
Workgroup: individual submission

Internet-Draft:

draft-muffett-end-to-end-secure-messaging-03

Published: 12 July 2021

Intended Status: Informational

Expires: 13 January 2022

Authors: A. Muffett

Security Researcher

A Duck Test for End-to-End Secure Messaging

Abstract

This document defines End-to-End Secure Messaging in terms of

behaviours that MUST be exhibited by software that claims to

implement it, or which claims to implement that subset which is

known as End-to-End Encrypted Messaging.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 January 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Comments

1.2. Notational Conventions

2. Requirements for an End-to-End Secure Messenger

3. Definitions

3.1. Message and Platform

3.2. Plaintext Content and Sensitive Metadata (PCASM)

3.2.1. Content PCASM

3.2.2. Size PCASM

3.2.3. Analytic PCASM

3.2.4. Conversation Metadata (OPTIONAL)

3.3. Entity

3.4. Sender and Recipient

3.5. Participants and Non-Participants

3.6. Conversation, Group, Centralised & Decentralised

3.7. Backdoor

4. Principles

4.1. Transparency of Participation

4.2. Integrity of Participation

4.2.1. Retransmission Exception

4.3. Equality of Participation

4.4. Closure of Conversation

4.4.1. Public Conversations and Self-Subscription

4.5. Management of Participant Clients and Devices

5. Rationales

5.1. Why: Content PCASM

5.2. Why: Size PCASM

5.3. Why: Analytic PCASM

5.4. Why: Conversation Metadata as OPTIONAL PCASM

5.5. Why: Entity and Participant

5.6. Why: Backdoor

5.7. Why: Transparency of Participation

5.8. Why: Integrity of Participation

5.9. Why: Equality of Participation

5.10. Why: Closure of Conversation

5.11. Why: Management of Participant Clients and Devices

6. OPTIONAL Features of E2ESM

6.1. Disappearing Messages

6.2. Mutual Identity Verification

7. Examples of PCASM

7.1. Content PCASM

7.2. Size PCASM

7.3. Analytic PCASM

7.4. Conversation Metadata as OPTIONAL PCASM

7.5. Non-PCASM

8. Worked Example

9. See Also

10. Live Drafts

11. IANA Considerations

12. Security Considerations

13. Informative References

Author's Address

1. Introduction

End-to-End Secure Messaging (E2ESM) is a mechanism which offers a

digital analogue of "closed distribution lists" for sharing message

content amongst a set of participants, where all participants are

visible to each other and where non-participants are completely

excluded from access to message content.

In client-server-client network models it is common to implement

E2ESM by means of encryption, in order to obscure content at rest

upon a central server. So therefore E2ESM is often narrowly regarded

in terms of "end-to-end encryption".

Other architectural approaches exist - for instance [Ricochet] which

implements closed distribution by using secure point-to-point

[RFC7686] networking to literally restrict the distribution of

content to relevant participants.

Therefore we describe E2ESM in terms of functional behaviours of the

software rather than in terms of its implementation technologies and

architecture.

1.1. Comments

Comments are solicited and should be addressed to the working

group's mailing list and/or the author(s).

1.2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Requirements for an End-to-End Secure Messenger

Software which functions as an End-to-End Secure Messenger MUST

satisfy the following principles, and MUST satisfy these principles

in respect of the provided definitions for all forms of

communication and data-sharing that the software offers. The E2ESM

software MAY comprise either a complete application, or a clearly

defined subset of functionality within a larger application.

¶

¶

¶

¶

¶

¶

¶

Any software that does not satisfy these requirements is not an End-

to-End Secure Messenger, and it does not implement End-to-End Secure

Messaging, nor does it implement End-to-End Encrypted Messaging.

3. Definitions

These definitions are drafted in respect of many examples of

software commonly held to offer (or have offered) end-to-end

security; these examples include:

Signal Messenger

WhatsApp Messenger

Ricochet Messenger

PGP-Encrypted Email sent to an ad-hoc list of addressees, or to

a maillist

Further context for several of these definitions can also be found

in the rationales section, below.

For the avoidance of doubt we define a "messenger" as a software

solution which enables communication between two or more entities,

without offering newly-added participants retrospective access to

content which was previously sent by prior participants.

This echoes the distinction between a "maillist" versus a "maillist

archive" or "web forum"; frequently these solutions are integrated

but we only consider the maillist as a "messenger" per se.

Use cases of a "messenger" may include sending and receiving any or

all of:

UNICODE or ASCII messages

images, video files or audio files

one-way streaming video or audio

two-way streaming video or audio, as in live calls

3.1. Message and Platform

A "message" is information of 0 or more bits, to be communicated.

Messages possess both plaintext "content", and also "metadata" which

describes the content.

¶

¶

1. ¶

2. ¶

3. ¶

4.

¶

¶

¶

¶

¶

1. ¶

2. ¶

3. ¶

4. ¶

¶

¶

A "platform" is a specific instance of software which exists for the

purpose of routing or exchanging messages.

3.2. Plaintext Content and Sensitive Metadata (PCASM)

The "PCASM" of a message is defined as the "plaintext content and

sensitive metadata" of that message, comprising any or all of:

3.2.1. Content PCASM

Content PCASM is any data that can offer better than 50-50 certainty

regarding the value of any bit of the content. See "Rationales" for

more.

3.2.2. Size PCASM

For block encryption of content, Size PCASM is the unpadded size of

the content.

For stream encryption of content, Size PCASM is currently undefined.

(TODO, would benefit from broader input.)

For transport encryption of content, exact Size PCASM SHOULD NOT be

observable or inferable.

See "Rationales" for more.

3.2.3. Analytic PCASM

Analytic PCASM is data which analyses, describes, reduces, or

summarises the "content". See "Rationales" for more.

3.2.4. Conversation Metadata (OPTIONAL)

Conversation Metadata MAY exist "outside" of messages and describe

the conversation context.

Whether conversation metadata constitutes PCASM, is an OPTIONAL

choice for E2ESM software, but that choice MUST be apparent to

participants.

See "Rationales" for more.

3.3. Entity

An "entity" is a human, machine, software bot, conversation

archiver, or other, which sends and/or receives messages.

Entities are bounded by the extent of their Trusted Computing Base

("TCB"), including all systems that they control and/or utilise.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

3.4. Sender and Recipient

A "sender" is an entity which composes and sends messages.

A "recipient" is an entity which receives messages and MAY be able

to access the PCASM of those messages.

For each message there will be one sender and one or more

recipients.

3.5. Participants and Non-Participants

The union set of sender and recipients for any given message are the

"participants" in that message.

It follows that for any given message, all entities that exist

outside of the participant set will be "non-participants" in respect

of that message.

3.6. Conversation, Group, Centralised & Decentralised

A "conversation" is a sequence of one or more messages, and the

responses or replies to them, over a period of time, amongst a

constant or evolving set of participants.

A given platform MAY distinguish between and support more than one

conversation at any given time.

In "centralised" E2ESM such as WhatsApp or Signal, the software MAY

offer collective "group" conversation contexts that provide

prefabricated sets of recipients for the client to utilise when a

message is composed or sent.

In "decentralised" E2ESM such as PGP-Encrypted Email or Ricochet the

recipients of each message are individually determined by each

sender at the point of composition; however "group" metadata may

also exist, in terms of (e.g.) email addressees or subject lines.

3.7. Backdoor

A "backdoor" is any intentional or unintentional mechanism, in

respect of a given message and that message's participants, where

some PCASM of that message MAY become available to a non-participant

without the intentional action of a participant.

4. Principles

For a series of one or more "messages" each which are composed of

"plaintext content and sensitive metadata" (PCASM) and which

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

constitute a "conversation" amongst a set of "participants", to

provide E2ESM will require:

4.1. Transparency of Participation

In the nature of "closed distribution lists", the participants in a

message MUST be frozen into an immutable set at the moment when the

message is composed or sent.

The complete set of all recipients MUST be visible to the sender at

the moment of message composition or sending.

The complete set of participants in a message MUST be visible to all

other participants.

4.2. Integrity of Participation

Excusing the "retransmission exception", PCASM of any given message

MUST only be available to the fixed set of conversation participants

from whom, to whom, and at the time when it was sent.

4.2.1. Retransmission Exception

If a participant that can access an "original" message intentionally

"retransmits" (e.g. quotes, forwards) that message to create a new

message within the E2ESM software, then the original message's PCASM

MAY become available to a new, additional, and possibly different

set of conversation participants, via that new message.

4.3. Equality of Participation

All participants MUST be peers, i.e. they MUST have equal access to

the PCASM of any message; see also "Integrity of Participation".

4.4. Closure of Conversation

The set of participants in a conversation SHALL NOT be increased

except by the intentional action of one or more existing

participants.

Per "Transparency of Participation" that action (introducing a new

participant) MUST be visible to all other participants

4.4.1. Public Conversations and Self-Subscription

Existing participants MAY publicly share links to the conversation,

identifying data to assist discovery of the conversation, or other

mechanisms to enable non-participant entities to subscribe

themselves as conversation participants. This MAY be considered

¶

¶

¶

¶

¶

¶

¶

¶

¶

legitimate "intentional action" to increase the set of participants

in the group.

4.5. Management of Participant Clients and Devices

Where there exists centralised E2ESM software that hosts

participants:

The E2ESM software MUST provide each participant entity with

means to review or revoke access for that participant's clients

or devices that can access future PCASM.

The E2ESM software MUST provide each participant entity with

notifications and/or complete logs of changes to the set of

clients or devices that can or could access message PCASM.

5. Rationales

This explanatory section regarding the principles has been broken

out for clarity and argumentation purposes.

5.1. Why: Content PCASM

Content PCASM MUST be protected as it comprises that which is

"closed" from general distribution.

The test for measuring this is (intended to be) modeled upon

ciphertext indistinguishability [CipherInd]

5.2. Why: Size PCASM

Exact size PCASM MUST be protected as it MAY offer insight into

Content PCASM.

The test for measuring this is (intended) to address risk of content

becoming evident via plaintext length.

5.3. Why: Analytic PCASM

Analytic PCASM MUST be protected as it MAY offer insight into

Content PCASM, for instance that the content shares features with

other, specimen, or known plaintext content.

5.4. Why: Conversation Metadata as OPTIONAL PCASM

Conversational Metadata MAY offer insight into Content PCASM,

however the abstractions of transport mechanism, group management,

or platform choice, MAY render this moot.

¶

¶

1.

¶

2.

¶

¶

¶

¶

¶

¶

¶

¶

For example an PGP-Encrypted email distribution list named

"blockchain-fans@example.com" would leak its implicit topic and

participant identities to capable observers.

5.5. Why: Entity and Participant

The term "participant" in this document exists to supersede the more

vague notion of "end" in the phrase "end-to-end".

Entities, and thus participants, are defined in terms of their

[TrustedComputingBase] to acknowledge that an entity MAY

legitimately store, forward, or access messages by means that are

outside of the E2ESM software.

It is important to note that the concept of "entity" as defined by

their TCB, is the foundation for all other trust in E2ESM. This

develops from the basic definitions of a [TrustedComputingBase] and

from the concepts of "trust-to-trust" discussed in [RoleOfTrust].

Failure of a participant to maintain integrity or control over their

TCB should not be considered a failure of an E2ESM that connects it

to other participants.

For example: if a participant accesses their E2ESM software via

remote desktop software, and their RDP session is hijacked by a

third party; of if they back-up their messages in cleartext to cloud

storage leading somehow to data exfiltration, neither of these would

be a failure of E2ESM. This would instead be a failure of the

participant's [TrustedComputingBase].

Further: it would be obviously possible to burden an E2ESM with

surfacing potential integrity issues of any given participant to

other participants, e.g. "patch compliance". But to require such in

this standard would risk harming the privacy of the participant

entity. See also: "Mutual Identity Verification" in "OPTIONAL

Features of E2ESM"

5.6. Why: Backdoor

In software engineering there is a perpetual tension between the

concepts of "feature" versus "bug" - and occasionally "misfeature"

versus "misbug". These tensions arise from the problem of [DualUse]

- that it is not feasible to firmly and completely ascribe

"intention" to any hardware or software mechanism.

The information security community has experienced a historical

spectrum of mechanisms which have assisted non-participant access to

PCASM. These have variously been named as "export-grade key

restrictions" ([ExportControl], then [Logjam]), "side channel

attacks" ([Spectre] and [Meltdown]), "law enforcement access

fields" [Clipper], and "key escrow" [CryptoWars].

¶

¶

¶

¶

¶

¶

¶

¶

All of these terms combine an "access facilitation mechanism" with

an "intention or opportunity" - and for all of them an access

facilitation mechanism is first REQUIRED.

An access facilitation mechanism is a "door", and is inherently

[DualUse]. Because the goal of E2ESM is to limit access to PCASM

exclusively to a defined set of participants, then the intended

means of access is clearly the "front door"; and any other access

mechanism is a "back door".

If the term "back door" is considered innately pejorative,

alternative, uncertain constructions such as "illegitimate access

feature", "potentially intentional data-access weakness", "legally-

obligated exceptional access mechanism", or any other phrase, all

MUST combine both notions of an access mechanism (e.g. "door") and a

definite or suspected intention (e.g. "legal obligation").

So the phrase "back door" is brief, clear, and widely understood to

mean "a secondary means of access". In the above definition we

already allow for the term to be prefixed with "intentional" or

"unintentional".

Thus it seems appropriate to use this term in this context, not

least because it is also not far removed from the similar and

established term "side channel".

5.7. Why: Transparency of Participation

The "ends" of "end to end" are the participants; for a message to be

composed to be exclusively accessible to that set of participants,

all participants must be visible.

For decentralised "virtual point-to-point" E2ESM solutions such as

PGP-Encrypted Email or Ricochet, the set of participants is fixed by

the author at the time of individual message composition, and MUST

be visible to all participants.

For "centralised" E2ESM solutions such as Signal or WhatsApp, the

set of participants is a "group context" shared amongst all

participants and at the time of individual message composition it

MUST be inherited into a set of "fixed" per-participant access

capabilities by the author.

5.8. Why: Integrity of Participation

Inherent in the term "end to end secure messenger" is the intention

that PCASM will only be available to the participants ("ends") at

the time the message was composed.

¶

¶

¶

¶

¶

¶

¶

¶

¶

If this was not the intention we would deduce that an E2ESM would

automatically make past content available to newly-added

conversation participants, thereby breaking forward secrecy. This is

not a characteristic of any E2ESM, but it is characteristic of

several non-E2ESM. Therefore the converse is true.

As a concrete example this means that participants who are newly

added to a "group" MUST NOT be able to read messages that were sent

before they joined that group - unless (for instance) one pre-

existing participant is explicitly intended to provide a "searchable

archive" or similar function. The function of such a participant is

considered to be out of scope for the messenger.

5.9. Why: Equality of Participation

Without equality of participation it would be allowed for a person

to deploy a standalone cleartext chat server, available solely over

TLS-encrypted links, declare themselves to be "participants" in

every conversation from its outset, access all message PCASM on that

basis, and yet call themselves an E2ESM.

So this is an "anti-cheating" clause: all participant access to

PCASM MUST be via the same mechanisms for all participants without

favour or privilege, and in particular PCASM MUST NOT be available

via other means, e.g. raw block-device access, raw filestore, raw

database access, or network sniffing.

5.10. Why: Closure of Conversation

If a conversation is not "only extensible from within" then it would

be possible for participants to be injected into the conversation

thereby defeating the closure of message distribution.

A subtle centralised vs: decentralised edge-case is as follows:

consider a PGP-encrypted email distribution list. Would it break

"closure of conversation" for a non-participant email administrator

to simply add new users to the maillist?

Answer: no, because in this case the maillist is functioning as a

"platform" for multiple "conversation" threads, and mere addition of

of a new "transport-level" maillist member would not include them as

a participant in ongoing E2ESM conversations; such inclusion would

be a future burden upon existing participants.

However: similar external injection of a new entity into a

centralised WhatsApp or Signal "group" would be clearly a breach of

"closure of conversation".

¶

¶

¶

¶

¶

¶

¶

¶

5.11. Why: Management of Participant Clients and Devices

There is little benefit in requiring conversations to be closed

against "participant injection" if a non-participant may obtain

PCASM access by forcing a platform to silently add extra means of

PCASM access to an existing participant on behalf of that non-

participant.

Therefore to be an E2ESM the platform MUST provide the described

management of participant clients and devices.

6. OPTIONAL Features of E2ESM

6.1. Disappearing Messages

"Disappearing", "expiring", "exploding", "ephemeral" or other forms

of time-limited access to PCASM are strongly RECOMMENDED but not

obligatory mechanisms for E2ESM, not least because they are

impossible to implement in a way that cannot be circumvented by e.g.

screenshots.

6.2. Mutual Identity Verification

Some manner of "shared key" which mutually assures participant

identity and communications integrity are strongly RECOMMENDED but

not obligatory mechanisms for E2ESM.

The benefits of such mechanisms are limited to certain perspectives

of certain platforms.

For instance: in Ricochet the identity key of a user is the absolute

source of truth for their identity, and excusing detection of

typographic errors there is nothing which can be added to that in

order to further assure their "identity".

Similarly WhatsApp provides each participant with a "verifiable

security QR code" and "security code change notifications", but

these codes do not "leak" the number of "WhatsApp For Web"

connections, desktop WhatsApp applications, or other clients which

are bound to the E2ESM software which executes on that phone.

Participant-client information of this kind MAY be a highly private

aspect of that participant's TCB, and SHOULD be treated sensitively

by platforms.

7. Examples of PCASM

For an example message with content ("content") of "Hello, world.",

for the purposes of this example encoded as an ASCII string of

length 13 bytes without terminator character.

¶

¶

¶

¶

¶

¶

¶

¶

¶

7.1. Content PCASM

Examples of Content PCASM would include, non-exclusively:

The content is "Hello, world."

The content starts with the word "Hello"

The top bit of the first byte of the content, is zero

The MD5 hash of the content is 080aef839b95facf73ec599375e92d47

The Salted-MD5 Hash of the content is : ...

7.2. Size PCASM

Size PCASM is defined in the main text, as it relates to the

transport and/or content encryption mechanisms.

7.3. Analytic PCASM

Examples of Analytic PCASM would include, non-exclusively:

The content contains the substring "ello"

The content does not contain the word "Goodbye"

The content contains a substring from amongst the following

set: ...

The content does not contain a substring from amongst the

following set: ...

The hash of the content exists amongst the following set of

hashes: ...

The hash of the content does not exist amongst the following

set of hashes: ...

The content was matched by a machine-learning classifier with

the following training set: ...

7.4. Conversation Metadata as OPTIONAL PCASM

Examples of Conversation Metadata would include, non-exclusively:

maillist email addresses

maillist server names

group titles

¶

1. ¶

2. ¶

3. ¶

4. ¶

5. ¶

¶

¶

1. ¶

2. ¶

3.

¶

4.

¶

5.

¶

6.

¶

7.

¶

¶

1. ¶

2. ¶

3. ¶

group topics

group icons

group participant lists

7.5. Non-PCASM

Information which would not be PCASM would include, non-exclusively:

The content is sent from Alice

The content is sent to Bob

The content is between 1 and 16 bytes long

The content was sent at the following date and time: ...

The content was sent from the following IP address: ...

The content was sent from the following geolocation: ...

The content was composed using the following platform: ...

8. Worked Example

Consider FooBook, a hypothetical example company which provides

messaging services for conversations between entities who use it.

For each conversation FooBook MUST decide whether to represent

itself as a conversation participant or as a non-participant.

(Transparency of Participation)

If FooBook decides to represent itself as a non-participant, then it

MUST NOT have any access to PCASM. (Integrity of Participation /

Non-Participation)

If FooBook decides to represent itself as a participant, then it

MUST NOT have "exceptional" access to PCASM, despite being the

provider of the service - for instance via raw database access or

network sniffing. However it MAY participate in E2ESM conversations

in a "normal" way, and thereby have "normal" access to intra-

conversation PCASM. (Integrity of Participation, Equality of

Participation)

FooBook MAY retain means to eject reported abusive participants from

a conversation. (Decrease in Closure of Participation)

FooBook MUST NOT retain means to forcibly insert new participants

into a conversation. For clarity: this specification does not

4. ¶

5. ¶

6. ¶

¶

1. ¶

2. ¶

3. ¶

4. ¶

5. ¶

6. ¶

7. ¶

¶

¶

¶

¶

¶

[CipherInd]

[Clipper]

[CryptoWars]

[DualUse]

[ExportControl]

recognise any notion of "atomic" exchange of one participant with

another, treating it as an ejection, followed by an "illegitimate"

insertion. (Increase in Closure of Participation)

FooBook MUST enable the user to observe and manage the complete

state of their [TrustedComputingBase] with respect to their FooBook

messaging services. (Management and Visibility)

FooBook MAY treat conversation metadata as PCASM, but it MUST

communicate to participants whether it does or does not.

9. See Also

A different approach to defining (specifically) end-to-end

encryption is discussed in [I-D.knodel-e2ee-definition].

10. Live Drafts

Live working drafts of this document are at: https://github.com/

alecmuffett/draft-muffett-end-to-end-secure-messaging

11. IANA Considerations

This document has no IANA actions.

12. Security Considerations

This document is entirely composed of security considerations.

13. Informative References

Wikipedia, "Ciphertext indistinguishability", 2021,

<https://en.wikipedia.org/wiki/

Ciphertext_indistinguishability>.

Wikipedia, "Clipper chip", 2021, <https://

en.wikipedia.org/wiki/Clipper_chip>.

Wikipedia, "Crypto Wars", 2021, <https://

en.wikipedia.org/wiki/Crypto_Wars>.

Wikipedia, "Dual-use technology", 2021, <https://

en.wikipedia.org/wiki/Dual-use_technology>.

Wikipedia, "Export of cryptography from the United

States", 2021, <https://en.wikipedia.org/wiki/

¶

¶

¶

¶

¶

¶

¶

https://github.com/alecmuffett/draft-muffett-end-to-end-secure-messaging
https://github.com/alecmuffett/draft-muffett-end-to-end-secure-messaging
https://en.wikipedia.org/wiki/Ciphertext_indistinguishability
https://en.wikipedia.org/wiki/Ciphertext_indistinguishability
https://en.wikipedia.org/wiki/Clipper_chip
https://en.wikipedia.org/wiki/Clipper_chip
https://en.wikipedia.org/wiki/Crypto_Wars
https://en.wikipedia.org/wiki/Crypto_Wars
https://en.wikipedia.org/wiki/Dual-use_technology
https://en.wikipedia.org/wiki/Dual-use_technology
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States#Cold_War_era

[I-D.knodel-e2ee-definition]

[Logjam]

[Meltdown]

[RFC2119]

[RFC7686]

[RFC8174]

[Ricochet]

[RoleOfTrust]

[Spectre]

[TrustedComputingBase]

Export_of_cryptography_from_the_United_States#Cold_War_er

a>.

Knodel, M., Baker, F., Kolkman, O.,

Celi, S., and G. Grover, "Definition of End-to-end

Encryption", Work in Progress, Internet-Draft, draft-

knodel-e2ee-definition-00, 22 February 2021, <https://

datatracker.ietf.org/doc/html/draft-knodel-e2ee-

definition-00>.

Wikipedia, "Logjam", 2021, <https://en.wikipedia.org/

wiki/Logjam_(computer_security)>.

Wikipedia, "Meltdown", 2021, <https://en.wikipedia.org/

wiki/Meltdown_(security_vulnerability)>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Appelbaum, J. and A. Muffett, "The ".onion" Special-Use

Domain Name", RFC 7686, DOI 10.17487/RFC7686, October

2015, <https://www.rfc-editor.org/info/rfc7686>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

BlueprintForFreeSpeech, "Ricochet Refresh", 2021,

<https://www.ricochetrefresh.net>.

Clark, D. D. and M. S. Blumenthal, "The End-to-End

Argument and Application Design: The Role of Trust",

2011, <https://www.repository.law.indiana.edu/fclj/vol63/

iss2/3>.

Wikipedia, "Spectre", 2021, <https://en.wikipedia.org/

wiki/Spectre_(security_vulnerability)>.

Wikipedia, "Trusted Computing Base", 2021,

<https://en.wikipedia.org/wiki/Trusted_computing_base>.

Author's Address

Alec Muffett

Security Researcher

Email: alec.muffett@gmail.com

https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States#Cold_War_era
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States#Cold_War_era
https://datatracker.ietf.org/doc/html/draft-knodel-e2ee-definition-00
https://datatracker.ietf.org/doc/html/draft-knodel-e2ee-definition-00
https://datatracker.ietf.org/doc/html/draft-knodel-e2ee-definition-00
https://en.wikipedia.org/wiki/Logjam_(computer_security)
https://en.wikipedia.org/wiki/Logjam_(computer_security)
https://en.wikipedia.org/wiki/Meltdown_(security_vulnerability)
https://en.wikipedia.org/wiki/Meltdown_(security_vulnerability)
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7686
https://www.rfc-editor.org/info/rfc8174
https://www.ricochetrefresh.net
https://www.repository.law.indiana.edu/fclj/vol63/iss2/3
https://www.repository.law.indiana.edu/fclj/vol63/iss2/3
https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)
https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)
https://en.wikipedia.org/wiki/Trusted_computing_base
mailto:alec.muffett@gmail.com

	A Duck Test for End-to-End Secure Messaging
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Comments
	1.2. Notational Conventions

	2. Requirements for an End-to-End Secure Messenger
	3. Definitions
	3.1. Message and Platform
	3.2. Plaintext Content and Sensitive Metadata (PCASM)
	3.2.1. Content PCASM
	3.2.2. Size PCASM
	3.2.3. Analytic PCASM
	3.2.4. Conversation Metadata (OPTIONAL)

	3.3. Entity
	3.4. Sender and Recipient
	3.5. Participants and Non-Participants
	3.6. Conversation, Group, Centralised & Decentralised
	3.7. Backdoor

	4. Principles
	4.1. Transparency of Participation
	4.2. Integrity of Participation
	4.2.1. Retransmission Exception

	4.3. Equality of Participation
	4.4. Closure of Conversation
	4.4.1. Public Conversations and Self-Subscription

	4.5. Management of Participant Clients and Devices

	5. Rationales
	5.1. Why: Content PCASM
	5.2. Why: Size PCASM
	5.3. Why: Analytic PCASM
	5.4. Why: Conversation Metadata as OPTIONAL PCASM
	5.5. Why: Entity and Participant
	5.6. Why: Backdoor
	5.7. Why: Transparency of Participation
	5.8. Why: Integrity of Participation
	5.9. Why: Equality of Participation
	5.10. Why: Closure of Conversation
	5.11. Why: Management of Participant Clients and Devices

	6. OPTIONAL Features of E2ESM
	6.1. Disappearing Messages
	6.2. Mutual Identity Verification

	7. Examples of PCASM
	7.1. Content PCASM
	7.2. Size PCASM
	7.3. Analytic PCASM
	7.4. Conversation Metadata as OPTIONAL PCASM
	7.5. Non-PCASM

	8. Worked Example
	9. See Also
	10. Live Drafts
	11. IANA Considerations
	12. Security Considerations
	13. Informative References
	Author's Address

