
Workgroup: Network Working Group

Internet-Draft:

draft-multiformats-multihash-07

Published: 20 August 2023

Intended Status: Informational

Expires: 21 February 2024

Authors: J. Benet

Protocol Labs

M. Sporny

Digital Bazaar

The Multihash Data Format

Abstract

Cryptographic hash functions often have multiple output sizes and

encodings. This variability makes it difficult for applications to

examine a series of bytes and determine which hash function produced

them. Multihash is a universal data format for encoding outputs from

hash functions. It is useful to write applications that can

simultaneously support different hash function outputs as well as

upgrade their use of hashes over time; Multihash is intended to

address these needs.

Feedback

This specification is a joint work product of Protocol Labs and the

W3C Credentials Community Group. Feedback related to this

specification should logged in the issue tracker or be sent to

public-credentials@w3.org.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 21 February 2024.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

https://protocol.ai/
https://w3c-ccg.github.io/
https://github.com/w3c-ccg/multihash/issues
mailto:public-credentials@w3.org
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. The Multihash Fields

2.1. Multihash Core Data Types

2.1.1. unsigned variable integer

2.2. Multihash Fields

2.2.1. Hash Function Identifier

2.2.2. Digest Length

2.2.3. Digest Value

2.3. A Multihash Example

3. References

3.1. Normative References

3.2. Informative References

Appendix A. Security Considerations

Appendix B. Test Values

B.1. SHA-1

B.2. SHA-256

B.3. SHA-512/256

B.4. SHA-512

B.5. blake2b512

B.6. blake2b256

B.7. blake2s256

B.8. blake2s128

Appendix C. Acknowledgements

Appendix D. IANA Considerations

D.1. The Multihash Identifier Registry

D.2. The 'mh' Digest Algorithm

D.3. The 'mh' Named Information Hash Algorithm

Authors' Addresses

1. Introduction

Multihash is particularly important in systems which depend on

cryptographically secure hash functions. Attacks may break the

cryptographic properties of secure hash functions. These

cryptographic breaks are particularly painful in large tool

ecosystems, where tools may have made assumptions about hash values,

such as function and digest size. Upgrading becomes a nightmare, as

¶

https://trustee.ietf.org/license-info

all tools which make those assumptions would have to be upgraded to

use the new hash function and new hash digest length. Tools may face

serious interoperability problems or error-prone special casing.

How many programs out there assume a git hash is a SHA-1 hash?

How many scripts assume the hash value digest is exactly 160 bits?

How many tools will break when these values change?

How many programs will fail silently when these values change?

This is precisely why Multihash was created. It was designed for

seamlessly upgrading systems that depend on cryptographic hashes.

When using Multihash, a system warns the consumers of its hash

values that these may have to be upgraded in case of a break. Even

though the system may still only use a single hash function at a

time, the use of multihash makes it clear to applications that hash

values may use different hash functions or be longer in the future.

Tooling, applications, and scripts can avoid making assumptions

about the length, and read it from the multihash value instead. This

way, the vast majority of tooling - which may not do any checking of

hashes - would not have to be upgraded at all. This vastly

simplifies the upgrade process, avoiding the waste of hundreds or

thousands of software engineering hours, deep frustrations, and high

blood pressure.

2. The Multihash Fields

A multihash follows the TLV (type-length-value) pattern and consists

of several fields composed of a combination of unsigned variable

length integers and byte information.

2.1. Multihash Core Data Types

The following section details the core data types used by the

Multihash data format.

2.1.1. unsigned variable integer

A data type that enables one to express an unsigned integer of

variable length. The format uses the Little Endian Base 128 (LEB128)

encoding that is defined in Appendix C of the DWARF Debugging

Information Format [DWARF] standard, initially released in 1993.

As suggested by the name, this variable length encoding is only

capable of representing unsigned integers. Further, while there is

no theoretical maximum integer value that can be represented by the

format, implementations MUST NOT encode more than nine (9) bytes

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

giving a practical limit of integers in a range between 0 and 2^63 -

1.

When encoding an unsigned variable integer, the unsigned integer is

serialized seven bits at a time, starting with the least significant

bits. The most significant bit in each output byte indicates if

there is a continuation byte. It is not possible to express a signed

integer with this data type.

Value Encoding (bits) hexadecimal notation

1 00000001 0x01

127 01111111 0x7F

128 10000000 00000001 0x8001

255 11111111 00000001 0xFF01

300 10101100 00000010 0xAC02

16384 10000000 10000000 00000001 0x808001

Table 1: Examples of Unsigned Variable Integers

Implementations MUST restrict the size of the varint to a max of

nine bytes (63 bits). In order to avoid memory attacks on the

encoding, the aforementioned practical maximum length of nine bytes

is used. There is no theoretical limit, and future specs can grow

this number if it is truly necessary to have code or length values

larger than 2^31.

2.2. Multihash Fields

A multihash follows the TLV (type-length-value) pattern.

2.2.1. Hash Function Identifier

The hash function identifier is an unsigned variable integer

identifying the hash function. The possible values for this field

are provided in The Multihash Identifier Registry.

2.2.2. Digest Length

The digest length is an unsigned variable integer counting the

length of the digest in bytes.

2.2.3. Digest Value

The digest value is the hash function digest with a length of

exactly what is specified in the digest length, which is specified

in bytes.

¶

¶

¶

¶

¶

¶

¶

[DWARF]

[FIPS202]

[RFC6234]

[RFC7693]

[RFC6150]

[RFC6151]

2.3. A Multihash Example

For example, the following is an expression of a SHA2-256 hash in

hexadecimal notation (spaces added for readability purposes):

The first byte (0x12) specifies the SHA2-256 hash function. The

second byte (0x20) specifies the length of the hash, which is 32

bytes. The rest of the data specifies the value of the output of the

hash function.

3. References

3.1. Normative References

Workgroup, D. D. I. F., Ed., "DWARF Debugging Information

Format, Version 3", December 2005, <http://dwarfstd.org/

doc/Dwarf3.pdf>.

Technology, I. T. L. N. I. O. S. A., Ed., "SHA-3

Standard: Permutation-Based Hash and Extendable-Output

Functions", FIPS 202, DOI 10.6028/NIST.FIPS.202, August

2015, <https://doi.org/10.6028/NIST.FIPS.202>.

Eastlake 3rd, D. and T. Hansen, "US Secure Hash

Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234,

DOI 10.17487/RFC6234, May 2011, <https://www.rfc-

editor.org/info/rfc6234>.

Saarinen, M., Ed. and J. Aumasson, "The BLAKE2

Cryptographic Hash and Message Authentication Code

(MAC)", RFC 7693, DOI 10.17487/RFC7693, November 2015,

<https://www.rfc-editor.org/info/rfc7693>.

3.2. Informative References

Turner, S. and L. Chen, "MD4 to Historic Status", RFC

6150, DOI 10.17487/RFC6150, March 2011, <https://www.rfc-

editor.org/info/rfc6150>.

Turner, S. and L. Chen, "Updated Security Considerations

for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

RFC 6151, DOI 10.17487/RFC6151, March 2011, <https://

www.rfc-editor.org/info/rfc6151>.

Appendix A. Security Considerations

There are a number of security considerations to take into account

when implementing or utilizing this specification. TBD

¶

0x12 20 41dd7b6443542e75701aa98a0c235951a28a0d851b11564d20022ab11d2589a8¶

¶

¶

http://dwarfstd.org/doc/Dwarf3.pdf
http://dwarfstd.org/doc/Dwarf3.pdf
https://doi.org/10.6028/NIST.FIPS.202
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc7693
https://www.rfc-editor.org/info/rfc6150
https://www.rfc-editor.org/info/rfc6150
https://www.rfc-editor.org/info/rfc6151
https://www.rfc-editor.org/info/rfc6151

Appendix B. Test Values

The multihash examples are chosen to show different hash functions

and different hash digest lengths at play. The input test data for

all of the examples in this section is:

B.1. SHA-1

The fields for this multihash are - hashing function: sha1 (0x11),

length: 20 (0x14), digest:

0x8a173fd3e32c0fa78b90fe42d305f202244e2739

B.2. SHA-256

The fields for this multihash are - hashing function: sha2-256

(0x12), length: 32 (0x20), digest:

0x41dd7b6443542e75701aa98a0c235951a28a0d851b11564d20022ab11d2589a8

B.3. SHA-512/256

The fields for this multihash are - hashing function: sha2-512

(0x13), length: 32 (0x20), digest:

0x52eb4dd19f1ec522859e12d89706156570f8fbab1824870bc6f8c7d235eef5f4

B.4. SHA-512

The fields for this multihash are - hashing function: sha2-512

(0x13), length: 64 (0x40), digest:

0x52eb4dd19f1ec522859e12d89706156570f8fbab1824870bc6f8c7d235eef5f4c2

cbbafd365f96fb12b1d98a0334870c2ce90355da25e6a1108a6e17c4aaebb0

B.5. blake2b512

The fields for this multihash are - hashing function: blake2b-512

(0xb240), length: 64 (0x40), digest:

0xd91ae0cb0e48022053ab0f8f0dc78d28593d0f1c13ae39c9b169c136a779f21a04

96337b6f776a73c1742805c1cc15e792ddb3c92ee1fe300389456ef3dc97e2

¶

Merkle–Damgård¶

0x11148a173fd3e32c0fa78b90fe42d305f202244e2739¶

¶

0x122041dd7b6443542e75701aa98a0c235951a28a0d851b11564d20022ab11d2589a8¶

¶

0x132052eb4dd19f1ec522859e12d89706156570f8fbab1824870bc6f8c7d235eef5f4¶

¶

0x134052eb4dd19f1ec522859e12d89706156570f8fbab1824870bc6f8c7d235eef5f4c2cbbafd365f96fb12b1d98a0334870c2ce90355da25e6a1108a6e17c4aaebb0¶

¶

0xb24040d91ae0cb0e48022053ab0f8f0dc78d28593d0f1c13ae39c9b169c136a779f21a0496337b6f776a73c1742805c1cc15e792ddb3c92ee1fe300389456ef3dc97e2¶

¶

B.6. blake2b256

The fields for this multihash are - hashing function: blake2b-256

(0xb220), length: 32 (0x20), digest:

0x7d0a1371550f3306532ff44520b649f8be05b72674e46fc24468ff74323ab030

B.7. blake2s256

The fields for this multihash are - hashing function: blake2s-256

(0xb260), length: 32 (0x20), digest:

0xa96953281f3fd944a3206219fad61a40b992611b7580f1fa091935db3f7ca13d

B.8. blake2s128

The fields for this multihash are - hashing function: blake2s-128

(0xb250), length: 16 (0x10), digest:

0x0a4ec6f1629e49262d7093e2f82a3278

Appendix C. Acknowledgements

The editors would like to thank the following individuals for

feedback on and implementations of the specification (in

alphabetical order).

Appendix D. IANA Considerations

D.1. The Multihash Identifier Registry

The Multihash Identifier Registry contains hash functions supported

by Multihash each with its canonical name, its value in hexadecimal

notation, and its status. The following initial entries should be

added to the registry to be created and maintained at (the suggested

URI) http://www.iana.org/assignments/multihash-identifiers:

Name Identifier Status Specification

identity 0x00 active Unknown

sha1 0x11 active RFC 6234 [RFC6234]

sha2-256 0x12 active RFC 6234 [RFC6234]

sha2-512 0x13 active RFC 6234 [RFC6234]

sha3-512 0x14 active FIPS 202 [FIPS202]

sha3-384 0x15 active FIPS 202 [FIPS202]

sha3-256 0x16 active FIPS 202 [FIPS202]

sha3-224 0x17 active FIPS 202 [FIPS202]

0xb220207d0a1371550f3306532ff44520b649f8be05b72674e46fc24468ff74323ab030¶

¶

0xb26020a96953281f3fd944a3206219fad61a40b992611b7580f1fa091935db3f7ca13d¶

¶

 0xb250100a4ec6f1629e49262d7093e2f82a3278¶

¶

¶

¶

http://www.iana.org/assignments/multihash-identifiers

Name Identifier Status Specification

sha2-384 0x20 active RFC 6234 [RFC6234]

sha2-256-trunc254-padded 0x1012 active RFC 6234 [RFC6234]

sha2-224 0x1013 active RFC 6234 [RFC6234]

sha2-512-224 0x1014 active RFC 6234 [RFC6234]

sha2-512-256 0x1015 active RFC 6234 [RFC6234]

blake2b-256 0xb220 active RFC 7693 [RFC7693]

poseidon-bls12_381-a2-fc1 0xb401 active Unknown

Table 2: Multihash Identifier Registry

NOTE: The most up to date place for developers to find the table

above, plus all multihash headers in "draft" status, is https://

github.com/multiformats/multicodec/blob/master/table.csv.

D.2. The 'mh' Digest Algorithm

This memo registers the "mh" digest-algorithm in the HTTP Digest

Algorithm Values registry with the following values:

Digest Algorithm: mh

Description: The multibase-serialized value of a multihash-supported

algorithm.

References: this document

Status: standard

D.3. The 'mh' Named Information Hash Algorithm

This memo registers the "mh" hash algorithm in the Named Information

Hash Algorithm registry with the following values:

ID: 49

Hash Name String: mh

Value Length: variable

Reference: this document

Status: current

Authors' Addresses

Juan Benet

Protocol Labs

548 Market Street, #51207

San Francisco, CA 94104

United States of America

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/multiformats/multicodec/blob/master/table.csv
https://github.com/multiformats/multicodec/blob/master/table.csv
https://www.iana.org/assignments/http-dig-alg/http-dig-alg.xhtml
https://www.iana.org/assignments/http-dig-alg/http-dig-alg.xhtml
https://www.iana.org/assignments/named-information/named-information.xhtml#hash-alg
https://www.iana.org/assignments/named-information/named-information.xhtml#hash-alg

Phone: +1 619 957 7606

Email: juan@protocol.ai

URI: http://juan.benet.ai/

Manu Sporny

Digital Bazaar

203 Roanoke Street W.

Blacksburg, VA 24060

United States of America

Phone: +1 540 961 4469

Email: msporny@digitalbazaar.com

URI: http://manu.sporny.org/

tel:+1%20619%20957%207606
mailto:juan@protocol.ai
http://juan.benet.ai/
tel:+1%20540%20961%204469
mailto:msporny@digitalbazaar.com
http://manu.sporny.org/

	The Multihash Data Format
	Abstract
	Feedback
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. The Multihash Fields
	2.1. Multihash Core Data Types
	2.1.1. unsigned variable integer

	2.2. Multihash Fields
	2.2.1. Hash Function Identifier
	2.2.2. Digest Length
	2.2.3. Digest Value

	2.3. A Multihash Example

	3. References
	3.1. Normative References
	3.2. Informative References

	Appendix A. Security Considerations
	Appendix B. Test Values
	B.1. SHA-1
	B.2. SHA-256
	B.3. SHA-512/256
	B.4. SHA-512
	B.5. blake2b512
	B.6. blake2b256
	B.7. blake2s256
	B.8. blake2s128

	Appendix C. Acknowledgements
	Appendix D. IANA Considerations
	D.1. The Multihash Identifier Registry
	D.2. The 'mh' Digest Algorithm
	D.3. The 'mh' Named Information Hash Algorithm

	Authors' Addresses

