
Workgroup: Network Working Group

Internet-Draft:

draft-multiformats-multibase-06

Published: 20 August 2022

Intended Status: Informational

Expires: 21 February 2023

Authors: J. Benet

Protocol Labs

M. Sporny

Digital Bazaar

The Multibase Data Format

Abstract

Raw binary data is often encoded using a mechanism that enables the

data to be included in human-readable text-based formats. This

mechanism is often referred to as "base-encoding the data". Base-

encoding is often used when expressing binary data in hyperlinks,

cryptographic keys in web pages, or security tokens in application

software. There are a variety of base-encodings, such as base32,

base58, and base64. It is not always possible to differentiate one

base-encoding from another. The purpose of this specification is to

provide a mechanism to be able to deterministically identify the

base-encoding for a particular string of data.

Feedback

This specification is a joint work product of Protocol Labs, the W3C

Digital Verification Community Group, and the W3C Credentials

Community Group. Feedback related to this specification should

logged in the issue tracker or be sent to public-

credentials@w3.org. .

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 21 February 2023.

¶

¶

¶

¶

¶

¶

https://protocol.ai/
https://w3c-dvcg.github.io/
https://w3c-dvcg.github.io/
https://w3c-ccg.github.io/
https://w3c-ccg.github.io/
https://github.com/w3c-dvcg/multibase/issues
mailto:public-credentials@w3.org
mailto:public-credentials@w3.org
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document.

Table of Contents

1. Introduction

2. The Multibase Format

2.1. A Multibase Example

3. Normative References

Appendix A. Security Considerations

Appendix B. Test Values

B.1. Hexadecimal upper-case encoding

B.2. Base-32 upper-case encoding, no padding

B.3. Base-58 Bitcoin encoding

B.4. Base-64 with padding and MIME-encoding

Appendix C. Acknowledgements

Appendix D. IANA Considerations

D.1. The Multibase Algorithms Registry

Authors' Addresses

1. Introduction

This specification describes a forward-compatible data model for

expressing raw binary data in a variety of base-encoding formats

such as base32, base58. and base64.

When text is encoded as bytes, we can usually use a one-size-fits-

all encoding (UTF-8) because we're always encoding to the same set

of 256 bytes. When that doesn't work, usually for historical or

performance reasons, we can usually infer the encoding from the

context.

However, when bytes are encoded as text (using a base encoding), the

choice of base encoding is often restricted by the context. Worse,

these restrictions can change based on where the data appears in the

text. In some cases, we can only use [a-z0-9]. In others, we can use

a larger set of characters but need a compact encoding. This has

lead to a large set of "base encodings", one for every use-case.

Unlike when encoding text to bytes, we can't just standardize around

a single base encoding because there is no optimal encoding for all

cases.

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

[RFC2119]

[RFC4648]

Unfortunately, it's not always clear what base encoding is used;

that's where this specification comes in. It answers the question:

Given data 'd' encoded into text 's', what base is it encoded with?

2. The Multibase Format

A multibase-encoded value follows a simple format:

The encoding algorithm is a single character value that is always

the first byte of the data. The possible values for this field are

provided in The Multibase Algorithm Registry.

2.1. A Multibase Example

The following is an encoding of "Hello World!" using the version of

base-58 that utilizes the Bitcoin encoding character set:

The first byte (z) specifies the multibase encoding algorithm. The

rest of the data specifies the value of the output of the multibase

encoding algorithm.

3. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/info/rfc4648>.

Appendix A. Security Considerations

There are a number of security considerations to take into account

when implementing or utilizing this specification. TBD

Appendix B. Test Values

The multibase examples are chosen to show different encoding

algorithms and different output lengths at play. The input test data

for all of the examples in this section is:

¶

¶

¶

base-encoding-character base-encoded-data¶

¶

¶

z2NEpo7TZRRrLZSi2U¶

¶

¶

¶

Multibase is awesome! \o/¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4648

B.1. Hexadecimal upper-case encoding

B.2. Base-32 upper-case encoding, no padding

B.3. Base-58 Bitcoin encoding

B.4. Base-64 with padding and MIME-encoding

Appendix C. Acknowledgements

The editors would like to thank the following individuals for

feedback on and implementations of the specification (in

alphabetical order):

Appendix D. IANA Considerations

D.1. The Multibase Algorithms Registry

The following initial entries should be added to the Multibase

Algorithms Registry to be created and maintained at (the suggested

URI) http://www.iana.org/assignments/multibase-algorithms:

Algorithm
Identifier

(character)
Status Specification

identity 0x00 active

8-bit binary (encoder and

decoder keeps data

unmodified)

base2 0 active binary (01010101)

base8 7 active octal

base10 9 active decimal

base16 f active hexadecimal

base16upper F active hexadecimal

base32hex v active

RFC 4648 [RFC4648] case-

insensitive - no padding -

highest char

base32hexupper V active

RFC 4648 [RFC4648] case-

insensitive - no padding -

highest char

base32hexpad t active
RFC 4648 [RFC4648] case-

insensitive - with padding

F4D756C74696261736520697320617765736F6D6521205C6F2F¶

BJV2WY5DJMJQXGZJANFZSAYLXMVZW63LFEEQFY3ZP¶

zYAjKoNbau5KiqmHPmSxYCvn66dA1vLmwbt¶

MTXVsdGliYXNlIGlzIGF3ZXNvbWUhIFxvLw==¶

¶

¶

http://www.iana.org/assignments/multibase-algorithms

Algorithm
Identifier

(character)
Status Specification

base32hexpadupper T active
RFC 4648 [RFC4648] case-

insensitive - with padding

base32 b active
RFC 4648 [RFC4648] case-

insensitive - no padding

base32upper B active
RFC 4648 [RFC4648] case-

insensitive - no padding

base32pad c active
RFC 4648 [RFC4648] case-

insensitive - with padding

base32padupper C active
RFC 4648 [RFC4648] case-

insensitive - with padding

base32z h active
z-base-32 (used by Tahoe-

LAFS)

base36 k active
base36 [0-9a-z] case-

insensitive - no padding

base36upper K active
base36 [0-9a-z] case-

insensitive - no padding

base58btc z active base58 bitcoin

base58flickr Z active base58 flicker

base64 m active
RFC 4648 [RFC4648] no

padding

base64pad M active
RFC 4648 [RFC4648] with

padding - MIME encoding

base64url u active
RFC 4648 [RFC4648] no

padding

base64urlpad U active
RFC 4648 [RFC4648] with

padding

proquint p active
PRO-QUINT https://

arxiv.org/html/0901.4016

base256emoji 🚀 active

base256 with custom

alphabet using variable-

sized-codepoints

Table 1: Multihash Algorithms Registry

NOTE: The most up to date place for developers to find the table

above is https://github.com/multiformats/multibase/blob/master/

multibase.csv.

Authors' Addresses

Juan Benet

Protocol Labs

548 Market Street, #51207

San Francisco, CA 94104

United States of America

Phone: +1 619 957 7606

¶

https://github.com/multiformats/multibase/blob/master/multibase.csv
https://github.com/multiformats/multibase/blob/master/multibase.csv
tel:+1%20619%20957%207606

Email: juan@protocol.ai

URI: http://juan.benet.ai/

Manu Sporny

Digital Bazaar

203 Roanoke Street W.

Blacksburg, VA 24060

United States of America

Phone: +1 540 961 4469

Email: msporny@digitalbazaar.com

URI: http://manu.sporny.org/

mailto:juan@protocol.ai
http://juan.benet.ai/
tel:+1%20540%20961%204469
mailto:msporny@digitalbazaar.com
http://manu.sporny.org/

	The Multibase Data Format
	Abstract
	Feedback
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. The Multibase Format
	2.1. A Multibase Example

	3. Normative References
	Appendix A. Security Considerations
	Appendix B. Test Values
	B.1. Hexadecimal upper-case encoding
	B.2. Base-32 upper-case encoding, no padding
	B.3. Base-58 Bitcoin encoding
	B.4. Base-64 with padding and MIME-encoding

	Appendix C. Acknowledgements
	Appendix D. IANA Considerations
	D.1. The Multibase Algorithms Registry

	Authors' Addresses

