
 Martin Carpenter
<draft-murray-auth-ftp-ssl-02.txt> IBM UK Ltd
 Paul Ford-Hutchinson
 Independent Security Consultant
 Tim Hudson
INTERNET-DRAFT CryptSoft Pty Ltd
 Eric Murray
 Independent Security Consultant
 24th July, 1997
This document expires on 24th January, 1998

Securing FTP with TLS

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or made obsolete by other documents at
 any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as work in progress.

 To learn the current status of any Internet-Draft, please check the
 1id-abstracts.txt listing contained in the Internet Drafts Shadow
 Directories on ds.internic.net (US East Coast), nic.nordu.net
 (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific
 Rim).

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 1]

https://datatracker.ietf.org/doc/html/draft-murray-auth-ftp-ssl-02.txt

Internet-Draft Secure FTP using TLS 24th July, 1997

Index
 1. Abstract
 2. Introduction
 3. Audience
 4. Session negotiation on the control port
 5. Data Connection Behaviour
 6. Mechanisms for the AUTH Command
 7. SASL Considerations
 8. Data Connection Security
 9. A discussion of negotiation behaviour
 10. Who negotiates what, where and how
 11. Timing Diagrams
 12. Security Considerations
 13. IANA Considerations
 14. Network Management
 15. Internationalization
 16. Scalability & Limits
 17. Applicability
 18. Acknowledgements
 19. References
 20. Authors' Contact Addresses
 Appendices
 A. Summary of [TLS-DESC]
 B. Summary of [CAT-FTPSEC]

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 2]

Internet-Draft Secure FTP using TLS 24th July, 1997

1. Abstract

 This document describes a mechanism that can be used by FTP clients
 and servers to implement security and authentication using the TLS
 protocol defined by the IETF TLS working group and the extensions to
 the FTP protocol defined by the IETF CAT working group. It describes
 the subset of the extensions that are required and the parameters to
 be used; discusses some of the policy issues that clients and servers
 will need to take; considers some of the implications of those
 policies and discusses some expected behaviours of implementations to
 allow interoperation.

 TLS is not the only mechanism for securing file transfer, however it
 does offer some of the following positive attributes:-

 - Flexible security levels. TLS can support privacy, integrity,
 authentication or some combination of all of these. This allows
 clients and servers to dynamically, during a session, decide on
 the level of security required for a particular data transfer,

 - Formalised public key management. By use of X.509 public
 certificates during the authentication phase, certificate
 management can be built into a central function. Whilst this may
 not be desirable for all uses of secured file transfer, it offers
 advantages in certain structured environments such as access to
 corporate data sources.

 - Co-existence and interoperation with authentication mechanisms
 that are already in place for the HTTPS protocol. This allows web
 browsers to incorporate secure file transfer using the same
 infrastructure that has been set up to allow secure web browsing.

 The TLS protocol is a development of the Netscape Communication
 Corporation's SSL protocol and this document can be used to allow the
 FTP protocol to be used with either SSL or TLS. The actual protocol
 used will be decided by the negotiation of the protected session by
 the TLS/SSL layer.

 Note that this specification is in accordance with the FTP RFC and
 relies on the TLS protocol and the CAT FTP security extensions.

2. Introduction

 This document is an attempt to describe how three other documents
 should combined to provide a useful, interoperable, secure file
 transfer protocol. Those documents are:-

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 3]

Internet-Draft Secure FTP using TLS 24th July, 1997

RFC 959 [RFC-959]

 The description of the Internet File Transfer Protocol

draft-ietf-tls-protocol-03.txt [TLS-DESC]

 The description of the Transport Layer Security protocol
 (developed from the Netscape Secure Sockets Layer (SSL)
 protocol version 3.0).

draft-ietf-cat-ftpsec-09.txt [CAT-FTPSEC]

 Extensions to the FTP protocol to allow negotiation of security
 mechanisms to allow authentication, privacy and message
 integrity.

 The File Transfer Protocol (FTP) currently defined in [RFC-959] and
 in place on the Internet is an excellent mechanism for exchanging
 files. The security extensions to FTP in [CAT-FTPSEC] offer a
 comprehensive set of commands and responses that can be used to add
 authentication, integrity and privacy to the FTP protocol. The TLS
 protocol is a popular (due to its wholesale adoption in the HTTP
 environment) mechanism for generally securing a socket connection.
 There are many ways in which these three protocols can be combined
 which would ensure that interoperation is impossible. This document
 describes one method by which FTP can operate securely in such a way
 as to provide both flexibility and interoperation. This necessitates
 a brief description of the actual negotiation mechanism (if used); a
 much more detailed description of the policies and practices that
 would be required and a discussion of the expected behaviours of
 clients and servers to allow either party to impose their security
 requirements on the FTP session.

3. Audience

 This document is aimed at developers who wish to use TLS as a
 security mechanism to secure FTP clients and/or servers.

4. Session negotiation on the control port

 4.1 Negotiated Session Security

https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/draft-ietf-tls-protocol-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-cat-ftpsec-09.txt
https://datatracker.ietf.org/doc/html/rfc959

 In this scenario, the server listens on the normal FTP control
 port {FTP-PORT} and the session initiation is not secured at all.
 Once the client wishes to secure the session, the AUTH command is
 sent and the server may then allow TLS negotiation to take place.

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 4]

Internet-Draft Secure FTP using TLS 24th July, 1997

 4.1.1 Client wants a secured session

 If a client wishes to attempt to secure a session then it
 should, in accordance with [CAT-FTPSEC] send the AUTH command
 with the parameter requesting TLS or SSL {TLS-PARM}.

 The client then needs to behave according to its policies
 depending on the response received from the server and also the
 result of the TLS negotiation.

 4.1.2 Server wants a secured session

 The FTP protocol does not allow a server to directly dictate
 client behaviour, however the same effect can be achieved by
 refusing to accept certain FTP commands until the session is
 secured to an acceptable level to the server.

 4.2 Implicit Session Security

 In this scenario, the server listens on a distinct port {FTP-
 TLSPORT} to the normal unsecured FTP server. Upon connection, the
 client is expected to start the TLS negotiation. If the
 negotiation fails or succeeds at an unacceptable level of security
 then it will be a client and/or server policy decision to
 disconnect the session.

5. Data Connection Behaviour

 The Data Connection in the FTP model can be used in one of three
 ways. (Note: these descriptions are not necessarily placed in exact
 chronological order, but do describe the steps required.)

 i) Classic FTP client/server data exchange

 - The client obtains a port, sends the port number to the
 server, the server connects to the client. The client issues a
 send or receive request to the server on the control connection
 and the data transfer commences on the data connection.

 ii) Firewall-Friendly client/server data exchange (as discussed
 in [FTP-SOCKS]) using the PASV command to reverse the direction
 of the data connection.

 - The client requests that the server open a port, the server
 obtains a port and returns it to the client. The client
 connects to the server on this port. The client issues a send

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 5]

Internet-Draft Secure FTP using TLS 24th July, 1997

 or receive request on the control connection and the data
 transfer commences on the data connection.

 iii) Client initiated server/server data exchange (proxy or
 PASV connections)

 - The client requests that server A opens a port, server A
 obtains a port and returns it to the client. The client sends
 this port number to server B. Server B connects to server A.
 The client sends a send or receive request to server A and the
 complement to server B and the data transfer commences. In
 this model server A is the proxy or PASV host and is a client
 for the Data Connection to server B.

 For i) and ii) the FTP client will be the TLS client and the FTP
 server will be the TLS server.

 That is to say, it does not matter which side initiates the
 connection with a connect() call or which side reacts to the
 connection via the accept() call, the FTP client as defined in [RFC-
 959] is always the TLS client as defined in [TLS-DESC].

 In scenario iii) there is a problem in that neither server A nor
 server B is the TLS client given the fact that an FTP server must act
 as a TLS server for Firewall-Friendly FTP [FTP-SOCKS]. Thus this is
 explicitly excluded in the security extensions document [CAT-FTPSEC],
 and in this document.

6. Mechanisms for the AUTH Command

 The AUTH command takes a single parameter to define the security
 mechanism to be negotiated. As the SSL/TLS protocols self-negotiate
 their levels there is no need to distinguish SSL vs TLS in the
 application layer. The proposed mechanism name for negotiating
 SSL/TLS will be the character string "TLS". This will allow the
 client and server to negotiate SSL or TLS on the control connection
 without altering the protection of the data channel. To protect the
 data channel as well, the PBSZ, PROT command sequence should be used.
 We call this "Explicit Data Channel Protection".

 However, there are clients and servers that exist today which use the

 string "SSL" to indicate that negotiation should take place on the
 control connection and that the data connection should be implicitly
 protected (i.e. the PBSZ 0, PROT P command sequence is not required
 but the client and server will protect the data channel as if it
 had). This is "Implicit Data Channel Protection" and is included

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 6]

Internet-Draft Secure FTP using TLS 24th July, 1997

 primarily for backward compatibility.

 To allow for streamlining of the negotiation, whilst allowing the
 "SSL" string to sink peacefully into disuse, the strings "TLS-P" and
 "TLS-C" will also be defined. "TLS-C" will be a synonym for "TLS"
 and "TLS-P" a synonym for "SSL". Thus we allow for strict compliance
 with [CAT-FTPSEC] by use of "TLS" or "TLS-C" and a quicker (2 less
 commands) and perhaps more sensible option "TLS-P" which will
 implicitly secure the data connection at the same time as securing
 the control connection.

 Note: Regardless of the manner in which the data connection is
 secured (either implicitly by use of "TLS-P", "SSL" or connection to
 a well-known port for FTP protocol over TLS, or explicitly by use of
 the PBSZ/PROT sequence) the data connection state may be modified by
 the client issuing the PROT command with the new desired level of
 data channel protection and the server replying in the affirmative.
 This data channel protection negotiation can happen at any point in
 the session (even straight after a PORT or PASV command) and as often
 as is required.

 See also Section 12, "IANA Considerations".

7. SASL Considerations

 SASL is the Simple Authentication Security Layer. Currently, its
 definition can be found in the internet draft [SASL]. This document
 attempts to define the means by which a connection-based protocol may
 identify and authenticate a client user to a server, with additional
 optional negotiation of protection for the remainder of that session.

 Unfortunately, the SASL paradigm does not fit in neatly with the
 FTP-TLS protocol, mainly due to the fact that FTP uses two
 (independent) connections, and under FTP-TLS these may be at
 different (and possibly renegotiable) protection levels.
 Consequently, it is envisaged that SASL will sit underneath TLS on
 the control connection, and TLS (on both, either or neither
 connection) will be used for privacy and integrity (with optional
 authentication from TLS on either connection).

8. Data Connection Security

 The Data Connection security level is determined by two factors.

 1) The mechanism used to negotiate security on the control
 connection will dictate the default (i.e. un-negotiated) security

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 7]

Internet-Draft Secure FTP using TLS 24th July, 1997

 level of the data port.

 2) The PROT command, as specified in [CAT-FTPSEC] allows
 client/server negotiation of the security level of the data
 connection. Once a PROT command has been issued by the client and
 accepted by the server, the security of subsequent data
 connections should be at that level until another PROT command is
 issued, the session ends, or the security of the session (via an
 AUTH command) is re-negotiated).

 Data Connection Security Negotiation (the PROT command)

 Note: In line with [CAT-FTPSEC], there is no facility for securing
 the Data connection with an insecure Control connection.

 The command defined in [CAT-FTPSEC] to negotiate data connection
 security is the PROT command. As defined there are four values
 that the PROT command parameter can take.

 "C" - Clear - neither Integrity nor Privacy

 "S" - Safe - Integrity without Privacy

 "E" - Confidential - Privacy without Integrity

 "P" - Private - Integrity and Privacy

 As TLS negotiation encompasses (and exceeds) the
 Safe/Confidential/Private distinction, only Private (use TLS) and
 Clear (don't use TLS) are used.

 For TLS, the data connection can have one of two security levels.

 1) Clear

 2)Private

 With "Clear" protection level, the data connection is made without
 TLS at all. Thus the connection is unauthenticated and has no
 privacy or integrity. This might be the desired behaviour for
 servers sending file lists, pre-encrypted data or non-sensitive
 data (e.g. for anonymous FTP servers).

 If the data connection security level is 'Private' then a TLS

 negotiation must take place, to the satisfaction of the Client and
 Server prior to any data being transmitted over the connection.
 The TLS layers of the Client and Server will be responsible for
 negotiating the exact TLS Cipher Suites that will be used (and

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 8]

Internet-Draft Secure FTP using TLS 24th July, 1997

 thus the eventual security of the connection).

 In addition, the PBSZ (protection buffer size) command, as
 detailed in [CAT-FTPSEC], is compulsory prior to any PROT command.
 This document also defines a data channel encapsulation mechanism
 for protected data buffers. For FTP-TLS, which appears to the FTP
 application as a streaming protection mechanism, this is not
 required. Thus the PBSZ command must still be issued, but must
 have a parameter of "0" to indicate that no buffering is taking
 place and the data connection should not be encapsulated.

 Initial Data Connection Security

 For backward compatibility and ease of implementation the
 following rules govern the initial expected protection setting of
 the data connection.

 Connections accepted on the 'secure FTP' port (see
 {FTP-TLSPORT}).
 The initial state of the data connection will be "Private"
 (Although this does not follow [CAT-FTPSEC], this is how
 such clients tend to work today).

 Connections accepted on the normal FTP port {FTP-PORT} with
 TLS/SSL negotiated via an "AUTH SSL" command.
 The initial state of the data connection will be "Private"
 (Although this does not follow [CAT-FTPSEC], this is how
 such clients tend to work today).

 Connections accepted on the normal FTP port {FTP-PORT} with
 TLS/SSL negotiated via an "AUTH <Mechanism>" command.
 The initial state of the data connection will be "Clear"
 (this is the correct behaviour as indicated by [CAT-
 FTPSEC].)

 Note: Connections made on other ports may be still behave in one
 of these ways, but that will be a local configuration issue.

9. A Discussion of Negotiation Behaviour

 All these discussions assume that the negotiation has taken place by

 issuing the AUTH command with a mechanism that does not implicitly
 protect the data channel. Using a mechanism which does implicitly
 secure the data channel or connecting to a port which is implicitly
 protected will have similar issues.

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 9]

Internet-Draft Secure FTP using TLS 24th July, 1997

 9.1. The server's view of the control connection

 A server may have a policy statement somewhere that might:

 - Deny any command before TLS is negotiated (this might cause
 problems if a SITE or some such command is required prior to
 login)
 - Deny certain commands before TLS is negotiated (such as USER,
 PASS or ACCT)
 - Deny insecure USER commands for certain users (e.g. not
 ftp/anonymous)
 - Deny secure USER commands for certain users (e.g.
 ftp/anonymous)
 - Define the level(s) of TLS/SSL to be allowed
 - Define the CipherSuites allowed to be used (perhaps on a per
 host/domain/... basis)
 - Allow TLS authentication as a substitute for local
 authentication.
 - Define data connection policies (see next section)

 Note: The TLS negotiation may not be completed satisfactorily
 for the server, in which case it can be one of these states.

 The TLS negotiation failed completely

 In this case, the control connection should still be up in
 unprotected mode and the server should issue an unprotected 421
 reply to end the session.

 The TLS negotiation completed successfully, but the server
 decides that the session parameters are not acceptable (e.g.
 Distinguished Name in the client certificate is not
 permitted to use the server)

 In this case, the control connection should still be up in a
 protected state, so the server can either continue to refuse to
 service commands or issue a 421 reply and close the connection.

 The TLS negotiation failed during the TLS handshake

 In this case, the control connection is in an unknown state and
 the server should simply drop the control connection.

 Server code will be responsible for implementing the required
 policies and ensuring that the client is prevented from
 circumventing the chosen security by refusing to service those
 commands that are against policy.

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 10]

Internet-Draft Secure FTP using TLS 24th July, 1997

 9.2. The server's view of the data connection

 The server can take one of four basic views of the data connection

 1 - Don't allow encryption at all (in which case the PROT
 command should not allow any value other than 'C' - if it is
 allowed at all)
 2 - Allow the client to choose protection or not
 3 - Insist on data protection (in which case the PROT command
 must be issued prior to the first attempted data transfer)
 4 - Decide on one of the above three for each and every data
 connection

 The server should only check the status of the data protection
 level (for options 3 and 4 above) on the actual command that will
 initiate the data transfer (and not on the PORT or PASV). The
 following commands cause data connections to be opened and thus
 may be rejected (before any 1xx) message due to an incorrect PROT
 setting.

 STOR
 RETR
 NLST
 LIST
 STOU
 APPE

 The reply to indicate that the PROT setting is incorrect is "521
 data connection cannot be opened with this PROT setting"
 If the protection level indicates that TLS is required, then it
 should be negotiated once the data connection is made. Thus, the
 150 reply only states that the command can be used given the
 current PROT level. Should the server not like the TLS
 negotiation then it will close the data port immediately and
 follow the 150 command with a 522 reply indicating that the TLS
 negotiation failed or was unacceptable. (Note: this means that
 the application can pass a standard list of CipherSuites to the
 TLS layer for negotiation and review the one negotiated for
 applicability in each instance).

 It is quite reasonable for the server to insist that the data

 connection uses a TLS cached session. This might be a cache of a
 previous data connection or of the control connection. If this is
 the reason for the the refusal to allow the data transfer then the
 522 reply should indicate this.
 Note: this has an important impact on client design, but allows

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 11]

Internet-Draft Secure FTP using TLS 24th July, 1997

 servers to minimise the cycles used during TLS negotiation by
 refusing to perform a full negotiation with a previously
 authenticated client.

 It should be noted that the TLS authentication of the server will
 be authentication of the server host itself and not a user on the
 server host.

 9.3. The client's view of the control connection

 In most cases it is likely that the client will be using TLS
 because the server would refuse to interact insecurely. To allow
 for this, clients must be able to be flexible enough to manage the
 securing of a session at the appropriate time and still allow the
 user/server policies to dictate exactly when in the session the
 security is negotiated.

 In the case where it is the client that is insisting on the
 securing of the session, it will need to ensure that the
 negotiations are all completed satisfactorily and will need to be
 able to inform the user sensibly should the server not support, or
 be prepared to use, the required security levels.

 Clients must be coded in such a manner as to allow the timing of
 the AUTH, PBSZ and PROT commands to be flexible and dictated by
 the server. It is quite reasonable for a server to refuse certain
 commands prior to these commands, similarly it is quite possible
 that a SITE or quoted command might be needed by a server prior to
 the AUTH. A client must allow a user to override the timing of
 these commands to suit a specific server.
 For example, a client should not insist on sending the AUTH as the
 first command in a session, nor should it insist on issuing a
 PBSZ, PROT pair directly after the AUTH. This may well be the
 default behaviour, but must be overridable by a user.

 Note: The TLS negotiation may not be completed satisfactorily for
 the client, in which case it will be in one of these states:

 The TLS negotiation failed completely

 In this case, the control connection should still be up in
 unprotected mode and the client should issue an unprotected
 QUIT command to end the session.

 The TLS negotiation completed successfully, but the client
 decides that the session parameters are not acceptable (e.g.
 Distinguished Name in certificate is not the actual server
 expected)

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 12]

Internet-Draft Secure FTP using TLS 24th July, 1997

 In this case, the control connection should still be up in a
 protected state, so the client should issue a protected QUIT
 command to end the session.

 The TLS negotiation failed during the TLS handshake

 In this case, the control connection is in an unknown state
 and the client should simply drop the control connection.

 9.4. The client's view of the data connection

 Client security policies

 Clients do not typically have 'policies' as such, instead they
 rely on the user defining their actions and, to a certain extent,
 are reactive to the server policy. Thus a client will need to
 have commands that will allow the user to switch the protection
 level of the data connection dynamically, however, there may be a
 general 'policy' that attempts all LIST and NLST commands on a
 Clear connection first (and automatically switches to Private if
 it fails). In this case there would need to be a user command
 available to ensure that a given data transfer was not attempted
 on an insecure data connection.

 Clients also need to understand that the level of the PROT setting
 is only checked for a particular data transfer after that transfer
 has been requested. Thus a refusal by the server to accept a
 particular data transfer should not be read by the client as a
 refusal to accept that data protection level in toto, as not only
 may other data transfers be acceptable at that protection level,
 but it is entirely possible that the same transfer may be accepted
 at the same protection level at a later point in the session.

 It should be noted that the TLS authentication of the client
 should be authentication of a user on the client host and not the
 client host itself.

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 13]

Internet-Draft Secure FTP using TLS 24th July, 1997

10. Who negotiates what, where and how

 10.1. Do we protect at all ?

 Client issues AUTH <Mechanism>, server accepts or rejects.
 If server needs AUTH, then it refuses to accept certain commands
 until it gets a successfully protected session.

 10.2. What level of protection do we use ?

 Decided entirely by the TLS CipherSuite negotiation.

 10.3. Do we protect data connections in general ?

 Client issues PROT command, server accepts or rejects.

 10.4. Is protection required for a particular data transfer ?

 A client would already have issued a PROT command if it required
 the connection to be protected.
 If a server needs to have the connection protected then it will
 reply to the STOR/RETR/NLST/... command with a 522 indicating that
 the current state of the data connection protection level is not
 sufficient for that data transfer at that time.

 10.5. What level of protection is required for a particular data
 transfer ?

 Decided entirely by the TLS CipherSuite negotiation.

 Thus it can be seen that, for flexibility, it is desirable for the
 FTP application to be able to interact with the TLS layer upon which
 it sits to define and discover the exact TLS CipherSuites that are to
 be/have been negotiated and make decisions accordingly. However it
 should be entirely possible, using the mechanisms described in this
 document, to have a TLS client or server sitting on top of a generic
 'TLS socket layer'. In this case, interoperability for a client with
 a smart TLS-aware server may not be possible due to server policies.

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 14]

Internet-Draft Secure FTP using TLS 24th July, 1997

11. Timing Diagrams

 11.1. Establishing a protected session

 Client Server
 control data data control
==

 socket()
 bind()
 socket()
 connect() --> accept()
 AUTH TLS -->
 <-- 234
 TLSneg() <--> TLSneg()
 PBSZ 0 -->
 <-- 200
 PROT P -->
 <-- 200
 USER fred -->
 <-- 331
 PASS pass -->
 <-- 230

Note: the order of the PBSZ/PROT pair and the USER/PASS pair (with
respect to each other) is not important (i.e. the USER/PASS can happen
prior to the PBSZ/PROT - or indeed the server can refuse to allow a
PBSZ/PROT pair until the USER/PASS pair has happened).

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 15]

Internet-Draft Secure FTP using TLS 24th July, 1997

 11.2. A standard data transfer without protection.

 Client Server
 control data data control
==

 socket()
 bind()
 PORT w,x,y,z,a,b --->
 <--- 200
 STOR file -->
 socket()
 bind()
 <--- 150
 accept() <----------- connect()
 write() -----------> read()
 close() -----------> close()
 <--- 226

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 16]

Internet-Draft Secure FTP using TLS 24th July, 1997

 11.3. A firewall-friendly data transfer without protection

 Client Server
 control data data control
==

 PASV -->
 socket()
 bind()
 <-- 227 (w,x,y,z,a,b)
 socket()
 STOR file --->
 connect() ----------> accept()
 <-- 150
 write() ----------> read()
 close() ----------> close()
 <-- 226

 Note: Implementors should be aware that then connect()/accept()
 function is performed prior to the receipt of the reply from the
 STOR command. This contrasts with situation when (non-firewall-
 friendly) PORT is used prior to the STOR, and the accept()/connect()
 is performed after the reply from the aforementioned STOR has been
 dealt with.

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 17]

Internet-Draft Secure FTP using TLS 24th July, 1997

 11.4. A standard data transfer with protection

 Client Server
 control data data control
==

 socket()
 bind()
 PORT w,x,y,z,a,b -->
 <-- 200
 STOR file --->
 socket()
 bind()
 <-- 150
 accept() <---------- connect()
 TLSneg() <----------> TLSneg()
 TLSwrite() ----------> TLSread()
 close() ----------> close()
 <-- 226

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 18]

Internet-Draft Secure FTP using TLS 24th July, 1997

 11.5. A firewall-friendly data transfer with protection

 Client Server
 control data data control
==

 PASV -->
 socket()
 bind()
 <-- 227 (w,x,y,z,a,b)
 socket()
 STOR file --->
 connect() ----------> accept()
 <-- 150
 TLSneg() <---------> TLSneg()
 TLSwrite() ---------> TLSread()
 close() ---------> close()
 <-- 226

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 19]

Internet-Draft Secure FTP using TLS 24th July, 1997

12. Security Considerations

 This entire document deals with security considerations related to
 the File Transfer Protocol.

13. IANA Considerations

 {FTP-PORT} - The port assigned to the FTP control connection is 21.

 {FTP-TLSPORT} - A port to be assigned by the IANA for native TLS FTP
 connections on the control socket. This has been provisionally
 reserved as port 990.

 {TLS-PARM} - A parameter for the AUTH command to indicate that TLS is
 required. It is recommended that "TLS", "TLS-C", "SSL" and "TLS-P"
 (all uppercase only) are acceptable, and mean the following :-

 "TLS" or "TLS-C" - the TLS protocol or the SSL protocol will be
 negotiated on the control connection. The default protection
 setting for the Data connection is "Clear".

 "SSL" or "TLS-P" - the TLS protocol or the SSL protocol will be
 negotiated on the control connection. The default protection
 setting for the Data connection is "Private".

14. Network Management

 NONE

15. Internationalization

 NONE

16. Scalability & Limits

 There are no issues other than those concerned with the ability of
 the server to refuse to have a complete TLS negotiation for each and
 every data connection, which will allow servers to retain throughput
 whilst using cycles only when necessary.

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 20]

Internet-Draft Secure FTP using TLS 24th July, 1997

17. Applicability

 This mechanism is generally applicable as a mechanism for securing
 the FTP protocol. It is unlikely that anonymous FTP clients or
 servers will require such security (although some might like the
 authentication features without the privacy).

18. Acknowledgements

 o Netscape Communications Corporation for the original SSL protocol.

 o Eric Young for the SSLeay libraries.

 o University of California, Berkley for the original implementations
 of FTP and ftpd on which the initial implementation of these
 extensions were layered.

 o IETF CAT working group.

 o IETF TLS working group.

 o IETF FTPEXT working group.

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 21]

Internet-Draft Secure FTP using TLS 24th July, 1997

19. References

 [FTP-SOCKS] Bellovin, S., "Firewall-Friendly FTP"
RFC 1579, February 1994.

 [TLS-DESC] A description of the TLS protocol.
 TLS (Transport Layer Security) is the IETF version of and
 enhancement to the Netscape SSL protocol. TLS is backwards
 compatible with SSL and discussions in this document are relevant
 to all versions of TLS and SSL. The current version of TLS is
 described in

 T. Dierks, C. Allen, "The TLS Protocol Version 1.0"
draft-ietf-tls-protocol-03.txt.

 [RFC-959] J. Postel, "File Transfer Protocol"
RFC 959, October 1985.

 [SRA-FTP] "SRA - Secure RPC Authentication for TELNET and FTP Version
 1.1"
 file://ftp.funet.fi/security/login/telnet/doc/sra/sra.README

 [CAT-FTPSEC] M. Horowitz, "FTP Security Extensions"
draft-ietf-cat-ftpsec-09.txt

 [SASL] J. Myers, "Simple Authentication and Security Layer"
draft-myers-auth-sasl-11.txt

https://datatracker.ietf.org/doc/html/rfc1579
https://datatracker.ietf.org/doc/html/draft-ietf-tls-protocol-03.txt
https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/draft-ietf-cat-ftpsec-09.txt
https://datatracker.ietf.org/doc/html/draft-myers-auth-sasl-11.txt

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 22]

Internet-Draft Secure FTP using TLS 24th July, 1997

20. Authors' Contact Addresses

 Tim Hudson Martin Carpenter
 CryptSoft Pty Ltd IBM UK Ltd
 PO Box 6324 PO Box 31
 Fairfield 4103 Birmingham Road
 Queensland Warwick
 Australia United Kingdom
 tel - +61 7 32781581 +44 1926 464834
 fax - +44 1926 496482
email - tjh@cryptsoft.com mjc@uk.ibm.com

 Paul Ford-Hutchinson Eric Murray
 Rich Reeve Ltd LNE Consulting
 tel - +61 7 32781581
 fax -
email - pfh@dial.pipex.com ericm@lne.com

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 23]

Internet-Draft Secure FTP using TLS 24th July, 1997

 Appendices

A. Summary of [TLS-DESC]

 The TLS protocol is developed by the IETF TLS working group. It is
 based on the SSL protocol proposed by Netscape Communications
 Corporation. The structure of the start of a TLS session allows
 negotiation of the level of the protocol to be used - in this way, a
 client or server can simultaneously support TLS and SSL and negotiate
 the most appropriate for the connection.

 The TLS protocol defines three security mechanisms that may be used
 (almost) independently. They are Authentication, Integrity and
 Privacy. It is possible to have an Authenticated session with no
 Privacy and with or without Integrity (useful for anonymous FTP
 sites, or sites with pre-encrypted data). For example, sessions with
 Authentication, Privacy and Integrity would be useful for control
 connections over an insecure network and data connections
 transferring confidential material.

 The TLS protocol allows unauthenticated sessions; server
 authentication or client and server authentication. There is no
 mechanism for authenticating a client without first authenticating
 the server.

 The basic mechanism of the TLS protocol is that (for an
 Authenticated, Private session) asymmetric encryption is used to
 authenticate clients and servers and exchange a session key for
 symmetric encryption which is to be used for the rest of the session.

 The structure of the TLS session initialisation is that the client
 initiates the session with a "ClientHello" message. The server will
 respond with a "ServerHello" and the session negotiation will
 continue.

 The TLS protocol allows session caching which is achieved by the
 client requesting that the server re-use a session context (Cipher
 Suite and symmetric key) in the ClientHello message. There is no
 reason why a second connection could not request a 'cached' session
 with the same context as an existing session.

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 24]

Internet-Draft Secure FTP using TLS 24th July, 1997

B. Summary of [CAT-FTPSEC]

 Extensions to FTP

 The FTP Security Extensions document has 8 new commands to enhance
 the FTP protocol to allow negotiation of security and exchange of
 security data. Three of these commands (the AUTH, PBSZ and PROT
 commands) are used by this document to allow an FTP client to
 negotiate TLS with the server. The other commands are not required.

 i) AUTH

 This command is a request by the client to use an authentication
 and/or security mechanism.

 The client will issue an "AUTH <Mechanism>" command which will be
 a request to the server to secure the control connection using the
 TLS (or SSL) protocol. It also governs the initial protection
 setting of the data channel (which may be changed by a subsequent
 PROT command).

 ii) ADAT

 This command is used to transmit security data required by the
 security mechanism agreed in a preceding AUTH command.
 This document does not use the ADAT command.

 iii) PROT

 This command is used by the client to instruct the type of
 security that is required on the Data connection.

 The "PROT C" command will mean that TLS should not be used to
 secure the data connection; "PROT P" means that TLS should be
 used. "PROT E" and "PROT S" are not defined and generate a 536
 reply from the server.

 iv) PBSZ

 This command is used to negotiate the size of the buffer to be
 used during secured data transfer.

 The PBSZ command must be issued prior to the PROT command. The
 PBSZ command cannot be sent on an insecure control connection.
 For FTP and TLS the only valid value for the parameter is "0", all
 other values should receive a 200 reply with the text "PBSZ=0"

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 25]

Internet-Draft Secure FTP using TLS 24th July, 1997

 included.

 v) CCC

 This command is used to specify that the control channel no longer
 requires protection.
 This document does not use the CCC command.

 vi) MIC

 This command is used to send a normal FTP command with integrity
 protection.
 This document does not use the MIC command.

 vii) CONF

 This command is used to send a normal FTP command with
 confidentiality protection (encrypted).
 This document does not use the CONF command.

 viii) ENC

 This command is used to send a normal FTP command with
 confidentiality and integrity protection.
 This document does not use the ENC command.

This document expires on 24th January, 1998

Carpenter, Ford-Hutchinson, Hudson & Murray FORMFEED[Page 26]

