
Independent Submission K. Murchison
Internet-Draft Carnegie Mellon University
Intended status: Standards Track J. Elie
Expires: April 29, 2017 October 26, 2016

Network News Transfer Protocol (NNTP) Extension for Compression
draft-murchison-nntp-compress-06

Abstract

 This document defines an extension to the Network News Transport
 Protocol (NNTP) that allows a connection to be effectively and
 efficiently compressed between an NNTP client and server.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 29, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Murchison & Elie Expires April 29, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft NNTP Extension for Compression October 2016

Table of Contents

1. Introduction . 2
1.1. About TLS-level Compression 3
1.2. Conventions Used in This Document 4
1.3. Authors' Note . 4

2. The COMPRESS Extension 4
2.1. Advertising the COMPRESS Extension 4
2.2. COMPRESS Command . 5
2.2.1. Usage . 5
2.2.2. Description . 6
2.2.3. Examples . 7

3. Compression Efficiency 10
4. DEFLATE Specificities . 12
5. Augmented BNF Syntax for the COMPRESS Extension 12
5.1. Commands . 13
5.2. Capability Entries 13
5.3. General Non-terminals 13

6. Summary of Response Codes 13
7. Security Considerations 13
8. IANA Considerations . 15
8.1. NNTP Compression Algorithm Registry 15
8.1.1. Algorithm Name Registration Procedure 16
8.1.2. Comments on Algorithm Registrations 16
8.1.3. Change Control 17

8.2. Registration of the DEFLATE Compression Algorithm 17
8.3. Registration of the NNTP COMPRESS Extension 18

9. References . 19
9.1. Normative References 19
9.2. Informative References 20

Appendix A. Acknowledgments 22
Appendix B. Document History (to be removed by RFC Editor before

 publication) . 22
B.1. Changes since -05 . 22
B.2. Changes since -04 . 23
B.3. Changes since -03 . 23
B.4. Changes since -02 . 24
B.5. Changes since -01 . 24
B.6. Changes since -00 . 25

 Authors' Addresses . 25

1. Introduction

 The goal of COMPRESS is to reduce the bandwidth usage of NNTP.

 Compared to PPP compression [RFC1962] and modem-based compression
 ([MNP] and [V42bis]), COMPRESS offers greater compression efficiency.
 COMPRESS can be used together with Transport Layer Security (TLS)

https://datatracker.ietf.org/doc/html/rfc1962

Murchison & Elie Expires April 29, 2017 [Page 2]

Internet-Draft NNTP Extension for Compression October 2016

 [RFC5246], Simple Authentication and Security Layer (SASL) encryption
 [RFC4422], Virtual Private Networks (VPNs), etc.

 The point of COMPRESS as an NNTP extension is to act as a compression
 layer, similarly to a security layer like the one negotiated by
 STARTTLS [RFC4642]. Compression can therefore benefit to all NNTP
 commands sent or received after the use of COMPRESS. This facility
 responds to a long-standing need for NNTP to compress data, that has
 partially been addressed by unstandardized commands like XZVER,
 XZHDR, XFEATURE COMPRESS, or MODE COMPRESS. These commands are not
 wholly satisfactory because they enable compression only for the
 responses sent by the news server. On the contrary, the COMPRESS
 command permits to compress data sent by both the client and the
 server, and removes the constraint of having to implement compression
 separately in each NNTP command. Besides, the compression level can
 be dynamically adjusted and optimized at any time during the
 connection, which even allows to disable compression for certain
 commands, if need be. If the news client wants to stop compression
 on a particular connection, it can simply use QUIT ([RFC3977]
 Section 5.4), and establish a new connection. For these reasons,
 using other NNTP commands than COMPRESS to enable compression is
 discouraged once COMPRESS is supported.

 In order to increase interoperability, it is desirable to have as few
 different compression algorithms as possible, so this document
 specifies only one. The DEFLATE algorithm (defined in [RFC1951])
 MUST be implemented as part of this extension. This compression
 algorithm is standard, widely available, and fairly efficient.

 This specification should be read in conjunction with the NNTP base
 specification [RFC3977]. In the case of a conflict between these two
 documents, [RFC3977] takes precedence.

1.1. About TLS-level Compression

 Though lossless data compression is already possible via the use of
 TLS with NNTP [RFC4642], the best current practice is to disable TLS-
 level compression as explained in Section 3.3 of [RFC7525]. The
 COMPRESS command will permit to keep the compression facility in
 NNTP, and control when it is available during a connection.

 Compared to TLS-level compression [RFC3749], NNTP COMPRESS has the
 following advantages:

 o COMPRESS can be implemented easily both by NNTP servers and
 clients.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4642
https://datatracker.ietf.org/doc/html/rfc3977#section-5.4
https://datatracker.ietf.org/doc/html/rfc3977#section-5.4
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc3977
https://datatracker.ietf.org/doc/html/rfc3977
https://datatracker.ietf.org/doc/html/rfc4642
https://datatracker.ietf.org/doc/html/rfc7525#section-3.3
https://datatracker.ietf.org/doc/html/rfc3749

Murchison & Elie Expires April 29, 2017 [Page 3]

Internet-Draft NNTP Extension for Compression October 2016

 o COMPRESS benefits from an intimate knowledge of the NNTP
 protocol's state machine, allowing for dynamic and aggressive
 optimization of the underlying compression algorithm's parameters.

 o COMPRESS can be activated after authentication has completed, thus
 reducing the chances that authentication credentials can be leaked
 via for instance a CRIME attack ([RFC7457] Section 2.6).

1.2. Conventions Used in This Document

 The notational conventions used in this document are the same as
 those in [RFC3977], and any term not defined in this document has the
 same meaning as it does in that one.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 In the examples, commands from the client are indicated with [C], and
 responses from the server are indicated with [S]. The client is the
 initiator of the NNTP connection; the server is the other endpoint.

1.3. Authors' Note

 Please write the first letter of "Elie" with an acute accent wherever
 possible -- it is U+00C9 ("É" in XML). The third letter of
 "Stephane" and the penultimate letter of "allee" similarly have an
 acute accent (U+00E9, "é" in XML). Also, the letters "ae" in
 "Baeuerle" should be written as an a-umlaut (U+00E4, "ä" in
 XML), and the first letter of "Angel" as well as the fifth letter of
 "Gonzalez" should be written with an acute accent (respectively
 U+00C1 and U+00E1, that is to say "Á" and "á" in XML).

2. The COMPRESS Extension

 The COMPRESS extension is used to enable lossless data compression on
 an NNTP connection.

 This extension provides a new COMPRESS command and has capability
 label COMPRESS.

2.1. Advertising the COMPRESS Extension

 A server supporting the COMPRESS command as defined in this document
 will advertise the "COMPRESS" capability label in response to the
 CAPABILITIES command ([RFC3977] Section 5.2). However, this
 capability MUST NOT be advertised once a compression layer is active

https://datatracker.ietf.org/doc/html/rfc7457#section-2.6
https://datatracker.ietf.org/doc/html/rfc3977
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3977#section-5.2

Murchison & Elie Expires April 29, 2017 [Page 4]

Internet-Draft NNTP Extension for Compression October 2016

 (see Section 2.2.2). This capability MAY be advertised both before
 and after any use of the MODE READER command ([RFC3977] Section 5.3),
 with the same semantics.

 The COMPRESS capability label contains a whitespace-separated list of
 available compression algorithms. This document defines one
 compression algorithm: DEFLATE. This algorithm is mandatory to
 implement; it MUST be supported and listed in the advertisement of
 the COMPRESS extension.

 Future extensions may add additional compression algorithms to this
 capability. Unrecognized algorithms MUST be ignored by the client.

 Example:

 [C] CAPABILITIES
 [S] 101 Capability list:
 [S] VERSION 2
 [S] READER
 [S] IHAVE
 [S] COMPRESS DEFLATE SHRINK
 [S] LIST ACTIVE NEWSGROUPS
 [S] .

 As the COMPRESS command is related to security because it can weaken
 encryption, cached results of CAPABILITIES from a previous session
 MUST NOT be relied on, as per Section 12.6 of [RFC3977].

2.2. COMPRESS Command

2.2.1. Usage

 This command MUST NOT be pipelined.

 Syntax
 COMPRESS algorithm

 Responses
 206 Compression active
 403 Unable to activate compression
 502 Command unavailable [1]

 [1] If a compression layer is already active, COMPRESS is not a valid
 command (see Section 2.2.2).

 Parameters
 algorithm = Name of compression algorithm (e.g., "DEFLATE")

https://datatracker.ietf.org/doc/html/rfc3977#section-5.3
https://datatracker.ietf.org/doc/html/rfc3977#section-12.6

Murchison & Elie Expires April 29, 2017 [Page 5]

Internet-Draft NNTP Extension for Compression October 2016

2.2.2. Description

 The COMPRESS command instructs the server to use the named
 compression algorithm ("DEFLATE" is the only one defined in this
 document) for all commands and responses after COMPRESS.

 The client MUST NOT send any further commands until it has seen the
 result of COMPRESS.

 If the requested compression algorithm is syntactically incorrect,
 the server MUST reject the COMPRESS command with a 501 response code
 ([RFC3977] Section 3.2.1). If the requested compression algorithm is
 invalid (e.g., is not supported), the server MUST reject the COMPRESS
 command with a 503 response code ([RFC3977] Section 3.2.1). If the
 server is unable to activate compression for any reason (e.g., a
 server configuration or resource problem), the server MUST reject the
 COMPRESS command with a 403 response code ([RFC3977] Section 3.2.1).
 Otherwise, the server issues a 206 response code and the compression
 layer takes effect for both client and server immediately following
 the CRLF of the success reply.

 Additionally, the client MUST NOT issue a MODE READER command after
 activating a compression layer, and a server MUST NOT advertise the
 MODE-READER capability.

 Both the client and the server MUST know if there is a compression
 layer active (for instance via the previous use of the COMPRESS
 command or the negotiation of a TLS-level compression method
 [RFC3749]). A client MUST NOT attempt to activate compression (for
 instance via the COMPRESS command) or negotiate a TLS security layer
 (because STARTTLS [RFC4642] may activate TLS-level compression) if a
 compression layer is already active. A server MUST NOT return the
 COMPRESS or STARTTLS capability labels in response to a CAPABILITIES
 command received after a compression layer is active, and a server
 MUST reply with a 502 response code if a syntactically valid COMPRESS
 or STARTTLS command is received while a compression layer is already
 active.

 In order to help mitigate leaking authentication credentials via for
 instance a CRIME attack [CRIME], authentication MUST NOT be attempted
 after a successful use of the COMPRESS command. Consequently, a
 server MUST either list the AUTHINFO capability with no arguments or
 not advertise it at all, in response to a CAPABILITIES command
 received from an unauthenticated client after a successful use of the
 COMPRESS command, and such a client MUST NOT attempt to utilize any
 AUTHINFO [RFC4643] commands. It implies that a server MUST reply
 with a 502 response code if a syntactically valid AUTHINFO command is
 received after a successful use of the COMPRESS command. (Note that

https://datatracker.ietf.org/doc/html/rfc3977#section-3.2.1
https://datatracker.ietf.org/doc/html/rfc3977#section-3.2.1
https://datatracker.ietf.org/doc/html/rfc3977#section-3.2.1
https://datatracker.ietf.org/doc/html/rfc3749
https://datatracker.ietf.org/doc/html/rfc4642
https://datatracker.ietf.org/doc/html/rfc4643

Murchison & Elie Expires April 29, 2017 [Page 6]

Internet-Draft NNTP Extension for Compression October 2016

 this specification does not change the behaviour of AUTHINFO as
 described in [RFC4643] independently of TLS-level compression.
 Authentication is therefore still allowed, even though TLS-level
 compression is active.)

 For DEFLATE [RFC1951] (as for many other compression algorithms), the
 sending compressor can trade speed against compression ratio. The
 receiving decompressor MUST automatically adjust to the parameters
 selected by the sender. Consequently, the client and server are both
 free to pick the best reasonable rate of compression for the data
 they send. Besides, all data that was submitted for compression MUST
 be included in the compressed output, and appropriately flushed so as
 to ensure that the receiving decompressor can completely decompress
 it.

 When COMPRESS is combined with TLS [RFC5246] or SASL [RFC4422]
 security layers, the processing order of the three layers MUST be
 first COMPRESS, then SASL, and finally TLS. That is, before data is
 transmitted, it is first compressed. Second, if a SASL security
 layer has been negotiated, the compressed data is then signed and/or
 encrypted accordingly. Third, if a TLS security layer has been
 negotiated, the data from the previous step is signed and/or
 encrypted accordingly (with a possible additional TLS-level
 compression). When receiving data, the processing order MUST be
 reversed. This ensures that before sending, data is compressed
 before it is encrypted.

 When compression is active and either the client or the server
 receives invalid or corrupted compressed data, the receiving end
 immediately closes the connection, in response to which the sending
 end will do the same.

2.2.3. Examples

 Example of layering a TLS security layer and NNTP compression:

https://datatracker.ietf.org/doc/html/rfc4643
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4422

Murchison & Elie Expires April 29, 2017 [Page 7]

Internet-Draft NNTP Extension for Compression October 2016

 [C] CAPABILITIES
 [S] 101 Capability list:
 [S] VERSION 2
 [S] READER
 [S] STARTTLS
 [S] AUTHINFO
 [S] COMPRESS DEFLATE
 [S] LIST ACTIVE NEWSGROUPS
 [S] .
 [C] STARTTLS
 [S] 382 Continue with TLS negotiation
 [TLS negotiation without compression occurs here]
 [Following successful negotiation, all traffic is encrypted]
 [C] CAPABILITIES
 [S] 101 Capability list:
 [S] VERSION 2
 [S] READER
 [S] AUTHINFO USER
 [S] COMPRESS DEFLATE
 [S] LIST ACTIVE NEWSGROUPS
 [S] .
 [C] AUTHINFO USER fred
 [S] 381 Enter passphrase
 [C] AUTHINFO PASS flintstone
 [S] 281 Authentication accepted
 [C] CAPABILITIES
 [S] 101 Capability list:
 [S] VERSION 2
 [S] READER
 [S] POST
 [S] COMPRESS DEFLATE
 [S] LIST ACTIVE NEWSGROUPS
 [S] .
 [C] COMPRESS DEFLATE
 [S] 206 Compression active
 [Henceforth, all traffic is compressed before being encrypted]
 [C] CAPABILITIES
 [S] 101 Capability list:
 [S] VERSION 2
 [S] READER
 [S] POST
 [S] LIST ACTIVE NEWSGROUPS
 [S] .

 Example of a server failing to activate compression:

Murchison & Elie Expires April 29, 2017 [Page 8]

Internet-Draft NNTP Extension for Compression October 2016

 [C] CAPABILITIES
 [S] 101 Capability list:
 [S] VERSION 2
 [S] IHAVE
 [S] COMPRESS DEFLATE
 [S] .
 [C] COMPRESS DEFLATE
 [S] 403 Unable to activate compression

 Example of attempting to use an unsupported compression algorithm:

 [C] CAPABILITIES
 [S] 101 Capability list:
 [S] VERSION 2
 [S] IHAVE
 [S] COMPRESS DEFLATE
 [S] .
 [C] COMPRESS SHRINK
 [S] 503 Compression algorithm not supported

 Example of a server refusing to compress twice:

 [C] CAPABILITIES
 [S] 101 Capability list:
 [S] VERSION 2
 [S] IHAVE
 [S] STARTTLS
 [S] COMPRESS DEFLATE
 [S] .
 [C] STARTTLS
 [S] 382 Continue with TLS negotiation
 [TLS negotiation with compression occurs here]
 [Following successful negotiation, all traffic is encrypted]
 [C] CAPABILITIES
 [S] 101 Capability list:
 [S] VERSION 2
 [S] IHAVE
 [S] .
 [C] COMPRESS DEFLATE
 [S] 502 Compression already active via TLS

 Example of a server refusing to negotiate a TLS security layer after
 compression has been activated:

Murchison & Elie Expires April 29, 2017 [Page 9]

Internet-Draft NNTP Extension for Compression October 2016

 [C] CAPABILITIES
 [S] 101 Capability list:
 [S] VERSION 2
 [S] IHAVE
 [S] STARTTLS
 [S] COMPRESS DEFLATE
 [S] .
 [C] COMPRESS DEFLATE
 [S] 206 Compression active
 [Henceforth, all traffic is compressed]
 [C] CAPABILITIES
 [S] 101 Capability list:
 [S] VERSION 2
 [S] IHAVE
 [S] .
 [C] STARTTLS
 [S] 502 DEFLATE compression already active

 Example of a server not advertising AUTHINFO arguments after
 compression has been activated:

 [C] CAPABILITIES
 [S] 101 Capability list:
 [S] VERSION 2
 [S] READER
 [S] AUTHINFO USER
 [S] COMPRESS DEFLATE
 [S] LIST ACTIVE NEWSGROUPS
 [S] .
 [C] COMPRESS DEFLATE
 [S] 206 Compression active
 [Henceforth, all traffic is compressed]
 [C] CAPABILITIES
 [S] 101 Capability list:
 [S] VERSION 2
 [S] READER
 [S] AUTHINFO
 [S] LIST ACTIVE NEWSGROUPS
 [S] .
 [C] AUTHINFO USER fred
 [S] 502 DEFLATE compression already active

3. Compression Efficiency

 This section is informative, not normative.

 NNTP poses some unusual problems for a compression layer.

Murchison & Elie Expires April 29, 2017 [Page 10]

Internet-Draft NNTP Extension for Compression October 2016

 Upstream traffic is fairly simple. Most NNTP clients send the same
 few commands again and again, so any compression algorithm that can
 exploit repetition works efficiently. The article posting and
 transfer commands (e.g., POST, IHAVE, and TAKETHIS [RFC4644]) are
 exceptions; clients that send many article posting or transfer
 commands may want to surround large multi-line data blocks with a
 dictionary flush and/or, depending on the compression algorithm, a
 change of compression level in the same way as is recommended for
 servers later in this document (Section 4).

 Downstream traffic has the unusual property that several kinds of
 data are sent, possibly confusing a dictionary-based compression
 algorithm.

 One type is NNTP responses not related to article header/body
 retrieval. Compressing NNTP simple responses (e.g., in answer to
 CHECK [RFC4644], DATE, GROUP, LAST, NEXT, STAT, etc.) generally does
 not save many bytes, unless repeated several times in the same NNTP
 session. On the contrary, most of NNTP multi-line responses (e.g.,
 in answer to LIST, LISTGROUP, NEWGROUPS, NEWNEWS, etc.) are highly
 compressible; zlib using its least CPU-intensive setting compresses
 typical responses to 25-40% of their original size.

 Another type is article headers (as retrieved for instance via the
 HEAD, HDR, OVER, or ARTICLE commands). These are equally
 compressible, and benefit from using the same dictionary as the NNTP
 responses.

 A third type is article body text (as retrieved for instance via the
 BODY or ARTICLE commands). Text is usually fairly short and includes
 much ASCII, so the same compression dictionary will do a good job
 here, too. When multiple messages in the same thread are read at the
 same time, quoted lines, etc. can often be compressed almost to zero.

 Finally, non-text article bodies or attachments (as retrieved for
 instance via the BODY or ARTICLE commands) are transmitted in encoded
 form, usually Base64 [RFC4648], UUencode [IEEE.1003-2.1992], or yEnc
 [yEnc].

 When already compressed articles or attachments are retrieved, a
 compression algorithm may be able to compress them, but the format of
 their encoding is usually not NNTP-like, so the dictionary built
 while compressing NNTP does not help much. The compressor has to
 adapt its dictionary from NNTP to the attachment's encoding format,
 and then back.

 When attachments are retrieved in Base64 or UUencode form, the
 Huffman coding usually compresses those to approximatively only 75%

https://datatracker.ietf.org/doc/html/rfc4644
https://datatracker.ietf.org/doc/html/rfc4644
https://datatracker.ietf.org/doc/html/rfc4648

Murchison & Elie Expires April 29, 2017 [Page 11]

Internet-Draft NNTP Extension for Compression October 2016

 of their encoding size. 8-bit compression algorithms such as DEFLATE
 work well on 8-bit file formats; however, both Base64 and UUencode
 transform a file into something resembling 6-bit bytes, hiding most
 of the 8-bit file format from the compressor.

 On the other end, attachments encoded using a compression algorithm
 that retains the full 8-bit spectrum, like yEnc, are much more likely
 to be incompressible.

4. DEFLATE Specificities

 When using the zlib library (see [RFC1951]), the functions
 deflateInit2(), deflate(), inflateInit2(), and inflate() suffice to
 implement this extension.

 The windowBits value MUST be in the range -8 to -15 for
 deflateInit2(), or else it will use the wrong format. The windowBits
 value SHOULD be -15 for inflateInit2(), or else it will not be able
 to decompress a stream with a larger window size, thus reducing
 interoperability. deflateParams() can be used to improve compression
 rate and resource use. Regarding flush operations, the Z_FULL_FLUSH
 argument to deflate() permits to clear the dictionary, which
 generally results in compression that is less effective than
 performing a Z_PARTIAL_FLUSH. As a matter of fact, keeping the 32kB
 dictionary from previous data, no matter how unrelated, can be of
 help (if there are no matching strings in there, then it is simply
 not referenced).

 A server can improve downstream compression and the CPU efficiency
 both of the server and the client if it adjusts the compression level
 (e.g., using the deflateParams() function in zlib) at the start and
 end of large non-text multi-line data blocks (before and after
 'content-lines' in the definition of 'multi-line-data-block' in

[RFC3977] Section 9.8). It permits to avoid trying to compress
 incompressible attachments.

 A very simple strategy is to change the compression level to 0 at the
 start of an incompressible multi-line data block, for instance when
 encoded using yEnc [yEnc], and to keep it at 1-5 the rest of the
 time. More complex strategies are of course possible, and
 encouraged.

5. Augmented BNF Syntax for the COMPRESS Extension

 This section describes the formal syntax of the COMPRESS extension
 using ABNF [RFC7405] [RFC5234]. It extends the syntax in Section 9
 of [RFC3977], and non-terminals not defined in this document are

https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc3977#section-9.8
https://datatracker.ietf.org/doc/html/rfc7405
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc3977#section-9
https://datatracker.ietf.org/doc/html/rfc3977#section-9

Murchison & Elie Expires April 29, 2017 [Page 12]

Internet-Draft NNTP Extension for Compression October 2016

 defined there. The [RFC3977] ABNF should be imported first, before
 attempting to validate these rules.

5.1. Commands

 This syntax extends the non-terminal <command>, which represents an
 NNTP command.

 command =/ compress-command

 compress-command = "COMPRESS" WS algorithm

5.2. Capability Entries

 This syntax extends the non-terminal <capability-entry>, which
 represents a capability that may be advertised by the server.

 capability-entry =/ compress-capability

 compress-capability = "COMPRESS" 1*(WS algorithm)

5.3. General Non-terminals

 algorithm = %s"DEFLATE" / 1*20alg-char ; case-sensitive
 alg-char = UPPER / DIGIT / "-" / "_"

6. Summary of Response Codes

 This section defines the following new response code. It is not
 multi-line and has no arguments.

 Response code 206
 Generated by: COMPRESS
 Meaning: compression layer activated

7. Security Considerations

 Security issues are discussed throughout this document.

 In general, the security considerations of the NNTP core
 specification ([RFC3977] Section 12) and the DEFLATE compressed data
 format specification ([RFC1951] Section 6) are applicable here.

 Implementers should be aware that combining compression with
 encryption like TLS can sometimes reveal information that would not
 have been revealed without compression, as explained in Section 6 of
 [RFC3749]. As a matter of fact, adversaries that observe the length
 of the compressed data might be able to derive information about the

https://datatracker.ietf.org/doc/html/rfc3977
https://datatracker.ietf.org/doc/html/rfc3977#section-12
https://datatracker.ietf.org/doc/html/rfc1951#section-6
https://datatracker.ietf.org/doc/html/rfc3749#section-6
https://datatracker.ietf.org/doc/html/rfc3749#section-6

Murchison & Elie Expires April 29, 2017 [Page 13]

Internet-Draft NNTP Extension for Compression October 2016

 corresponding uncompressed data. The CRIME and the BREACH attacks
 ([RFC7457] Section 2.6) are examples of such case.

 In order to help mitigate leaking authentication credentials, this
 document states in Section 2.2.2 that authentication MUST NOT be
 attempted after a successful use of COMPRESS. Therefore, when a
 client wants to authenticate, compress data, and negotiate a TLS
 security layer (without TLS-level compression) in the same NNTP
 connection, it MUST use the STARTTLS, AUTHINFO, and COMPRESS commands
 in that order. Of course, instead of using the STARTTLS command, a
 client can also use implicit TLS, that is to say it begins the TLS
 negotiation immediately upon connection on a separate port dedicated
 to NNTP over TLS.

 NNTP commands other than AUTHINFO are not believed to divulge
 confidential information as long as only public Netnews newsgroups
 and articles are accessed. That is why this specification only
 prohibits the use of AUTHINFO after COMPRESS. In case confidential
 articles are accessed in private newsgroups, special care is needed:
 implementations SHOULD NOT compress confidential data together with
 public data when a TLS [RFC5246] or SASL [RFC4422] security layer is
 active. As a matter of fact, adversaries that observe the length of
 the compressed data might be able to derive information about it,
 when public data (that adversaries know is read) and confidential
 data are compressed in the same compress session.

 Additionally, it is preferable not to compress the contents of two
 distinct confidential articles together if it can be avoided, as
 adversaries might be able to derive information about them (for
 instance if they have a few header fields or body lines in common).
 This can be achieved for instance with DEFLATE by clearing the
 compression dictionary each time a confidential article is sent.
 More complex implementations are of course possible, and encouraged.

 Implementations are encouraged to unconditionally allow compression
 when no security layer is active, and to support an option to enable
 or disable compression when a security layer is active. Such an
 option could for instance be with global scope or server/connection
 based. Besides, as compression may in general weaken the
 confidentiality of a security layer, implementations SHOULD NOT
 automatically enable compression when a security layer is active
 unless the user explicitly enabled it with this knowledge.

 Future extensions to NNTP that define commands conveying confidential
 data SHOULD ensure to state that these confidential data SHOULD NOT
 be compressed together with public data when a security layer is
 active.

https://datatracker.ietf.org/doc/html/rfc7457#section-2.6
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4422

Murchison & Elie Expires April 29, 2017 [Page 14]

Internet-Draft NNTP Extension for Compression October 2016

 Last but not least, careful consideration should be given to
 protections against implementation errors that introduce security
 risks with regards to compression algorithms. See for instance the
 part of Section 6 of [RFC3749] about compression algorithms that can
 occasionally expand, rather than compress, input data.

8. IANA Considerations

8.1. NNTP Compression Algorithm Registry

 The NNTP Compression Algorithm registry will be maintained by IANA.
 The registry will be available at <http://www.iana.org/assignments/

nntp-compression-algorithms>.

 The purpose of this registry is not only to ensure uniqueness of
 values used to name NNTP compression algorithms, but also to provide
 a definitive reference to technical specifications detailing each
 NNTP compression algorithm available for use on the Internet.

 An NNTP compression algorithm is either a private algorithm, or its
 name is included in the IANA NNTP Compression Algorithm registry (in
 which case it is a "registered NNTP compression algorithm").
 Different entries in the registry MUST use different names.

 Private algorithms with unregistered names are allowed, but SHOULD
 NOT be used because it is difficult to achieve interoperability with
 them.

 The 206, 403, and 502 response codes that a news server answers to
 the COMPRESS command using a private compression algorithm MUST have
 the same meaning as the one documented in Section 2.2 of this
 document.

 The procedure detailed in Section 8.1.1 is to be used for
 registration of a value naming a specific individual compression
 algorithm.

 Any name that conforms to the syntax of an NNTP compression algorithm
 name (Section 5.3) can be used. Especially, NNTP compression
 algorithms are named by strings, from 1 to 20 characters in length,
 consisting of upper-case letters, digits, hyphens, and/or
 underscores.

 Comments may be included in the registry as discussed in
Section 8.1.2 and may be changed as discussed in Section 8.1.3.

https://datatracker.ietf.org/doc/html/rfc3749#section-6
http://www.iana.org/assignments/nntp-compression-algorithms
http://www.iana.org/assignments/nntp-compression-algorithms

Murchison & Elie Expires April 29, 2017 [Page 15]

Internet-Draft NNTP Extension for Compression October 2016

8.1.1. Algorithm Name Registration Procedure

 IANA will register new NNTP compression algorithm names on a First
 Come First Served basis, as defined in BCP 26 [RFC5226]. IANA has
 the right to reject obviously bogus registration requests, but will
 perform no review of claims made in the registration form.

 Registration of an NNTP compression algorithm is requested by filling
 in the following template and sending it via electronic mail to IANA
 at <iana@iana.org>:

 Subject: Registration of NNTP compression algorithm Z

 NNTP compression algorithm name:

 Security considerations:

 Published specification (recommended):

 Contact for further information:

 Intended usage: (One of COMMON, LIMITED USE, or OBSOLETE)

 Owner/Change controller:

 Note: (Any other information that the author deems relevant may be
 added here.)

 While this registration procedure does not require expert review,
 authors of NNTP compression algorithms are encouraged to seek
 community review and comment whenever that is feasible. Authors may
 seek community review by posting a specification of their proposed
 algorithm as an Internet-Draft. NNTP compression algorithms intended
 for widespread use should be standardized through the normal IETF
 process, when appropriate.

8.1.2. Comments on Algorithm Registrations

 Comments on a registered NNTP compression algorithm should first be
 sent to the "owner" of the algorithm and/or to the mailing list for
 the now concluded IETF NNTPEXT working group
 (<ietf-nntp@lists.eyrie.org>).

 Submitters of comments may, after a reasonable attempt to contact the
 owner and/or the above mailing list, request IANA to attach their
 comment to the NNTP compression algorithm registration itself by
 sending mail to <iana@iana.org>. At IANA's sole discretion, IANA may
 attach the comment to the NNTP compression algorithm's registration.

https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226

Murchison & Elie Expires April 29, 2017 [Page 16]

Internet-Draft NNTP Extension for Compression October 2016

8.1.3. Change Control

 Once an NNTP compression algorithm registration has been published by
 IANA, the owner may request a change to its definition. The change
 request follows the same procedure as the initial registration
 request.

 The owner of an NNTP compression algorithm may pass responsibility
 for the algorithm to another person or agency by informing IANA; this
 can be done without discussion or review.

 The IESG may reassign responsibility for an NNTP compression
 algorithm. The most common case of this will be to enable changes to
 be made to algorithms where the owner of the registration has died,
 has moved out of contact, or is otherwise unable to make changes that
 are important to the community.

 NNTP compression algorithm registrations MUST NOT be deleted;
 algorithms that are no longer believed appropriate for use can be
 declared OBSOLETE by a change to their "intended usage" field; such
 algorithms will be clearly marked in the registry published by IANA.

 The IESG is considered to be the owner of all NNTP compression
 algorithms that are on the IETF standards track.

8.2. Registration of the DEFLATE Compression Algorithm

 This section gives a formal definition of the DEFLATE compression
 algorithm as required by Section 8.1.1 for the IANA registry.

 NNTP compression algorithm name: DEFLATE

 Security considerations: See Section 7 of this document

 Published specification: This document

 Contact for further information: Authors of this document

 Intended usage: COMMON

 Owner/Change controller: IESG <iesg@ietf.org>

 Note: This algorithm is mandatory to implement

 This registration will appear as follows in the NNTP Compression
 Algorithm registry:

Murchison & Elie Expires April 29, 2017 [Page 17]

Internet-Draft NNTP Extension for Compression October 2016

 +----------------+----------------+---------------+
 | Algorithm Name | Intended Usage | Reference |
 +----------------+----------------+---------------+
 | DEFLATE | COMMON | [RFC-to-be] |
 +----------------+----------------+---------------+

8.3. Registration of the NNTP COMPRESS Extension

 This section gives a formal definition of the COMPRESS extension as
 required by Section 3.3.3 of [RFC3977] for the IANA registry.

 o The COMPRESS extension allows an NNTP connection to be effectively
 and efficiently compressed.

 o The capability label for this extension is "COMPRESS", whose
 arguments list the available compression algorithms.

 o This extension defines one new command, COMPRESS, whose behavior,
 arguments, and responses are defined in Section 2.2.

 o This extension does not associate any new responses with pre-
 existing NNTP commands.

 o This extension does affect the overall behavior of both server and
 client, in that after successful use of the COMPRESS command, all
 communication is transmitted in a compressed format.

 o This extension does not affect the maximum length of commands or
 initial response lines.

 o This extension does not alter pipelining, but the COMPRESS command
 cannot be pipelined.

 o Use of this extension does alter the capabilities list; once the
 COMPRESS command has been used successfully, the COMPRESS
 capability can no longer be advertised by CAPABILITIES.
 Additionally, the STARTTLS and MODE-READER capabilities MUST NOT
 be advertised, and the AUTHINFO capability label MUST either be
 listed with no arguments or not advertised at all after a
 successful execution of the COMPRESS command.

 o This extension does not cause any pre-existing command to produce
 a 401, 480, or 483 response code.

 o This extension is unaffected by any use of the MODE READER
 command; however, the MODE READER command MUST NOT be used in the
 same session following a successful execution of the COMPRESS
 command.

https://datatracker.ietf.org/doc/html/rfc3977#section-3.3.3

Murchison & Elie Expires April 29, 2017 [Page 18]

Internet-Draft NNTP Extension for Compression October 2016

 o The STARTTLS and AUTHINFO commands MUST NOT be used in the same
 session following a successful execution of the COMPRESS command.

 o Published Specification: This document.

 o Contact for Further Information: Authors of this document.

 o Change Controller: IESG <iesg@ietf.org>.

 This registration will appear as follows in the NNTP capability
 labels registry contained in the Network News Transfer Protocol
 (NNTP) Parameters registry:

 +----------+----------------------------------+---------------+
 | Label | Meaning | Reference |
 +----------+----------------------------------+---------------+
 | COMPRESS | Supported compression algorithms | [RFC-to-be] |
 +----------+----------------------------------+---------------+

9. References

9.1. Normative References

 [RFC1951] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, DOI 10.17487/RFC1951, May 1996,
 <http://www.rfc-editor.org/info/rfc1951>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3977] Feather, C., "Network News Transfer Protocol (NNTP)",
RFC 3977, DOI 10.17487/RFC3977, October 2006,

 <http://www.rfc-editor.org/info/rfc3977>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

https://datatracker.ietf.org/doc/html/rfc1951
http://www.rfc-editor.org/info/rfc1951
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3977
http://www.rfc-editor.org/info/rfc3977
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.rfc-editor.org/info/rfc5226
https://datatracker.ietf.org/doc/html/rfc5234
http://www.rfc-editor.org/info/rfc5234

Murchison & Elie Expires April 29, 2017 [Page 19]

Internet-Draft NNTP Extension for Compression October 2016

 [RFC7405] Kyzivat, P., "Case-Sensitive String Support in ABNF",
RFC 7405, DOI 10.17487/RFC7405, December 2014,

 <http://www.rfc-editor.org/info/rfc7405>.

9.2. Informative References

 [CRIME] Rizzo, J. and T. Duong, "The CRIME Attack", Ekoparty
 Security Conference, 2012.

 [IEEE.1003-2.1992]
 Institute of Electrical and Electronics Engineers,
 "Information Technology - Portable Operating System
 Interface (POSIX) - Part 2: Shell and Utilities (Vol. 1)",
 IEEE Standard 1003.2, 1992.

 [MNP] Held, G., "The Complete Modem Reference", Second
 Edition, Wiley Professional Computing, May 1994.

 [RFC1962] Rand, D., "The PPP Compression Control Protocol (CCP)",
RFC 1962, DOI 10.17487/RFC1962, June 1996,

 <http://www.rfc-editor.org/info/rfc1962>.

 [RFC3749] Hollenbeck, S., "Transport Layer Security Protocol
 Compression Methods", RFC 3749, DOI 10.17487/RFC3749, May
 2004, <http://www.rfc-editor.org/info/rfc3749>.

 [RFC4422] Melnikov, A., Ed. and K. Zeilenga, Ed., "Simple
 Authentication and Security Layer (SASL)", RFC 4422,
 DOI 10.17487/RFC4422, June 2006,
 <http://www.rfc-editor.org/info/rfc4422>.

 [RFC4642] Murchison, K., Vinocur, J., and C. Newman, "Using
 Transport Layer Security (TLS) with Network News Transfer
 Protocol (NNTP)", RFC 4642, DOI 10.17487/RFC4642, October
 2006, <http://www.rfc-editor.org/info/rfc4642>.

 [RFC4643] Vinocur, J. and K. Murchison, "Network News Transfer
 Protocol (NNTP) Extension for Authentication", RFC 4643,
 DOI 10.17487/RFC4643, October 2006,
 <http://www.rfc-editor.org/info/rfc4643>.

 [RFC4644] Vinocur, J. and K. Murchison, "Network News Transfer
 Protocol (NNTP) Extension for Streaming Feeds", RFC 4644,
 DOI 10.17487/RFC4644, October 2006,
 <http://www.rfc-editor.org/info/rfc4644>.

https://datatracker.ietf.org/doc/html/rfc7405
http://www.rfc-editor.org/info/rfc7405
https://datatracker.ietf.org/doc/html/rfc1962
http://www.rfc-editor.org/info/rfc1962
https://datatracker.ietf.org/doc/html/rfc3749
http://www.rfc-editor.org/info/rfc3749
https://datatracker.ietf.org/doc/html/rfc4422
http://www.rfc-editor.org/info/rfc4422
https://datatracker.ietf.org/doc/html/rfc4642
http://www.rfc-editor.org/info/rfc4642
https://datatracker.ietf.org/doc/html/rfc4643
http://www.rfc-editor.org/info/rfc4643
https://datatracker.ietf.org/doc/html/rfc4644
http://www.rfc-editor.org/info/rfc4644

Murchison & Elie Expires April 29, 2017 [Page 20]

Internet-Draft NNTP Extension for Compression October 2016

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

 [RFC4978] Gulbrandsen, A., "The IMAP COMPRESS Extension", RFC 4978,
 DOI 10.17487/RFC4978, August 2007,
 <http://www.rfc-editor.org/info/rfc4978>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC7457] Sheffer, Y., Holz, R., and P. Saint-Andre, "Summarizing
 Known Attacks on Transport Layer Security (TLS) and
 Datagram TLS (DTLS)", RFC 7457, DOI 10.17487/RFC7457,
 February 2015, <http://www.rfc-editor.org/info/rfc7457>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <http://www.rfc-editor.org/info/rfc7525>.

 [V42bis] International Telecommunications Union, "Data compression
 procedures for data circuit-terminating equipment (DCE)
 using error correction procedures", ITU-T Recommendation
 V.42bis, January 1990.

 [yEnc] Helbing, J., "yEnc - Efficient encoding for Usenet and
 eMail", March 2002, <http://www.yenc.org/>.

https://datatracker.ietf.org/doc/html/rfc4648
http://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc4978
http://www.rfc-editor.org/info/rfc4978
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc7457
http://www.rfc-editor.org/info/rfc7457
https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
http://www.rfc-editor.org/info/rfc7525
http://www.yenc.org/

Murchison & Elie Expires April 29, 2017 [Page 21]

Internet-Draft NNTP Extension for Compression October 2016

Appendix A. Acknowledgments

 This document draws heavily on ideas in [RFC4978] by Arnt
 Gulbrandsen; a large portion of this text was borrowed from that
 specification.

 The authors would like to thank the following individuals for
 contributing their ideas and reviewing this specification: Mark
 Adler, Russ Allbery, Stephane Bortzmeyer, Francis Dupont, Angel
 Gonzalez, Barry Leiba, John Levine, and Brian Peterson.

 Special thanks to our Document Shepherd, Michael Baeuerle, who
 significantly helped to increase the quality of this specification.

 Many thanks to the Responsible Area Director, Alexey Melnikov, for
 reviewing and sponsoring this document.

Appendix B. Document History (to be removed by RFC Editor before
 publication)

B.1. Changes since -05

 o Take into account all the remarks sent during IETF Last Call.

 o Do not prevent the registration of compression algorithm names
 beginning with "X" (in conformance with RFC6648). Also, in the
 examples, use "SHRINK" instead of "X-SHRINK".

 o Separate Section 3 and Section 4 because the latter uses normative
 keywords. Also improve and simplify the wording of these two
 Sections, notably by distinguishing NNTP simple responses and NNTP
 multi-line responses, and by not being categorical that
 Z_PARTIAL_FLUSH is the best and only flush operation to use.

 o Do not declare non-compliant an implementation that only supports
 COMPRESS when there is no security layer.

 o Move [RFC1951] reference to normative, and [RFC4642] reference to
 informative.

 o Explain why STARTTLS is not allowed after COMPRESS.

 o Improve security by stating that authentication MUST NOT be
 attempted after COMPRESS has been successfully executed. Do not
 change, though, the behaviour of AUTHINFO as described in
 [RFC4643], allowing authentication even though TLS-level
 compression is active.

https://datatracker.ietf.org/doc/html/rfc4978
https://datatracker.ietf.org/doc/html/rfc6648
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc4642
https://datatracker.ietf.org/doc/html/rfc4643

Murchison & Elie Expires April 29, 2017 [Page 22]

Internet-Draft NNTP Extension for Compression October 2016

 o Require that all data that was submitted for compression MUST be
 included in the compressed output, and appropriately flushed.

 o Mention possible security risks with regards to compression
 algorithms.

 o Mention that using unregistered algorithms decrease
 interoperability.

 o Mention the exact contents of the IANA registrations asked by this
 document.

 o NNTP compression algorithm names really are case-sensitive.
 Update ABNF syntax accordingly.

 o Minor other wording improvements.

B.2. Changes since -04

 o Reworded a sentence wrongly using "MAY NOT" (not a key word
 defined in [RFC2119]).

 o Uppercased a "must" and a "should" in Section 4.

B.3. Changes since -03

 o Added a naming convention for NNTP compression algorithms.
 Improve the wording of registered vs private compression
 algorithms.

 o If a registered NNTP compression algorithm is advertised, it MUST
 fully conform with its related specification.

 o Fixed the wording of security considerations to reflect that the
 threat appears when public and confidential data are compressed
 together inside a security layer. Thanks to Angel Gonzalez for
 pointing that.

 o The default configuration SHOULD be disabled compression when a
 security layer is active.

 o COMPRESS acts as a compression layer, not a transport layer.

 o Minor editorial changes.

https://datatracker.ietf.org/doc/html/rfc2119

Murchison & Elie Expires April 29, 2017 [Page 23]

Internet-Draft NNTP Extension for Compression October 2016

B.4. Changes since -02

 o Added text stating that the receiving end SHOULD terminate the
 connection when receiving invalid or corrupted compressed data.

 o Explained why COMPRESS permits to do better than existing
 unstandardized commands like XZVER, XZHDR, MODE COMPRESS, and
 XFEATURE GZIP.

 o Added an example of AUTHINFO command when compression is active.

 o The LIST capability label was missing in the examples when READER
 was also advertised.

 o Improved an example to send CAPABILITIES after successful
 authentication.

 o Mentioned that COMPRESS is related to security. CAPABILITIES is
 therefore sent again after COMPRESS.

 o Re-added discussion of attachments in binary form and
 incompressible file formats. Improve the discussion about
 flushes, and add a specific section about DEFLATE.

 o Changed a MUST NOT to SHOULD NOT for the use of AUTHINFO after
 COMPRESS.

 o Algorithm names are case-insensitive.

 o Mentioned the use of the 501 response code.

 o Added the Security Considerations Section.

 o Added Julien Elie as co-author of this document.

 o Minor editorial changes.

B.5. Changes since -01

 o Switched to using 206 response code when compression has been
 activated.

 o Added text stating that TLS-level compression is susceptible to
 CRIME attack and current BCP is to disable it.

 o Added text stating that AUTHINFO shouldn't be advertised or used
 after COMPRESS to prevent possible CRIME attack (with example).

Murchison & Elie Expires April 29, 2017 [Page 24]

Internet-Draft NNTP Extension for Compression October 2016

 o Added text stating that a windowBits value of -15 should be used
 for inflateInit2().

 o Minor editorial changes.

B.6. Changes since -00

 o Made DEFLATE the mandatory to implement compression algorithm.

 o Removed the requirement that clients/servers implementing COMPRESS
 also implement TLS compression.

 o Added an example of a client trying to use an unsupported
 compression algorithm.

 o Rewrote Compression Efficiency (Section 3) as follows:

 * Included a sample listing of which NNTP commands produce which
 type of data to be compressed.

 * Removed discussion of attachments in binary form and
 incompressible file formats.

 * Mentioned UUencode and yEnc encoding of attachments.

 o Added IANA registry of NNTP compression algorithms.

 o Miscellaneous editorial changes submitted by Julien Elie.

Authors' Addresses

 Kenneth Murchison
 Carnegie Mellon University
 5000 Forbes Avenue
 Pittsburgh, PA 15213
 USA

 Phone: +1 412 268 1982
 EMail: murch@andrew.cmu.edu

 Julien Elie
 10 allee Clovis
 Noisy-le-Grand 93160
 France

 EMail: julien@trigofacile.com
 URI: http://www.trigofacile.com/

http://www.trigofacile.com/

Murchison & Elie Expires April 29, 2017 [Page 25]

