State

When NPTv6 is used as described in this document, no per-node or per-

flow state is maintained in the NPTv6 Translator. Both inbound and

outbound datagrams are translated algorithmically, using only

information found in the IPv6 header. Due to this property, NPTv6's

two-way, algorithmic address mapping can support both outbound and

inbound connection establishment without the need for state-priming or

rendezvous mechanisms, or the maintenance of mapping state. This is a

significant improvement over NAPT44 devices, but it also has

significant security implications which are described in Section 7.

2.6. Checksum-Neutral Mapping

When a change is made to one of the IP header fields in the IPv6

pseudo-header checksum (such as one of the IP addresses), the checksum

field in the transport layer header may become invalid. Fortunately, an

incremental change in the area covered by the Internet standard

checksum [RFC1071] will result in a well-defined change to the checksum



value [RFC1624]. So, a checksum change caused by modifying part of the

area covered by the checksum can be corrected by making a complementary

change to a different 16-bit field covered by the same checksum.

The NPTv6 mapping mechanisms described in this document are checksum-

neutral, which means that they result in IP headers that will generate

the same IPv6 pseudo-header checksum when the checksum is calculated

using the standard Internet checksum algorithm [RFC1071]. Any changes

that are made during translation of the IPv6 prefix are offset by

changes to other parts of the IPv6 address. This results in transport

layers that use the Internet checksum (such as TCP and UDP) calculating

the same IPv6 pseudo header checksum for both the internal and external

forms of the same datagram, which avoids the need for the NPTv6

Translator to modify those transport layer headers to correct the

checksum value.

The outgoing checksum correction is achieved by making a change to a 16

bit section of the source address that is not used for routing in the

external network. Due to the nature of checksum arithmetic, when the

corresponding correction is applied to the same bits of destination

address of the inbound packet, the DA is returned to the correct

internal value.

As noted in Section 4.2, this mapping results in an edge network using

a /48 external prefix to be unable to use subnet 0xFFFF.

3. NPTv6 Algorithmic Specification

The [RFC4291] IPv6 Address is reproduced for clarity in Figure 5.

 0    15 16   31 32   47 48   63 64   79 80   95 96  111 112  127

+-------+-------+-------+-------+-------+-------+-------+-------+

|     Routing Prefix    | Subnet|   Interface Identifier (IID)  |

+-------+-------+-------+-------+-------+-------+-------+-------+

3.1. NPTv6 configuration calculations

When an NPTv6 Translation function is configured, it is configured with

one or more "internal" interfaces with their "internal" routing

domain prefixes, and

one or more "external" interfaces with their "external" routing

domain prefixes.

In the simple case, there is one of each. If a single router provides

NPTv6 translation services between a multiplicity of domains (as might

be true when multihoming), each internal/external pair must be thought

of as a separate NPTv6 Translator from the perspective of this

specification.

When an NPTv6 Translator is configured, the translation function first

ensures that the internal and external prefixes are the same length, if

necessary by extending the shorter of the two with zeroes. These two
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prefixes will be used in the prefix translation function described in 

Section 3.2 and Section 3.3.

They are then zero-extended to /64, for the purposes of a calculation.

The translation function calculates the ones-complement sum of the 16

bit words of the /64 external prefix and the /64 internal prefix. It

then calculates the difference between these values: internal minus

external. This value, called the "adjustment", is effectively constant

for the lifetime of the NPTv6 Translator configuration, and used in

per-datagram processing.

3.2. NPTv6 translation, internal network to external network

When a datagram passes through the NPTv6 Translator from an internal to

an external network, its IPv6 Source Address is changed in two ways: 

If the internal subnet number has no mapping, such as being

0xFFFF or simply not mapped, discard the datagram. This SHOULD

result in an ICMP Destination Unreachable.

The internal prefix is overwritten with the external prefix, in

effect subtracting the difference between the two checksums (the

adjustment) from the pseudo-header's checksum, and

A 16-bit word of the address has the adjustment added to it using

one's complement arithmetic. If the result is 0xFFFF, it is

overwritten as zero. The choice of word is as specified in 

Section 3.4 or Section 3.5 as appropriate.

3.3. NPTv6 translation, external network to internal network

When a datagram passes through the NPTv6 Translator from an external to

an internal network, its IPv6 Destination Address is changed in two

ways: 

The external prefix is overwritten with the internal prefix, in

effect adding the difference between the two checksums (the

adjustment) to the pseudoheader's checksum, and

A 16-bit word of the address has the adjustment subtracted from

it (bitwise inverted and added to it) it using one's complement

arithmetic. If the result is 0xFFFF, it is overwritten as zero.

The choice of word is as specified in Section 3.4 or Section 3.5

as appropriate.

3.4. NPTv6 with a /48 or shorter prefix

When an NPTv6 Translator is configured with internal and external

prefixes that are 48 bits in length (a /48) or shorter, the adjustment

MUST be added to or subtracted from bits 48..63 of the address.
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This mapping results in no modification of the Interface Identifier

(IID), which is held in the lower half of the IPv6 address, so it will

not interfere with future protocols that may use unique IIDs for node

identification.

NPTv6 Translator implementations MUST implement the /48 mapping.

3.5. NPTv6 with a /49 or longer prefix

When an NPTv6 Translator is configured with internal and external

prefixes that are longer than 48 bits in length (such as a /52, /56, or

/60), the adjustment must be added to or subtracted from one of the

words in bits 64..79, 80..95, 96..111, or 112..127 of the address.

While the choice of word is immaterial as long as it is consistent, for

consistency's sake, these words MUST be inspected in that sequence, and

the first that is not initially 0xFFFF chosen.

NPTv6 Translator implementations SHOULD implement the mapping for

longer prefixes.

3.6. /48 Prefix Mapping Example

For the network shown in Figure 1, the Internal Prefix is

FD01:0203:0405:/48, and the External Prefix is 2001:0DB8:0001:/48.

If a node with internal address FD01:0203:0405:0001::1234 sends an

outbound datagram through the NPTv6 Translator, the resulting external

address will be 2001:0DB8:0001:D550::1234. The resulting address is

obtained by calculating the checksum of both the internal and external

48-bit prefixes, subtracting the internal prefix from the external

prefix using one's complement arithmetic to calculate the "adjustment",

and adding the adjustment to the 16-bit subnet field (in this case

0x0001).

To show the work:

The one's complement checksum of FD01:0203:0405 is 0xFCF5. The one's

complement checksum of 2001:0DB8:0001 is 0xD245. Using one's complement

arithmetic, 0xD245 - 0xFCF5 = 0xD54F. The subnet in the original

datagram is 0x0001. Using one's complement arithmetic, 0x0001 + 0xD54F

= 0xD550. Since 0xD550 != 0xFFFF, it is not changed to 0x0000.

So, the value 0xD550 is written in the 16-bit subnet area, resulting in

a mapped external address of 2001:0DB8:0001:D550::1234.

When a response datagram is received, it will contain the destination

address 2001:0DB8:0001:D550::0001, which will be mapped using the

inverse mapping algorithm, back to FD01:0203:0405:0001::1234.

In this case, the difference between the two prefixes will be

calculated as follows:

Using one's complement arithmetic, 0xFCF5 - 0xD245 = 0x2AB0. The subnet

in the original datagram = 0xD550. Using one's complement arithmetic,

0xD550 + 0x2AB0 = 0x0001. Since 0x0001 != 0xFFFF, it is not changed to

0x0000.

So the value 0x0001 is written into the subnet field, and the internal

value of the subnet field is properly restored.



3.7. Address Mapping for Longer Prefixes

If the prefix being mapped is longer than 48 bits, the algorithm is

slightly more complex. A common case will be that the internal and

external prefixes are of different length. In such a case, the shorter

prefix is zero-extended to the length of the longer as described in 

Section 3.1 for the purposes of overwriting the prefix. Then, they are

both zero-extended to 64 bits to facilitate one's complement

arithmetic. The "adjustment" is calculated using those 64 bit prefixes.

For example if the internal prefix is a /48 ULA and the external prefix

is a /56 provider-allocated prefix, the ULA becomes a /56 with zeros in

bits 48..55. For purposes of one's complement arithmetic, they are then

both zero-extended to 64 bits. A side-effect of this is that a subset

of the subnets possible in the shorter prefix are untranslatable. While

the security value of this is debatable, the administration may choose

to use them for subnets that it knows need no external accessibility.

We then find the first word in the IID that does not have the value

0xFFFF, trying bits 64..79, and then 80..95, 96..111, and finally

112..127. We perform the same calculation (with the same proof of

correctness) as in Section 3.6, but applying it to that word.

Although any 16-bit portion of an IPv6 IID could contain 0xFFFF, an IID

of all-ones is a reserved anycast identifier that should not be used on

the network [RFC2526]. If an NPTv6 Translator discovers a datagram with

an IID of all-zeros while performing address mapping, that datagram

MUST be dropped, and an ICMPv6 Parameter Problem error SHOULD be

generated [RFC4443].

Note: this mechanism does involve modification of the IID; it may not

be compatible with future mechanisms that use unique IIDs for node

identification.

4. Implications of Network Address Translator Behavioral Requirements

4.1. Prefix configuration and generation

NPTv6 Translators MUST support manual configuration of internal and

external prefixes, and MUST NOT place any restrictions on those

prefixes except that they be valid IPv6 unicast prefixes as described

in [RFC4291]. They MAY also support random generation of ULA addresses

on command. Since the most common place anticipated for the

implementation of an NPTv6 Translator is a CPE router, the reader is

urged to consider the requirements of [I-D.ietf-v6ops-ipv6-cpe-router].

4.2. Subnet numbering

For reasons detailed in Appendix Appendix B, a network using NPTv6

Translation and a /48 external prefix MUST NOT use the value 0xFFFF to

designate a subnet that it expects to be translated.



4.3. NAT Behavioral Requirements

NPTv6 Translators MUST support hairpinning behavior, as defined in the

NAT Behavioral Requirements for UDP document [RFC4787]. This means that

when an NPTv6 Translator receives a datagram on the internal interface

that has a destination address that matches the site's external prefix,

it will translate the datagram and forward it internally. This allows

internal nodes to reach other internal nodes using their external,

global addresses when necessary.

Conceptually, the datagram leaves the domain (is translated as

described in Section 3.2), and returns (is again translated as

described in Section 3.3). As a result, the datagram exchange will be

through the NPTv6 Translator in both directions for the lifetime of the

session. The alternative would be to require the NPTv6 Translator to

drop the datagram, forcing the sender to use the correct internal

prefix for its peer. Performing only the external-to-internal

translation results in the datagram being sent from the untranslated

internal address of the source to the translated and therefore internal

address of its peer, which would enable the session to bypass the NPTv6

Translator for future datagrams. It would also mean that the original

sender would be unlikely to recognize the response when it arrived.

Because NPTv6 does not perform port mapping and uses a one-to-one,

reversible mapping algorithm, none of the other NAT behavioral

requirements apply to NPTv6.

5. Implications for Applications

NPTv6 Translation does not create several of the problems known to

exist with other kinds of NATs and discussed in [RFC2993]. In

particular: NPTv6 Translation is stateless, so a "reset" or brief

outage of an NPTv6 Translator does not break connections that traverse

the translation function, and if multiple NPTv6 Translators exist

between the same two networks, load can shift or be dynamically load-

shared among them. Also, an NPTv6 Translator does not aggregate traffic

for several hosts/interfaces behind a lesser number of external

addresses, so there is no inherent expectation for an NPTv6 Translator

to block new inbound flows from external hosts, and no issue with a

filter or blacklist associated with one prefix within the domain

affecting another. A firewall can of course be used in conjunction with

NPTv6 Translator; this would allow the network administrator more

flexibility to specify security policy than would be possible with a

traditional NAT.

However, NPTv6 Translation does create difficulties for some kinds of

applications. Some examples include: 

An application instance "behind" an NPTv6 Translator will see a

different address for its connections than its peers "outside"

the NPTv6 Translator.

*



An application instance "outside" an NPTv6 Translator will see a

different address for its connections than any peer "inside" an

NPTv6 Translator.

An application instance wishing to establish communication with a

peer "behind" an NPTv6 Translator may need to use a different

address to reach that peer depending on whether the instance is

behind the same NPTv6 Translator or external to it. Since an

NPTv6 Translator implements hairpinning [requirements], it

suffices for applications to always use their external addresses.

However, this creates inefficiencies in the local network and may

also complicate implementation of the NPTv6 Translator. [RFC3484]

also would prefer the private address in such a case in order to

reduce those inefficiencies.

An application instance which moves from a realm "behind" an

NPTv6 Translator to a realm that is "outside" the network, or

vice versa, may find that it is no longer able to reach its peers

at the same addresses it was previously able to use.

An application instance which is intermittently communicating

with a peer that moves from behind an NPTv6 Translator to

"outside" of it, or vice versa, may find that it is no longer

able to reach that peer at the same address that it had

previously used.

Many, but not all, of the applications which are adversely affected by

NPTv6 Translation are those that do "referrals" - where an application

instance passes its own addresses, and/or addresses of its peers, to

other peers. (Some believe referrals are inherently undesirable; others

believe that they are necessary in some circumstances. A discussion of

the merits of referrals, or lack thereof, is beyond the scope of this

document.)

To some extent, the incidence of these difficulties can be reduced by

DNS hacks that attempt to expose addresses "behind" an NPTv6 Translator

only to hosts which are also behind the same NPTv6 Translator; and

perhaps also, to expose only the "internal" addresses of hosts behind

the NPTv6 Translator to other hosts behind the same NPTv6 Translator.

However, this cannot be a complete solution. A full discussion of these

issues is out of scope for this document, but briefly: (a) reliance on

DNS to solve this problem depends on hosts always making queries from

DNS servers in the same realm as they are (or on DNS interception

proxies, which create their own problems), and on mobile hosts/

applications not caching those results; (b) reliance on DNS to solve

this problem depends on network administrators on all networks using

such applications to reliably and accurately maintain current DNS

entries for every host using those applications; and (c) reliance on

DNS to solve this problem depends on applications always using DNS

names, even though they often must run in environments where DNS names

*

*

*
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are not reliably maintained for every host. Other issues are that there

is often no single distinguished name for a host, no reliable way for a

host to determine what DNS names are associated with it, and which

names are appropriate to use in which contexts.

5.1. Recommendation for network planners considering use of NPTv6

Translation

In light of the above, network planners considering the use of NPTv6

translation should carefully consider the kinds of applications that

they will need to run in the future, and determine whether the address

stability and provider independence benefits are consistent with their

application requirements.

5.2. Recommendations for application writers

Several mechanisms (e.g. STUN [RFC5389], TURN [RFC5766], ICE [RFC5245])

have been used with traditional IPv4 NAT to circumvent some of the

limitations of such devices. Similar mechanisms could also be applied

to circumvent some of the issues with NPTv6 Translator. However, all of

these require the assistance of an external server or a function co-

located with the translator that can tell an "internal" host what its

"external" addresses are.

5.3. Recommendation for future work

It might be desirable to define a general mechanism which would allow

hosts within a translation domain to determine their external addresses

and/or request that inbound traffic be permitted. If such a mechanism

were to be defined, it would ideally be general enough to also

accommodate other types of NAT likely to be encountered by IPV6

applications - in particular, IPv4/IPv6 Translation [I-D.ietf-behave-

v6v4-framework] [I-D.ietf-behave-dns64] [I-D.ietf-behave-v6v4-xlate]

[I-D.ietf-behave-v6v4-xlate-stateful] [RFC6052]. For this and other

reasons, such a mechanism is beyond the scope of this document.

6. A Note on Port Mapping

In addition to overwriting IP addresses when datagrams are forwarded,

NAPT44 devices overwrite the source port number in outbound traffic,

and the destination port number in inbound traffic. This mechanism is

called "port mapping".

The major benefit of port mapping is that it allows multiple computers

to share a single IPv4 address. A large number of internal IPv4

addresses (typically from one of the [RFC1918] private address spaces)

can be mapped into a single external, globally routable IPv4 address,

with the local port number used to identify which internal node should

receive each inbound datagram. This address amplification feature is

not generally foreseen as a necessity at this time.



Since port mapping requires re-writing a portion of the transport layer

header, it requires NAPT44 devices to be aware of all of the transport

protocols that they forward, thus stifling the development of new and

improved transport protocols and preventing the use of IPsec

encryption. Modifying the transport layer header is incompatible with

security mechanisms that encrypt the full IP payload, and restricts the

NAPT44 to forwarding transport layers that use weak checksum algorithms

that are easily recalculated in routers.

Since there is significant detriment caused by modifying transport

layer headers and very little, if any, benefit to the use of port

mapping in IPv6, NPTv6 Translators that comply with this specification

MUST NOT perform port mapping.

7. Security Considerations

When NPTv6 is deployed using either of the two-way, algorithmic

mappings defined in the document, it allows direct inbound connections

to internal nodes. While this can be viewed as a benefit of NPTv6 vs.

NAPT44, it does open internal nodes to attacks that would be more

difficult in a NAPT44 network. Although this situation is not

substantially worse, from a security standpoint, than running IPv6 with

no NAT, some enterprises may assume that an NPTv6 Translator will offer

similar protection to a NAPT44 device.

The port mapping mechanism in NAPT44 implementations requires that

state be created in both directions. This has lead to an industry-wide

perception that NAT functionality is the same as a stateful firewall.

It is not. The translation function of the NAT only creates dynamic

state in one direction and has no policy. For this reason, it is

RECOMMENDED that NPTv6 Translators also implement firewall

functionality such as described in [RFC6092], with appropriate

configuration options including turning it on or off.

When [RFC4864] talks about randomizing the subnet identifier, the idea

is to make it harder for worms to guess a valid subnet identifier at an

advertised network prefix. This should not be interpreted as endorsing

concealing the subnet identifier behind the obfuscating function of a

translator such as NPTv6. [RFC4864] specifically talks about how to

obtain the desired properties of concealment without using a

translator. Topology hiding when using NAT is often ineffective in

environments where the topology is visible in application layer

messaging protocols such as DNS, SIP, SMTP, etc. If the information

were not available through the application layer, [RFC2993] would not

be valid.

Due to the potential interactions with IKEv2/IPsec NAT traversal, it

would be valuable to test interactions of NPTv6 with various aspects of

current-day IKEv2/IPsec NAT traversal.

8. IANA Considerations

This document has no IANA considerations.
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10. Change Log

This section should be removed by the RFC Editor.

10.1. Changes Between draft-mrw-behave-nat66-00 and -01

There were several minor changes made between the *behave-nat66-00 and

-01 versions of this draft: 

Added Fred Baker as a co-author.

Minor arithmetic corrections.

Added AH to paragraph on NAT security issues.

Added additional NAT topologies to overview (diagrams TBD).

10.2. Changes between *behave-nat66-01 and -02

There were further changes made between *behave-nat66-01 and -02: 

Removed topology hiding mechanism.

Added diagrams.

Made minor updates based on mailing list feedback.

Added discussion of IPv6 SAF document.

Added applicability section.

Added discussion of Address Independence requirement.

Added hairpinning requirement and discussion of applicability of

other NAT behavioral requirements.
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10.3. Changes between *nat66-00 and *nat66-01

There were further changes made between nat66-01 and nat66-02: 

Added mapping for prefixes longer than /48.

Change draft name to remove reference to the behave WG.

Resolved various open issues and fixed typos.

10.4. Changes between *nat66-01 and *nat66-02

Change the acronym "NAT66" to "NPTv6", so people don't read "NAT"

and MEGO.

Change the term used to refer to the function from "NAT66 device"

to "NPTv6 Translator". It's not a "device" function, it's a

function that is applied between two interfaces. Consider a

router with two upstreams and two legs in the local network; it

will not translate between the local legs, but will translate to

and from each upstream, and be configured differently for each of

the two ISPs.

Comment specifically on the security aspects.

Comment specifically on the application issues raised on this

list.

Comment specifically on multihoming, load-sharing, and asymmetric

routing.

Spell out the hairpinning requirement and its implications.

Spell out the service provider side of Address Independence.

00 focuses on the edge's view

Detail the algorithm in a manner clearer to the implementor (I

think)

Spell out the case for GSE-style DMZs between the edge and the

transit network, which is about the implications for the global

routing table.

Refer to [RFC6092] as a CPE firewall description.

10.5. Changes between *nat66-02 and *nat66-03

Added an appendix on Verification code
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Various minor markups in response to Ralph Droms

10.6. Changes between *nat66-03 and *nat66-04

Markups in response to Christian Huitema, mostly surrounding the

issue of subnet 0xFFFF.

Refer to [I-D.ietf-v6ops-ipv6-cpe-router] for CPE router

requirements.

10.7. Changes between *nat66-04 and *nat66-05

Update statistics in appendix A per BGP report of 17 December

2010

Update security considerations using text supplied by Merike

Kaeo.

10.8. Changes between *nat66-05 and *nat66-06

restore a code snippet inadvertently removed in version -05

10.9. Changes between *nat66-06 and *nat66-07

Changed requested status to experimental

Incorporated comments from Eric Kline

10.10. Changes between *nat66-07 and *nat66-08

The section on Application Considerations was expanded after discussion

with Keith Moore.

10.11. Changes up to *nat66-10

Address review comments during IETF Last Call and the Transport

Directorate Review.

10.12. Changes up to *nat66-11 and -12

Address Dave Thaler's comments, mostly editorial, bit also addressing

UNSAF protocols like the TCP Authentication Option.

10.13. Changes for *nat66-13

Inserted a sentence to make Jari happy.

Inserted a paragraph suggested by Stewart Bryant.

normalized the terms "packet" and "datagram", for consistency.
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Appendix A. Why GSE?

For the purpose of this discussion, let us over-simplify the Internet's

structure by distinguishing between two broad classes of networks:

transit and edge. A "transit network", in this context, is a network

that provides connectivity services to other networks. Its AS number

may show up in a non-final position in BGP AS paths, or in the case of

mobile and residential broadband networks, it may offer network

services to smaller networks that can't justify RIR membership. An

"edge network", in contrast, is any network that is not a transit

network; it is the ultimate customer, and while it provides internal

connectivity for its own use, it is in other respects a consumer of

transit services. In terms of routing, a network in the transit domain

generally needs some way to make choices about how it routes to other

networks; an edge network is generally quite satisfied with a simple

default route.

The [GSE] proposal, and as a result this proposal (which is similar to

GSE in most respects and inspired by it), responds directly to current

concerns in the RIR communities. Edge networks are used to an

environment in IPv4 in which their addressing is disjoint from that of

their upstream transit networks; it is either provider independent, or

a network prefix translator makes their external address distinct from

their internal address, and they like the distinction. In IPv6, there

is a mantra that edge network addresses should be derived from their

upstream, and if they have multiple upstreams, edge networks are

expected to design their networks to use all of those prefixes

equivalently. They see this as unnecessary and unwanted operational

complexity, and are as a result pushing very hard in the RIR

communities for provider independent addressing.

Widespread use of provider independent addressing has a natural and

perhaps unavoidable side-effect that is likely to be very expensive in

the long term. It means that the routing table will enumerate the

networks at the edge of the transit domain, the edge networks, rather

than enumerating the transit domain. Per the BGP Update Report of 17

December 2010, there are currently over 36,000 Autonomous Systems being

advertised in BGP, of which over 15,000 advertise only one prefix.

There are in the neighborhood of 5000 AS's that show up in a non-final

position in AS paths, and perhaps another 5000 networks whose AS

numbers are terminal in more than one AS path. In other words, we have

prefixes for some 36,000 transit and edge networks in the route table

now, many of which arguably need an Autonomous System number only for

multihoming. Current estimates suggest that we could easily see that be

on the order of 10,000,000 within fifteen years. However, the vast



majority of networks (2/3) having the tools necessary to multihome are

not visibly doing so, and would be well served by any solution that

gives them address independence without the overhead of RIR membership

and BGP routing.

Current growth estimates suggest that we could easily see that be on

the order of 10,000,000 within fifteen years. Tens of thousands of

entries in the route table is very survivable; while our protocols and

computers will likely do quite well with tens of millions of routes,

the heat produced and power consumed by those routers, and the

inevitable impact on the cost of those routers, is not a good outcome.

To avoid having a massive and unscalable route table, we need to find a

way that is politically acceptable and returns us to enumerating the

transit domain, not the edge.

There have been a number of proposals. As described, shim6 moves the

complexity to the edge, and the edge is rebelling. Geographic

addressing in essence forces ISPs to "own" geographic territory from a

routing perspective, as otherwise there is no clue in the address as to

what network a datagram should be delivered to in order to reach it.

Metropolitan Addressing can imply regulatory authority, and even if it

is implemented using internet exchange consortia, visits a great deal

of complexity on the transit networks that directly serve the edge. The

one that is likely to be most acceptable is any proposal that enables

an edge network to be operationally independent of its upstreams, with

no obligation to renumber when it adds, drops, or changes ISPs, and

with no additional burden placed either on the ISP or the edge network

as a result. From an application perspective, an additional operational

requirement in the words of Roadmap for the Smart Grid [NIST], is that 

"...the Network should enable an application in a particular

domain to communicate with an application in any other domain in

the information network, with proper management control over who

and where applications can be interconnected."

In other words, the structure of the network should allow for and

enable appropriate access control, but the structure of the network

should not inherently limit access.

The GSE model, by statelessly translating the prefix between an edge

network and its upstream transit network, accomplishes that with a

minimum of fuss and bother. Stated in the simplest terms, it enables

the edge network to behave as if it has a provider independent prefix

from a multihoming and renumbering perspective without the overhead of

RIR membership or maintaining BGP connectivity, and it enables the

transit networks to aggressively aggregate what are from their

perspective provider-allocated customer prefixes, to maintain a

rational-sized routing table.

*



Appendix B. Verification code

This non-normative appendix is presented as a proof of concept. It is

in no sense optimized; for example, one's complement arithmetic is

implemented in portable subroutines, where operational implementations

might use one's complement arithmetic instructions through a pragma;

such implementations probably need to explicitly force 0xFFFF to

0x0000, as the instruction will not. The original purpose of the code

was to verify whether or not it was necessary to suppress 0xFFFF by

overwriting with zero, and whether predicted issues with subnet

numbering were real.

The point is to

demonstrate that if one or the other representation of zero is

not used in the word the checksum is updated in, the program maps

inner and outer addresses in a manner that is, mathematically,

1:1 and onto (each inner address maps to a unique outer address,

and that outer address maps back to exactly the same inner

address), and

give guidance on the suppression of 0xFFFF checksums.

In short, in one's complement arithmetic, x-x=0, but will take the

negative representation of zero. If 0xFFFF results are forced to the

value 0x0000, as is recommended in [RFC1071], the word the checksum is

adjusted in cannot be initially 0xFFFF, as on the return it will be

forced to 0. If 0xFFFF results are not forced to the value 0x0000 as is

recommended in [RFC1071], the word the checksum is adjusted in cannot

be initially 0, as on the return it will be calculated as 0+(~0) =

0xFFFF. We chose to follow [RFC1071]'s recommendations, which implies a

requirement to not use 0xFFFF as a subnet number in networks with a /48

external prefix.

*

*



/*

 * Copyright (c) 2010 IETF Trust and the persons identified as

 * authors of the code.  All rights reserved.  Redistribution

 * and use in source and binary forms, with or without

 * modification, are permitted provided that the following

 * conditions are met:

 *

 * o  Redistributions of source code must retain the above

 *    copyright notice, this list of conditions and the

 *    following disclaimer.

 *

 * o  Redistributions in binary form must reproduce the above

 *    copyright notice, this list of conditions and the

 *    following disclaimer in the documentation and/or other

 *    materials provided with the distribution.

 *

 * o  Neither the name of Internet Society, IETF or IETF Trust,

 *    nor the names of specific contributors, may be used to

 *    endorse or promote products derived from this software

 *    without specific prior written permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

 * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR

 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 */

#include "stdio.h"

#include "assert.h"

/*

 * program to verify the NPTv6 algorithm

 *

 * argument:

 *     perform negative zero suppression: boolean

 *

 * method:

 *    We specify an internal and an external prefix. The prefix

 *    length is presumed to be the common length of both, and for

 *    this is a /48. We perform the three algorithms specified.

 *    the "datagram" address is in effect the source address

 *    internal->external and the destination address



 *    external->internal.

 */

unsigned short  inner_init[] = {

    0xFD01, 0x0203, 0x0405, 1, 2, 3, 4, 5};

unsigned short  outer_init[] = {

    0x2001, 0x0db8, 0x0001, 1, 2, 3, 4, 5};

unsigned short  inner[8];

unsigned short  datagram[8];

unsigned char   checksum[65536] = {0};

unsigned short  outer[8];

unsigned short  adjustment;

unsigned short  suppress;

/*

 * One's complement sum.

 * return number1 + number2

 */

unsigned short

add1(number1, number2)

    unsigned short  number1;

    unsigned short  number2;

{

    unsigned int    result;

    result = number1;

    result += number2;

    if (suppress) {

        while (0xFFFF <= result) {

            result = result + 1 - 0x10000;

        }

    } else {

        while (0xFFFF < result) {

            result = result + 1 - 0x10000;

        }

    }

    return result;

}

/*

 * One's complement difference

 * return number1 - number2

 */

unsigned short

sub1(number1, number2)

    unsigned short  number1;

    unsigned short  number2;

{

    return add1(number1, ~number2);

}



/*

 * return one's complement sum of an array of numbers

 */

unsigned short

sum1(numbers, count)

    unsigned short *numbers;

    int             count;

{

    unsigned int    result;

    result = *numbers++;

    while (--count > 0) {

        result += *numbers++;

    }

    if (suppress) {

        while (0xFFFF <= result) {

            result = result + 1 - 0x10000;

        }

    } else {

        while (0xFFFF < result) {

            result = result + 1 - 0x10000;

        }

    }

    return result;

}

/*

 * NPTv6 initialization: section 3.1 assuming section 3.4

 *

 * create the /48, a source address in internal format, and a

 * source address in external format. calculate the adjustment

 * if one /48 is overwritten with the other.

 */

void

nptv6_initialization(subnet)

    unsigned short  subnet;

{

    int             i;

    unsigned short  inner48;

    unsigned short  outer48;

    /* initialize the internal and external prefixes. */

    for (i = 0; i < 8; i++) {

        inner[i] = inner_init[i];

        outer[i] = outer_init[i];

    }

    inner[3] = subnet;

    outer[3] = subnet;



    /* calculate the checksum adjustment */

    inner48 = sum1(inner, 3);

    outer48 = sum1(outer, 3);

    adjustment = sub1(inner48, outer48);

}

/*

 * NPTv6 datagram from edge to transit: section 3.2 assuming

 * section 3.4

 *

 * overwrite the prefix in the source address with the outer

 * prefix, and adjust the checksum

 */

void

nptv6_inner_to_outer()

{

    int             i;

    /* let's get the source address into the datagram */

    for (i = 0; i < 8; i++) {

        datagram[i] = inner[i];

    }

    /* overwrite the prefix with the outer prefix */

    for (i = 0; i < 3; i++) {

        datagram[i] = outer[i];

    }

    /* adjust the checksum */

    datagram[3] = add1(datagram[3], adjustment);

}

/*

 * NPTv6 datagram from transit to edge:: section 3.3 assuming

 * section 3.4

 *

 * overwrite the prefix in the destination address with the

 * inner prefix, and adjust the checksum

 */

void

nptv6_outer_to_inner()

{

    int             i;

    /* overwrite the prefix with the outer prefix */

    for (i = 0; i < 3; i++) {

        datagram[i] = inner[i];

    }



    /* adjust the checksum */

    datagram[3] = sub1(datagram[3], adjustment);

}

/*

 * main program

 */

main(argc, argv)

    int             argc;

    char          **argv;

{

    unsigned        subnet;

    int             i;

    if (argc < 2) {

           fprintf(stderr, "usage: nptv6 supression\n");

           assert(0);

       }

       suppress = atoi(argv[1]);

       assert(suppress <= 1);

       for (subnet = 0; subnet < 0x10000; subnet++) {

           /* section 3.1: initialize the system */

           nptv6_initialization(subnet);

           /* section 3.2: take a datagram from inside to outside */

           nptv6_inner_to_outer();

           /* the resulting checksum value should be unique */

           if (checksum[subnet]) {

                printf("inner->outer duplicated checksum: "

                       "inner: %x:%x:%x:%x:%x:%x:%x:%x(%x) "

                       "calculated: %x:%x:%x:%x:%x:%x:%x:%x(%x)\n",

                       inner[0], inner[1], inner[2], inner[3],

                       inner[4], inner[5], inner[6], inner[7],

                       sum1(inner, 8), datagram[0], datagram[1],

                       datagram[2], datagram[3], datagram[4],

                       datagram[5], datagram[6], datagram[7],

                       sum1(datagram, 8));

        }

        checksum[subnet] = 1;

        /*

         * the resulting checksum should be the same as the inner

         * address's checksum

         */

        if (sum1(datagram, 8) != sum1(inner, 8)) {

            printf("inner->outer incorrect: "



                   "inner: %x:%x:%x:%x:%x:%x:%x:%x(%x) "

                   "calculated: %x:%x:%x:%x:%x:%x:%x:%x(%x)\n",

                   inner[0], inner[1], inner[2], inner[3],

                   inner[4], inner[5], inner[6], inner[7],

                   sum1(inner, 8),

                   datagram[0], datagram[1], datagram[2], datagram[3],

                   datagram[4], datagram[5], datagram[6], datagram[7],

                   sum1(datagram, 8));

        }

        /* section 3.3: take a datagram from outside to inside */

        nptv6_outer_to_inner();

        /*

         * the returning datagram should have the same checksum it

         * left with

         */

        if (sum1(datagram, 8) != sum1(inner, 8)) {

            printf("outer->inner checksum incorrect: "

                   "calculated: %x:%x:%x:%x:%x:%x:%x:%x(%x) "

                   "inner: %x:%x:%x:%x:%x:%x:%x:%x(%x)\n",

                   datagram[0], datagram[1], datagram[2], datagram[3],

                   datagram[4], datagram[5], datagram[6], datagram[7],

                   sum1(datagram, 8), inner[0], inner[1], inner[2],

                   inner[3], inner[4], inner[5], inner[6], inner[7],

                   sum1(inner, 8));

        }

        /*

         * and every octet should calculate back to the same inner

         * value

         */

        for (i = 0; i < 8; i++) {

            if (inner[i] != datagram[i]) {

                printf("outer->inner different: "

                       "calculated: %x:%x:%x:%x:%x:%x:%x:%x "

                       "inner: %x:%x:%x:%x:%x:%x:%x:%x\n",

                       datagram[0], datagram[1], datagram[2],

                       datagram[3], datagram[4], datagram[5],

                       datagram[6], datagram[7], inner[0], inner[1],

                       inner[2], inner[3], inner[4], inner[5],

                       inner[6], inner[7]);

                break;

            }

        }

    }

}
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