
Internet Engineering Task Force S. Nakamoto
Internet-Draft Bitcoin
Intended status: Informational M. Sporny
Expires: May 30, 2020 Digital Bazaar
 November 27, 2019

The Base58 Encoding Scheme
draft-msporny-base58-01

Abstract

 This document specifies the base 58 encoding scheme, including an
 introduction to the benefits of the approach, the encoding and
 decoding algorithm, alternative alphabets, and security
 considerations.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 30, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Nakamoto & Sporny Expires May 30, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Base58 Encoding November 2019

Table of Contents

1. Introduction . 2
1.1. Requirements Language 3

2. The Base58 Alphabet . 3
3. The Base58 Encoding Algorithm 4
4. The Base58 Decoding Algorithm 4
5. Test Vectors . 5
6. Acknowledgements . 5
7. Security Considerations 5

 Authors' Addresses . 5

1. Introduction

 When trasmitting data, it can be useful to encode the data in a way
 that survives lower fidelity transmission mechanisms. For example,
 encoding data using a human alphabet in a way that a person can
 visually confirm the encoded data can be more beneficial than
 encoding it in binary form. The Base58 encoding scheme is similar to
 the Base64 encoding scheme in that it can translate any binary data
 to a text string. It is different from Base64 in that the conversion
 alphabet has been carefully picked to work well in environments where
 a person, such as a developer or support technician, might need to
 visually confirm the information with low error rates.

 Base58 is designed with a number of usability characteristics in mind
 that Base64 does not consider. First, similar looking letters are
 omitted such as 0 (zero), O (capital o), I (capital i) and l (lower
 case L). Doing so eliminates the possibility of a human being
 mistaking similar characters for the wrong character. Second, the
 non-alphanumeric characters + (plus), = (equals), and / (slash) are
 omitted to make it possible to use Base58 values in all modern file
 systems and URL schemes without the need for further system-specific
 encoding schemes. Third, by using only alphanumeric characters, easy
 double-click or double tap selection is possible in modern computer
 interfaces. Fourth, social messaging systems do not line break on
 alphanumeric strings making it easier to e-mail or message Base58
 values when debugging systems. Fifth, unlike Base64, there is no
 byte padding making many Base58 values smaller (on average) or the
 same size as Base64 values for values up to 64 bytes, and less than
 2% larger for larger values. Finally, Base64 has eleven encoding
 variations that lead to confusion among developers on which variety
 of Base64 to use. This specification asserts that there is just one
 simple encoding mechanism for Base58, making implementations and
 developer interactions simpler.

 While Base58 does have a number of beneficial usability features, it
 is not always a good choice for an encoding format. For example,

Nakamoto & Sporny Expires May 30, 2020 [Page 2]

Internet-Draft Base58 Encoding November 2019

 when encoding large amounts of data, it is 2% less efficient than
 base64. Developers might avoid Base58 if a 2% increase in efficiency
 over large data sets is desired.

 This document specifies the base 58 encoding scheme, including an
 introduction to the benefits of the approach, the encoding and
 decoding algorithm, alternative alphabets, and security
 considerations.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

2. The Base58 Alphabet

 The Base58 alphabet consists of the following characters:

 123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz

 Each byte value from 0 to 57 maps to the alphabet above in the
 following way:

 +-----+---------+-----+---------+------+----------+------+----------+
 | Byt | Charact | Byt | Charact | Byte | Characte | Byte | Characte |
 | e | er | e | er | | r | | r |
 +-----+---------+-----+---------+------+----------+------+----------+
0	1	1	2	2	3	3	4
4	5	5	6	6	7	7	8
8	9	9	A	10	B	11	C
12	D	13	E	14	F	15	G
16	H	17	J	18	K	19	L
20	M	21	N	22	P	23	Q
24	R	25	S	26	T	27	U
28	V	29	W	30	X	31	Y
32	Z	33	a	34	b	35	c
36	d	37	e	38	f	39	g
40	h	41	i	42	j	43	k
44	m	45	n	46	o	47	p
48	q	49	r	50	s	51	t
52	u	53	v	54	w	55	x
56	y	57	z				
 +-----+---------+-----+---------+------+----------+------+----------+

 Table 1: Base58 Mapping Table

https://datatracker.ietf.org/doc/html/rfc2119

Nakamoto & Sporny Expires May 30, 2020 [Page 3]

Internet-Draft Base58 Encoding November 2019

 Other application-specific alphabets for Base58, such as the Ripple
 alphabet and the Flickr alphabet exist. Those alphabets, while valid
 in their own application spaces, are not valid encoding formats for
 this specification and MUST NOT be used. Supporting more than one
 Base58 encoding alphabet would harm interoperability.

3. The Base58 Encoding Algorithm

 To encode an array of bytes to a Base58 encoded value, run the
 following algorithm. All mathematical operations MUST be performed
 using integer arithmetic. Start by initializing a 'zero_counter' to
 zero (0x0), an 'encoding_flag' to zero (0x0), a 'b58_bytes' array, a
 'b58_encoding' array, and a 'carry' value to zero (0x0). For each
 byte in the array of bytes and while 'carry' does not equal zero
 (0x0) after the first iteration:

 1. If 'encoding_flag' is not set, and if the byte is a zero (0x0),
 increment the value of 'zero_counter'. If the value is not zero
 (0x0), set 'encoding_flag' to true (0x1).

 2. If 'encoding_flag' is set, multiply the current byte value by 256
 and add it to 'carry'.

 3. Set the corresponding byte value in 'b58_bytes' to the value of
 'carry' modulus 58.

 4. Set 'carry' to the value of 'carry' divided by 58.

 Once the 'b58_bytes' array has been constructed, generate the final
 'b58_encoding' using the following algorithm. Set the first
 'zero_counter' bytes in 'b58_encoding' to '1'. Then, for every byte
 in 'b58_array', map the byte value using the Base58 alphabet in the
 previous section to its corresponding character in 'b58_encoding'.
 Return 'b58_encoding' as the Base58 representation of the input array
 of bytes.

4. The Base58 Decoding Algorithm

 To decode a Base58 encoded array of bytes to a decoded array of
 bytes, run the following algorithm. All mathematical operations MUST
 be performed using integer arithmetic. Start by initializing a
 'raw_bytes' array, and a 'carry' value to zero (0x0). For each input
 byte in the array of input bytes:

 1. Set 'carry' to the byte value associated with the input byte
 character. If a mapping does not exist, return an error code.

Nakamoto & Sporny Expires May 30, 2020 [Page 4]

Internet-Draft Base58 Encoding November 2019

 2. While 'carry' does not equal zero and there are input bytes
 remaining:

 1. Multiply the input byte value by 58 and add it to 'carry'.

 2. Set the output byte value to 'carry' modulus 256.

 3. Set 'carry' to the value of 'carry' divided by 256.

 3. Set the corresponding byte value in 'raw_bytes' to the value of
 'carry' modulus 58.

 4. Set 'carry' to the value of 'carry' divided by 58.

5. Test Vectors

 The following examples can be used as test vectors for the algorithms
 in this specification:

 The Base58 encoded value for "Hello World!" is:

 2NEpo7TZRRrLZSi2U

 The Base58 encoded value for "The quick brown fox jumps over the lazy
 dog." is:

 USm3fpXnKG5EUBx2ndxBDMPVciP5hGey2Jh4NDv6gmeo1LkMeiKrLJUUBk6Z

 The Base58 encoded value for 0x0000287fb4cd is:

 111233QC4

6. Acknowledgements

 Thanks to Satoshi Nakamoto for inventing the Base58 encoding format
 and the Bitcoin community for popularizing its usage.

7. Security Considerations

Authors' Addresses

 Satoshi Nakamoto
 Bitcoin

 Email: satoshin@gmx.com

Nakamoto & Sporny Expires May 30, 2020 [Page 5]

Internet-Draft Base58 Encoding November 2019

 Manu Sporny
 Digital Bazaar

 Email: msporny@digitalbazaar.com

Nakamoto & Sporny Expires May 30, 2020 [Page 6]

