
Workgroup: AVTCORE

Internet-Draft:

draft-murillo-avtcore-multi-codec-payload-

format-01

Published: 11 July 2021

Intended Status: Standards Track

Expires: 12 January 2022

Authors: S. Garcia Murillo

CoSMo

Y. Fablet

Apple Inc.

A. Gouaillard

CoSMo

J. Uberti

Clubhouse

Multi Codec RTP payload format

Abstract

RTP Media Chains usually rely on piping encoder output directly to

packetizers. Media packetization formats often support a specific

codec format and optimize RTP packets generation accordingly. With

the development of Selective Forward Unit (SFU) solutions, RTP Media

Chains used in WebRTC solutions are increasingly relying on

application-specific transforms that sit between encoder and

packetizer on one end and between depacketizer and decoder on the

other end. These transforms are typically encrypting media content

so that the media content is not readable from the SFU, for instance

using [SFrame] or [WebRTCInsertableStreams]. In that context, RTP

packetizers can no longer expect to use packetization formats that

mandate media content to be in a specific codec format. This

document provides a solution to that problem by describing a RTP

packetization format that can be used for many media content, and

how to negotiate use of this format. This document also describes a

solution to allow SFUs to continue performing packet routing on top

of this RTP packetization format.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 January 2022.

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Goals

3. RTP Packetization

4. Payload Multiplexing

5. SDP Negotiation

6. SFU Packet Selection

7. Sender Processing Rules

8. Redundancy Techniques Considerations

8.1. Retransmission Techniques

8.2. Forward Error Correction (FEC) Techniques

8.3. Redundant Audio Data Techniques

9. Alternatives

9.1. Generic Packetization With In-Payload APT

9.2. A Payload Type for Generic Packetization AND Media Format

9.3. A RTP Header To Choose Packetization

10. Security Considerations

11. IANA Considerations

11.1. Registration of audio/generic

12. Registration of video/generic

13. References

13.1. Normative References

13.2. Informative References

Authors' Addresses

1. Introduction

As per Figure 1 of [RFC7656], a Media Packetizer transforms a single

Encoded Stream into one or several RTP packets. The Encoded Stream

is coming straight from the Media Encoder and is expected to follow

the format produced by the Media Encoder. A number of Media

Packetizer formats have been designed to process a specific format

produced by Media Encoder. For instance [RFC6184] is dedicated to

¶

¶

https://trustee.ietf.org/license-info

the processing of content produced by H.264 Media Encoders, and

generates packets following NALUs organization.

WebRTC applications are increasingly deploying end-to-end encryption

solutions on top of RTP Media Chains. End-to-end encryption is

implemented by inserting application-specific Media Transformers

between Media Encoder and Media Packetizer on the sending side, and

between Media Depacketizer and Media Decoder on the receiving side,

as described in Figure 1 and Figure 2. To support end-to-end

encryption, Media Transformers can use the [SFrame] format. In

browsers, Media Transformers are implemented using

[WebRTCInsertableStreams], for instance by injecting JavaScript code

provided by web pages.

¶

¶

Figure 1: Sender side concepts in the Media Chain with application-

level Media Transform

These RTP packets are sent over the wire to a receiver media chain

matching the sender side, reaching the Media Depacketizer that will

 Physical Stimulus

 |

 V

 +----------------------+

 | Media Capture |

 +----------------------+

 |

 Raw Stream

 V

 +----------------------+

 | Media Source |<-- Synchronization Timing

 +----------------------+

 |

 Source Stream

 V

 +----------------------+

 | Media Encoder |

 +----------------------+

 |

 Encoded Stream

 V

 +----------------------+

 | Media Transformer |<-- NEW: application-specific transform

 +----------------------+ (e.g. SFrame Encryption)

 |

 Transformed Stream +------------+

 V | V

 +----------------------+ | +----------------------+

 | Media Packetizer | | | RTP-Based Redundancy |

 +----------------------+ | +----------------------+

 | | |

 +-------------+ Redundancy RTP Stream

 Source RTP Stream |

 V V

 +----------------------+ +----------------------+

 | RTP-Based Security | | RTP-Based Security |

 +----------------------+ +----------------------+

 | |

 Secured RTP Stream Secured Redundancy RTP Stream

 V V

 +----------------------+ +----------------------+

 | Media Transport | | Media Transport |

 +----------------------+ +----------------------+

reconstruct the Encoded Stream before passing it to the Media

Decoder.¶

 +----------------------+ +----------------------+

 | Media Transport | | Media Transport |

 +----------------------+ +----------------------+

 Received | Received | Secured

 Secured RTP Stream Redundancy RTP Stream

 V V

 +----------------------+ +----------------------+

 | RTP-Based Validation | | RTP-Based Validation |

 +----------------------+ +----------------------+

 | |

 Received RTP Stream Received Redundancy RTP Stream

 | |

 | +--------------------+

 V V

 +----------------------+

 | RTP-Based Repair |

 +----------------------+

 |

 Repaired RTP Stream

 V

 +----------------------+

 | Media Depacketizer |

 +----------------------+

 |

 Received Transformed Stream

 V

 +----------------------+

 | Media Transformer |<-- NEW: application-specific transform

 +----------------------+ (e.g. SFrame Decryption)

 |

 Received Encoded Stream

 V

 +----------------------+

 | Media Decoder |

 +----------------------+

 |

 Received Source Stream

 V

 +----------------------+

 | Media Sink |--> Synchronization Information

 +----------------------+

 |

 Received Raw Stream

 V

 +----------------------+

 | Media Render |

 +----------------------+

 |

 V

 Physical Stimulus

Figure 2: Receiver side concepts in the Media Chain with application-

level Media Transform

This packetization does not change how the mapping between one or

several encoded or dependant streams are mapped to the RTP streams

or how the synchronization sources(s) (SSRC) are assigned.

Given the use of post-encoder application-specific transforms, the

whole Media Chain needs to be made aware of it. This includes the

sender post-transform Media Chain, Media Transport intermediaries

(SFUs typically) and receiver pre-transform Media Chain.

As these transforms can alter Encoded Streams in any possible way,

the use of codec-specific Media Packetizers like [RFC6184] on

Transformed Stream may be suboptimal on sender side. It may also be

problematic on the receiving side in case codec-specific processing

is done prior the Media Transformer. Media Transport intermediaries

are often looking at the Media Content itself to fuel their packet

selection algorithms.

2. Goals

The objective of this document is to support inserting any

application-specific transform between encoders and packetizers in

the Media Chain. For that purpose, this document will: 1. Provide a

packetization format that supports multiple media content used by

WebRTC applications (audio compressed by Opus, video compressed by

H264 or VP8, encrypted content...) that allows reuse of existing RTP

mechanisms in place in WebRTC applications such as RTX, RED or FEC.

2. Provide a way to negotiate use of this packetization format

between sender and receiver, with minimum impact on existing

negotiation approaches. 3. Provide a side-channel information so

that network intermediaries (SFU in particular) can do their

existing packet routing strategies without inspecting the media

content.

3. RTP Packetization

This packetizer, by design, is not expected to understand the format

of the media to transmit. The unit used by the packetizer to do

processing is called a frame in the remainder of the document.

It is the responsibility of the application using the packetizer to

group media content in meaningful frames. In the common case of a

video codec, the packetizer frame is the frame in byte format (h264

annex b for example) generated by the encoder.

If the application wants to transform encoded content, the

application needs to split the encoded content into frames prior the

transform. Each frame is then transformed independently, for

¶

¶

¶

¶

¶

¶

instance encrypted using [SFrame]. The content of each transformed

frame is then processed by the packetizer.

In the case of a video codec supporting spatial scalability, each

spatial layer MUST be split in its own frame by the application

before passing it to the packetizer.

When the packetizer receives a frame from the application, it MUST

fragment the frame content in multiple RTP packets to ensure packets

do not exceed the network maximum transmission unit. The content of

the frame will be treated as a binary blob by the packetizer, so the

decision about the boundaries of each fragment is decided

arbitrarily by the packetizer. The packetizer or any relying server

MUST NOT modify the frame content and concatenating the RTP payload

of the RTP packets for each frame MUST produce the exact binary

content of the input frame content.

The marker bit of each RTP packet in a frame MUST be set according

to the audio and video profiles specified in [RFC3551].

The spatial layer frames are sent in ascending order, with the same

RTP timestamp, and only the last RTP packet of the last spatial

layer frame will have the marker bit set to 1.

4. Payload Multiplexing

In order to reduce the number of payload type in the SDP exchange, a

single payload type code for this multi-codec packetization can be

used for all negotiated media formats that the multi-codec

packetization supports. That requires to identify the original

payload type code of the frame negotiated media format, called the

associated payload type (APT) hereunder. The APT value is the

payload type code of the associated format passed to the multi-codec

Media Packetizer before any transformation is applied.

The APT value is sent in a dedicated header extension. The payload

of this header extension can be encoded using either the one-byte or

two-byte header defined in [RFC5285]. Figures 3 and 4 show examples

with each one of these examples.

Figure 3: Frame associated payload type encoding using the One-Byte

header format

¶

¶

¶

¶

¶

¶

¶

 0 1

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | ID | len=0 |S| APT |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 4: Frame associated payload type encoding using the Two-Byte

header format

The APT value is the associated payload type value. The S bit

indicates if the media stream can be forwarded safely starting from

this RTP packet. Typically, it will be set to 1 on the first RTP

packet of an intra video frame and in all RTP audio packets.

Receivers MUST be ready to receive RTP packets with different

associated payload types in the same way they would receive

different payload type codes on the RTP packets.

The URI for declaring this header extension in an extmap attribute

is "urn:ietf:params:rtp-hdrext:associated-payload-type".

5. SDP Negotiation

To use the multi-codec packetization, the SDP Offer/Answer exchange

MUST negotiate: - The payload type of the negotiated codec format -

The multi-codec payload type - The associated payload type header

extension

Only the negotiated payload types are allowed to be used as

associated payload types. Figure 5 illustrates a SDP that negotiates

exchange of video using either VP8 or VP9 codecs with the

possibility to use the multi-codec packetization. In this example,

RTX is also negotiated and will be applied normally on each

associated payload type.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | ID | len=1 |S| APT | 0 (pad) |

 +-+

¶

¶

¶

¶

¶

Figure 5: SDP example negotiating the multi-codec payload type and

related header extension for video

6. SFU Packet Selection

SFUs need to have a basic understanding of each frame they receive

so they can decide to forward it or not and to which endpoint. They

might need similar information to support media content recording.

This information is either generic to a group of frames (called a

stream hereafter) or specific to each frame.

The information is transmitted as a RTP header extension as the RTP

packet payload should be treated as opaque by the SFU. This is

especially necessary if the payload is end-to-end encrypted. The

amount of information should be limited to what is strictly

necessary to the SFU task since it is not always as trusted as

individual peers.

For audio, configuration information such as Opus TOC might be

useful. For video, configuration information might include: - Stream

configuration information: resolution, quality, frame rate... -

Codec specific configuration information: codec profile like

profile_idc... - Frame specific information: whether the stream is

decodable when starting from this frame, whether the frame is

skippable...

For video content, this information is sent using a Dependency

Descriptor header extension. In that case, the first RTP packet of

m=video 9 UDP/TLS/RTP/SAVPF 96 97 98 99 100 101

c=IN IP4 0.0.0.0

a=rtcp:9 IN IP4 0.0.0.0

a=setup:actpass

a=mid:1

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id

a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:repaired-rtp-stream-id

a=extmap:4 urn:ietf:params:rtp-hdrext:associated-payload-type

a=sendrecv

a=rtpmap:96 vp9/90000

a=rtpmap:97 vp8/90000

a=rtpmap:98 generic/90000

a=rtpmap:99 rtx/90000

a=fmtp:99 apt=96

a=rtpmap:100 rtx/90000

a=fmtp:100 apt=97

a=rtpmap:101 rtx/90000

a=fmtp:101 apt=98

¶

¶

¶

the frame will have its start_of_frame equal to 1 and the last

packet will have its end_of_frame equal to 1.

7. Sender Processing Rules

The sender identifies the use of the multi-codec payload format by

using the urn:ietf:params:rtp-hdrext:associated-payload-type

extension. When doing so, the sender follows these additional rules:

- For audio content, the associated payload type MUST reference an

audio codec in the supported audio codec list. The supported audio

codec list contains the audio codecs enumerated in [RFC7874]. This

list may be extended in future versions of this specification. - For

video content, H.264 and VP8 are supported as described in

[RFC7742], as well as VP9 and AV.1. In the case scalable video

coding is used, the sender MUST generate a Dependency Descriptor

header extension. This requires the associated payload type to

reference a video codec that can be described using the Dependency

Descriptor header extension. This also requires the sender to split

the video encoder output in frames that can each be described using

the Dependency Descriptor header extension.

These rules apply to both the originator of the content as well as

SFUs that might route the content to end receivers.

8. Redundancy Techniques Considerations

The solution described in this document is expected to integrate

well with the existing RTP ecosystem. This section describes how the

multi-codec packetizer can be used jointly with existing techniques

that allow to mitigate unreliable transports.

8.1. Retransmission Techniques

[RFC4588] defines a retransmission payload format (RTX) that can be

used in case of packet loss. As defined in [RFC4588], RTX is able to

handle any payload format, including the format described in this

document. Given RTX preserves both RTP packet payload and headers,

the receiver will be able to identify the payload type of the

recovered packet and whether multi-codec packetization is used. RTX

will also allow recovering RTP header extensions that convey

information on the media content itself.

8.2. Forward Error Correction (FEC) Techniques

FEC is another technique used in RTP Media Chains to protect media

content against packet loss. [RFC5109] defines such a payload format

used to transmit FEC for specific packets protection.

FEC may protect some parts of the media content more than others.

For instance, intra video frame encoded data or important network

¶

¶

¶

¶

¶

¶

abstraction layer units (NALUs) like SPS/PPS may be more protected.

With a post-encoder transform and the use of a multi-codec

packetization, the granularity of the recovery mechanism is no

longer at the NALU level but at the level of the frame generated by

the post-encoder transform. In case a SVC codec is used, each

spatial layer will be processed as an independent frame. In that

case, base layers can be protected more heavily than higher

resolution layers.

8.3. Redundant Audio Data Techniques

As defined in [RFC7656] RTP-based redundancy is defined here as a

transformation that generates redundant or repair packets sent out

as a Redundancy RTP Stream to mitigate Network Transport

impairments, like packet loss and delay.

[RFC2198] defines a payload format for sending the same audio data

encoded multiple times at different quality levels. This allows to

use a lower quality encoding of the audio data, should the higher

quality encoding of the audio data is lost during the transmission.

If a Media Transformation is in use, both the primary and redundant

encoding must be transformed independently and the redundant packet

created normally. As the RTP headers present in the redundant packet

are only applicable to the primary encoding, if the payload type for

a redundant encoding block is mapped to the multi-codec packetizer,

the value of the associated payload type for the primary encoding is

applied to the redundant encoding block as well.

9. Alternatives

Various alternatives can be used to implement and negotiate multi-

codec packetization. This section describes a few additional

alternatives. This section is to be removed before finalization of

the document.

9.1. Generic Packetization With In-Payload APT

Instead of using a RTP header extension to convey the APT value, it

is prepended in the RTP payload itself. As the value cannot change

for a whole frame, its value is prepended to the first packet

generated of the frame only. This removes the need to negotiate a

dedicated header extension, but may require the SFU to update the

payload when sending or recording content.

9.2. A Payload Type for Generic Packetization AND Media Format

The payload type is negotiated in the SDP so as to identify both the

negotiated codec format and the multi-codec packetization use. There

¶

¶

¶

¶

¶

¶

is no network cost but this increases the number of payload types

used in the SDP.

Figure 6: SDP example negotiating a payload type for format and multi-

codec packetization

A variation of this approach is to consider defining several multi-

codec payload types, each of them having an identified codec format.

¶

m=video 9 UDP/TLS/RTP/SAVPF 96 97 98 99 100 101

c=IN IP4 0.0.0.0

a=rtcp:9 IN IP4 0.0.0.0

a=setup:actpass

a=mid:1

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id

a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:repaired-rtp-stream-id

a=sendrecv

a=rtpmap:96 vp9/90000

a=rtpmap:97 generic/90000

a=fmtp:97 apt=96

a=rtpmap:98 vp8/90000

a=rtpmap:99 generic/90000

a=fmtp:99 apt=98

a=rtpmap:100 rtx/90000

a=fmtp:100 apt=96

a=rtpmap:101 rtx/90000

a=fmtp:101 apt=97

a=rtpmap:102 rtx/90000

a=fmtp:102 apt=98

a=rtpmap:103 rtx/90000

a=fmtp:103 apt=99

¶

Figure 7: Alternative SDP example negotiating a payload type for format

and multi-codec packetization

9.3. A RTP Header To Choose Packetization

A RTP header extension can be used to flag content as opaque so that

the receiver knows whether to use or not the multi-codec

packetization. As for the API header extension, the RTP header

extension may not need to be sent for every packet, it could for

instance be sent for the first packet of every intra video frame.

The main advantage of this approach is the reduced impact on SDP

negotiation.

m=video 9 UDP/TLS/RTP/SAVPF 96 97 98 99 100 101

c=IN IP4 0.0.0.0

a=rtcp:9 IN IP4 0.0.0.0

a=setup:actpass

a=mid:1

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id

a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:repaired-rtp-stream-id

a=sendrecv

a=rtpmap:96 generic/90000

a=fmtp:96 codec=vp9

a=rtpmap:97 generic/90000

a=fmtp:97 codec=vp8

a=rtpmap:98 rtx/90000

a=fmtp:98 apt=96

a=rtpmap:99 rtx/90000

a=fmtp:99 apt=97

¶

m=video 9 UDP/TLS/RTP/SAVPF 96 97 98 99 100 101

c=IN IP4 0.0.0.0

a=rtcp:9 IN IP4 0.0.0.0

a=setup:actpass

a=mid:1

a=extmap:1 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:2 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id

a=extmap:3 urn:ietf:params:rtp-hdrext:sdes:repaired-rtp-stream-id

a=extmap:4 urn:ietf:params:rtp-hdrext:multi-codec-packetization-use

a=sendrecv

a=rtpmap:96 vp9/90000

a=rtpmap:97 vp8/90000

a=rtpmap:98 rtx/90000

a=fmtp:98 apt=96

a=rtpmap:99 rtx/90000

a=fmtp:99 apt=97

Figure 8: SDP example negotiating multi-codec packetization as RTP

header extension

10. Security Considerations

RTP packets using the payload format defined in this specification

are subject to the general security considerations discussed in

[RFC3550]. It is not expected that the proposed solution presented

in this document can create new security threats. The use and

implementation of RTP Media Chains containing Media Transformers

needs to be done carefully. It is important to refer to the security

considerations discussed in [SFrame] and [WebRTCInsertableStreams].

In particular Media Transformers on the receiver side need to be

prepared to receive arbitrary content, like decoders already do.

Similarly, since Media Transformers can be implemented as JavaScript

in browsers, RTP Packetizers should be prepared to receive arbitrary

content.

11. IANA Considerations

Two new media subtypes have been registered with IANA, as described

in this section.

11.1. Registration of audio/generic

Type name: audio

Subtype name: generic

Required parameters: none

Optional parameters: none

Encoding considerations: This format is framed (see Section 4.8 in

the template document) and contains binary data.

Security considerations: TBD.

Interoperability considerations: TBD

Published specification: TBD.

Applications that use this media type: TBD.

Additional information: none

Intended usage: COMMON

Restrictions on usage: TBD

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC3550]

[RFC3551]

Author:

Change controller:

12. Registration of video/generic

Type name: video

Subtype name: generic

Required parameters: none

Optional parameters: none

Encoding considerations: This format is framed (see Section 4.8 in

the template document) and contains binary data.

Security considerations: TBD.

Interoperability considerations: TBD

Published specification: TBD.

Applications that use this media type: TBD.

Additional information: none

Intended usage: COMMON

Restrictions on usage: TBD

Author:

Change controller:

13. References

13.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Schulzrinne, H., Casner, S., Frederick, R., and V.

Jacobson, "RTP: A Transport Protocol for Real-Time

Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,

July 2003, <https://www.rfc-editor.org/info/rfc3550>.

Schulzrinne, H. and S. Casner, "RTP Profile for Audio and

Video Conferences with Minimal Control", STD 65, RFC

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3550

[RFC3711]

[RFC4566]

[RFC5285]

[RFC7656]

[RFC8285]

[RFC2198]

[RFC4588]

[RFC5109]

[RFC6184]

3551, DOI 10.17487/RFC3551, July 2003, <https://www.rfc-

editor.org/info/rfc3551>.

Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.

Norrman, "The Secure Real-time Transport Protocol

(SRTP)", RFC 3711, DOI 10.17487/RFC3711, March 2004,

<https://www.rfc-editor.org/info/rfc3711>.

Handley, M., Jacobson, V., and C. Perkins, "SDP: Session

Description Protocol", RFC 4566, DOI 10.17487/RFC4566,

July 2006, <https://www.rfc-editor.org/info/rfc4566>.

Singer, D. and H. Desineni, "A General Mechanism for RTP

Header Extensions", RFC 5285, DOI 10.17487/RFC5285, July

2008, <https://www.rfc-editor.org/info/rfc5285>.

Lennox, J., Gross, K., Nandakumar, S., Salgueiro, G.,

and B. Burman, Ed., "A Taxonomy of Semantics and

Mechanisms for Real-Time Transport Protocol (RTP)

Sources", RFC 7656, DOI 10.17487/RFC7656, November 2015,

<https://www.rfc-editor.org/info/rfc7656>.

Singer, D., Desineni, H., and R. Even, Ed., "A General

Mechanism for RTP Header Extensions", RFC 8285, DOI

10.17487/RFC8285, October 2017, <https://www.rfc-

editor.org/info/rfc8285>.

13.2. Informative References

Perkins, C., Kouvelas, I., Hodson, O., Hardman, V.,

Handley, M., Bolot, J.C., Vega-Garcia, A., and S. Fosse-

Parisis, "RTP Payload for Redundant Audio Data", RFC

2198, DOI 10.17487/RFC2198, September 1997, <https://

www.rfc-editor.org/info/rfc2198>.

Rey, J., Leon, D., Miyazaki, A., Varsa, V., and R.

Hakenberg, "RTP Retransmission Payload Format", RFC 4588,

DOI 10.17487/RFC4588, July 2006, <https://www.rfc-

editor.org/info/rfc4588>.

Li, A., Ed., "RTP Payload Format for Generic Forward

Error Correction", RFC 5109, DOI 10.17487/RFC5109,

December 2007, <https://www.rfc-editor.org/info/rfc5109>.

Wang, Y.-K., Even, R., Kristensen, T., and R. Jesup, "RTP

Payload Format for H.264 Video", RFC 6184, DOI 10.17487/

RFC6184, May 2011, <https://www.rfc-editor.org/info/

rfc6184>.

https://www.rfc-editor.org/info/rfc3551
https://www.rfc-editor.org/info/rfc3551
https://www.rfc-editor.org/info/rfc3711
https://www.rfc-editor.org/info/rfc4566
https://www.rfc-editor.org/info/rfc5285
https://www.rfc-editor.org/info/rfc7656
https://www.rfc-editor.org/info/rfc8285
https://www.rfc-editor.org/info/rfc8285
https://www.rfc-editor.org/info/rfc2198
https://www.rfc-editor.org/info/rfc2198
https://www.rfc-editor.org/info/rfc4588
https://www.rfc-editor.org/info/rfc4588
https://www.rfc-editor.org/info/rfc5109
https://www.rfc-editor.org/info/rfc6184
https://www.rfc-editor.org/info/rfc6184

[RFC6464]

[RFC6465]

[RFC6904]

[RFC7742]

[RFC7874]

[SFrame]

[WebRTCInsertableStreams]

Lennox, J., Ed., Ivov, E., and E. Marocco, "A Real-time

Transport Protocol (RTP) Header Extension for Client-to-

Mixer Audio Level Indication", RFC 6464, DOI 10.17487/

RFC6464, December 2011, <https://www.rfc-editor.org/info/

rfc6464>.

Ivov, E., Ed., Marocco, E., Ed., and J. Lennox, "A Real-

time Transport Protocol (RTP) Header Extension for Mixer-

to-Client Audio Level Indication", RFC 6465, DOI

10.17487/RFC6465, December 2011, <https://www.rfc-

editor.org/info/rfc6465>.

Lennox, J., "Encryption of Header Extensions in the

Secure Real-time Transport Protocol (SRTP)", RFC 6904,

DOI 10.17487/RFC6904, April 2013, <https://www.rfc-

editor.org/info/rfc6904>.

Roach, A.B., "WebRTC Video Processing and Codec

Requirements", RFC 7742, DOI 10.17487/RFC7742, March

2016, <https://www.rfc-editor.org/info/rfc7742>.

Valin, JM. and C. Bran, "WebRTC Audio Codec and

Processing Requirements", RFC 7874, DOI 10.17487/RFC7874,

May 2016, <https://www.rfc-editor.org/info/rfc7874>.

"Secure Frame (SFrame)", n.d., <https://tools.ietf.org/

html/draft-omara-sframe>.

"WebRTC Insertable Media using Streams",

n.d., <https://w3c.github.io/webrtc-insertable-streams>.

Authors' Addresses

Sergio Garcia Murillo

CoSMo

Email: sergio.garcia.murillo@cosmosoftware.io

Youenn Fablet

Apple Inc.

Email: youenn@apple.com

Alex Gouaillard

CoSMo

Email: alex.gouaillard@cosmosoftware.io

Justin Uberti

https://www.rfc-editor.org/info/rfc6464
https://www.rfc-editor.org/info/rfc6464
https://www.rfc-editor.org/info/rfc6465
https://www.rfc-editor.org/info/rfc6465
https://www.rfc-editor.org/info/rfc6904
https://www.rfc-editor.org/info/rfc6904
https://www.rfc-editor.org/info/rfc7742
https://www.rfc-editor.org/info/rfc7874
https://tools.ietf.org/html/draft-omara-sframe
https://tools.ietf.org/html/draft-omara-sframe
https://w3c.github.io/webrtc-insertable-streams
mailto:sergio.garcia.murillo@cosmosoftware.io
mailto:youenn@apple.com
mailto:alex.gouaillard@cosmosoftware.io

Clubhouse

Email: justin@uberti.name

mailto:justin@uberti.name

	Multi Codec RTP payload format
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Goals
	3. RTP Packetization
	4. Payload Multiplexing
	5. SDP Negotiation
	6. SFU Packet Selection
	7. Sender Processing Rules
	8. Redundancy Techniques Considerations
	8.1. Retransmission Techniques
	8.2. Forward Error Correction (FEC) Techniques
	8.3. Redundant Audio Data Techniques

	9. Alternatives
	9.1. Generic Packetization With In-Payload APT
	9.2. A Payload Type for Generic Packetization AND Media Format
	9.3. A RTP Header To Choose Packetization

	10. Security Considerations
	11. IANA Considerations
	11.1. Registration of audio/generic

	12. Registration of video/generic
	13. References
	13.1. Normative References
	13.2. Informative References

	Authors' Addresses

