
 Paul Ford-Hutchinson
<draft-murray-auth-ftp-ssl-12.txt> IBM UK Ltd
 Martin Carpenter
 Verisign Inc
 Tim Hudson
INTERNET-DRAFT (draft) RSA Australia Ltd
 Eric Murray
 Wave Systems Inc
 Volker Wiegand
 SuSE Linux

 28th August, 2003
This document expires on 28th February, 2004

Securing FTP with TLS

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 1]

https://datatracker.ietf.org/doc/html/draft-murray-auth-ftp-ssl-12.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Secure FTP using TLS 28th August, 2003

Index
 1. Abstract
 2. Introduction
 3. Audience
 4. Session negotiation on the control port
 5. Response to FEAT command
 6. Data Connection Behaviour
 7. Mechanisms for the AUTH Command
 8. Data Connection Security
 9. A discussion of negotiation behaviour
 10. Who negotiates what, where and how
 11. Timing Diagrams
 12. Discussion of the REIN command
 13. Discussion of the STAT and ABOR commands
 14. Security Considerations
 15. IANA Considerations
 16. Other Parameters
 17. Network Management
 18. Internationalization
 19. Scalability & Limits
 20. Applicability
 21. Acknowledgements
 22. References
 23. Authors' Contact Addresses

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 2]

Internet-Draft Secure FTP using TLS 28th August, 2003

1. Abstract

 This document describes a mechanism that can be used by FTP clients
 and servers to implement security and authentication using the TLS
 protocol defined by [RFC-2246] and the extensions to the FTP protocol
 defined by [RFC-2228]. It describes the subset of the extensions
 that are required and the parameters to be used; discusses some of
 the policy issues that clients and servers will need to take;
 considers some of the implications of those policies and discusses
 some expected behaviours of implementations to allow interoperation.
 This document is intended to provide TLS support for FTP in a similar
 way to that provided for SMTP in [RFC-2487] and HTTP in [RFC-2817].

 TLS is not the only mechanism for securing file transfer, however it
 does offer some of the following positive attributes:-

 - Flexible security levels. TLS can support confidentiality,
 integrity, authentication or some combination of all of these.
 This allows clients and servers to dynamically, during a session,
 decide on the level of security required for a particular data
 transfer,

 - It is possible to use TLS identities to authenticate client
 users and not just client hosts.

 - Formalised public key management. By use of well established
 client identity mechnisms (supported by TLS) during the
 authentication phase, certificate management may be built into a
 central function. Whilst this may not be desirable for all uses
 of secured file transfer, it offers advantages in certain
 structured environments.

 - Co-existence and interoperation with authentication mechanisms
 that are already in place for the HTTPS protocol. This allows web
 browsers to incorporate secure file transfer using the same
 infrastructure that has been set up to allow secure web browsing.

 The TLS protocol is a development of the Netscape Communication
 Corporation's SSL protocol and this document can be used to allow the
 FTP protocol to be used with either SSL or TLS. The actual protocol
 used will be decided by the negotiation of the protected session by
 the TLS/SSL layer. This document will only refer to the TLS
 protocol, however, it is understood that the Client and Server MAY
 actually be using SSL if they are so configured.

 Note that this specification is in accordance with the FTP RFC
 [RFC-959] and relies on the TLS protocol [RFC-2246] and the FTP
 security extensions [RFC-2228].

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2228
https://datatracker.ietf.org/doc/html/rfc2487
https://datatracker.ietf.org/doc/html/rfc2817
https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2228

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 3]

Internet-Draft Secure FTP using TLS 28th August, 2003

2. Introduction

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL",
 "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY" and
 "OPTIONAL" that appear in this document are to be interpreted as
 described in [RFC-2119].

 This document is an attempt to describe how three other documents
 should combined to provide a useful, interoperable, secure file
 transfer protocol. Those documents are:-

RFC 959 [RFC-959]

 The description of the Internet File Transfer Protocol

RFC 2246 [RFC-2246]

 The description of the Transport Layer Security protocol
 (developed from the Netscape Secure Sockets Layer (SSL)
 protocol version 3.0).

RFC 2228 [RFC-2228]

 Extensions to the FTP protocol to allow negotiation of security
 mechanisms to allow authentication, confidentiality and message
 integrity.

 The File Transfer Protocol (FTP) currently defined in [RFC-959] and
 in place on the Internet is an excellent mechanism for exchanging
 files. The security extensions to FTP in [RFC-2228] offer a
 comprehensive set of commands and responses that can be used to add
 authentication, integrity and confidentiality to the FTP protocol.
 The TLS protocol is a popular (due to its wholesale adoption in the
 HTTP environment) mechanism for generally securing a socket
 connection.
 There are many ways in which these three protocols can be combined
 which would ensure that interoperation is impossible. This document
 describes one method by which FTP can operate securely in such a way
 as to provide both flexibility and interoperation. This necessitates
 a brief description of the actual negotiation mechanism ; a much more
 detailed description of the policies and practices that would be
 required and a discussion of the expected behaviours of clients and
 servers to allow either party to impose their security requirements
 on the FTP session.

3. Audience

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2228
https://datatracker.ietf.org/doc/html/rfc2228
https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc2228

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 4]

Internet-Draft Secure FTP using TLS 28th August, 2003

 This document is aimed at developers who wish to implement TLS as a
 security mechanism to secure FTP clients and/or servers.

4. Session negotiation on the control port

 The server listens on the normal FTP control port {FTP-PORT} and the
 session initiation is not secured at all. Once the client wishes to
 secure the session, the AUTH command is sent and the server MAY then
 allow TLS negotiation to take place.

 4.1 Client wants a secured session

 If a client wishes to attempt to secure a session then it SHOULD,
 in accordance with [RFC-2228] send the AUTH command with the
 parameter requesting TLS {TLS-PARM}.

 The client then needs to behave according to its policies depending
 on the response received from the server and also the result of the
 TLS negotiation. i.e. A client which receives an AUTH rejection
 MAY choose to continue with the session unprotected if it so
 desires.

 4.2 Server wants a secured session

 The FTP protocol does not allow a server to directly dictate client
 behaviour, however the same effect can be achieved by refusing to
 accept certain FTP commands until the session is secured to an
 acceptable level to the server.

 The server response to an 'AUTH TLS' command which it will honour, is
 '234'.

 Note. The '334' response as defined in [RFC-2228] implies that an
 ADAT exchange will folow. This document does not use the ADAT
 command and so the '334' reply is incorrect.

 Note. The FTP protocol insists that a USER command be used to
 identify the entity attempting to use the ftp server. Although the
 TLS negotiation may be providing authentication information the USER
 command must still be isssued by the client. However, it will be a
 server implementation issue to decide which credentials to accept and
 what consistency checks to make between any client cert used and the
 parameter on the USER command.

5. Response to the FEAT command

https://datatracker.ietf.org/doc/html/rfc2228
https://datatracker.ietf.org/doc/html/rfc2228

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 5]

Internet-Draft Secure FTP using TLS 28th August, 2003

 The FEAT command (introduced in [RFC-2389]) allows servers with
 additional features to advertise these to a client by responding to
 the FEAT command. If a server supports the FEAT command then it MUST
 advertise supported AUTH, PBSZ and PROT commands in the reply as
 described in section 3.2 of [RFC-2389]. Additionally, the AUTH
 command should have a reply that identifies 'TLS' as one of the
 possible parameters to AUTH. It is not necessary to identify the
 'TLS-C' synonym separately.

 Example reply (in same style is [RFC-2389])
 C> FEAT
 S> 211-Extensions supported
 S> AUTH TLS
 S> PBSZ
 S> PROT
 S> 211 END

6. Data Connection Behaviour

 The Data Connection in the FTP model can be used in one of three
 ways. (Note: these descriptions are not necessarily placed in exact
 chronological order, but do describe the steps required. - See
 diagrams later for clarification)

 i) Classic FTP client/server data exchange

 - The client obtains a port; sends the port number to the
 server; the server connects to the client. The client issues a
 send or receive request to the server on the control connection
 and the data transfer commences on the data connection.

 ii) Firewall-Friendly client/server data exchange (as discussed
 in [RFC-1579]) using the PASV command to reverse the direction
 of the data connection.

 - The client requests that the server open a port; the server
 obtains a port and returns the address and port number to the
 client; the client connects to the server on this port. The
 client issues a send or receive request on the control
 connection and the data transfer commences on the data
 connection.

 iii) Client initiated server/server data exchange (proxy or
 PASV connections)

 - The client requests that server A opens a port; server A
 obtains a port and returns it to the client; the client sends

https://datatracker.ietf.org/doc/html/rfc2389
https://datatracker.ietf.org/doc/html/rfc2389#section-3.2
https://datatracker.ietf.org/doc/html/rfc2389
https://datatracker.ietf.org/doc/html/rfc1579

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 6]

Internet-Draft Secure FTP using TLS 28th August, 2003

 this port number to server B. Server B connects to server A.
 The client sends a send or receive request to server A and the
 complement to server B and the data transfer commences. In
 this model server A is the proxy or PASV host and is a client
 for the Data Connection to server B.

 For i) and ii) the FTP client MUST be the TLS client and the FTP
 server MUST be the TLS server.

 That is to say, it does not matter which side initiates the
 connection with a connect() call or which side reacts to the
 connection via the accept() call; the FTP client as defined in
 [RFC-959] is always the TLS client as defined in [RFC-2246].

 In scenario iii) there is a problem in that neither server A nor
 server B is the TLS client given the fact that an FTP server must act
 as a TLS server for Firewall-Friendly FTP [RFC-1579]. Thus this is
 explicitly excluded in the security extensions document [RFC-2228],
 and in this document.

7. Mechanisms for the AUTH Command

 The AUTH command takes a single parameter to define the security
 mechanism to be negotiated. As the SSL/TLS protocols self-negotiate
 their levels there is no need to distinguish SSL vs TLS in the
 application layer. The proposed mechanism name for negotiating TLS
 will be the character string identified in {TLS-PARM}. This will
 allow the client and server to negotiate TLS on the control
 connection without altering the protection of the data channel. To
 protect the data channel as well, the PBSZ:PROT command sequence MUST
 be used.

 Note: The data connection state MAY be modified by the client issuing
 the PROT command with the new desired level of data channel
 protection and the server replying in the affirmative. This data
 channel protection negotiation can happen at any point in the session
 (even straight after a PORT or PASV command) and as often as is
 required.

 See also Section 15, "IANA Considerations".

8. Data Connection Security

 The Data Connection security level is determined by the PROT command

https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc1579
https://datatracker.ietf.org/doc/html/rfc2228

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 7]

Internet-Draft Secure FTP using TLS 28th August, 2003

 The PROT command, as specified in [RFC-2228] allows client/server
 negotiation of the security level of the data connection. Once a
 PROT command has been issued by the client and accepted by the
 server returning the '200' reply, the security of subsequent data
 connections MUST be at that level until another PROT command is
 issued and accepted; the session ends; a REIN command is issued;
 or the security of the session (via an AUTH command) is re-
 negotiated.

 Data Connection Security Negotiation (the PROT command)

 Note: In line with [RFC-2228], there is no facility for securing
 the Data connection with an insecure Control connection.
 Specifically, the PROT command MUST be preceded by a PBSZ command
 and a PBSZ command MUST be preceded by a successful security data
 exchange (the TLS negotiation in this case)

 The command defined in [RFC-2228] to negotiate data connection
 security is the PROT command. As defined there are four values
 that the PROT command parameter can take.

 'C' - Clear - neither Integrity nor Privacy

 'S' - Safe - Integrity without Privacy

 'E' - Confidential - Privacy without Integrity

 'P' - Private - Integrity and Privacy

 As TLS negotiation encompasses (and exceeds) the Safe /
 Confidential / Private distinction, only Private (use TLS) and
 Clear (don't use TLS) are used.

 For TLS, the data connection can have one of two security levels.

 1)Clear (requested by 'PROT C')

 2)Private (requested by 'PROT P')

 With 'Clear' protection level, the data connection is made without
 TLS at all. Thus the connection is unauthenticated and has no
 confidentiality or integrity. This might be the desired behaviour
 for servers sending file lists, pre-encrypted data or non-
 sensitive data (e.g. for anonymous FTP servers).

 If the data connection security level is 'Private' then a TLS
 negotiation must take place on the data connection, to the
 satisfaction of the Client and Server prior to any data being

https://datatracker.ietf.org/doc/html/rfc2228
https://datatracker.ietf.org/doc/html/rfc2228
https://datatracker.ietf.org/doc/html/rfc2228

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 8]

Internet-Draft Secure FTP using TLS 28th August, 2003

 transmitted over the connection. The TLS layers of the Client and
 Server will be responsible for negotiating the exact TLS Cipher
 Suites that will be used (and thus the eventual security of the
 connection).

 In addition, the PBSZ (protection buffer size) command, as
 detailed in [RFC-2228], is compulsory prior to any PROT command.
 This document also defines a data channel encapsulation mechanism
 for protected data buffers. For FTP-TLS, which appears to the FTP
 application as a streaming protection mechanism, this is not
 required. Thus the PBSZ command must still be issued, but must
 have a parameter of '0' to indicate that no buffering is taking
 place and the data connection should not be encapsulated.
 Note that PBSZ 0 is not in the grammar of [RFC-2228], section

8.1, where it is stated:
 PBSZ <sp> <decimal-integer> <CRLF> <decimal-integer> ::= any
 decimal integer from 1 to (2^32)-1
 However it should be noted that using a value of '0' to mean a
 streaming protocol is a reasonable use of '0' for that parameter
 and is not ambiguous.

 Initial Data Connection Security

 The initial state of the data connection MUST be 'Clear' (this is
 the behaviour as indicated by [RFC-2228].)

9. A Discussion of Negotiation Behaviour

 9.1. The server's view of the control connection

 A server MAY have a policy statement somewhere that might:

 - Deny any command before TLS is negotiated (this might cause
 problems if a SITE or some such command is required prior to
 login)
 - Deny certain commands before TLS is negotiated (such as USER,
 PASS or ACCT)
 - Deny insecure USER commands for certain users (e.g. not
 ftp/anonymous)
 - Deny secure USER commands for certain users (e.g.
 ftp/anonymous)
 - Define the level(s) of TLS to be allowed
 - Define the CipherSuites allowed to be used (perhaps on a per
 host/domain/... basis)
 - Allow TLS authentication as a substitute for local
 authentication.

https://datatracker.ietf.org/doc/html/rfc2228
https://datatracker.ietf.org/doc/html/rfc2228
https://datatracker.ietf.org/doc/html/rfc2228

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 9]

Internet-Draft Secure FTP using TLS 28th August, 2003

 - Define data connection policies (see next section)

 It is possible that the TLS negotiation may not be completed
 satisfactorily for the server, in which case it can be one of
 these states.

 The TLS negotiation failed completely

 In this case, the control connection should still be up in
 unprotected mode and the server SHOULD issue an unprotected
 '421' reply to end the session.

 The TLS negotiation completed successfully, but the server
 decides that the session parameters are not acceptable (e.g.
 Distinguished Name in the client certificate is not
 permitted to use the server)

 In this case, the control connection should still be up in a
 protected state, so the server MAY either continue to refuse to
 service commands or issue a protected '421' reply and close the
 connection.

 The TLS negotiation failed during the TLS handshake

 In this case, the control connection is in an unknown state and
 the server SHOULD simply drop the control connection.

 Server code will be responsible for implementing the required
 policies and ensuring that the client is prevented from
 circumventing the chosen security by refusing to service those
 commands that are against policy.

 9.2. The server's view of the data connection

 The server can take one of four basic views of the data connection

 1 - Don't allow encryption at all (in which case the PROT
 command should not allow any value other than 'C' - if it is
 allowed at all)
 2 - Allow the client to choose protection or not
 3 - Insist on data protection (in which case the PROT command
 must be issued prior to the first attempted data transfer)
 4 - Decide on one of the above three for each and every data
 connection

 The server SHOULD only check the status of the data protection
 level (for options 3 and 4 above) on the actual command that will
 initiate the data transfer (and not on the PORT or PASV). The

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 10]

Internet-Draft Secure FTP using TLS 28th August, 2003

 following commands, defined in [RFC-959] cause data connections to
 be opened and thus may be rejected (before any 1xx) message due to
 an incorrect PROT setting.

 STOR
 RETR
 NLST
 LIST
 STOU
 APPE

 The reply to indicate that the PROT setting is incorrect is
 '521 data connection cannot be opened with this PROT setting'
 If the protection level indicates that TLS is required, then it
 should be negotiated once the data connection is made. Thus, the
 '150' reply only states that the command can be used given the
 current PROT level. Should the server not like the TLS
 negotiation then it will close the data port immediately and
 follow the '150' command with a '522' reply indicating that the
 TLS negotiation failed or was unacceptable. (Note: this means
 that the application can pass a standard list of CipherSuites to
 the TLS layer for negotiation and review the one negotiated for
 applicability in each instance).

 It is quite reasonable for the server to insist that the data
 connection uses a TLS cached session. This might be a cache of a
 previous data connection or of the control connection. If this is
 the reason for the the refusal to allow the data transfer then the
 '522' reply should indicate this.
 Note: this has an important impact on client design, but allows
 servers to minimise the cycles used during TLS negotiation by
 refusing to perform a full negotiation with a previously
 authenticated client.

 It should be noted that the TLS authentication of the server will
 be authentication of the server host itself and not a user on the
 server host.

 9.3. The client's view of the control connection

 In most cases it is likely that the client will be using TLS
 because the server would refuse to interact insecurely. To allow
 for this, clients SHOULD be able to be flexible enough to manage
 the securing of a session at the appropriate time and still allow
 the user/server policies to dictate exactly when in the session
 the security is negotiated.

https://datatracker.ietf.org/doc/html/rfc959

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 11]

Internet-Draft Secure FTP using TLS 28th August, 2003

 In the case where it is the client that is insisting on the
 securing of the session, it will need to ensure that the
 negotiations are all completed satisfactorily and will need to be
 able to inform the user sensibly should the server not support, or
 be prepared to use, the required security levels.

 Clients SHOULD be coded in such a manner as to allow the timing of
 the AUTH, PBSZ and PROT commands to be flexible and dictated by
 the server. It is quite reasonable for a server to refuse certain
 commands prior to these commands, similarly it is quite possible
 that a SITE or quoted command might be needed by a server prior to
 the AUTH. A client MUST allow a user to override the timing of
 these commands to suit a specific server.
 For example, a client SHOULD NOT insist on sending the AUTH as the
 first command in a session, nor should it insist on issuing a
 PBSZ, PROT pair directly after the AUTH. This may well be the
 default behaviour, but must be overridable by a user.

 Note: The TLS negotiation may not be completed satisfactorily for
 the client, in which case it will be in one of these states:

 The TLS negotiation failed completely

 In this case, the control connection should still be up in
 unprotected mode and the client should issue an unprotected
 QUIT command to end the session.

 The TLS negotiation completed successfully, but the client
 decides that the session parameters are not acceptable (e.g.
 Distinguished Name in certificate is not the actual server
 expected)

 In this case, the control connection should still be up in a
 protected state, so the client should issue a protected QUIT
 command to end the session.

 The TLS negotiation failed during the TLS handshake

 In this case, the control connection is in an unknown state
 and the client should simply drop the control connection.

 9.4. The client's view of the data connection

 Client security policies

 Clients do not typically have 'policies' as such, instead they
 rely on the user defining their actions and, to a certain extent,
 are reactive to the server policy. Thus a client will need to

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 12]

Internet-Draft Secure FTP using TLS 28th August, 2003

 have commands that will allow the user to switch the protection
 level of the data connection dynamically, however, there may be a
 general 'policy' that attempts all LIST and NLST commands on a
 Clear connection first (and automatically switches to Private if
 it fails). In this case there would need to be a user command
 available to ensure that a given data transfer was not attempted
 on an insecure data connection.

 Clients also need to understand that the level of the PROT setting
 is only checked for a particular data transfer after that transfer
 has been requested. Thus a refusal by the server to accept a
 particular data transfer should not be read by the client as a
 refusal to accept that data protection level in toto, as not only
 may other data transfers be acceptable at that protection level,
 but it is entirely possible that the same transfer may be accepted
 at the same protection level at a later point in the session.

 It should be noted that the TLS authentication of the client
 should be authentication of a user on the client host and not the
 client host itself.

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 13]

Internet-Draft Secure FTP using TLS 28th August, 2003

10. Who negotiates what, where and how

 10.1. Do we protect at all ?

 Client issues 'AUTH TLS', server accepts or rejects.
 If server needs AUTH, then it refuses to accept certain commands
 until it gets a successfully protected session.

 10.2. What level of protection do we use on the Control connection ?

 Decided entirely by the TLS CipherSuite negotiation.

 10.3. Do we protect data connections in general ?

 Client issues PROT command, server accepts or rejects.

 10.4. Is protection required for a particular data transfer ?

 A client would already have issued a PROT command if it required
 the connection to be protected.
 If a server needs to have the connection protected then it will
 reply to the STOR/RETR/NLST/... command with a '522' indicating
 that the current state of the data connection protection level is
 not sufficient for that data transfer at that time.

 10.5. What level of protection is required for a particular data
 transfer ?

 Decided entirely by the TLS CipherSuite negotiation.

 Thus it can be seen that, for flexibility, it is desirable for the
 FTP application to be able to interact with the TLS layer upon which
 it sits to define and discover the exact TLS CipherSuites that are to
 be/have been negotiated and make decisions accordingly.

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 14]

Internet-Draft Secure FTP using TLS 28th August, 2003

11. Timing Diagrams

 11.1. Establishing a protected session

 Client Server
 control data data control
==

 socket()
 bind()
 socket()
 connect() --> accept()
 <-- 220
 AUTH TLS -->
 <-- 234
 TLSneg() <--> TLSneg()
 PBSZ 0 -->
 <-- 200
 PROT P -->
 <-- 200
 USER fred -->
 <-- 331
 PASS pass -->
 <-- 230

Note 1: the order of the PBSZ/PROT pair and the USER/PASS pair (with
respect to each other) is not important (i.e. the USER/PASS can happen
prior to the PBSZ/PROT - or indeed the server can refuse to allow a
PBSZ/PROT pair until the USER/PASS pair has happened).

Note 2: the PASS command might not be required at all (if the USER
parameter and any client identity presented provide sufficient
authentication). The server would indicate this by issuing a '232'
reply to the USER command instead of the '331' which requests a PASS
from the client.

Note 3: the AUTH command might not be the first command after the
receipt of the 220 welcome message.

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 15]

Internet-Draft Secure FTP using TLS 28th August, 2003

 11.2. A standard data transfer without protection.

 Client Server
 control data data control
==

 socket()
 bind()
 PORT w,x,y,z,a,b --->
 <--- 200
 STOR file -->
 socket()
 bind()
 <--- 150
 accept() <----------- connect()
 write() -----------> read()
 close() -----------> close()
 <--- 226

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 16]

Internet-Draft Secure FTP using TLS 28th August, 2003

 11.3. A firewall-friendly data transfer without protection

 Client Server
 control data data control
==

 PASV -->
 socket()
 bind()
 <-- 227 (w,x,y,z,a,b)
 socket()
 STOR file --->
 connect() ----------> accept()
 <-- 150
 write() ----------> read()
 close() ----------> close()
 <-- 226

 Note: Implementors should be aware that then connect()/accept()
 function is performed prior to the receipt of the reply from the
 STOR command. This contrasts with situation when (non-firewall-
 friendly) PORT is used prior to the STOR, and the accept()/connect()
 is performed after the reply from the aforementioned STOR has been
 dealt with.

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 17]

Internet-Draft Secure FTP using TLS 28th August, 2003

 11.4. A standard data transfer with protection

 Client Server
 control data data control
==

 socket()
 bind()
 PORT w,x,y,z,a,b -->
 <-- 200
 STOR file --->
 socket()
 bind()
 <-- 150
 accept() <---------- connect()
 TLSneg() <----------> TLSneg()
 TLSwrite() ----------> TLSread()
 TLSshutdown() -------> TLSshutdown()
 close() ----------> close()
 <-- 226

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 18]

Internet-Draft Secure FTP using TLS 28th August, 2003

 11.5. A firewall-friendly data transfer with protection

 Client Server
 control data data control
==

 PASV -->
 socket()
 bind()
 <-- 227 (w,x,y,z,a,b)
 socket()
 STOR file --->
 connect() ----------> accept()
 <-- 150
 TLSneg() <---------> TLSneg()
 TLSwrite() ---------> TLSread()
 TLSshutdown() -------> TLSshutdown()
 close() ---------> close()
 <-- 226

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 19]

Internet-Draft Secure FTP using TLS 28th August, 2003

12. Discussion of the REIN command

 The REIN command, defined in [RFC-959], allows the user to reset the
 state of the FTP session. From [RFC-959]:
 REINITIALIZE (REIN)
 This command terminates a USER, flushing all I/O and account
 information, except to allow any transfer in progress to be
 completed. All parameters are reset to the default settings
 and the control connection is left open. This is identical to
 the state in which a user finds himself immediately after the
 control connection is opened. A USER command may be expected
 to follow.
 When this command is processed by the server, the TLS session(s)
 MUST be cleared and the control and data connections revert to
 unprotected, clear communications. It MAY be acceptable to use
 cached TLS sessions for subsequent connections, however a server MUST
 not mandate this.

https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc959

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 20]

Internet-Draft Secure FTP using TLS 28th August, 2003

13. Discussion of the STAT and ABOR commands

 The ABOR and STAT commands and the use of TCP Urgent Pointers

 [RFC-959] describes the use of Telnet commands (IP and DM) and the
 TCP Urgent pointer to indicate the transmission of commands on the
 control channel during the execution of a data transfer. FTP uses
 the Telnet Interrupt Process and Data Mark commands in conjunction
 with Urgent data to preface two commands: ABOR (Abort Transfer)
 and STAT (Status request).

 The Urgent Pointer was used because in a Unix implementation the
 receipt of a TCP packet marked as Urgent would result in the the
 execution of the SIGURG interrupt handler. This reliance on
 interrupt handlers was necessary on systems which did not
 implement select() or did not support multiple threads. TLS does
 not support the notion of Urgent data.

 When TLS is implemented as a security method in FTP the server
 SHOULD NOT rely on the use of SIGURG to process input on the
 control channel during data transfers. The client MUST send all
 data including Telnet commands across the TLS session. The TLS
 session will be corrupted if any data is sent on a socket while
 TLS is active.

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 21]

Internet-Draft Secure FTP using TLS 28th August, 2003

14. Security Considerations

 This entire document deals with security considerations related to
 the File Transfer Protocol.

 14.1. Verification of Authentication tokens

 14.1.1. Server Certificates

 Although it is entirely an implementation decision, it is
 recommended that certificates used for server authentication of
 the TLS session contain the server identification information
 in a similar manner to those used for http servers. (see
 [RFC-2818])

 Similarly, it is recommended that the certificate used for
 server authentication of Data connections is the same
 certificate as that used for the corresponding Control
 connection.

 14.1.2. Client Certificates

 - Deciding which client certificates to allow and defining
 which fields define what authentication information is entirely
 a server implementation issue.

 - It is also server implementation issue to decide if the
 authentication token presented for the data connection must
 match the one used for the corresponding control connection.

 14.2. Addressing FTP Security Considerations [RFC-2577]

 14.2.1. Bounce Attack

 A bounce attack should be harder in a secured FTP environment
 because:

 - The FTP server that is being used to initiate a false
 connection will always be a 'server' in the TLS context.
 Therefore, only services that act as 'clients' in the TLS
 context could be vulnerable. This would be a counter-
 intuitive way to implement TLS on a service.

 - The FTP server would detect that the authentication
 credentials for the data connection are not the same as
 those for the control connection, thus the server policies
 COULD be set to drop the data connection.

https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2577

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 22]

Internet-Draft Secure FTP using TLS 28th August, 2003

 - Genuine users are less likely to initiate such attacks
 when the authentication is strong and malicious users are
 less likely to gain access to the FTP server if the
 authentication is not easily subverted (password guessing,
 network tracing, etc...)

 14.2.2. Restricting Access

 This document presents a strong mechanism for solving the issue
 raised in this section.

 14.2.3. Protecting Passwords

 The twin solutions of strong authentication and data
 confidentiality ensure that this is not an issue when TLS is
 used to protect the control session.

 14.2.4. Privacy

 The TLS protocol ensures data confidentiality by encryption.
 Privacy (e.g. access to download logs, user profile
 information, etc...) is outside the scope of this document (and
 [RFC-2577] presumably)

 14.2.5. Protecting Usernames

 This is not an issue when TLS is used as the primary
 authentication mechanism.

 14.2.6. Port Stealing

 This proposal will do little for the Denial of Service element
 of this section, however, strong authentication on the data
 connection will prevent unauthorised connections retrieving or
 submitting files.

 14.2.7. Software-Base Security Problems

 Nothing in this proposal will affect the discussion in this
 section.

15. IANA Considerations

 {FTP-PORT} - The port assigned to the FTP control connection is 21.

16. Other Parameters

https://datatracker.ietf.org/doc/html/rfc2577

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 23]

Internet-Draft Secure FTP using TLS 28th August, 2003

 {TLS-PARM} - The parameter for the AUTH command to indicate that TLS
 is required. To request the TLS protocol in accordance with this
 document, the client MUST use 'TLS'

 To maintain backward compatability with older versions of this
 document, the server SHOULD accept 'TLS-C' as a synonym for 'TLS'

 Note - [RFC-2228] states that these parameters are case-
 insensitive.

17. Network Management

 NONE

18. Internationalization

 NONE

19. Scalability & Limits

 There are no issues other than those concerned with the ability of
 the server to refuse to have a complete TLS negotiation for each and
 every data connection, which will allow servers to retain throughput
 whilst using cycles only when necessary.

https://datatracker.ietf.org/doc/html/rfc2228

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 24]

Internet-Draft Secure FTP using TLS 28th August, 2003

20. Applicability

 This mechanism is generally applicable as a mechanism for securing
 the FTP protocol. It is unlikely that anonymous FTP clients or
 servers will require such security (although some might like the
 authentication features without the confidentiality).

21. Acknowledgements

 o Netscape Communications Corporation for the original SSL protocol.

 o Eric Young for the SSLeay libraries.

 o University of California, Berkley for the original implementations
 of FTP and ftpd on which the initial implementation of these
 extensions were layered.

 o IETF CAT working group.

 o IETF TLS working group.

 o IETF FTPEXT working group.

 o Jeff Altman for the ABOR and STAT discussion.

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 25]

Internet-Draft Secure FTP using TLS 28th August, 2003

22. References

 [RFC-959] J. Postel, "File Transfer Protocol"
RFC 959, October 1985.

 [RFC-1579] S. Bellovin, "Firewall-Friendly FTP"
RFC 1579, February 1994.

 [RFC-2119] S. Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels"

RFC 2119, March 1997.

 [RFC-2222] J. Myers, "Simple Authentication and Security Layer"
RFC 2222, October 1997.

 [RFC-2228] M. Horowitz, S. Lunt, "FTP Security Extensions"
RFC 2228, October 1997.

 [RFC-2246] T. Dierks, C. Allen, "The TLS Protocol Version 1.0"
RFC 2246, January 1999.

 [RFC-2389] P Hethmon, R.Elz, "Feature Negotiation Mechanism for the
 File Transfer Protocol"

RFC 2389, August 1998.

 [RFC-2487] P Hoffman, "SMTP Service Extension for Secure SMTP over
 TLS"

RFC 2487, January 1999.

 [RFC-2577] M Allman, S Ostermann, "FTP Security Considerations"
RFC 2577, May 1999.

 [RFC-2817] R. Khare, S. Lawrence, "Upgrading to TLS Within HTTP/1.1"
RFC 2817, May 2000.

 [RFC-2818] E. Rescorla, "HTTP Over TLS"
RFC 2818, May 2000.

https://datatracker.ietf.org/doc/html/rfc959
https://datatracker.ietf.org/doc/html/rfc1579
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2228
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2389
https://datatracker.ietf.org/doc/html/rfc2487
https://datatracker.ietf.org/doc/html/rfc2577
https://datatracker.ietf.org/doc/html/rfc2817
https://datatracker.ietf.org/doc/html/rfc2818

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 26]

Internet-Draft Secure FTP using TLS 28th August, 2003

23. Authors' Contact Addresses

The FTP-TLS draft information site is at http://www.ford-
hutchinson.com/~fh-1-pfh/ftps-ext.html

Please send comments to Paul Ford-Hutchinson at the address below

 Tim Hudson Paul Ford-Hutchinson
 RSA Data Security IBM UK Ltd
 Australia Pty Ltd PO Box 31
 Birmingham Road
 Warwick
 United Kingdom
 tel - +61 7 3227 4444 +44 1926 462005
 fax - +61 7 3227 4400 +44 1926 496482
email - tjh@rsasecurity.com.au paulfordh@uk.ibm.com

 Martin Carpenter Eric Murray
 Verisign Ltd Wave Systems Inc.
email - mcarpenter@verisign.com ericm@lne.com

 Volker Wiegand
 SuSE Linux
email - wiegand@suse.de

http://www.ford-

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 27]

Internet-Draft Secure FTP using TLS 28th August, 2003

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This document expires on 28th February, 2004

https://datatracker.ietf.org/doc/html/bcp11

Ford-Hutchinson, Carpenter, Hudson, Murray & Wiegand FORMFEED[Page 28]

